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Abstract—Among various bug reports (BRs), security bug
reports (SBRs) are unique because they require immediate
concealment and fixes. When SBRs are not identified in time,
attackers can exploit the vulnerabilities. Prior work identifies
SBRs via text mining, which requires a predefined keyword list
and trains a classifier with known SBRs and non-security bug
reports (NSBRs). The former approach is not reliable, because
(1) as the contexts of security vulnerabilities and terminology
of SBRs change over time, the predefined list will become out-
dated; and (2) users may have insufficient SBRs for training.
We introduce a semi-supervised learning-based approach, SAIS,
to adaptively and reliably identify SBRs. Given a project’s BRs
containing some labeled SBRs, many more NSBRs, and unlabeled
BRs, SAIS iteratively mines keywords, trains a classifier based
on the keywords from the labeled data, classifies unlabeled BRs,
and augments its training data with the newly labeled BRs. Our
evaluation shows that SAIS is useful for identifying SBRs.

Index Terms—Security bug reports, self learning, bug triaging

I. INTRODUCTION

Bug tracking systems, such as JIRA [6], are widely used to
track various bug reports (BRs) in software development. A
common challenge for bug report maintenance is that a small
number of bug triagers have to sort a huge number of BRs
everyday, leaving many BRs unread or unresolved [9]. On
the other hand, among all types of BRs, security bug reports
(SBRs) are unique in two aspects. First, it requires triagers
with high expertise in the security domain to accurately sort
out SBRs. Second, SBRs especially need immediate identifi-
cation once being created, because the exposed security bugs
may cause severe consequences (e.g., money loss or privacy
leakage), and thus require for early fixes to avoid potential
security attacks. Furthermore, when bug tracking systems are
open and SBRs are publicly available, bug report maintainers
should hide these reports from any potential attackers, who
may exploit the security vulnerabilities [11].

Although SBRs require almost immediate recognition by
bug triagers, a study by Zaman et al. [56] showed that
the existing triage process is far away from satisfying the
requirement. In particular, the average triage time (i.e., the time
between an average SBR’s submission and its assignment to
a developer) of SBRs in Firefox project is 4,000 minutes (66
hours). The study result indicates a strong need for automatic
tool support that can identify SBRs efficiently and accurately.
With such tool support, software developers can quickly hide
the SBRs from public, focus their effort on resolving SBRs
and fixing security bugs timely.
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Gegick et al. [20] built an approach that applies text mining
to known SBRs and NSBRs, and trains a classification model
that automatically decides whether a given BR is SBR or
not. Nevertheless, Gegick’s approach puts two requirements
on its usage scenario, both of which are difficult to satisfy
in reality. First, the leveraged text mining technique requires
users to manually define a start list—a list of keywords that
are directly or indirectly relevant to security, such as “attack”
and “excessive”. However, developers may not have enough
security domain expertise to properly define a such list. More
importantly, due to new findings and language features, the
vocabulary of SBRs is always expanding (i.e., more and more
security-related terms are created and should be added over
time). For example, attacks to “md5” hashing mechanism
were first found around 2009, so corresponding vulnerabilities
started to appear since then. The first “OAuth” protocol was
published in 2010, so attacks to vulnerabilities in ?0OAuth?
implementations are found only after 2010. Therefore, even
if developers manage to initially define a high-quality start list,
this initial list can gradually become outdated and insufficient.
Second, the approach requires for a sufficient number of
known SBRs and NSBRs to train a useful classification model,
but developers may only have a few SBRs recognized for their
own projects. Consequently, developers cannot train a good
model with the limited SBR data.

This paper presents our new approach SAIS, which reliably
identifies SBRs by overcoming two realistic challenges: the
evolving vocabulary of SBRs and a small set of identified
SBRs for specific software projects. SAIS has two novel-
ties, which were intentionally designed to overcome the two
challenges. First, by mining keywords from both provided
labeled data and the database of Common Vulnerabilities and
Exposures (CVE), SAIS can automatically construct an up-to-
date security-relevant keyword list without requiring users of
any domain expertise. Second, with semi-supervised learning,
SAIS initially trains a classification model with a limited
number of project-specific SBRs, uses the model to classify
unlabeled data, and then includes the newly labeled data
into training to iteratively improve its model training. Such
bootstrapping strategy enables SAIS to adaptively identify
SBRs even with a small training set initially provided.

We evaluated SAIS on the BRs of two open source projects:
RedHat and Mozilla. SAIS identifies SBRs with 87% F-
score (the harmonic average of the precision and recall [45])
for RedHat and 61% for Mozilla. To understand how each
component of SAIS contributes to the overall performance, we
also developed several variants of SAIS by removing either its
iterative execution, keyword mining, or model training.
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In summary, we have made the following contributions:

e We designed and implemented SAIS to automatically
identify SBRs by iteratively mining security-relevant key-
words and training a classification model for BR labeling.
SAIS obtains 87% F-score when labeling RedHat SBRs,
and achieves 61% for Mozilla data.

e We conducted a comprehensive empirical study to sys-
tematically investigate how each component in SAIS
affects the overall performance. Compared with others,
the keyword-mining component plays the most important
role to improve SAIS.

o We investigated the sensitivity of SAIS to changes in the
keyword list length and machine learning algorithm. We
found that SAIS worked best when the top 100 mined
keywords were included, and we use Support Vector
Machines (SVM) to train a classifier in each iteration.

o We publicized our data set' with labeled security bug
reports to facilitate future comparison between automatic
SBR identification techniques.

II. BACKGROUND

This section first presents a study on triaging time of
BRs, and then introduces background knowledge on semi-
supervised learning and the CVE database.

A. Study on Triaging Time

To better motivate our research, we conducted a study
similar to the prior study [56] on the BRs of two other open
source projects: RedHat [4] and Mozilla [3]. As with prior
study, we also observed that the SBRs’ triage time is long.
Fig. 1 presents the cumulative distribution of SBRs’ triage
time observed in our study. The X-axis shows the triage time
ranging from 1 to 1,000,000 minutes with a base-10 log scale.
The Y-axis shows the percentage of triaged SBRs. Overall,
the medium SBR triage time periods of RedHat and Mozilla
are separately 1,820 minutes (30 hours) and 2,637 minutes
(44 hours). For RedHat, only 48% SBRs were triaged within
24 hours (1 day), and 61% SBRs were identified within 72
hours (3 days). For Mozilla, even lower percentages of SBRs
were triaged in 1 or 3 days (45% and 56% respectively).
The considerable time delay between an SBR’s creation and
its recognition by triagers can offer sufficient opportunities
to potential attackers, who learn security vulnerabilities from
the exposed SBRs and implement attacks exploiting those
vulnerabilities.

B. Concepts of Semi-Supervised Learning

Semi-supervised learning [57] is a category of machine
learning techniques that use both labeled and unlabeled data
for training. Researchers found that when a labeled data set
is insufficient to train a useful model, using a much larger
unlabeled data set in conjunction with the labeled data could
considerably improve the learning accuracy [8]. There are
various semi-supervised learning techniques, including self-
training [36] [24], S3VM [32], and Min-Cut [34]. For our

IThe data set and SAIS implementation are available at our anonymous
website https://sites.google.com/site/securebugs/
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Fig. 1: Cumulative Distribution of SBRs’ triage time
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project, we use self-training due to its popularity, and we use
the unlabeled BRs in the bug repositories to support semi-
supervised learning.

Self-training leverages a provided small labeled data set to
train an initial classification model. Then it iteratively uses the
model to classify unlabeled data, adds the classification results
to the training set, and continues using the expanded training
set to create a new classification model.

