
Understanding the Impact of Branch Edit Features for the
Automatic Prediction of Merge Conflict Resolutions
Waad Aldndni
Virginia Tech

Blacksburg, VA, U.S.A.
waada@vt.edu

Francisco Servant
ITIS Software, Universidad de Málaga

Málaga, Spain
fservant@uma.es

Na Meng
Virginia Tech

Blacksburg, VA, U.S.A.
nm8247@vt.edu

ABSTRACT
Developers regularly have to resolve merge conflicts, i.e., two con-
flicting sets of changes to the same files in different branches, which
can be tedious and error-prone. To resolve conflicts, developers
typically: keep the local version (KL) or the remote version (KR) of
the code. They also sometimes manually edit both versions into a
single one (ME). However, most existing techniques only support
merging the local and remote versions (the ME strategy).

We recently proposed RPRedictoR, a machine learning-based
approach to support developers in choosing how to resolve a con-
flict (by KL, KR, or ME), by predicting their resolution strategy. In
its original design, RPRedictoR uses a set of Evolution History Fea-
tures (𝐸𝐻𝐹 s) that capture: the magnitude of the changes in conflict,
their evolution, and the experience of the developers involved.

In this paper, we proposed and evaluated a new set of Branch
Edit Features (𝐵𝐸𝐹 s), that capture the fine-grained edits that were
performed on each branch of the conflict. We learned multiple
lessons. First, 𝐵𝐸𝐹 s provided lower effectiveness (F-score) than the
original 𝐸𝐻𝐹 s. Second, combining 𝐵𝐸𝐹 s with 𝐸𝐻𝐹 s still did not
improve the effectiveness of 𝐸𝐻𝐹 s, it provided the same f-score.
Third, the feature set that provided highest effectiveness in our ex-
periments was the combination of 𝐸𝐻𝐹𝑠 with a subset of 𝐵𝐸𝐹 s that
captures the number of insertions performed in the local branch,
but this combination only improved 𝐸𝐻𝐹 s by 3 pp. f-score. Finally,
our experiments also share the lesson that some feature sets pro-
vided higher C-score (i.e., the safety of the technique’s mistakes)
as a trade-off for lower f-scores. This may be valued by developers
and we believe that it should be studied in the future.

ACM Reference Format:
Waad Aldndni, Francisco Servant, and Na Meng. 2024. Understanding the
Impact of Branch Edit Features for the Automatic Prediction of Merge Con-
flict Resolutions. In 32nd IEEE/ACM International Conference on Program
Comprehension (ICPC ’24), April 15–16, 2024, Lisbon, Portugal. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3643916.3644433

1 INTRODUCTION
In collaborative software development, developers often create sep-
arate branches to handle different tasks simultaneously (e.g., add
new features, fix bugs, or refactor code). When developers merge

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of thisworkmust be honored.
For all other uses, contact the owner/author(s).
ICPC ’24, April 15–16, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0586-1/24/04
https://doi.org/10.1145/3643916.3644433

changes from various branches, edits that were made to the same
line of code can conflict with each other.

The manual resolution of such conflicts is typically quite chal-
lenging and time-consuming. A previous study [47] found that 56%
of developers postponed resolving merge conflicts for various rea-
sons, most of them related to the complexity of the conflicts.

Master branch

New-feature branch

”git merge
new-feature”

Local version

Remote version

A merged version
with conflicts

reported

Figure 1: Developers use textual merge (e.g., git-merge) to
merge branches and reveal conflicts.

Themost popular merge tools are text-based (e.g., git-merge [1])
and assist developers in tentatively merging the latest version of
their own branch (i.e., local version (L)) with the latest version
of a specified branch (i.e., remote version (R)), and in detecting
textual conflicts in this process (see Figure 1). Because such tools
treat programs as plain text, they can merge the code in ways that
are syntactically or semantically incorrect, due to codemismatches
between branches [15, 48, 61]. To improve over textual merge, re-
searchers proposed tools that analyze the syntactic structures of
programs to better detect and resolve conflicts [9, 10, 62, 68]. For in-
stance, JDime [9] matches Java code based on abstract syntax trees
(ASTs). It conducts tree-based merge instead of text-based merge
for each matching node pair, to better align code and integrate as
many edits as possible between branches.

These techniques mainly focus on merging the local and remote
branches into a single version, by adapting them. However, devel-
opers resolve conflicts via three main strategies: choosing the lo-
cal version while discarding the remote one (KL), choosing the re-
mote version while discarding local (KR), or modifying edits from
either or both branches for edit integration (ME), e.g., [8, 25]. Fur-
thermore, Yuzuki et al. [66] found that developers resolved 99%
of conflicting methods by keeping only one of the conflicting ver-
sions (KL or KR). In a different dataset, Ghiotto et al. [25] found
that developers resolved 56% of cases by KL or KR.

Inspired by these studies, we created RPRedictoR [8], a novel
approach that resolves merge conflicts by considering developers’
preferences. Given a merge conflict, RPRedictoR recommends to
resolve it by KL, KR, orME, based onwhat it predicts that the devel-
oper will prefer. Developers can benefit from RPRedictoR in two
ways. First, when it predicts KL or KR, RPRedictoR could automat-
ically apply the strategy and resolve the conflict, saving developers
time and manual effort (that they could invest in better resolving
other conflicts). Since the KL and KR strategies are the most popu-
lar ones [25, 66], this can produce very high effort savings. Second,

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Adldndni et al.

when RPRedictoR predicts ME, developers would be reminded to
be cautious in the resolution.

In this paper, we aim to improve RPRedictoR’s effectiveness
with an alternative set of prediction features, inspired by the re-
search literature. RPRedictoR uses a Random Forest classifier, orig-
inally based on a set of Evolution History Features (𝐸𝐻𝐹 s) that cap-
ture: the magnitude of the conflicting changes, their evolution, and
the experience of the developers involved [8]. We propose a new
set of Branch Edit Features (𝐵𝐸𝐹 s), that capture the fine-grained
edits that were performed on each conflicting branch. Past work
observed that the modified code elements on each branch [25], the
edit types applied to them [61], or the complexity of the changed
code [65] could influence how developers resolve the conflict.

We defined a collection of 396 𝐵𝐸𝐹 s that capture the number of
changes performed over 66 fine-grained code elements, for 3 edit
types, on each of the two conflicting branches. Then, we selected
among them the 122 𝐵𝐸𝐹 s that we found to differ with statistical
significance for the three resolution strategies —- since they would
be promising for prediction. We evaluated the prediction power of
these 122 𝐵𝐸𝐹 s, in different ways. First, we compared the effec-
tiveness provided by 𝐵𝐸𝐹 s as features in RPRedictoR with that
provided by its original design using 𝐸𝐻𝐹 s. Then, we measured
the effectivenes of combining both 𝐵𝐸𝐹 s and 𝐸𝐻𝐹 s. Then, we also
studied in finer granularity the effectiveness provided by 6 sub-
sets of 𝐵𝐸𝐹 s, (based on each branch and edit type) as well as their
combination with 𝐸𝐻𝐹 s. We performed this evaluation over 15,899
resolved conflicts from 377 software projects, for both the within-
project and cross-project prediction contexts.

