
Yong Cao,
Debprakash Patnaik, Sean Ponce, Jeremy Archuleta,

Patrick Butler, Wu-chun Feng, and Naren Ramakrishnan

Virginia Polytechnic Institute and State University

 Reverse-engineer the brain
National Academy of Engineering Top 5 Grand Challenges

Cited from Sciseek.com

Action Potentials (Spikes)

Axon Terminal
(transmitter)

Dendrites
(receiver)

Axon
(wires)

Neuron

Question:

How are the neurons
connected?

2

 Reverse-engineer the brain
National Academy of Engineering Top 5 Grand Challenges

Neurons grown on MEA Chip Multi-Electrode Array (MEA)

A

B

C

Spike Train Stream

time

A
B
C

3

 Reverse-engineer the brain
National Academy of Engineering Top 5 Grand Challenges

Find Repeating
Patterns

Infer
Network Connectivity

4

 Fast data mining of spike train stream on
Graphics Processing Units (GPUs)

Multi-Electrode Array
(MEA)

MEA Chip

NVIDIA GTX280
Graphics Card

GPU Chip

5

 Fast data mining of spike train stream on
Graphics Processing Units (GPUs)

 Two key algorithmic strategies to address
scalability problem on GPU
  A hybrid mining approach
  A two-pass elimination approach

6

 Event stream data: sequence of neurons firing

7

€

E1,t1(), E2,t2(),..., En ,tn()

A 1 1 1
B 1 1
C 1 1 1
D 1 1 1 1

N
e

u
ro

n

Time

Event of Type A occurred at t = 6

Event of Type D occurred at t = 5

8

  Pattern or Episode

 Occurrences (Non-overlapped)

Inter-event constraint

A 1 1 1 1
B 1 1 1
C 1 1 1
D 1 1 1

N
e

u
ro

n
s

Time

1

1

1

1

1

1

1

1

Episode appears twice in the event stream.

 Data mining problem:

 Find all possible episodes / patterns which
occur more than X-times in the event sequence.

 Challenge:
 Combinatorial Explosion: large number

of episodes to count

9

…
…

€

A→ B
B→ A
A→C

…
…

Episode
Size/Length:

€

A→ B→C
A→C→ B
B→ A→C
B→C→ A…

…

2 3 4

€

A→ B→C→ D
A→C→ B→ D
A→C→ D→ B
A→ D→ B→C
A→ D→C→ B

…… 1

€

A
B

…
…

 Mining Algorithm
(A level wise procedure to control combinatorial explosion)

10

  Generate an initial list of candidate size-1 episodes
  Repeat until - no more candidate episodes

  Count: Occurrences of size-M candidate episodes
  Prune: Retain only frequent episodes
  Candidate Generation: size-(M+1) candidate episodes

from N-size frequent episodes
  Output all the frequent episodes

Computational bottleneck

 Counting Algorithm (for one episode)

11

5 10

A1 A2 B4 A5 C10 B12 C13 D17

Event Stream

Accept_A() Accept_B() Accept_C() Accept_D()

Episode:

A1

A2

B4

A5

C10

B12 C13

D17

  Find an efficient counting algorithm on
GPU to count the occurrences of
 N size-M episodes in an event stream.

 Address scalability problem on GPU’s
massive parallel execution architecture.

12

  One episode per GPU thread (PTPE)
 Each thread counts one episode
 Simple extension of serial counting

13

Event Stream

N
 E

p
is

o
d

e
s

N GPU
Threads

GPU

SP

SM

MP

…

SP

SM

MP

SP

SM

MP

Global Memory

  Efficient when the number of episode is larger than the
number of GPU cores.

 Not enough episodes/thread, some GPU cores
will be idle.

 Solution: Increase the level of parallelism.
 Multiple Thread per Episode (MTPE)

14

Event Stream

N
 E

p
is

o
d

e
s

N GPU
Threads

M Event Segments

N
 E

p
is

o
d

e
s

NM GPU
Threads

 Problem with simple count merge.

15

 Choose the right algorithm with respect to the
number of episodes N.

 Define a switching threshold - Crossover point (CP)

16

If N < CP

Use
MTPE

Use
PTPE

Yes No

€

CP = MP × BMP ×TB × f (size)
MP : Number of multi - processors

BMP : Block per multi - processor

TB :Thread per block

Performance
Penalty Factor

GPU
computing
capacity

17

5 10

A1 A2 B4 A5 C10 B12 C13 D17
Event Stream

Accept_A() Accept_B() Accept_C() Accept_D()

Episode:

A1

A2

B4

A5

C10

B12 C13

D17

 Problem: Original counting algorithm is
too complex for a GPU kernel function.

 Problem: Original counting algorithm is
too complex for a GPU kernel function.