As illustrated in Fig. 2, when users want to label a set of
nodes as two classes (Class-1 with circle nodes and Class-
2 with triangle nodes), they may provide a small set of 4
labeled data points (2 solid circle nodes and 2 solid triangle
nodes), expecting the unlabeled data points to be automatically
labeled accordingly. Without self-training, a naive approach
is to directly apply an off-the-shelf machine learning (ML)
algorithm, such as SVM, and train a model purely with the
labeled data. The trained model may correspond to Line-1
in Fig. 2, which wrongly classifies some nodes (e.g., Node-1
and Node-2) due to the small training set. With self-training, a
more advanced approach can still obtain a naive classification
model (e.g., Line-1) within its first iteration by applying an
ML algorithm to the labeled data. Nevertheless, for the same
iteration, the approach further classifies unlabeled data using
the model, and expands its training set with the newly labeled
data to prepare for the second iteration of model training.
Such iterative process continues until finally the trained model
converges (e.g., Line-3), or all nodes’ classification labels
become stable.

Node-1 Node-2

Class-1 é / Class-2
Ol /

Fig. 2: Tllustration of Semi-Supervised Learning
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JIKCVE-2006-0884 Detail

Current Description

The WYSIWYG rendering engine ("rich mail" editor) in Mozilla Thunderbird
1.0.7 and earlier allows user-assisted attackers to bypass javascript securit
settings and obtain sensitive information or cause a crash via an e-mail
containing a javascript URI in the SRC attribute of an IFRAME tag, which is
executed when the user edits the e-mail.

Impact

CVSS v2.0 Severity and Metrics:

Base Score: 9.3 HIGH

Vector: (AV:N/AC:M/Au:N/C:C/I:C/A:C) (V2 legend)
Impact Subscore: 10.0

Exploitability Subscore: 8.6

Fig. 3: An Example CVE Entry

We chose to use semi-supervised learning, because prior
works [17], [42] show that by combining it with any super-
vised ML algorithm (e.g., SVM), we can improve the learning
accuracy especially when the initial training set is small.

C. CVE Database

CVE? [2] is an open database that lists information-security
vulnerabilities and exposures, and aims to provide common
names for publicly known problems. Developers, security
analysts, and software vendors can report the vulnerabilities
they found by submitting entries to the CVE database. Once
an entry is submitted, the CVE editorial board manually
investigates the submission and decide whether to accept it.
If a submission is accepted, the CVE editorial board (i.e.,
security experts) further rephrase the original security problem
description with security terminology. Until April 2015, the
database has contained over 60,000 approved entries.

We chose to include CVE entries for keyword mining,
because they contain the up-to-date vocabulary to describe
various vulnerabilities. This information resource ensures the
mined keywords to be up-to-date with the description of
security problems. On the other hand, we also include software
projects’ BRs as another information resource for mining,
because compared with security experts, developers may use a
different vocabulary to describe their project-specific security
problems.

Mozilla Bug 319858: javascript execution when for-
warding or replying (CVE-2006-0884). It is possible
to inject javascript in thunderbird 1.0.7 and 1.5rc. the
js is executed if the luser selects “forward as inline”
(1.5rc) or “forward as inline” or “reply” (1.0.7)...

Figure 3 shows the CVE entry (CVE-2006-0884) for the bug
above as an example. Comparing the CVE entry and the bug
report, we can see that the CVE entry describes the bug from
security experts’ perspective and in a more general way, while
the bug report describes the bug from user’s perspective and
is specific to the context of discovery. Also, the bug report
contains informal words such as “js”, typos such as “luser”
(should be “user”), and more software-specific words such as
“forward”.

Zhttps://cve.mitre.org/

III. APPROACH

As shown in Fig. 4, SAIS executes mainly four steps
iteratively, until labels of all BRs no longer change. To mine
security-relevant keywords, step (I) takes in the labeled SBRs
and NSBRs from a project’s bug tracking system together with
posts in the CVE) database [2]. The project-specific labeled
data contain terms (i.e., words) used in SBRs and NSBRs,
while the CVE entries include terms used in security problem
descriptions. By applying text mining to the documents from
these two resources, SAIS can automatically reveal the state-
of-the-art security-relevant vocabulary, and thus identify the
most frequently used keywords. For clarity, we name the
initial labeled data as Lg. Note that we use CVE database to
supplement our dataset because usually only a small set SBR
set is available. Our later evaluation shows that, although not
as helpful as project-specific keywords, CVE-based keywords
can enhance the performance of SAIS on Mozilla, but they are
only helpful when iterative execution is performed in SAIS.

Based on the keywords, step (@) converts each labeled BR
to a numeric vector, in which each element corresponds to an
identified keyword, and the element’s value (1 or 0) indicates
whether the BR contains the keyword or not. Note that the
length of the vector is the same as the total number of CVE-
based keywords and project specific keywords. This step takes
effect ever since the second iteration of steps (1) through (4).
Specifically, in the nt" iteration (n > 1), this step refines
the newly labeled SBRs from the (n — 1) iteration. As
some of the automatically labeled SBRs may be false alarms,
SAIS implements this intuitive filter to remove falsely labeled
SBRs before using the data for training in the next step. For
instance, given an automatically labeled SBR, this step checks
whether the numeric vector purely contains 0’s (i.e., whether
the SBR contains no security-relevant keyword). If so, the SBR
is regarded as a false alarm, and relabeled with* NSBR”.

Step @) takes the numeric vectors of refined labeled data
as input. It leverages a machine learning algorithm—support
vector machine (SVM) [21]—to train a classification model
with the numeric vectors. For clarity, we call the labeled data
used in this step as Lj;.

Finally, step @ uses the classification model to classify the
unlabeled BRs, creating a new labeled data set L,,. For any BR
commonly shared between L,, and L;, SAIS checks whether
the BR is labeled divergently. If yes, SAIS adds L, to L;
(the data initially labeled from the last iteration) to iteratively
retrain a classifier for data relabeling; otherwise, it outputs the
identified SBRs in L,,.

This section will first explain the keyword-mining step
(Section III-A), and then describe how the mined keywords
are used to refine labeled data (Section III-B). Next, we will
discuss how to train a classification model with the refined data
(Section III-C), and will expound on the labeling process and
the transition to the next iteration of all steps (Section III-D).
Finally, we present and explain the fully integrated algorithm
combining the four steps in Section III-E.

A. Keyword Mining

Given an unbalanced labeled data set (e.g., containing m
SBRs and n NSBRs, where m < n), SAIS first randomly
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Fig. 4: SAIS has four steps. Step (I) mines keywords from labeled data and CVE entries. Step (2 represents the labeled data as
keyword vectors and refines the data accordingly. Step ) trains a model based on the refined data. Step @) classifies unlabeled
BRs with the trained model, and augments the original training data with newly labeled BRs. SAIS repeats the four steps until

all unlabeled BRs are stably labeled.

selects n CVE entries from the over 60,000 entries stored in
our local machine. SAIS then treats the sampled entries as
BRs to uniformly mine and rank security-relevant keywords
by extending a classical ¢ f-idf term weighting approach [33].
For simplicity, we generally call the SBRs together with the
sampled CVE entries as security documents (SD), where the
cardinality of SD is |SD| = m + n. We similarly call NSBRs
as non-security documents (NSD), where [NSD| = n.