Our experiments provided multiple findings. First, using 𝐵𝐸𝐹 s
for conflict resolution prediction did not improve the effectiveness
of RPRedictoR— 𝐵𝐸𝐹 s provided slightly lower effectiveness than
𝐸𝐻𝐹 s. Second, combining 𝐸𝐻𝐹 s and 𝐵𝐸𝐹 s for prediction also did
not improve the effectiveness of using only𝐸𝐻𝐹 s— both approaches
provided the same f-score. Third, among all our studied feature
sets, the best-performing one was 𝐸𝐻𝐹 s and 𝐵𝐸𝐹𝐿𝐼 , but it only
improved the effectiveness of 𝐸𝐻𝐹 s by 3pp. f-score. We are un-
sure if developers would consider such an incremental improve-
ment worth the effort of writing the code for collecting the addi-
tional 𝐵𝐸𝐹𝐿𝐼 features, and maintaining it over time. Finally, some
of the feature sets that could not improve the effectiveness of 𝐸𝐻𝐹 s
were still able to improve their C-score, e.g., 𝐵𝐸𝐹𝑅𝐷 provided 18pp.
higher C-score with the trade-off of 3pp. lower f-score. This moti-
vates futurework to studywhat kinds of trade-offs between f-score
and C-score developers would prefer.
Research Artifact Availability. Our research artifact can be ac-
cessed online [4].

2 APPROACH
We previously proposed RPRedictoR [8] to automatically predict
the resolution strategy for developers to resolve merge conflicts,
among: choosing the local version while discarding the remote one
(KL), choosing the remote version while discarding local (KR), or
modifying edits from either or both branches for integration (ME).
We represent RPRedictoR in Figure 2.

Resolution
Strategy

(KL/KR/ME)
Local
Version
Remote
Version

Software
Repository

Local
Version
Remote
Version

Software
Repository

 Prediction Features

Random
Forest

Phase I :Training

Feature Extraction (see above) Classifier
Phase II :Testing

Resolution
Strategy
Resolved
version
(for KL or KR)

Feature Extraction

Training
Data

Testing
Data

Figure 2: RPRedictoR has two phases: training and testing
RPRedictoR uses a random forest (RF) algorithm to make its

predictions. First, in its training phase, it analyzes the merge con-
flicts that were resolved in the past (from the same and/or other
software projects) to build its prediction model. Then, for a given
merge conflict, it uses this model to predict whether developers
will resolve it by KL, KR, or ME (as a three-class classifier). We
implemented RPRedictoR using using scikit-learn [52].
Original: Evolution History Features (𝐸𝐻𝐹s). Our original de-
sign of RPRedictoR [8] used features that aimed to capture some
of the dimensions that we believed would influence developer de-
cisions when resolving a merge conflict. They focused on the mag-
nitude of the changes, their evolution, and the experience of the
developers involved. We report them in Table 3.
New: Branch Edit Features (𝐵𝐸𝐹s). In this paper, we propose
a new set of Branch Edit Features (𝐵𝐸𝐹 s) and study whether they
could improve RPRedictoR’s effectiveness. 𝐵𝐸𝐹 s capture the fine-
grained edits on each of the branches involved in the merge con-
flict. Past work observed that the strategy that developers followed
to resolvemerge conflicts could be influenced by the code elements
that were modified on each branch [25], the edit types applied to
them [61], or the complexity of the changed code [65]. Our intu-
ition is that our new branch edit features could capture these con-
cepts and better inform RPRedictoR to make its predictions.

For our newBranch Edit features, we identified a collection of 66
fine-grained elements in Java, and 3 types of edits that could have
been performed in them, i.e., Insertion, Update, Deletion (Table 1).
We studied the 66 elements that we observed being inserted, up-
dated, or deleted in our studied dataset (see §3.1). Our features de-
fine Java elements, but they could be extended to other languages.

For a given conflicting chunk, our new branch edit features (𝐵𝐸𝐹 s)
measure, separately, the number of Insertions (𝐼), Updates (𝑈), or
Deletions (𝐷) thatwere performed to each Java element (𝐽𝐸𝑖), within
each of the Local (𝐿) or Remote (𝑅) branch. For example feature
𝐵𝐸𝐹𝐿𝐼 𝐽 𝐸1 measures the number of Variable Declaration Statements
(𝐽𝐸1) that were inserted (𝐼) in the local branch (𝐿). In total, our
𝐵𝐸𝐹 s capture 396 aspects of a conflicting chunk (2 branches × 3
edit types × 66 Java elements). We represent them in Table 2.

We also divide our Branch Edit Features into 6 subsets, to sepa-
rately represent each edit type and branch. For example, 𝐵𝐸𝐹𝐿𝐼 is
the subset of 66 features that capture the number of Insertions (𝐼)
that were performed in the Local (𝐿) branch for each one of the 66
Java elements. That is, 𝐵𝐸𝐹𝐿𝐼 contains the 66 features 𝐵𝐸𝐹𝐿𝐼 𝐽 𝐸1–
𝐵𝐸𝐹𝐿𝐼 𝐽 𝐸66 . We represent them in the bottom row of Table 2.

Understanding the Impact of Branch Edit Features for the Automatic Prediction of Merge Conflict Resolutions ICPC ’24, April 15–16, 2024, Lisbon, Portugal

Table 1: The 66 fine-grained Java elements (𝐽𝐸𝑖) for which we measure our new proposed branch edits (𝐵𝐸𝐹s).
Java elements (𝐽 𝐸𝑖)

(𝐽 𝐸1) Variable Declaration Statement, (𝐽 𝐸2) Expression Statement, (𝐽 𝐸3) Enhanced For Statement, (𝐽 𝐸4) If Statement, (𝐽 𝐸5) Method Invocation Receiver, (𝐽 𝐸6) Simple Name, (𝐽 𝐸7)
Method Invocation, (𝐽 𝐸8) Break Statement, (𝐽 𝐸9) Return Statement, (𝐽 𝐸10) Class Instance Creation, (𝐽 𝐸11) Number Literal, (𝐽 𝐸12) Simple Type, (𝐽 𝐸13) Method Invocation Argument,
(𝐽 𝐸14) Assignment, (𝐽 𝐸15) For Statement, (𝐽 𝐸16) Super Constructor Invocation, (𝐽 𝐸17) Block, (𝐽 𝐸18) String Literal, (𝐽 𝐸19) Type Declaration Statement, (𝐽 𝐸20) Variable Declaration
Fragment, (𝐽 𝐸21) Boolean Literal, (𝐽 𝐸22) Infix Expression, (𝐽 𝐸23) Method Declaration, (𝐽 𝐸24) Type Declaration, (𝐽 𝐸25) Type Literal, (𝐽 𝐸26) Modifier, (𝐽 𝐸27) Field Declaration, (𝐽 𝐸28)
Single Variable Declaration, (𝐽 𝐸29) Try Statement, (𝐽 𝐸30)Qualified Name, (𝐽 𝐸31) Primitive Type, (𝐽 𝐸32) Array Access, (𝐽 𝐸33) Variable Declaration Expression, (𝐽 𝐸34) Continue State-
ment, (𝐽 𝐸35) Synchronized Statement, (𝐽 𝐸36) Null Literal, (𝐽 𝐸37) Prefix Expression, (𝐽 𝐸38)Throw Statement, (𝐽 𝐸39)Marker Annotation, (𝐽 𝐸40) Cast Expression, (𝐽 𝐸41) Parenthesized
Expression, (𝐽 𝐸42) Parameterized Type, (𝐽 𝐸43) Anonymous Class Declaration, (𝐽 𝐸44) Infix Expression Operator, (𝐽 𝐸45)While Statement, (𝐽 𝐸46) Switch Statement, (𝐽 𝐸47) Field Access,
(𝐽 𝐸48) Assignment Operator, (𝐽 𝐸49) Array Type, (𝐽 𝐸50) Post fix Expression, (𝐽 𝐸51) Conditional Expression, (𝐽 𝐸52) Catch Clause, (𝐽 𝐸53) Initializer, (𝐽 𝐸54) This Expression, (𝐽 𝐸55)
Dimension, (𝐽 𝐸56) Array Initializer, (𝐽 𝐸57) Array Creation, (𝐽 𝐸58) Normal Annotation, (𝐽 𝐸59) Member Value Pair, (𝐽 𝐸60) Empty Statement, (𝐽 𝐸61) Union Type, (𝐽 𝐸62) Character
Literal, (𝐽 𝐸63) Constructor Invocation, (𝐽 𝐸64) Prefix Expression Operator, (𝐽 𝐸65) Labeled Statement, (𝐽 𝐸66) Single Member Annotation.