18

Accept_A() Accept__B() Accept_C() Accept_D()

A1

A2

B4

A5

C10

B12 C13

D17

  Large shared memory usage
  Large register file usage

  Large number of branching instructions

SP

SM

MP

…

SP

SM

MP

SP

SM

MP

Global Memory

19

5 10

A1 A2 B4 A5 C10 B12 C13 D17

Event Stream

Accept_A() Accept_B() Accept_C() Accept_D()

Episode:

€

A (−,5]⎯ → ⎯ ⎯ B (−,10]⎯ → ⎯ ⎯ C (−,5]⎯ → ⎯ ⎯ D

A1 A2 B4 A5 C10

B12

C13 D17

 Solution: PreElim algorithm
 Less constrained counting Simple kernel function
 Upper bound only

  A simpler kernel function

20

Shared Memory Register Local Memory
PreElim 4 x Episode Size 13 0
Normal Counting 44 x Episode Size 17 80

 Solution:
 Two-pass elimination approach

21

Event Stream

E
p

is
o

d
e

s

Threads

Event Stream

Fe
w

e
r

E
p

is
o

d
e

s

Threads

PASS 1: Less Constrained Counting PASS 2: Normal Counting

  A simpler kernel function

22

Shared Memory Register Local Memory
PreElim 4 x Episode Size 13 0
Normal Counting 44 x Episode Size 17 80

Local Memory Load
and Store

Divergent Branching

Two Pass 24,770,310 12,258,590
Hybrid 210,773,785 14,161,399

Compile Time Difference

Run Time Difference

 Hardware

 Computer (custom-built)
 Intel Core2 Quad @ 2.33GHz
 4GB memory

 Graphics Card (Nvidia GTX 280 GPU)
 240 cores (30 MPs * 8 cores) @ 1.3GHz

 1GB global memory
 16K shared memory for each MP

23

 Datasets

 Synthetic (Sym26)
 60 seconds with 50,000 events

 Real (Culture growing for 5 weeks)
 Day 33: 2-1-33 (333478 events)
 Day 34: 2-1-34 (406795 events)

 Day 35: 2-1-35 (526380 events)

24

25

 PTPE vs MTPE

Crossover points

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7

T
im

e
 (

m
s

)

Episode Size

PTPE MTPE

26

  Performance of the Hybrid Approach

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7

T
im

e
 (

m
s

)

Episode Size

PTPE MTPE Hybrid

Sym26 dataset, Support = 100

Episode Number:

Crossover points

27

 Crossover Point Estimation

  is a better fit.

  A least square fit is performed.

€

f (size) =
a
size

+ b

 Two-pass approach vs Hybrid approach

28

99.9% fewer
episodes

  Performance of the Two-pass approach

29

0K

40K

80K

120K

160K

1 2 3 4 5

One Pass 93.2 1839.8 16139.7 132752.6 7036.6

Two Pass 160.4 1716.6 12602.6 41581.7 1844.6

T
im

e
 (

m
s

)

Episode Size

One Pass Two Pass

1 2 3 4 5

Total # 64 6210 33623 173408 6288

First Pass Cull 18 2677 21442 169360 6288

0K

40K

80K

120K

160K

200K

E
p

is
o

d
e

 #

Episode Size

Total # First Pass Cull

2-1-35 dataset, Support = 3150

  Percentage of episodes eliminated by each pass

30

2-1-35 dataset, episode size = 4

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

3
0

0
0

3
0

5
0

3
1

0
0

3
1

5
0

3
2

0
0

3
2

5
0

3
3

0
0

3
3

5
0

3
4

0
0

3
4

5
0

3
5

0
0

3
5

5
0

3
6

0
0

3
6

5
0

3
7

0
0

3
7

5
0

3
8

0
0

3
8

5
0

3
9

0
0

3
9

5
0

4
0

0
0

Support

First Pass Second Pass

 GPU vs CPU

•  GPU is always faster than CPU
–  5x - 15x speedup
–  Fair comparison

•  Two-pass algorithm used
•  Maximum threading for both

31

 Massive parallelism is required for conquering
near exponential search space

 GPU’s far more accessible than high
performance clusters

 Frequent episode mining – Not data parallel

 Redesigned algorithm
 Framework for real-time and interactive analysis

of spike train experimental data

32

 A fast temporal data mining framework on GPUs

 Commoditized system
 Massive parallel execution architecture

 Two programming strategies
 A hybrid approach

 Increase level of parallelism

 (data segmentation + map-reduce)

 Two-pass elimination approach
 Decrease algorithm complexity

 (Task decomposition)

33

 Questions.

34

  Parallel Execution via
pthreads

  Optimized for CPU
execution
 Minimize disk access
 Cache performance

  Implements Two-Pass
Approach
 PreElim – Simpler/

Quicker state machine
 Full State Machine –

Slower but is required to
eliminate all
unsupported episodes

.

.

.

A
B
D
E
F
Z
G
.
.
.

A
B
C
D
E
F
G
H
…
…

AEF

EFG

ACE

ACDE

 Level-wise
 N-size frequent episodes => (N+1)-size

candidates
1

1

1

1

1

1

1

1

1

1

+
A
B
C
D

A
B
C
D

A
B
C
D