For each document d, we first extract the terms or words
from only the summary or description of the problem (either
security-relevant or irrelevant), because such information is
always accessible to bug triagers when they sort BRs. We then
perform automatic stemming to normalize the term represen-
tation (e.g., “executed”—“execute”). Next, for each extracted
term ¢, we further count the number of its occurrence in the
document d, denoting the term frequency with ¢f (¢, d). Given
the two categories of documents (SD vs. NSD), we similarly
compute t’s frequency in a category cat as below:

tf(t,cat) = Y tf(t,d).
d€cat

Inverse document frequency (idf) was originally defined to
measure the specificity of term ¢ in the following way [1]:

(D

# of all documents

idf (t) = log(

Intuitively, the higher idf(¢) is, the more special term ¢ is,
and thus the more important ¢ is to characterize certain type
of documents. In our research, as we are more interested about
how well each term characterizes SDs or NSDs, we adapted
the above idf formula in the following way:

2

# of documents containing ¢’

1 + # of all documents not in cat

idf (t, cat) =1
idf (t, cat) = log( 1 + #documents not in cat containing ¢

).
3)
Intuitively, if a term ¢; purely occurs in every NSD docu-
ment, then idf (t1,5D) = log(ﬁ—’;) = 0, idf(t1, NSD) =
log(%) = log(1 + m + n). The values indicate that ¢;
can well characterize NSDs.

The classical td-idf metric was defined to measure term ¢’s

representativeness for a document d in the following way:

tfidf(t,d) = tf(t,d) - idf(t). o)
We adapted the original formula to correspondingly measure
term t’s representativeness for a document category cat as
below:

tfidf (t,cat) = tf(t, cat) - idf (¢, cat). (5)

As we aim to rank terms based on their capabilities to
differentiate SDs from NSDs, we further define discriminative
weight of term t as below:

tfidf (t, SD)
tfidf(t, NSD)

Theoretically, the more weight a term ¢ has, the more impor-
tant it is to differentiate between different kinds of documents.
Based on the weights of each term, SAIS ranks the terms
that appear in SDs, and then selects a list of top 100 terms as
the security-relevant keywords used in the following steps (see
Table VI for results of using different list length). Notice that
although this step is executed in every iteration, SAIS only uses
the CVE sampled data in the first iteration to complement the
limited SBRs provided by users. In the follow-up iterations,
as sufficient automatically labeled SBRs are generated and
included, SATS does not need the CVE data to mine keywords.
Furthermore, 100 is set as the default size of keyword list
according to our experiments presented later in Section IV.

(6)

descrimitive_weight(t) =

B. Keyword-Based Refinement

This step aims to refine the training data based on mined
keywords from the second iteration of the whole process, when
the newly labeled data may incur noisy information.

Our keyword-based refinement algorithm is presented in
Algorithm 1. Given a labeled BR in the original training set,
if it is an NSBR, SAIS will directly add it to the refined
training set. Otherwise, SAIS will check whether it contains
any keyword in the list of 100 keywords mined from step ().
If an SBR does not contain any of the keywords, it means that
the SBR does not have any known security-relevant keyword.
Therefore, it is possible that the SBR is incorrectly labeled, and
SAIS further relabels the document with “NSBR” and adds it
to the refined training set (see more information on such cases
in the explanation of Table II). The SBRs with at least one
security-related keywords are also added to the training set
without changing their labels.

Notice that we intentionally skip this step’s relabeling part
for the first iteration, because we assume that the manually
labeled SBRs given by users are always correct. Even if
a manually labeled SBR does not contain any top-ranked
security-relevant term, it may be because the mined CVE data
fails to reveal the actual security problems specific to users’
software project(s). Therefore, we trust manually labeled SBRs
without validating their correctness. However, ever since the
second iteration, as new labeled SBRs are generated by the
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Algorithm 1: Keyword-based Refinement of Training
Data

Input: Labeled Training Set 7', Keyword List K EY
Output: Re-Labeled Training Set 7’
1 T" = () for Bug report r in T do

2 if  is NSBR then

3 \ Add r to T”

4 end

5 for Keyword k in KEY do
6 if £ € r then

7 | Add rto T”

8 end

9 end

10 Add r to T as NSBR
11 end

12 return 7"

model created in the previous iteration, it is possible that some
SBRs are incorrectly identified. Therefore, our refinement
process filters out the obviously wrongly classified SBRs.

C. Model Training

To train a binary-class classifier for SBR identification, we
prepare BRs in the training data as feature vectors. For a given
BR, we first remove all the stop words [44], and perform
stemming [39] to unify words with the same morphological
roots. Then, all the remaining words (morphological roots) are
considered features of the BR, and the corresponding feature
values are the their frequencies in BR. The training set includes
both positive and negative data points. Each data point has
the following format: < numeric_vector,label >, in which
label is either 1 to represent “SBR”, or O to represent “NSBR”.
We leverage liblinear [18]—a software library implementing
a collection of machine learning algorithms—to conduct ma-
chine learning. By default, SVM [21], an off-the-shelf machine
learning algorithm, is used in this step to train a classification
model based on the training data. We used SVM’s default
parameter settings in liblinear to train classifiers.

D. Labeling

With the trained classification model, SAIS further classifies
unlabeled BRs into SBRs and NSBRs. Given a BR, the
model outputs the document’s likelihood of being an SBR. By
default, we set the likelihood threshold as 0.5, meaning that if
the output likelihood is greater than 0.5, SAIS automatically
labels the document with “SBR”; otherwise, the document is
labeled with “NSBR”.

After classifying all unlabeled BRs in the n'"(n > 0)
iteration, SAIS further checks for each BR, whether its newly
assigned label is different from the original label (either “UN-
LABELED?” or the label assigned in the previous iteration). If
any BR’s label is changed, SAIS augments the user-provided
labeled data with all automatically labeled data, and continues
a new iteration of all four steps to train a better classification
model. On the other hand, if all BRs’ labels are unchanged,
SAIS concludes that the classification results converge, and
stops iteration to output all identified SBRs.

E. Integrated Algorithm

Based on the four steps detailed above, we present how we
combine them in the self-training framework in the following
algorithm.

Algorithm 2: Incorporation of Keyword-based Pre-
filtering in Self-Training
Input: Training Set R, Testing Set S, CVE Entries
Output: Labeled Dataset L
1 keywords = mine_I(R U E);
2 L=RUS;
3 while 3 br € L A br’s label is updated do

4 L' = refine_2(L, keywords);
5 if first round then

6 | model = train_3(R);

7 else

8 ‘ model = train_3(L’);

9 end

10 L =label_4(L' U S, model);
11 keywords = mine_1(L);

12 end

In Algorithm 2, the inputs are a training set R, a testing set
S, and a CVE entry set E, while the output is the labeled
dataset L. Our four steps are denoted in the algorithm as
miney, refines, traing, and labely. The lines that are not
underlined (i.e., Lines 2, 3, 5-10) are the basic self-training
algorithm, which continuously update the labels of the testing
set (Line 10), and retrain the classification model with the
training set and the relabeled testing set (Lines 5-9), until
the algorithm converge. For the incorporation of our first
two steps, keyword mining and keyword-based refinement, we
added three underlined lines (i.e., Lines 1, 4, 11).

IV. EVALUATION

In this section, we first introduce our data set for evaluation
(Section IV-A), and then describe our evaluation methodology
(Section IV-B). Based on the data set and methodology, we
evaluated SAIS (Section IV-C), and SAIS’s several variants
(Section IV-D). We further compare SAIS with some existing
related works in Section IV-E. After that, we investigated
different machine learning algorithms (Section IV-F) and
different lengths of the created keyword list (Section IV-G)
to explore the best way of performing keyword mining and
machine learning for SBR identification. Finally, we present a
study of security-relate keyword distribution over our data set
and a chronological study of SAIS in Section IV-H.

A. Data Set Construction

We created two data sets based on the bug tracking systems
of RedHat [4] and Mozilla [3]. As shown in Table I, our
RedHat data set includes 9,600 labeled BRs mined from the
original bug system, while the Mozilla data set covers 6,568
labeled BRs. To construct these data sets, we identified SBRs
and NSBRs in different ways.