Table 2: Our new proposed Branch Edit Features (𝐵𝐸𝐹s). They measure the number of edits performed for each: branch, edit
type, and Java element. We divide them into 6 subsets, each representing all Java elements for a branch and edit type.

Branch Local (𝐿) Remote (𝑅)
Edit type Insertions (𝐼) Updates (𝑈) Deletions (𝐷) Insertions (𝐼) Updates (𝑈) Deletions (𝐷)

𝐽 𝐸1 𝐵𝐸𝐹𝐿𝐼 𝐽 𝐸1 𝐵𝐸𝐹𝐿𝑈 𝐽 𝐸1 𝐵𝐸𝐹𝐿𝐷𝐽 𝐸1 𝐵𝐸𝐹𝑅𝐼 𝐽 𝐸1 𝐵𝐸𝐹𝑅𝑈 𝐽 𝐸1 𝐵𝐸𝐹𝑅𝐷𝐽 𝐸1
Java element (𝐽 𝐸𝑖) … … … … … … …

𝐽 𝐸66 𝐵𝐸𝐹𝐿𝐼 𝐽 𝐸66 𝐵𝐸𝐹𝐿𝑈 𝐽 𝐸66 𝐵𝐸𝐹𝐿𝐷𝐽 𝐸66 𝐵𝐸𝐹𝑅𝐼 𝐽 𝐸66 𝐵𝐸𝐹𝑅𝑈 𝐽 𝐸66 𝐵𝐸𝐹𝑅𝐷𝐽 𝐸66

𝐵𝐸𝐹 subset with all Java elements
(𝐽 𝐸1–𝐽 𝐸66) for a branch and edit type

𝐵𝐸𝐹𝐿𝐼 𝐵𝐸𝐹𝐿𝑈 𝐵𝐸𝐹𝐿𝐷 𝐵𝐸𝐹𝑅𝐼 𝐵𝐸𝐹𝑅𝑈 𝐵𝐸𝐹𝑅𝐷

Table 3: The Evolution History Features (𝐸𝐻𝐹s) used by the
original design of RPRedictoR for its predictions.

Evolution History Features (𝐸𝐻𝐹𝑖)
(𝐸𝐻𝐹1) Size of Chunk
(𝐸𝐻𝐹2) Size of Local Version
(𝐸𝐻𝐹3) Size of Remote Version
(𝐸𝐻𝐹5) Number of Conflicting Chunks
(𝐸𝐻𝐹6) Number of Conflicting Files
(𝐸𝐻𝐹7) Number of Commits before Local
(𝐸𝐻𝐹8) Number of Commits before Remote
(𝐸𝐻𝐹9) Date Difference between Local and Remote
(𝐸𝐻𝐹10) Number of Commits by The Owner of Local
(𝐸𝐻𝐹11) Number of Commits by The Owner of Remote
(𝐸𝐻𝐹12) Number of Commits by The Resolver of Conflict

3 RESEARCH METHOD
We study the impact of our new 𝐵𝐸𝐹 s over the effectiveness of
RPRedictoR, using multiple experiments. First, we measure the
correlation of these features with the resolution strategies of de-
velopers in a large dataset of merge conflicts. Then, we evaluate
RPRedictoR’s predictions when using different combinations of
feature sets. We study the following research questions:
RQ1: What 𝐵𝐸𝐹 s differ significantly for different strategies?
RQ2: How effective is using 𝐵𝐸𝐹 s vs. 𝐸𝐻𝐹 s?
RQ3: How effective is combining 𝐸𝐻𝐹 s with 𝐵𝐸𝐹 s?
RQ4: How effective is using subsets of 𝐵𝐸𝐹 s?
RQ5: How effective is combining 𝐸𝐻𝐹 s with subsets of 𝐵𝐸𝐹 s?

3.1 Dataset Construction
Ghiotto et al. [25] conducted an empirical study on merge conflicts
and created a dataset of conflicts from 2,731 GitHub repositories.
For the original evaluation of RPRedictoR, we created our dataset
based on Ghiotto et al.’s, because of its comprehensiveness and
representativeness [8]. Our focus in this paper is only on Java files.
Therefore, we refined the dataset that we described in [8] by taking
two steps. First, we eliminated all conflicting chunks that were not

Table 4: The dataset used in our research
of # of Conflicts resolved by

Repositories KL KR ME Total

Data used in our
characterization
study (RQ1)

70 1,102 774 1,511 3,387

Data used in the
tool evaluation
(RQ2–RQ5)

377 5,139 3,823 6,937 15,899

Total 477 6,241 4,597 8,448 19,286

of the Java type. Second, we removed projects for which their code-
bases were no longer accessible on GitHub. As shown in Table 4,
after refining the prior dataset to align with our new study scope,
we obtained 477 software repositories. Among the 19,286 conflicts
contained by these repositories, there are 6,241 conflicts separately
resolved via KL, 4,597 by KR, and 8,448 by ME.

To perform our study of which features differ significantly for
different strategies (RQ1), we randomly selected 100 projects from
our dataset. Then, we applied the two filtering criteria mentioned
above, which resulted in 70 repositories. This sample set includes
3,387 conflicts, among which 1,102 conflicts were resolved via KL,
774 via KR, and 1,511 via ME.

We studied RQ1 over this sample of projects to avoid overfitting.
As in our previous work [8], we used the features that differ signifi-
cantly (observed in RQ1) as prediction features to use for RPRedic-
toR. We studied RQ1 in these randomly selected 70 projects, and
we studied RQ2–RQ5 in the remaining 377 projects (see Table 4).
That way, the selection of features in RPRedictoR’s predictions
was not influenced by the projects in which we evaluated it.

For each one of the merge conflicts in our studied dataset, we
measure the numeric value of our studied features (see §2). We
measure the value of 𝐸𝐻𝐹 s as in our original evaluation of RPRe-
dictoR [8], and we measured 𝐵𝐸𝐹 s using Gumtree v3.0.0 [23].

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Adldndni et al.

