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Motivation

GRAND CHALLENGES

® Reverse-engineer the brain FOR ENGINEERING

National Academy of Engineering Top 5 Grand Challenges
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Contributions

& Fast data mining of spike train stream on
Graphics Processing Units (GPUs)

MEA Chip

GPU Chip

Multi-Electrode Array NVIDIA GTX280
(MEA) Graphics Card
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Contributions

& Fast data mining of spike train stream on
Graphics Processing Units (GPUs)

€ Two key algorithmic strategies to address
scalability problem on GPU

€ A hybrid mining approach
€ A two-pass elimination approach
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Background

€ Event stream data: sequence of neurons firing
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Background

€ Patternor EpiSOde Inter-event constraint
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Episode appears twice in the event stream.
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Background

€ Data mining problem:

Find all possible episodes / patterns which
occur more than X-times in the event sequence.

4 Challenge:

¥ Combinatorial Explosion: large number

of episodes to count

Episode
Size/Length: 1 2 3 4 L.
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: B—C—A A—=D—-B—C
: A—-D—-C—B
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Background
€ Mining Algorithm

(A level wise procedure to control combinatorial explosion)

o Generate an initial list of candidate size-7 episodes

o Repeat until - no more candidate episodes

Count: Occurrences of size-M candidate episodes
Pruiie: Retain only frequent episodes

Candidate Generation: size-(M+1) candidate episodes
from N-size frequent episodes

o Output all the frequent episodes

Computational bottleneck
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Background
€ Counting Algorithm (for one episode)
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Problem Statement

€ Find an efficient counting algorithm on
GPU to count the occurrences of
N size-M episodes in an event stream.

€ Address scalability problem on GPU’s
massive parallel execution architecture.
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A Naive Approach

€ One episode per GPU thread (PTPE)

¥ Each thread counts one episode
€ Simple extension of serial counting

N Episodes

v

v
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N GPU
Threads

Event Stream >

€ Efficient when the number of episode is larger than the

number of GPU cores.
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Small Scale

€ Not enough episodes/thread, some GPU cores
will be idle.

® Solution: Increase the level of parallelism.
Multiple Thread per Episode (MTPE)
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Small Scale

€ Problem with simple count merge.

0
Segment 1 E Segment 2 g : count = 4
h 1 }2.‘2 : h 3 /2.‘4
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Sequence 0
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A Hybrid Approach

€ Choose the right algorithm with respect to the
number of episodes N.

@ Define a switching threshold - Crossover point (CP)

No If N<CP Yes
Use Use
PTPE MTPE

GPU | et
computing —CP 3MP x B, x T, | f (size) je——— Teriormance

‘ Penalty Fact
capacity  yp: Number of multi- processors Y o O"
B,,, : Block per multi-processor
T, : Thread per block
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Large Scale

€ Problem: Original counting algorithm is
too complex for a GPU kernel function.

Episode: 4—l-p G0l .02l . p
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Large Scale

€ Problem: Original counting algorithm is
too complex for a GPU kernel function.

Accept_A() Accept__B() Accept_C() Accept _D()

A1 j B4 t C1O j D17
A C13
A

5

€ Large shared memory usage
€ Large register file usage
€ Large number of branching instructions
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Large Scale

® Solution: PreElim algorithm

@ Less constrained counting = Simple kernel function

€ Upper bound only
Episode: A— =l -p & .~ &3 . p
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Large Scale

€ A simpler kernel function

Shared Memory Register Local Memory
PreElim 4 x Episode Size 13 0
Normal Counting 44 x Episode Size 17 80
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Large Scale

& Solution:

€ Two-pass elimination approach

PASS 1: Less Constrained Counting PASS 2: Normal Counting

— Threads

Episodes

Threads

Fewer Episodes

Event Stream

Event Stream
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Large Scale

€ A simpler kernel function

PreElim
Normal Counting

Compile Time Difference
Shared Memory Register
4 x Episode Size 13

Local Memory

44 x Episode Size 17 80

Run Time Difference

Local Memory Load Divergent Branching

and Store
Two Pass 24,770,310 12,258,590
Hybrid 210,773,785 14,161,399
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Results

®Hardware

€ Computer (custom-built)
®Intel Core2 Quad @ 2.33GHz
€ 4GB memory

€ Graphics Card (Nvidia GTX 280 GPU)
€240 cores (30 MPs * 8 cores) @ 1.3GHz
€ 1GB global memory
€ 16K shared memory for each MP
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Results

& Datasets
€ Synthetic (Sym26)
€460 seconds with 50,000 events

® Real (Culture growing for 5 weeks)

¢ Day 33: 2-7-33 (333478 events)
®Day 34: 2-1-34 (406795 events)
®Day 35: 2-1-35(526380 events)
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Results:

®PTPE vs MTPE
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Results:

€ Performance of the Hybrid Approach

--PTPE -=MTPE Hybrid
1200
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"g 800 //\( Crossover points
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Episode Number: 26 650 4075 1288 228 63 3

Sym26 dataset, Support =100

W VirginiaTech

Invent the Future

26



Results:

® Crossover Point Estimation

Crossover Points for Different Episode Sizes
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® [(siz)=——+b is a better fit.
€ A least square fitis performed.
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Results:

€ Two-pass approach vs Hybrid approach
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Results:

€ Performance of the Two-pass approach

=0=0ne Pass =#~Two Pass

L Total# & First Pass Cull

160K
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2-1-35 dataset, Support = 3150
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Results:

€ Percentage of episodes eliminated by each pass

100%
99%
98%
97%
96%
95%
94%
93%
92%
91%

3000
3050
3100
3150
3200

L First Pass & Second Pass

©O O O O O O O O O O O O O O O O

N O 1V O 1V O UV O W OoO uU O WU o u o

N O O < T WO W O O NMDNMNOWOOWOO O

MmN M MO MH MH MH MH N N N MM M MMM
Support

2-1-35 dataset, episode size =4

) VirginiaTech

Invent the Future

30



Results:

¢ GPU vs CPU

Dataset 2-1-33 Dataset 2-1-34 Dataset 2-1-35
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e GPUis always faster than CPU

— 5x - 15x speedup

— Fair comparison
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Conclusion and future work

€ Massive parallelism is required for conquering
near exponential search space

€ GPU'’s far more accessible than high
performance clusters

@ Frequent episode mining — Not data parallel
€ Redesigned algorithm

€ Framework for real-time and interactive analysis
of spike train experimental data
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Conclusion

@ A fast temporal data mining framework on GPUs
€ Commoditized system
¥ Massive parallel execution architecture

€ Two programming strategies
@ A hybrid approach

®Increase level of parallelism
(data segmentation + map-reduce)

€ Two-pass elimination approach
® Decrease algorithm complexity
(Task decomposition)
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Thank you.

Questions.
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CPU Implementation

ACE
. . A
® Parallel Execution via @
pthreads B
¢ Optimized for CPU C ACDE
execution A D
€ Minimize disk access B E
® Cache performance D E AEF
€ Implements Two-Pass E G @
Approach F
@ PreElim - Simpler/ (23 1 EFG

Quicker state machine

@ Full State Machine - @

Slower but is required to
eliminate all
unsupported episodes
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Candidate Generation

@ Level-wise
@ N-size frequent episodes => (N+1)-size

candidates
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