Identification of Security Bug Reports. One big challenge
of extracting SBRs from open bug tracking systems is that
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TABLE I: Evaluation data sets

Project | # of SBRs # of NSBRs # of labeld BRs
RedHat 800 8,800 9,600
Mozilla 568 6,000 6,568

these systems usually do not have any special tag to indicate
security bugs, neither is it feasible for us to manually inspect
every BR to discover the SBRs. Fortunately, we managed to
leverage some unique information in the BRs of RedHat and
Mozilla to quickly recognize SBRs. Specifically for RedHat,
there is a developer team called “Security Response Team”
that especially handle security bugs. Through sampling and
inspecting the BRs handled and confirmed by this team, we
finally obtained 800 SBRs.

In Mozilla, vulnerabilities were periodically announced to
the public [5], and the vulnerability announcements contain
links to the original BRs. Based on the mentioned BR links, we
obtained 568 SBRs for Mozilla. In particular, when one vul-
nerability announcement refers to multiple BRs, we treated the
documents as separate SBRs, because in reality, bug triagers
only care about how to sort BRs (e.g., SBRs vs. NSBRs),
instead of checking whether a newly reported BR is a duplicate
or supplement of an already-reported issue.

Identification of Non-Security Bug Reports. In dataset
construction, we try to make the ratio of SBR/NSBR in our
dataset similar to that of reality. So we estimated the ratio
between the occurrence rates of SBRs and NSBRs, and then
sampled NSBRs accordingly. In this way, we ensure our
labeled data sets to realistically reflect the two types of BR’s
distributions. One big challenge here is that open bug systems
do not have any precise security-relevant category information
for any BR. Therefore, we can only roughly estimate the
ratio by taking the best effort. Especially for RedHat, we
observed that the BRs handled by the “Security Response
Team” counted for 8% of the overall BRs in the raw data.
Assuming that the reports touched by the “Security Response
Team” are security-relevant and those untouched are security-
irrelevant, we assessed the rough ratio between SBRs and
NSBRs to be 1:11. Based on the estimated ratio, for the 800
sampled SBRs of RedHat, we decided to sample 8,800 NSBRs
correspondingly. For the 568 sampled SBRs of Mozilla, we
determined to sample 6,000 NSBRs. To sample NSBRs, based
on the above-mentioned procedure to identify SBRs, here we
label a sampled BR with “NSBR” if it does not meet the SBR
criteria mentioned above.

B. Evaluation Methodology

K-fold cross validation (CV) is a widely adopted method
to assess how well a classification approach performs on
independent data sets [29]. CV splits a data set into k subsets,
and executes the classification approach k times. For each
execution, CV uses some of the subsets for training, and the
remaining subset(s) for testing. The overall evaluation result
is the average among the k executions.

In our project, we split RedHat’s data set so that each subset
includes 100 SBRs, and 1,100 NSBRs to maintain the 1:11
ratio. Similarly, we split Mozilla’s data so that every subset

includes 110 SBRs and 1,200 NSBRs. To simulate the real-
world scenario, when classifying BRs for individual projects,
we used one subset for training and the remaining subsets for
testing. We intentionally configured every subset to cover at
least 100 SBRs, because prior work shows that 100 is the
minimal data size for meaningful machine learning [50], [58].

To measure an SBR identification approach, we defined and
used the following three metrics: precision, recall, and F-score.

Precision (P) measures among all the labeled SBRs, how
many reports are true SBRs:

_ # of true SBRs
" # of all labeled SBRs

Recall (R) measures among all true SBRs, how many
reports are labeled as SBRs by an automatic approach:

%« 100%. 7)

B # of labeled SBRs
~ # of all true SBRs

F-score (F) is the harmonic mean of precision and recall
as below:

* 100%. ®)

2+« Px R
F="—"""%100%. 9
P+r 7 ©)
Precision, recall, and F-score all vary within [0%, 100%]. The
higher F-scores are desirable, because they demonstrate better

accuracy of SBR identification.

C. SAIS’s Evaluation Results Over Iterations

Table II presents how SAIS’s evaluation result varies with
the number of iterations executed. As shown in the table, with
the initial labeled data set and CVE entries, SAIS only obtained
81% F-score for RedHat and 53% F-score for Mozilla. After
six or five iterations of execution, the results stabilized, indi-
cating that the trained classification models converged. SAIS
acquired 87% F-score as its best result for RedHat and 61%
F-score as the best one for Mozilla.

Furthermore, as more iterations were involved, SAIS’s recall
rates and F-scores for both projects monotonically increased,
while the precision rates generally decreased. One possible
reason to explain this phenomenon is that in the first itera-
tion, with the limited provided labeled data (L;), the trained
classifier could only identify the SBRs which shared many
terms with L;. As a result, the initial precision rate was high,
while the recall was relatively low. Ever since the second
iteration, the training set L, included automatically classified
data in addition to L;. The extra data enabled the trained
model to retrieve some SBRs that were less similar to L;, and
thus improved the recall rate. Meanwhile, the extra data also
introduced noise by also including some wrongly classified
data, and thus lowered the resulting precision rate. During the
iterations, for Red Hat, averagely 139 BRs initially labeled as
NSBR were relabeled as SBR, and 10 BRs initially labeled as
SBR were relabeled as NSBR. For Mozilla, averagely 74 BRs
initially labeled as NSBR were relabeled as SBR, and 9 BRs
initially labeled as SBR were relabeled as NSBR.

Finding 1: SAIS’s F-score monotonically increased with
the number of iterations, indicating that semi-supervised
learning helps improve SAIS’s classification accuracy.
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TABLE II: SAIS’s evaluation results with different numbers
of iterations

Project | # of Iterations | P (%) | R (%) | F (%)
1 95 71 81
2 92 80 86
RedHat 3 91 83 86
4 91 83 87
5 90 84 87
6 90 84 87
1 84 39 53
2 81 47 60
Mozilla 3 82 48 61
4 81 49 61
5 81 49 61

D. SAI1S’s Variant Approaches

There are multiple steps and various data sets involved
in SAIS. To investigate whether the steps or data sets were
necessary, we developed the six variants of SAIS shown below:

(1) SAIS,,, applies SVM to L;, without keyword mining,
CVE data, or iterative execution. This variant naively trains
a classification model based on the initially provided labeled
data L;. To create a feature vector for each BR, SAIS,,,
first extracts terms from the security problem description,
removes stop words, and conducts stemming. As SAIS,,,
does not calculate terms’ weights, it then leverages all the
remaining terms to construct a vocabulary, based on which
each document is converted to a numeric vector.

(2) SAIS,,, applies SVM to a balanced training set
created from L;, without keyword mining, CVE data,
or iterative execution. This variant is similar to the above-
mentioned variant, except that it creates a balanced training
set from L; by making 11 copies of each original SBR.

(3) SAIS,,. applies SVM to a balanced training set
consisting of labeled NSBRs and an equal number of CVE
entries. No keyword mining, labeled SBRs for training,
or iterative execution is involved. This variant is similar to
SAIS,,p, except that it creates the balanced training set by
using the NSBRs of L;’s complementary set and CVE entries.
For instance, the L; of RedHat contains 100 SBRs and 1,100
NSBRs, so L;’s complement set includes 700 SBRs and 7,700
NSBRs. Instead of using the project-specific SBRs, SAIS,,;
randomly samples 7,700 CVE entries, and uses them together
with the 7,700 NSBRs to train a classification model. Finally,
SAIS,,p uses L; for testing.

(4) SAI1S; solely relies on keyword mining to identify
SBRs, without machine learning, CVE data, or iterative
execution. After mining the top 100 keywords based on L;,
SAISy, uses the keywords to check whether any BR has any
mined keyword. If so, the document is labeled as an SBR;
otherwise, it is labeled as an NSBR.

(5) SAI1S,,, disables the refinement step in SAIS.