3.2 Method for RQ1
We first study which ones of our newly proposed 𝐵𝐸𝐹 s differ sig-
nificantly for different conflict resolution strategies, applying sta-
tistical analysis.Wemeasured the value of our𝐵𝐸𝐹 s for each one of
3,387 conflicting chunks, from 70 randomly sampled repositories
(§3.1). We separate these conflicts into three groups, according to
the resolution strategy that was applied to them (KL, KR, or ME).

To study which of these features differ significantly for differ-
ent resolution strategies, we applied the Kruskal-Wallis H test [3,
41, 44] as we did to originally design RPRedictoR [8]. The Kruskal-
Wallis H test assesses if three ormore groups of samples come from
the same distribution on a variable of interest. Our studied features
do not follow a normal distribution, and the Kruskal-Wallis H test
is non-parametric (i.e., it does not assume a normal distribution
of the data). For each group of samples, the H test sorts data into
ascending order, assigns ranks to the sorted data points, and thus
converts the given values into their ranks. Namely, in the conver-
sion process, the smallest value gets a rank of 1, the next smallest
gets a rank of 2, and so on. Among the given three or more sample
groups, the H test validates the following hypotheses:

• H0: The mean ranks of different groups are the same.
• H1: The mean ranks of different groups are not the same.

3.3 Method for RQ2–RQ5
To study RQ2–RQ5, we run multiple variants of RPRedictoR to
obtain a prediction for each one of the merge conflicts in our stud-
ied dataset. We study these variants in a within-project and cross-
project usage context. We evaluate them with various metrics.
Training and Testing Process. We train and test our evaluated
variants of RPRedictoR in two different ways, to study the within-
project and the cross-project usage context. For variants that we
report as using 𝐵𝐸𝐹 s or one of their 6 subsets (or a combination
including them), we in fact only use (or combine) for training their
specific Java elements that we observed in RQ1 to differ with sta-
tistical significance (reported in Table 5).
Within-Project Prediction. For each software project in our dataset,
we leveraged 90% of the oldest resolved conflicts for training, and
then used the remaining 10% of resolved conflicts for testing. We
intentionally used older data for training and newer data for test-
ing. This is because such a setting can mimic real-world scenarios,
where a technique can only refer to a project’s history data to sug-
gest resolutions for future conflicts of that project.
Cross-Project Prediction. In this experiment, we evaluated the real-
world scenarios where a given project has little version history
to leverage. In such scenarios, RPRedictoR can train a classifier
with the conflict data from other repositories and use that clas-
sifier to predict resolutions for the given project. We conducted
10-fold cross validation to evaluate the effectiveness of each vari-
ant of RPRedictoR. Namely, we divided the 377 software projects
randomly into 10 groups roughly evenly. For each group 𝐺𝑖 (𝑖 ∈
[1, 10]), we ran an experiment by using the conflict data in the re-
maining nine groups for training, and adopting the data in 𝐺𝑖 for
testing. We calculated the effectiveness for each of the 10 runs, and
then also aggregated it among all runs.

Ground Truth. As ground truth, we used the resolution strategy
that the developer applied to resolve each conflict in our dataset.
Evaluation Metrics. In this paper, we will focus on measuring
the effectiveness of a technique by its F-score. However, for com-
pletion, we will also measure the metrics used in the original eval-
uation of RPRedictoR [8]: Precision, Recall, and C-score. To facil-
itate discussion, in this section, we index the three conflict resolu-
tion strategies and refer to them as 𝑆𝑖 (𝑖 ∈ [1, 3]). Namely, 𝑆1 refers
to KL (keep the local version); 𝑆2 refers to KR (keep the remote ver-
sion); 𝑆3 refers to ME (resolution with manual edits). We measured
all metrics on a scale ranging from [0%, 100%], and higher values
indicate better performance.

Precision (P𝑖) measures, among all the conflicts labeled with
𝑆𝑖 by a technique, what ratio of them were actually resolved by 𝑆𝑖 .

𝑃𝑖 =
of conflicts correctly labeled as “𝑆𝑖 ”
Total # of conflicts labeled as “𝑆𝑖 ”

(1)

Recall (R𝑖)measures, among all conflicts that were resolved by
𝑆𝑖 , what ratio of them were labeled by a technique as 𝑆𝑖 .

𝑅𝑖 =
of conflicts correctly labeled as “𝑆𝑖 ”

Total # of conflicts that were resolved via 𝑆𝑖
(2)

F-score (F𝑖) is the harmonic mean of precision and recall. It
allows us to measure technique effectiveness in a single metric.

𝐹𝑖 =
2 × 𝑃 × 𝑅

𝑃 + 𝑅
(3)

Aggregated (Overall) metrics (P, R, F).We also measured our
metrics by computing the weighted average across all strategies.
Specifically, if we denote Γ as either precision (P) or recall (R) and
use 𝑛𝑖 to represent the number of testing samples in 𝑆𝑖 , then the
overall effectiveness in terms of precision and recall can be com-
puted as follows:

Γ𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =

∑3
𝑖=1 Γ𝑖 ∗ 𝑛𝑖∑3

𝑖=1 𝑛𝑖
(4)

Thus, the overall F is computed with:

𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
2 × 𝑃𝑜𝑣𝑒𝑟𝑎𝑙𝑙 × 𝑅𝑜𝑣𝑒𝑟𝑎𝑙𝑙
𝑃𝑜𝑣𝑒𝑟𝑎𝑙𝑙 + 𝑅𝑜𝑣𝑒𝑟𝑎𝑙𝑙

(5)

Conservativeness Score (C) or C-score. Different prediction
mistakes have different consequences. If a conflict resolved by KL
or KR is incorrectly predicted as ME, the technique makes a con-
servative mistake: it misses the opportunity of saving developers’
manual effort, but does not mislead developers to blindly take res-
olution suggestions. However, if a conflict resolved by ME is in-
correctly predicted as KL or KR, the technique makes a more seri-
ous mistake: it automatically resolves the conflict using a different
strategy than what the developer would have preferred, and thus
produces an incorrectly merged version. We created a C metric to
measure the ratio of predictions that are conservative, i.e., that do
not cause any incorrect automatic resolution. Conservative predic-
tions include (1) correct predictions, and (2) any conflict resolved
via KL or KR but labeled as ME.

𝐶 =
of conflicts conservatively labeled

All predictions (6)

Understanding the Impact of Branch Edit Features for the Automatic Prediction of Merge Conflict Resolutions ICPC ’24, April 15–16, 2024, Lisbon, Portugal

Table 5: RQ1.The Java Elements in each 𝐵𝐸𝐹 subset that showed statistically significant differences for differentmerge conflict
resolution strategies (Kruskal-Wallis H test). We use these for prediction.

