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 Reverse-engineer the brain 
National Academy of Engineering Top 5 Grand Challenges 

Find Repeating 
Patterns 

Infer 
Network Connectivity 

4 



 Fast data mining of spike train stream on 
Graphics Processing Units (GPUs)  
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Graphics Card 

GPU Chip 
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 Fast data mining of spike train stream on 
Graphics Processing Units (GPUs) 

 Two key algorithmic strategies to address 
scalability problem on GPU 
  A hybrid mining approach  
  A two-pass elimination approach  
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 Event stream data: sequence of neurons firing 
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E1,t1( ), E2,t2( ),..., En ,tn( )

A 1 1 1 
B 1 1 
C 1 1 1 
D 1 1 1 1 
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Event of  Type A occurred at t = 6 

Event of  Type D occurred at t = 5 
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  Pattern or Episode 

 Occurrences (Non-overlapped) 

Inter-event constraint 

A 1 1 1 1 
B 1 1 1 
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Episode appears twice in the event stream. 



 Data mining problem: 

  Find all possible episodes / patterns which 
occur more than X-times in the event sequence. 

 Challenge: 
 Combinatorial Explosion: large number 

of episodes to count 
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 Mining Algorithm 
(A level wise procedure to control combinatorial explosion) 
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  Generate an initial list of candidate size-1 episodes 
  Repeat until - no more candidate episodes 

  Count: Occurrences of size-M candidate episodes 
  Prune: Retain only frequent episodes 
  Candidate Generation: size-(M+1) candidate episodes 

from N-size frequent episodes 
  Output all the frequent episodes 

Computational bottleneck 



 Counting Algorithm (for one episode) 
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  Find an efficient counting algorithm on 
GPU to count the occurrences of  
 N size-M episodes in an event stream. 

 Address scalability problem on GPU’s 
massive parallel execution architecture.  
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  One episode per GPU thread (PTPE) 
 Each thread counts one episode 
 Simple extension of serial counting 
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   Efficient when the number of episode is larger than the 
number of GPU cores. 



 Not enough episodes/thread, some GPU cores 
will be idle. 

 Solution: Increase the level of parallelism. 
      Multiple Thread per Episode (MTPE)  
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 Problem with simple count merge. 
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 Choose the right algorithm with respect to the 
number of episodes N. 

 Define a switching threshold - Crossover point (CP) 
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If  N < CP 

Use 
MTPE 

Use 
PTPE 

Yes No 

  

€ 

CP = MP × BMP ×TB × f (size)
MP :  Number of multi - processors

BMP :  Block per multi - processor

TB :Thread per block

Performance 
Penalty Factor 

GPU 
computing 
capacity 
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A1 A2 B4 A5 C10 B12 C13 D17 
Event Stream 

Accept_A() Accept_B() Accept_C() Accept_D() 

Episode:  
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D17 

 Problem: Original counting algorithm is 
too complex for a GPU kernel function. 



 Problem: Original counting algorithm is 
too complex for a GPU kernel function. 
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  Large shared memory usage 
  Large register file usage 

  Large number of branching instructions 
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5 10 

A1 A2 B4 A5 C10 B12 C13 D17 

Event Stream 

Accept_A() Accept_B() Accept_C() Accept_D() 

Episode:  

€ 

A (−,5]⎯ → ⎯ ⎯ B (−,10]⎯ → ⎯ ⎯ C (−,5]⎯ → ⎯ ⎯ D
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B12 

C13 D17 

 Solution: PreElim algorithm 
 Less constrained counting Simple kernel function 
 Upper bound only 



  A simpler kernel function 
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Shared Memory Register Local Memory 
PreElim 4 x Episode Size 13 0 
Normal Counting 44 x Episode Size 17 80 



 Solution: 
 Two-pass elimination approach 
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  A simpler kernel function 
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Shared Memory Register Local Memory 
PreElim 4 x Episode Size 13 0 
Normal Counting 44 x Episode Size 17 80 

Local Memory Load 
and Store 

Divergent Branching 

Two Pass 24,770,310 12,258,590 
Hybrid 210,773,785 14,161,399 

Compile Time Difference 

Run Time Difference 



 Hardware 

 Computer (custom-built) 
 Intel Core2 Quad @ 2.33GHz  
 4GB memory 

 Graphics Card (Nvidia GTX 280 GPU) 
 240 cores (30 MPs * 8 cores) @ 1.3GHz 

 1GB global memory 
 16K shared memory for each MP 
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 Datasets 

 Synthetic (Sym26) 
 60 seconds with 50,000 events 

 Real (Culture growing for 5 weeks) 
 Day 33: 2-1-33 (333478 events) 
 Day 34: 2-1-34 (406795 events) 

 Day 35: 2-1-35 (526380 events) 
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 PTPE vs MTPE 

Crossover points 
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  Performance of the Hybrid Approach 
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Sym26 dataset, Support = 100 
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 Crossover Point Estimation 

                              is a better fit. 

  A least square fit is performed. 

€ 

f (size) =
a
size

+ b



 Two-pass approach vs Hybrid approach 
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99.9% fewer 
episodes 



  Performance of the Two-pass approach 
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  Percentage of episodes eliminated by each pass 
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2-1-35 dataset, episode size = 4 
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 GPU vs CPU 

•  GPU is always faster than CPU 
–  5x - 15x speedup 
–  Fair comparison 

•  Two-pass algorithm used 
•  Maximum threading for both 
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 Massive parallelism is required for conquering 
near exponential search space 

 GPU’s far more accessible than high 
performance clusters 

 Frequent episode mining – Not data parallel 

 Redesigned algorithm 
 Framework for real-time and interactive analysis 

of spike train experimental data 
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 A fast temporal data mining framework on GPUs 

 Commoditized system 
 Massive parallel execution architecture 

 Two programming strategies 
 A hybrid approach 

 Increase level of parallelism  

 (data segmentation + map-reduce) 

 Two-pass elimination approach 
 Decrease algorithm complexity 

  (Task decomposition)  
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    Questions. 
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  Parallel Execution via 
pthreads 

  Optimized for CPU 
execution 
 Minimize disk access 
 Cache performance 

  Implements Two-Pass 
Approach 
 PreElim – Simpler/

Quicker state machine 
 Full State Machine – 

Slower but is required to 
eliminate all 
unsupported episodes  
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 Level-wise 
 N-size frequent episodes => (N+1)-size 
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