(6) SAIS,,. disables the CVE data used in SAIS.

(7) SA1S;; disables keyword-based filtering, but uses
higher threshold in SVM classification. Here we want to
check whether higher classification threshold (i.e., 0.8) can
achieve similar results as keyword-based filtering.

TABLE III: Comparison between SAIS and its variants

Project | Approach | P (%) | R (%) | F (%)
SAIS 90 84 87

SAISmu 96 67 79

SAISmp 83 76 79

RedHat SAISme 68 28 40
SAISk 65 83 73

SAIS 93 T4 82

SAISnc 91 83 87

SAISh: 98 65 78

SAIS 81 49 61

SAISmu 74 39 51

SAISmb 63 49 55

Mozilla SAIS/c 8 3 4
SAISk 19 57 28

SAISpr 76 41 53

SAIS,c 77 39 52

SAISht 80 35 49

1) Supervised Learning without Keyword Mining: Variants
(1-3) (i-e., SAISyuy, SAIS;p, and SAIS,,.) apply supervised
learning without keyword mining. Table III presents their
evaluation results. These results are worse than SAIS’s. Fur-
thermore, we also compared the data with SAIS’s first iteration
results shown in Table II to evade any potential influence
caused by SAIS’s iterative execution. From the comparison,
we learnt that SAIS,,, and SAIS,,; achieved comparative
performance. For instance, both SAIS,,, and SAIS,,; obtained
79% F-score for RedHat, while SAIS’s first iteration derived
81% F-score. Similarly, SAIS’s first iteration acquired 53%
F-score for Mozilla, which value is close to SAIS,,,’s 51%
and SAIS,,;’s 55%. Nevertheless, SAIS,,,. worked much worse
than SAIS’s first iteration for both data sets.

The above comparison indicate three insights. First, key-
word mining is not important for supervised learning. Al-
though neither SAIS,,, nor SAIS,,; conducted keyword min-
ing as SAIS’s did, their results were comparable to SAIS’s first
iteration. Second, SAIS,,; worked slightly better than SAIS, .,
meaning that oversampling is helpful to some extent on
handling unbalanced data. Third, the project-specific labeled
SBRs are crucially important to train a good classification
model. When SAIS,,. replaced the project-specific labeled
SBRs with CVE entries for training, even though more CVE
entries were used, SAIS,,.’s evaluation results were much
poorer than SAIS’s first iteration. This may be because CVE
entries contain so diverse security-relevant information that
they do not help much when identifying the SBRs of a
particular software project.

Finding 2: For the first iteration, keyword mining does
not quite help supervised learning to identify SBRs, but
project-specific labeled SBRs are vitally important for
model training.

2) Keyword-based Labeling: SAI1Sy, replaces the supervised
learning approach investigated via SAIS,,, with a naive
keyword-based labeling. The comparison between SAIS,;,,, and
SAIS; shows that supervised learning outperforms keyword-
based labeling. This is understandable, because with super-
vised learning, SAIS,,, models the possible co-existence re-
lationship among terms for SBRs and NSBRs. Consequently,
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SAIS,,, can selectively label SBRs with higher precisions but
relatively lower recalls, obtaining higher F-scores.

Finding 3: Compared with supervised learning,
keyword-based labeling identifies SBRs with lower pre-
cisions, higher recalls, and lower F-scores.

3) SAIS without Refinement: By disabling the refinement
step in SAIS, SAIS,, loses the functionality to refine training
data with an intuitive filter, which can relabel SBRs as NSBRs
if the SBRs do not include any mined keyword. As expected,
SAIS,,, worked worse than SAIS, because it cannot get rid
of some obviously wrongly classified data. With more noisy
data used for training, SAIS,,,-’s trained model further deviates
from the ideal model.

Finding 4: Disabling the refinement step in SAIS can
compromise the overall evaluation results, because this
step is helpful to correct those obviously wrong training
data.

In Finding 2, we found that applying keyword-based refine-
ment in the first iteration does not help much. One reason is
that the SBRs in the first iterations are manually labeled so
less noise is involved. In contrast, in Finding 4, we found hat
when keyword-based refinement is used in late iterations, it is
helpful to correct the wrongly classified BRs.

4) SAIS without CVE data: While ignoring the CVE data
used in SAIS, SAIS,. worked equally well with SAIS for Red-
Hat by achieving the same F-score: 87%, and performed much
worse than SAIS for Mozilla (52% vs. 61%). This comparison
corresponds to some of our observations in Section IV-D1.

One possible reason to explain why SAIS,,. worked as well
as SAIS for RedHat is that RedHat share more common terms
with the CVE than Mozilla’s SBR do. Consequently, even
though we do not use the CVE data in SAIS,,., the F-score
is unaffected. This may be due to the fact that RedHat has
a professional “Security Response Team” to manage SBRs.
Therefore, the SBRs are better organized and contain more
security-relevant terms.

SAI1S,. worked worse than SAIS for Mozilla, perhaps be-
cause Mozilla’s SBRs are very different from each other. Our
statistics show that the average frequency of top 20 security-
related keywords in Mozilla dataset (7.6) is much lower than
that of RedHat (13.5). As a result, the CVE entries can help
retrieve more SBRs whose security keywords do not appear
in the training set.

Finding 5: Disabling the CVE data in SAIS caused
worse results for Mozilla, but produced no change
for RedHat. This may be because Mozilla contains a
more variety of security bugs, with SBRs described in
professional or unprofessional ways.

5) SAIS with High Classification Threshold: Our evaluation
shows that using higher classification threshold to replace
keyword-based refinement does not perform as well as our
default technique. One potential reason is that, in semi-
supervise learning, the original training set may contain noises,
adding keyword filtering brings more information and may
neutralize the classification errors caused by the noises, but
simply using a higher threshold does not have this benefit.

TABLE IV: Comparing SAIS with Existing Work

Project | ML | P(%) | R(%) | F (%)
SAIS 90 84 87
SVM 96 67 79
RedHat | NBM 70 81 75
Random Forest 95 65 71
Thung et al. 93 73 82
SAIS 81 49 61
SVM 74 39 51
Mozilla | NBM 41 50 45
Random Forest 80 39 52
Thung et al. 75 41 53

E. Comparison with Existing Techniques

We are aware of two existing works on the classification of
BRs using supervised or semi-supervised learning approaches.
In particular, Tyo [51] performed studies on using various
standard supervised learning approaches to identify SBRs and
to classify them into different categories. The study shows that
Naive Bayes Multi-Nominal (NBM) [28], Random Forest [22],
and SVM [21] achieved best results in the three datasets used.
Therefore, we compare SAIS with all three algorithms on our
two datasets and present the results in Table IV (middle three
rows of each section). It should be noted that Tyo’s work also
classify SBRs into categories such as memory access bugs,
design phase bugs, etc. We believe that such categorization can
be very useful in many scenarios but our work does not further
categorize SBRs for the following reasons. First, we focus on
the risk of SBRs not being hidden from the public before they
are resolved, and identifying SBRs is sufficient to address such
a risk. No matter what bug type the SBR belongs to, The
triager can remove the SBR from public visibility as long as
it is found to be an SBR. Second, the dataset used in Tyo’s
work is from NASA and all bugs are well categorized. In open
source software such as RedHat and Mozilla, security bugs
are not labeled with their types and the ground truth of SBR
types is never clear. So we compare our techniques with Tyo’s
work only on SBR identification. Thung et al. [49] proposed
to use semi-supervised learning to classify BRs. Instead of
identifying SBRs, their approach categorizes BRs to control /
data flow bugs, structural bugs, and non-code bugs. However,
their approach can still be applied to our usage scenario. For
semi-supervised learning, they also use self-training, but they
do not perform keyword-based refinement and CVE word
mining because they did not target SBRs.