Branch Local (𝐿) Remote (𝑅)
Edit type Insertions (𝐼) Updates (𝑈) Deletions (𝐷) Insertions (𝐼) Updates (𝑈) Deletions (𝐷)
𝐵𝐸𝐹 subset 𝐵𝐸𝐹𝐿𝐼 𝐵𝐸𝐹𝐿𝑈 𝐵𝐸𝐹𝐿𝐷 𝐵𝐸𝐹𝑅𝐼 𝐵𝐸𝐹𝑅𝑈 𝐵𝐸𝐹𝑅𝐷
Statistically
Significant
Java Elements
(𝐽 𝐸𝑖)

2, 5, 6, 7, 10, 12, 13,
14, 17, 36, 57

1, 6, 12, 17, 20, 48,
58, 59

1, 2, 4, 5, 7, 9, 10, 13,
18, 19, 20, 22, 23, 24,
25, 27, 28, 29, 30, 31,
34, 37, 38, 39, 40, 41,
43, 44, 45, 49, 51, 52,
53, 54, 55, 57, 64

5, 6, 7, 10, 13, 14, 17,
26, 32, 36, 37, 47, 48,
58, 59, 64, 66

1, 6, 12, 17, 20, 26 1, 2, 4, 5, 6, 7, 9, 10,
11, 12, 13, 14, 18, 19,
20, 21, 22, 23, 24, 25,
27, 28, 29, 30, 33, 34,
36, 37, 38, 39, 40, 42,
43, 44, 48, 49, 52, 53,
55, 58, 59, 62, 64

Table 6: RQ2. Within-project effectiveness of 𝐵𝐸𝐹s vs. 𝐸𝐻𝐹s.
𝐵𝐸𝐹 s only 𝐸𝐻𝐹 s only

P R F C P R F C
KL 37% 27% 31% - 49% 40% 44% -
KR 34% 29% 31% - 37% 34% 35% -
ME 44% 57% 49% - 53% 63% 58% -

Overall 39% 40% 39% 71% 47% 48% 47% 72%

4 RESULTS
RQ1:What𝐵𝐸𝐹sDiffer Significantly forDifferent Strategies?
We applied the Kruskal-Wallis H test to all our 396 newly proposed
𝐵𝐸𝐹 s (see §2) for all our 3,387 studied conflicting chunks (see §3.1).
We found that 122 of them showed values with a statistically sig-
nificant difference (p-value lower than 0.05) for chunks that were
resolved with different strategies (KL, KR, or ME). This indicates
that these 𝐵𝐸𝐹 s may be useful to predict developers’ resolution
strategies. We report them in Table 5.

Most of the 𝐵𝐸𝐹 s with a statistically significant difference be-
long to the 𝐵𝐸𝐹𝐿𝐷 and 𝐵𝐸𝐹𝑅𝐷 subsets. This means that there were
many Java elements that, when deleted on either branch, could
be predictive of the final resolution strategy. Similarly, there were
relatively few Java elements that, when updated on either branch,
they could be predictive of the final resolution strategy — few Java
elements with a statistically significant difference belong to the
𝐵𝐸𝐹𝐿𝑈 and 𝐵𝐸𝐹𝑅𝑈 subsets.

For the remaining experiments (RQ2–RQ5), for variants that we
report as using 𝐵𝐸𝐹 s or one of their 6 subsets (or a combination in-
cluding them), we in fact only use (or combine) for training their
specific Java elements that we observed in RQ1 to differ with sta-
tistical significance (reported in Table 5).
Finding 1: 122 of our 396 proposed 𝐵𝐸𝐹 s differ with statistical
significance for different conflict resolution strategies.

RQ2: Effectiveness of 𝐵𝐸𝐹s vs. 𝐸𝐻𝐹s. First, to understand the
effectiveness that RPRedictoR would provide when using 𝐵𝐸𝐹 s
vs. 𝐸𝐻𝐹 s, we created two variants of RPRedictoR: one that uses
only 𝐵𝐸𝐹 s to make its predictions, and one that uses only 𝐸𝐻𝐹 s
(this latter one is the original design of RPRedictoR [8]). We sep-
arately trained and tested both variants for the within-project and
cross-project usage contexts (see §3.3) over 15,899 conflicts from
377 projects (see §3.1). We report the results obtained by both tech-
nique variants for all our studied metrics (see §3.3) in Table 6 for
within-project prediction and in Table 7 for cross-project predic-
tion. We should note that 𝐸𝐻𝐹 s obtained slightly different results
than in its original evaluation [8], since we now use a slightly dif-
ferent dataset (it only contains Java projects).

Table 7: RQ2. Cross-project effectiveness of 𝐵𝐸𝐹s vs. 𝐸𝐻𝐹s.
𝐵𝐸𝐹 s only 𝐸𝐻𝐹 s only

Test Fold # P R F C P R F C
1 40% 43% 41% 90% 40% 43% 41% 80%
2 38% 42% 40% 90% 39% 41% 40% 78%
3 34% 43% 38% 90% 47% 49% 48% 81%
4 53% 58% 55% 92% 63% 65% 64% 84%
5 43% 44% 43% 92% 39% 40% 39% 81%
6 42% 50% 46% 89% 42% 44% 43% 72%
7 35% 39% 36% 81% 34% 38% 36% 72%
8 33% 31% 32% 93% 41% 35% 38% 87%
9 40% 49% 44% 87% 53% 57% 55% 86%
10 42% 46% 44% 89% 46% 48% 47% 77%

All Folds 39% 43% 41% 90% 43% 44% 44% 80%

Effectiveness of Within-project Prediction. When trained over the
same software project (within-project context), RPRedictoR pro-
vides lower effectiveness when using 𝐵𝐸𝐹 s than when using its
original 𝐸𝐻𝐹 features, for all our studied metrics (Table 6). This
means that our proposed 𝐵𝐸𝐹 s did not help RPRedictoR improve
its effectiveness. Even though the research literature suggests that
the strategy used to resolve merge conflicts could be influenced
by the specific branch edits (𝐵𝐸𝐹) that happened on each branch,
e.g., [25, 61, 65], our results show that they did not help the predic-
tions of our machine-learning predictor RPRedictoR as much as
its original features did (𝐸𝐻𝐹 features).
Finding 2: In the within-project usage context, RPRedictoR pro-
vided lower effectiveness when using our new 𝐵𝐸𝐹 s than when
using its original 𝐸𝐻𝐹 s.

Effectiveness of Cross-project Prediction. When trained over differ-
ent software projects (cross-project context), RPRedictoR also pro-
vided lower effectiveness when using 𝐵𝐸𝐹 s than when using its
original 𝐸𝐻𝐹 features, in terms of precision, recall, and f-score, ag-
gregated for all test folds (Table 7). This trend was also clear in
most individual test folds. The counterbalance to these results is
that RPRedictoR using 𝐵𝐸𝐹 s provided higher Conservativeness
(C) Score (90% vs. 80%) than when using 𝐸𝐻𝐹 s, for all our eval-
uated (and aggregated) test folds.

The higher C score provided by RPRedictoR using 𝐵𝐸𝐹 s can
be explained by it being more effective at predicting the ME reso-
lution strategy. We observed this by checking its results in more
detail. However, due to the space limit, we do not report the in-
dividual effectiveness measurements for each resolution strategy.
We observed that RPRedictoR using 𝐵𝐸𝐹 s predicted ME more of-
ten, which meant that it less often predicted KL and KR incorrectly

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Adldndni et al.

Table 8: RQ3.Within-project effectiveness of 𝐵𝐸𝐹s and 𝐸𝐻𝐹s
combined vs. 𝐸𝐻𝐹s only.

𝐵𝐸𝐹 s and 𝐸𝐻𝐹 s 𝐸𝐻𝐹 s only
P R F C P R F C

KL 47% 38% 42% - 49% 40% 44% -
KR 38% 35% 36% - 37% 34% 35% -
ME 53% 64% 58% - 53% 63% 58% -

Overall 47% 48% 47% 72% 47% 48% 47% 72%

Table 9: RQ3. Cross-project effectiveness of 𝐵𝐸𝐹s and 𝐸𝐻𝐹s
combined vs. 𝐸𝐻𝐹s only.