We re-implemented the techniques in Tyo’s work and Thung
et al.’s work, and compare their results with SA1Sand present
the results in Table IV. The results of three supervised learning
algorithms in Tyo’s work are in Rows 2-4 of each section, and
the results of Thung et al.’s work are in Row 5 of each section.
From the table, we can see that for binary classification of
SBRs and NSBRs (i.e., identification of SBRs) our approach
outperforms all three supervised learning algorithms in Tyo’s
work on both RedHat and Mozilla data sets. SAIS also
outperforms Thung et al.’s work on both RedHat and Mozilla
data sets.
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TABLE V: SAIS’s results with different ML algorithms

Project | ML | P (%) | R(%) | F (%)
SVM 90 84 87
RedHat | Naive Bayes 93 78 85
Random Forest 93 79 86
SVM 81 49 61
Mozilla | Naive Bayes 45 70 55
Random Forest 84 46 59

E. Sensitivity to Machine Learning Algorithms

By default, SAIS leverages SVM to train a classification
model in each iteration. We are curious how sensitive SAIS’s
overall results is to the selected ML algorithm. Therefore, in
addition to SVM, we also investigated integrating other ML
algorithms into the training step, such as Naive Bayes [26]
and Random Forest [22]. These two ML algorithms are widely
used and based on different theoretical foundations.

As shown in Table V, SVM achieved the highest F-scores:

87% for RedHat and 61% for Mozilla. Random Forest ob-
tained slightly lower F-scores: 86% for RedHat and 59% for
Mozilla. Naive Bayes worked worst, deriving 85% F-score
for RedHat and 55% for Mozilla. Especially, Random Forest
achieved higher precisions but lower recalls than SVM for
both projects, indicating that the classifiers trained by Random
Forest were usually more selective when identifying SBRs.
Nevertheless, Naive Bayes had better precision and worse
recall than SVM when working on RedHat data, but worse
precision and better recall when working on Mozilla data.
We do not observe any obvious trend from these comparison
results.
Finding 6: When being used by SA1S, SVM worked
slightly better than Random Forest, but much better than
Naive Bayes. SAIS’s results are sensitive to the ML
algorithm SAIS leverages.

G. Sensitivity to the Mined Keyword List’s Size

The default keyword-list size used in SAIS is 100, meaning
that SAIS leverages the top 100 ranked keywords to represent
BRs with numeric vectors and to refine labeled data. In this
section, we aim to explore how SAIS’s results vary when
different numbers of keywords are used.

TABLE VI: SAIS’s results with different keyword-list sizes

Project | Size | P (%) | R (%) | F (%)

50 94 72 82

RedHat 100 90 84 87
200 89 85 87

50 86 41 56

Mozilla 100 81 49 61
200 70 53 60

Table VI presents SAIS’s results with different settings of
keyword-list sizes. According to the table, when size = 100,
SAIs worked best. Compared with the other settings, size =
100 made SATIS to obtain the highest F-scores: 87% for RedHat
and 61% for Mozilla.

When size = 200, SAIS worked equally well with size =
100 on RedHat (87% vs. 87%), but slightly worse on Mozilla

(60% vs. 61%). Specifically, SAIS’s precisions were lower but
recalls were higher in both projects. This may be because
as more keywords are included, some less discriminative
keywords commonly exist in both SBRs and NSBRs. When
such less discriminative terms are used as features, they cannot
distinguish well between the two types of BRs. When being
used as a refinement filter, these terms cannot sensitively
identify some wrongly classified BRs, neither can they correct
these wrong classification results. As a result, size = 200 led
to higher recalls and lower precisions, because more keywords
are likely to label more SBRs.

When size = 50, SAIS’s F-scores went down for both
projects. The F-score decreased from 87% to 82% for RedHat,
and from 61% to 56% for Mozilla. In particular, size = 50
improved precisions but worsened recalls. One possible reason
to explain the phenomena is that as fewer highly ranked
keywords are included, the keywords put higher constraints
on the documents to be recognized as SBRs: the documents
must contain the discriminative keywords in certain ways.
Consequently, the SBRs identified based on these keywords
are usually similar to the original labeled set, and thus are
more likely to be true SBRs. However, the downside of using
fewer keywords is that although some true SBRs are less
similar to the provided training data, they cannot be retrieved
or recognized, so recall rates suffer.

Finding 7: When setting the keyword-list size as 100,
SAIS obtained the best performance. It indicates that
size = 100 leads to the best trade-off between precision
and recall compared with other experimented settings.
SAIS is sensitive to the keyword-list size.

H. Studies on Keyword Distribution

Finally, we studied the distribution of keywords in different
datasets and over time. In table VII, Column 1 indicates the
size of considered top keyword list, and Columns 2 and 3
present the number of common keywords between CVE and
RedHat data set, and between CVE and Mozilla data set.
From the table, we can see that CVE can provide many
new keywords, and the common keywords between CVE and
Redhat data set is more than the common keywords between
CVE and Mozilla data set.

TABLE VII: Keyword Commonality between Datasets

Size | CVE-RedHat | CVE-Mozilla

10 5 4
50 23 15
100 51 36
200 87 62

We further studied how keyword distribution changes over
time. In particular, we compared the top keyword lists
extracted from the chronological earlier half (on or before
05/03/2006 for Red Hat, and on or before 05/26/2010 for
Mozilla) of the SBR sets with those extracted from the later
half of SBR sets, and counted the common keywords. The
results are shown in Table VIII. From the table, we can see
that the Mozilla dataset has less common keywords in the first
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and second half of BRs. This also shows that Mozilla SBRs
are more different from each other and keywords in Mozilla
project are changing faster. One potential reason is that Mozilla
was frequently releasing new versions during the submission
time (2004-2012) of Mozilla BRs in our dataset.

TABLE VIII: Keyword Change Over Time

Size | RedHat | Mozilla

10 7 5
50 39 23
100 77 52
200 141 89

To investigate whether SAIS is able to handle evolving
keyword sets, we further performed a longitudinal study to
train the classification model with older data but apply it to
newer data. In particular, instead of using cross-validation, we
used chronologically earliest 100 BRs and NSBRs during the
corresponding time in each dataset to train the model, and use
the rest BRs as the testing set. To further check how the size
of initial SBR set affects results, we also used the earliest 50
and 200 BRs in the evaluation. The results are presented in
Table IX.

TABLE IX: Chronological Study of SAIS

Project | SBR Set Size | P (%) | R (%) | F (%)

50 92 67 77
RedHat | 100 93 83 88
200 94 85 89
50 81 40 54
Mozilla | 100 80 47 59
200 81 52 63

From the table, we can see that SAIS can achieve similar
results under chronological evaluation settings. Furthermore,
when the size of initial training SBR set size decreases, SAIS
has lower recall and F-score. Therefore, for the projects with
very small number of SBRs (e.g., 50) serving as training set,
we may need to further consider other approaches such as
transfer learning to learn from other projects at the beginning.

V. DISCUSSIONS
A. Definition of Security Bug Reports

Although the word “security bug reports” is widely referred
to, it is not a well-defined word representing a well-defined set
of bug reports. Based on different understanding of “security”,
and “security bugs”, a bug report can be judged as security
bug report or not. For example, a display error of a password
prompt (e.g., the prompt does not show or the label of
password input box is missing) is related to security, because
the bug is about a security-related component, and users
may mistakenly input some information (even privacy) to the
prompt. However, such a bug is not a vulnerability that allows
an attacker to break in the system or steal important personal
information.