𝐵𝐸𝐹 s and 𝐸𝐻𝐹 s 𝐸𝐻𝐹 s only
Test Fold # P R F C P R F C

1 42% 45% 43% 72% 40% 43% 41% 80%
2 36% 41% 39% 81% 39% 41% 40% 78%
3 52% 50% 51% 88% 47% 49% 48% 81%
4 67% 68% 68% 93% 63% 65% 64% 84%
5 42% 43% 43% 88% 39% 40% 39% 81%
6 40% 46% 43% 78% 42% 44% 43% 72%
7 32% 37% 34% 81% 34% 38% 36% 72%
8 41% 35% 38% 90% 41% 35% 38% 87%
9 52% 56% 54% 84% 53% 57% 55% 86%
10 45% 50% 48% 85% 46% 48% 47% 77%

All Folds 44% 45% 44% 82% 43% 44% 44% 80%

(increasing its C score), but also less often predicting them cor-
rectly (decreasing all other metrics). This shows that, overall, the
𝐵𝐸𝐹 s also did not improve the effectiveness of RPRedictoR for the
cross-project usage context.
Finding 3: In the cross-project usage context, RPRedictoR also
provided lower effectiveness (Precision, Recall, and F-score) when
using 𝐵𝐸𝐹 s for its prediction than when using its original 𝐸𝐻𝐹 s.

RQ3: Effectiveness of 𝐵𝐸𝐹s and 𝐸𝐻𝐹s vs. 𝐸𝐻𝐹s only. In RQ2,
we observed that RPRedictoR did not provide higher effectiveness
when using 𝐵𝐸𝐹 s than when using its original set of 𝐸𝐻𝐹 features.
Next, we study whether 𝐵𝐸𝐹 s and 𝐸𝐻𝐹 s can help each other, i.e.,
whether RPRedictoR can provide higher effectiveness by using
combining both. Thus, we evaluated a new variant of RPRedic-
toR that uses the union of 𝐵𝐸𝐹 s and 𝐸𝐻𝐹 s for its predictions. We
report the results that we obtained for thewithin-project and cross-
project usage contexts in Tables 8 and 9, respectively. We also pro-
vide the results of the original design of RPRedictoR (using 𝐸𝐻𝐹 s
only) in these tables, for ease of comparison.
Effectiveness of Within-project Prediction. Table 8 shows that com-
bining 𝐵𝐸𝐹 s and 𝐸𝐻𝐹 s in the feature set of RPRedictoR provided
very similar effectiveness than when RPRedictoR used only its
original 𝐸𝐻𝐹 s, for the within-project usage context. The variant of
RPRedictoR that used both 𝐵𝐸𝐹 s and 𝐸𝐻𝐹 s was slightly better at
predicting the KR resolution (and higher precision and recall) and
slightly worse at predicting KL. However, overall, the precision, re-
call, and f-score provided by using 𝐵𝐸𝐹 s and 𝐸𝐻𝐹 s was about the
same as when using only 𝐸𝐻𝐹 s.

This result is consistent with what we observed in RQ2, since
𝐵𝐸𝐹 s by themselves made RPRedictoR provide lower effective-
ness. However, RQ3 shows us that, when combining 𝐵𝐸𝐹 s and
𝐸𝐻𝐹 s, RPRedictoR was able to not allow the worse prediction
power of 𝐵𝐸𝐹 s hurt the better prediction power of 𝐸𝐻𝐹 s, i.e., com-
bining 𝐵𝐸𝐹 s and 𝐸𝐻𝐹 s did not produce worse results than using

Table 10: RQ4. Within-project effectiveness of 𝐵𝐸𝐹 Subsets.
Feature Set P R F C
𝐸𝐻𝐹 s only 47% 48% 47% 72%
𝐵𝐸𝐹 s only 39% 40% 39% 71%
𝐸𝐻𝐹 s and 𝐵𝐸𝐹 s 47% 48% 47% 72%
𝐵𝐸𝐹𝐿𝐼 only 39% 40% 39% 72%
𝐵𝐸𝐹𝐿𝑈 only 37% 39% 37% 72%
𝐵𝐸𝐹𝐿𝐷 only 37% 39% 37% 72%
𝐵𝐸𝐹𝑅𝐼 only 37% 38% 37% 69%
𝐵𝐸𝐹𝑅𝑈 only 38% 40% 38% 72%
𝐵𝐸𝐹𝑅𝐷 only 38% 40% 38% 72%

Table 11: RQ4. Cross-project effectiveness of 𝐵𝐸𝐹 Subsets.
Feature Set P R F C
𝐸𝐻𝐹 s only 43% 44% 44% 80%
𝐵𝐸𝐹 s only 39% 43% 41% 90%
𝐸𝐻𝐹 s and 𝐵𝐸𝐹 s 44% 45% 44% 82%
𝐵𝐸𝐹𝐿𝐼 only 38% 43% 40% 93%
𝐵𝐸𝐹𝐿𝑈 only 31% 44% 36% 99%
𝐵𝐸𝐹𝐿𝐷 only 38% 43% 40% 98%
𝐵𝐸𝐹𝑅𝐼 only 38% 43% 41% 93%
𝐵𝐸𝐹𝑅𝑈 only 21% 44% 29% 99%
𝐵𝐸𝐹𝑅𝐷 only 39% 44% 41% 98%

𝐸𝐻𝐹 s only. It is also possible that combining 𝐵𝐸𝐹 s and 𝐸𝐻𝐹 s could
not improve the effectiveness of RPRedictoR because the within-
project usage context provides a limited amount of data for train-
ing (it only uses the same project’s historical data). Therefore, it is
also worth investigating the cross-project usage context.
Finding 4: For the within-project usage context, combining
𝐵𝐸𝐹 s and 𝐸𝐻𝐹 s provided about the same effectiveness as when
RPRedictoR used 𝐸𝐻𝐹 s only.

Effectiveness of Cross-project Prediction. Table 9 shows that when
RPRedictoR combined 𝐵𝐸𝐹 s and 𝐸𝐻𝐹 s in the cross-project usage
context, it again provided about as high effectiveness as when it
used 𝐸𝐻𝐹 s only. We can only observe a small difference: over-
all, combining 𝐵𝐸𝐹 s and 𝐸𝐻𝐹 s provided 1% higher precision, 1%
higher recall, and 2% higher C-score, but the same F-score.

This time, combining 𝐵𝐸𝐹 s and 𝐸𝐻𝐹 s provided a small effective-
ness improvement to RPRedictoR in the cross-project usage con-
text. In very few cases, the RPRedictoR variant that predicts based
on both 𝐵𝐸𝐹 s and 𝐸𝐻𝐹 s predicted the KL and KR resolutions cor-
rectly when the original variant based on 𝐸𝐻𝐹 s only did not. How-
ever, the overall f-score of the predictions stayed the same for both
technique variants, keeping them equally effective. We conclude
that the technique variant that combines 𝐵𝐸𝐹 s and 𝐸𝐻𝐹 s also did
not provide an important increase in effectiveness.
Finding 5: For the cross-project usage context, combining 𝐵𝐸𝐹 s
and 𝐸𝐻𝐹 s provided 1pp. higher precision, 1pp. higher recall, and
2pp. higher C-score, but the same F-score.

RQ4: Effectiveness of the 6 Separate 𝐵𝐸𝐹 Subsets. In RQ1,
we noticed that the majority of 𝐵𝐸𝐹 s that showed statistically sig-
nificant differences for different conflict resolution strategies be-
longed to the 𝐵𝐸𝐹𝐿𝐷 and 𝐵𝐸𝐹𝑅𝐷 subsets, i.e., they captured the
Deletion (D) Edit Type, in the Local (L) and Remote (R) branches.
This observation motivated us to explore the separate influence of
each 𝐵𝐸𝐹 subset into the effectiveness of RPRedictoR.

Understanding the Impact of Branch Edit Features for the Automatic Prediction of Merge Conflict Resolutions ICPC ’24, April 15–16, 2024, Lisbon, Portugal

We created 6 separate variants of RPRedictoR, each one using
only one of the 𝐵𝐸𝐹 subsets for its predictions, namely: 𝐵𝐸𝐹𝐿𝐼 ,
𝐵𝐸𝐹𝐿𝑈 , 𝐵𝐸𝐹𝐿𝐷 , 𝐵𝐸𝐹𝑅𝐼 , 𝐵𝐸𝐹𝑅𝑈 , and 𝐵𝐸𝐹𝑅𝐷 . We described these
𝐵𝐸𝐹 subsets in §2. We evaluated each variant in both the within-
project and cross-project usage contexts, as we did in previous re-
search questions. We report the results that we obtained for the
within-project and cross-project usage contexts in Tables 10 and 11,
respectively. For ease of comparison, we also include in these ta-
bles the overall results of the other three variants of RPRedictoR
that we studied in previous research questions, i.e., that used: 𝐸𝐻𝐹 s
only, 𝐵𝐸𝐹 s only, or 𝐸𝐻𝐹 s and 𝐵𝐸𝐹 s combined.
Effectiveness of Within-project Prediction. We can observe in Ta-
ble 10 that, in thewithin-project usage context, the variant of RPRe-
dictoR that used only 𝐵𝐸𝐹𝐿𝐼 for prediction was the one that pro-
duced the highest effectiveness, for all metrics, among all the vari-
ants that we evaluated in this research question. In fact, 𝐵𝐸𝐹𝐿𝐼
slightly improved over 𝐵𝐸𝐹 s in terms of C-score (72% vs. 71%, re-
spectively), while alsomaintaining the same effectiveness (in terms
of precision, recall, and f-score). Still, when compared with RPRe-
dictoR’s original design of 𝐸𝐻𝐹 s-only, all variants provided lower
effectiveness, i.e., an F-score lower than 47%.
Finding 6: For within-project prediction, all of our studied 𝐵𝐸𝐹
subsets provided lower effectiveness than the original design of
RPRedictoR that used 𝐸𝐻𝐹 s only.

Effectiveness of Cross-project Prediction. In the cross-project usage
context, the RPRedictoR variant that performed best was 𝐵𝐸𝐹𝑅𝐷 .
Both 𝐵𝐸𝐹𝑅𝐷 and 𝐵𝐸𝐹𝑅𝐼 provided the highest F-score among vari-
ants, but 𝐵𝐸𝐹𝑅𝐷 provided a higher C-score than 𝐵𝐸𝐹𝑅𝐼 .

In this case, we found it interesting that the 𝐵𝐸𝐹𝑅𝐷 variant pro-
vided better scores than the variant using all 𝐵𝐸𝐹 s. They both pro-
vided the same F-score, but using𝐵𝐸𝐹𝑅𝐷 onlywas highly conserva-
tive (its C-score reached 98%). This means that, when 𝐵𝐸𝐹𝑅𝐷 mis-
predicted truly-KL or truly-KR conflicts, it was more inclined to
mispredict them as ME. This high conservativeness (98% C-score)
of 𝐵𝐸𝐹𝑅𝐷 may be a welcome characteristic for developers. How-
ever, it may not be enough for them to prefer 𝐵𝐸𝐹𝑅𝐷 over the
higher-effectiveness 𝐸𝐻𝐹 s variant, since 𝐸𝐻𝐹 s provides higher ef-
fectiveness (44% vs. 41% F-score).

In this study we focus on the effectiveness of our studied RPRe-
dictoR variants, i.e., in their precision, recall, and f-score metrics.
Therefore, we conclude that, in cross-project prediction, none of
the studied variants was able to provide higher effectiveness than
the original design of RPRedictoR using 𝐸𝐻𝐹 s only (they all pro-
vided f-score lower than 44%).
Finding 7: For cross-project prediction, all of our studied 𝐵𝐸𝐹
subsets provided lower effectiveness than the original design of
RPRedictoR that used 𝐸𝐻𝐹 s only.

RQ5: Effectiveness of 𝐸𝐻𝐹s and each Separate 𝐵𝐸𝐹 Subset.
In RQ4, we found that, in some cases, predicting with only one of
the 𝐵𝐸𝐹 subsets improved the results of predicting with all 𝐵𝐸𝐹 s
(although only in terms of C-score). For within-project prediction
𝐵𝐸𝐹𝐿𝐼 provided higher 1% C-score, and for cross-project predic-
tion, 𝐵𝐸𝐹𝑅𝐷 provided higher 8% C-score. In RQ2, we found that
combining 𝐸𝐻𝐹 s with 𝐵𝐸𝐹 s provided higher effectiveness than us-
ing 𝐵𝐸𝐹 s only (even though not enough to improve over 𝐸𝐻𝐹 s

Table 12: RQ5.Within-project effectiveness of 𝐸𝐻𝐹s and 𝐵𝐸𝐹
Subsets combined.

Feature Set P R F C
𝐸𝐻𝐹 s only 47% 48% 47% 72%
𝐵𝐸𝐹 s only 39% 40% 39% 71%
𝐸𝐻𝐹 s and 𝐵𝐸𝐹 s 47% 48% 47% 72%
𝐸𝐻𝐹 s and 𝐵𝐸𝐹𝐿𝐼 50% 51% 50% 73%
𝐸𝐻𝐹 s and 𝐵𝐸𝐹𝐿𝑈 48% 49% 48% 72%
𝐸𝐻𝐹 s and 𝐵𝐸𝐹𝐿𝐷 46% 47% 46% 71%
𝐸𝐻𝐹 s and 𝐵𝐸𝐹𝑅𝐼 49% 50% 50% 73%
𝐸𝐻𝐹 s and 𝐵𝐸𝐹𝑅𝑈 48% 48% 48% 72%
𝐸𝐻𝐹 s and 𝐵𝐸𝐹𝑅𝐷 49% 50% 49% 73%

Table 13: RQ5. Cross-project effectiveness of 𝐸𝐻𝐹s and 𝐵𝐸𝐹
Subsets combined.