In our paper, when referring to security bug reports, we in-
dicate bug reports reporting vulnerabilities of software (so that
it may be attacked by malicious users). Actually, according to

our motivation, these are exactly the bug reports that should be
hidden from the public. Also, both our data sets of security bug
reports are built based on this criteria. In particular, the Red
Hat security bug reports are handled by the “security response
team” which respond to potential attacks as well as reporting
vulnerabilities to the CVE database. The Firefox bug reports
are linked to reported vulnerabilities in Mozilla Foundation
Security Advisory.

It should be noted that, our definition of security bugs is
relatively narrow, which is consistent with our motivation, but
this definition will make the problem of identifying security
bug reports more difficult because those security-related non-
security bug reports (such as the display error example above)
often contain security-related terms and features (e.g., “pass-
word” in the example above).

B. The Size and Unbalance of the Data Set

In our evaluation, we used a small training set (i.e., about
100 labeled security bug reports), and our data set is un-
balanced (the ratio of security bug reports by non-security
bug reports is 1:11). The reason for using such settings is
to simulate the actual scenario of using our approach.

As we mentioned in Section IV-A, we choose 100 labeled
security bug reports to form our training set because it is often
mentioned as the smallest size of training set for most mining
and learning tasks, and it is often not prohibitively expensive to
accumulate 100 labeled security bug reports. Also, we use the
1:11 ratio according to the proportion of security bug reports
of Red Hat during the period these bug reports are submitted.
Although it is obvious that the data set should be unbalanced
due to the sparsity of security bug reports, the ratio of security
bug reports by non-security bug reports may vary in different
projects. The reason is that different software projects may
have different amount of code and number of features related
to security. At the same time, it is very hard to estimate the
proportion of security bug reports in the open bug repository
of a software project, because security bug reports are not
well labeled in most current software projects. However, we
believe that, 1:11 is a relatively high estimation of the ratio of
security bug reports to non-security bug reports, and the real
data distribution may be more unbalanced. Since we design
our approach to handle such sparsity and data unbalance, we
conjecture that our approach may bring more benefit when
the data distribution becomes more unbalanced, and we plan
to carry out experiments to evaluate our approach on lower
ratios (requiring more non-security bug reports).

C. Evaluation and Threats to Validity

In our evaluation, we use the widely applied F-score to
measure our approach. The benefit of using F-score is that,
it combines precision and recall to a single value and makes
it easy to compare different approaches. However, depending
on how our approach is used, its real usefulness may not be
precisely measured with F-score. Low recall may result in later
handling and longer exposure of security bug reports (because
the missed security bug reports are triaged at lower priority),
and low precision may result in the same thing (because
the triager needs to spend more time on false positives).
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Given different strategies of hiding potential security bug
reports (hide before or after the bug reports are triaged)
and efficiency of triaging, precision and recall may be of
different importance. Additionally, security bug reports may
have different severity, and miss-classification of more severe
security bug reports should affect the usefulness more, while
this also cannot be measured with F-score.

When building our data set, we use randomly selected bug
reports from the bug repository as non-security bug reports.
Since the set of known security bug reports may miss many
real security bug reports, we are not able to confirm the non-
security bug reports used in our study are all non-security
bug reports. This is a threat to the internal validity of our
experiment, because it is possible that there are some security
bug reports labeled as non-security in our data set, and affect
the accuracy of our experimental results. To reduce this threat,
when we select non-security bug reports, we excluded the
known security bug reports, and performed a semi-automatic
removal of suspicious security bug reports (i.e., with keyword
and meta matching and manual inspection as introduced in
Section IV-A). Another threat to internal validity is our im-
plementation of existing works [51], [49] may not be exactly
the same with theirs. As both existing works use certain
combinations of standard machine learning algorithms and
pre/post-processing steps, we expect the threat is not severe.
To reduce this threat, we try use standard implementation of
machine learning algorithm and read the two papers carefully
to make sure we caught all pre/post-processing steps in their
techniques. The major threat to the external validity of our
experiment is that our conclusion may apply to only the data
set being experimented on. To reduce this threat, we use bug
reports from two large bug repositories: RedHat and Mozilla.
Note that data set of security bug reports are often not available
in public, so it is difficult to build such data sets.

D. Practical Usefulness

Although SAIS (and prior techniques for SBR identifica-
tion) does not achieve very high F-score in some projects (e.g.,
Mozilla), they are still practically useful in the actual scenario
of bug triaging. We demonstrate this with the exemplar triaging
scenario below.

Consider a bug triager who gets 100 bug reports during
the night and needs to handle them in the 10 hours of the
coming day. Among the bug reports, 10 are security bugs (a
reasonable proportion as evidenced by our datasets). Without
any technique (bug reports are randomly ordered), averagely
the triager will find one security bug report every hour, so
after one hour there will be 9 security bug reports unhanded
and thus available to the public. After 5 hours, 5 security bug
reports are still not handled and will be available to the public.

If the triager uses a keyword-based baseline technique, with
an assumed precision, recall, and F-score of 30% (considering
that a keyword-based approach achieved 28% F-score on
Mozilla), the triager will find 3 security bug reports in the
first hour (among the first 10 bug reports that are labeled as
“security-related”), so only 7 security bug reports will be left
after 1 hour, and averagely 10 — (3 + (7/9) x 4) = 3.9 bugs
will be available to the public after 5 hours.

If the triager uses SAIS, with an assumed precision, recall,
and F-score of 60% (considering that SAIS achieved 61% F-
score on Mozilla), the triager will find 6 security bug reports
in the first hour (among the first 10 bug reports that are labeled
as “security-related”), so only 4 security bug reports will be
left after 1 hour, and averagely 10 — (6 + (4/9) x 4) = 2.3
bugs will be available to the public after 5 hours.

To sum up, in the concrete triaging scenario described
above, a tool with 60% precision and recall (and 60% F-score)
will reduce more than 50% of the security bug reports being
available to the public after one hour or 5 hours of triaging. So
although 60% F-score is far from perfect, it can be practically
useful.

VI. RELATED WORKS

In this section, we discuss the previous research efforts
related to our work.

A. Studies on Security Bug Reports

We are aware of two previous research efforts on identifying
security bug reports. Gegick et al. [20] proposed an approach
to identifying security bug reports based on keyword mining,
and performed an empirical study based on an industry bug
repository. More recently, Dehl et al. [12] developed a sim-
ilar approach to identify security bug reports with keyword
mining, and they found that their approach performs better
than the Naive Bayes classification model. Both approaches
are evaluated on bug data sets that are not public available,
so we are not able to directly compare our results with
them. Gegick et al’s approach is similar to SAIS,,;, one
of SAIS’s variant approaches investigated in our evaluation.
Their approach requires manually generated start word lists
and synonym lists to help the mining, and the mining process
is performed by a commercial tool. We have no access to
either the two lists of words or the tool. Dehl’s approach [12]
is similar to SAISg, another variant approach we explored in
our evaluation. As some parameters (e.g., word list size or
word weight threshold) are not mentioned in their paper, we
are unable to reproduce their approach purely based on the
paper description. Tyo [51] studied vulnerability reports from
NASA dataset, and evaluated how different machine learning
algorithms perform on identifying SBRs. They also performed
multi-class classification to put SBRs in different security bug
categories. In our work, we use semi-supervised learning to
handle the sparsity of security bug reports, and further develop
keyword-based refinement to address data unbalance.

According to our evaluation, SAIS outperformed SAISg,
and the best machine learning algorithms indicated in Tyo’s
work [51] on identifying SBRs. In addition to technical
novelty, our research makes two extra contributions. First, we
construct a public available data set containing labeled security
bug reports from open bug repositories so that the data set can
be used in future research in the area. Second, our evaluation
is performed with a small training set which is often the only
training set available.

There have been several other research efforts on security
bug reports. Zaman et al. [56] performed an empirical study
on how performance bug reports and security bug reports
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are handled in open bug repositories. Their key findings
include that fixing security bug reports usually requires more
experienced developers and more complex code commit, and
security bug reports are usually fixed faster than other bug
reports. These findings actually support our assumptions that
security bug reports needs to be identified earlier and handled
separately. Barth et al. [11] proposed an approach to attack
open source software projects by identify the fixes of recent
security bug reports. Since the distribution of new versions
of software typically require a long time, it is highly likely
that the attack of this fixed security bug can affect a lot of
users in real world. The authors suggest that the open bug
repositories to hide security bug reports as well as bug fixes
until a long time after the fix. These research efforts are not
on the identification of security bug reports, and they actually
provide motivations to automatic identification of security bug
reports.

We are also aware of some research efforts on mining
the CVE database. Huang et al. [25] proposed to use text
clustering to identify categories and patterns of CVE entries.
Neuhaus and Zimmermann studied the trends of topics in
the CVE database with topic modeling. Bozorgi et al. [13]
proposed to train a prediction model from the CVE database
to predict whether and when a vulnerability may be exploited.
Anbalagan and Vouk [7] proposed a tool to automatically link
CVE entries to bug reports in open bug repositories. Although
these efforts also make use of the textual and meta data in CVE
entries, they do not target on the problem studied in this paper.

B. Classification of Bug Reports

The general problem of classifying bug reports according
to certain criteria has been widely researched. The early
works in the area mainly try to assign bug reports to dif-
ferent developers. Specifically, Anvik et al. [10], Cubranic
and Murphy [15], and Lucca [19] all proposed approaches
to automatically assign bug reports to software developers.
Recently, Kanwal and Magbool proposed an approach to
prioritize software bugs, and use priority information to help
the bug report assignment. Menzies and Marcus also suggested
a classification based approach to predict the severity of bug
reports [37]. Additionally, Hooimeijer and Weimer suggested a
statistics based model to predict the quality of bug reports [23].

Identification of duplicate bug reports is another subarea
attracting many researchers. Runeson et al. [41] and Wang
et al. [55] carried out some early works in the area based
on the cosine similarities of textual information or execution
information. Later, Chengnian et al. [48] [47] reported two
pieces of research efforts for more precise identification of du-
plicate bug reports with more sophisticated mining techniques.
Specifically, they also used the discriminative weighting of
terms, and the weighting is performed automatically by mining
the training set [48]. However, they used the weights to
calculate a more precise similarity between single bug reports,
while in our approach, we use a different weighting formula
because we needs the weights to rank terms according whether
the terms are representative for a bug category. Furthermore,
we combine the term ranking approach with classification and
bootstrapping.

More recently, Thung et al. [49] proposed to use semi-
supervised learning to classify BRs into functional bugs and
structural bugs, and finer categories. Compared with their
approach which targets classification of general BRs, SAIS
is specific for identifying SBRs, so we developed the CVE
keyword-mining and keyword-based refinement to handle the
sparsity of SBRs and data unbalance. We further evaluated
SAIS and Thung et al’s approach in the scenario of SBR
identification and SAIS performs better.

C. Semi-Supervised Learning and Handling Data Imbalance

Semi-supervised learning [57] has become more and more
popular as the speed of data labeling falls further and further
behind the speed of data growth. Though not widely used,
it has been adopted for solving several software engineering
problems and achieved good results. Specifically, Seliya and
Khoshgoftaar [42] proposed to use semi-supervised learning
for the estimation of software quality. Li et al. [31] proposed
to use semi-supervised learning for defect detection based
on sparse historical data. Actually, due to the difficulty of
labeling software artifacts and the sparsity of data for new
software projects, we believe that semi-supervised learning has
great potential on enhancing machine-learning based software
engineering techniques.

There have also been a number of research efforts on
learning from unbalanced software engineering data. Jing
et al. [27] proposed to use dictionary learning to handle
the sparseness of historical features, and class imbalance in
defect prediction. Wang et al. proposed to apply various class
imbalance learning techniques such as over-sampling, under-
sampling, and bootstrapping to defect prediction [54] and bug
detection [53].

The identification of security bug reports can be viewed
as a specific instance of the automatic content tagging prob-
lem [43], which aims to add meaningful tags to contents
on the Internet. The large amount of research efforts to
tackle this problem mainly fall into two categories: (1) the
approaches based on term weighting, ranking, and retrieval of
documents using a list of terms as queries; (2) the approaches
based on classification which leverages various standard or
adapted machine learning techniques. The first category of
approaches mainly focus on more advanced term weighting
formulae [46] [33], ranking strategies [14] [52], and the adap-
tation of these techniques in different usage scenarios [16]. The
second category of approaches, mainly focus on the selection
of proper features in different usage scenarios [40] [35].
Recently, there have been some research efforts [30] [38] on
combining the term ranking and classification approaches. Our
work basically leverages the existing scheme of combination,
and incorporated the bootstrapping process considering the
small training set available for the problem.

VII. FUTURE WORKS

In the future, we plan to extend our work in the following
three directions.

First, we currently use only the CVE database as our
external keyword-mining set. In our observation, although it
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enhances the final results (e.g., F-score), it may be still insuf-
ficient, especially for projects with larger variety of security
keywords (e.g., Mozilla) in their relatively unprofessional BRs.
In the future, we plan to collect more confirmed security
bug reports from different software domains (e.g., browsers,
mobile apps), so that our technique can be further improved
in dealing with such projects.

Second, we are currently using statistical measurements
(e.g., precision, recall) to measure different techniques. Due to
the limitation of these measurements, they may not precisely
measure the actual usefulness of SAIS. Therefore, we plan
to reach out to BR triagers of real world projects, and have
them to try out SAIS in practice, so that we can better evaluate
its usefulness. Furthermore, we may compare the number of
SBRs the triager can identify with SAIS during certain period,
with that of other approaches.

Third, although leveraging semi-supervised learning helps
to reduce the size of required training set, we still need about
100 BRs in the initial training set, and it may still too large
for some smaller projects. We plan to explore the feasibility
of further reducing the size of training set with more advanced
techniques such as transfer learning.

VIII. CONCLUSION

In this paper, we proposed SAIS, an approach to auto-
matically identify SBRs based on keyword mining, semi-
supervised learning, and the CVE database.

We summarize our findings from the following three as-
pects: necessity of automatic SBR identification, the compari-
son of different techniques, and the comparison of parameters
within different techniques.

Necessity. Our motivation study shows that more than half
of the security bug reports are not triaged within 24 hours
after their submission, which left sufficient time for potential
attackers to read them and develop attacks based on them.
Therefore, automatic identification of security bug reports will
be very helpful for the security of software projects.

Technique-wise comparison. We developed and evaluated
different categories of techniques for automatic SBR identifi-
cation under the realistic setting of unknown security-relevant
keywords and small training set.

o Among the investigated techniques, SAIS worked best
while keyword-based labeling (SAIS;) worked worst,
because the latter one intuitively retrieved SBRs purely
based on keyword matching.

o Semi-supervised learning with iterative execution outper-
forms supervised learning without any iteration, because
SAIS’s result continuously getting better with the number
of iterations.

« Although CVE entries can help SAIS identify SBRs, they
cannot replace project-specific SBRs when being used to
train classifiers, as those SBRs importantly characterize
the SBRs to label.

o As demonstrated by SAIS,,;, over-sampling can help
improve the learning accuracy for imbalanced training
sets, although the improvement is limited.

Configuration-wise comparison. Among the experimented
ML algorithms, SVM outperformed Naive Bayes and Random

Forest when the trained model was integrated into SAIS’S
training step. Among the investigated different sizes of the
mined keyword list, size = 100 outperformed the other size
settings, because it led to the best trade-off between SAIS’s
precision and recall.
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