Feature Set P R F C
𝐸𝐻𝐹 s only 43% 44% 44% 80%
𝐵𝐸𝐹 s only 39% 43% 41% 90%
𝐸𝐻𝐹 s and 𝐵𝐸𝐹 s 44% 45% 44% 82%
𝐸𝐻𝐹 s and 𝐵𝐸𝐹𝐿𝐼 44% 45% 45% 82%
𝐸𝐻𝐹 s and 𝐵𝐸𝐹𝐿𝑈 42% 44% 43% 81%
𝐸𝐻𝐹 s and 𝐵𝐸𝐹𝐿𝐷 44% 46% 45% 83%
𝐸𝐻𝐹 s and 𝐵𝐸𝐹𝑅𝐼 43% 44% 44% 81%
𝐸𝐻𝐹 s and 𝐵𝐸𝐹𝑅𝑈 43% 45% 44% 80%
𝐸𝐻𝐹 s and 𝐵𝐸𝐹𝑅𝐷 43% 45% 44% 82%

only). These two findings motivated us to study the effectiveness
of combining 𝐸𝐻𝐹 s with separate 𝐵𝐸𝐹 subsets.

We now evaluated 6 new variants of RPRedictoR, each one us-
ing for prediction: the 𝐸𝐻𝐹 s and one of the 6 𝐵𝐸𝐹 subsets. We used
the same settings as in previous experiments, for within-project
and cross-project prediction. We report the results of this evalu-
ation in Tables 12 and 13 for within-project and cross-project, re-
spectively. As in previous RQs, we also include the results of 𝐸𝐻𝐹 s
only, 𝐵𝐸𝐹 s only, and 𝐸𝐻𝐹 s and 𝐵𝐸𝐹 s combined for comparison.
Effectiveness of Within-project Prediction. In this research question,
the variant that provided the highest effectiveness was the com-
bination of 𝐸𝐻𝐹 s and 𝐵𝐸𝐹𝐿𝐼 (Table 12). In fact, 𝐸𝐻𝐹 s and 𝐵𝐸𝐹𝐿𝐼
provided higher effectiveness than RPRedictoR’s original design
that uses 𝐸𝐻𝐹 s only: 50% vs. 47% F-score, respectively. It also pro-
vided higher C-score: 73% vs. 72%.

We had observed in RQ2 and RQ3 that our proposed 𝐵𝐸𝐹 s did
not improve the effectiveness of RPRedictoR in its original design
(using 𝐸𝐻𝐹 s only) neither by themselves nor in combination with
𝐸𝐻𝐹 s.Wewondered if, by using somany features (122𝐵𝐸𝐹 s), those
that were less-useful for prediction were not letting RPRedictoR
take the full advantage of the most-useful ones. After observing
the results of RQ5, that seems possible. Combining 𝐸𝐻𝐹 s only with
𝐵𝐸𝐹𝐿𝐼 was more effective than combining 𝐸𝐻𝐹 s with all 𝐵𝐸𝐹 s.

Finally, it is worth noting that, while combining𝐸𝐻𝐹 s and𝐵𝐸𝐹𝐿𝐼
improved the effectiveness of 𝐸𝐻𝐹 s, such improvement was rela-
tivelyminor, and thus the practical applicability of this variantmay
be up for discussion.
Finding 8: For within-project prediction, the combination of
𝐸𝐻𝐹 s and 𝐵𝐸𝐹𝐿𝐼 provided a minor improvement over RPRedic-
toR’s original design using 𝐸𝐻𝐹 s only. 𝐸𝐻𝐹 s and 𝐵𝐸𝐹𝐿𝐼 pro-
vided higher: precision by 3pp., recall by 3pp., f-score by 3pp.,
and C-score by 1pp.

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Adldndni et al.

Effectiveness of Cross-project Prediction.We can observe in Table 13
that, in the cross-project setting, the variant that produced highest
effectiveness was 𝐸𝐻𝐹 s and 𝐵𝐸𝐹𝐿𝐷 . This variant provided higher
results for all metrics when compared with RPRedictoR’s original
𝐸𝐻𝐹 s only: 44% vs. 43% precision, 46% vs. 44% recall, 45% vs. 44%
f-score, and 83% vs. 80% C-score.

These results again show us that combining 𝐸𝐻𝐹 s with individ-
ual 𝐵𝐸𝐹 subsets can be more beneficial than combining them with
all 𝐵𝐸𝐹 s. 𝐸𝐻𝐹 s and 𝐵𝐸𝐹𝐿𝐷 provided better results than 𝐸𝐻𝐹 s and
all 𝐵𝐸𝐹 s. However, we also again observe that the best-performing
variant of this experiment only providedminor improvements over
the original 𝐸𝐻𝐹 s. 𝐸𝐻𝐹 s and 𝐵𝐸𝐹𝐿𝐷 improved 𝐸𝐻𝐹 s only by: 1pp.
in precision, 2pp. in precision, 1pp. in f-score, and 3pp. in C-score.
Furthermore, more generally, all the technique variants that we
studied in the cross-project usage context provided lower effective-
ness than the original 𝐸𝐻𝐹 s did in the within-project setting, i.e.,
they all provided f-scores that were lower than 47%.
Finding 9: For cross-project prediction, the combination of
𝐸𝐻𝐹 s and 𝐵𝐸𝐹𝐿𝐷 provided a minor improvement over RPRe-
dictoR’s original design using 𝐸𝐻𝐹 s only. 𝐸𝐻𝐹 s and 𝐵𝐸𝐹𝐿𝐷
provided higher: precision by 1pp., recall by 2pp., f-score by 1pp.,
and C-score by 3pp.

5 DISCUSSION
The best feature set provided only an incremental improve-
ment. After multiple experiments, we found that the set of fea-
tures that provided the highest effectiveness for RPRedictoR was
the combination of 𝐸𝐻𝐹 s and 𝐵𝐸𝐹𝐿𝐼 in the within-project predic-
tion context. This shows that RPRedictoR can be more effective
when, in addition to its original 𝐸𝐻𝐹 s, it also considers in its pre-
dictions the number of Java elements that were inserted in the local
branch, for a some Java elements.

However, unfortunately, the improvement in effectiveness that
the newRPRedictoR 𝐸𝐻𝐹 s and 𝐵𝐸𝐹𝐿𝐼 variant provided over RPRe-
dictoR’s original design (using 𝐸𝐻𝐹 s only) was relatively minor:
only 3 pp. in precision, recall, and f-score. Such an incremental
improvement may make it hard for developers to justify the us-
age of this new variant. Capturing the additional fine-grained fea-
tures of 𝐵𝐸𝐹𝐿𝐼 imposes the usage of additional parsing software
(Gumtree [23]). Writing such code for using Gumtree, and main-
taining it over time for compatibility with future releases comes
with its own cost. Thus, we expect that developers may be wary of
increasing the complexity (andmaintenance cost) of their software
developement pipeline in exchange for the small effectiveness in-
crement that the 𝐸𝐻𝐹 s and 𝐵𝐸𝐹𝐿𝐼 variant provides.
Past studies suggested that 𝐵𝐸𝐹s could be useful predictors.
We originally set out to study whether 𝐵𝐸𝐹 s could improve the ef-
fectiveness of RPRedictoR motivated by previous studies that ob-
served that the specific changes performed the branches of amerge
conflict could influence developer decisions to resolve it. For ex-
ample, Shen et al. [61] found that when both branches of a merge
conflict contained many inserted elements, developers tended to
resolve it by keeping the content of both branches. However, they
also observed that when one branch deleted code and the other one
updated it, developers tended to exclusively keep edits from one
branch. Similarly, Ghiotto et al. [25] found that developers tended

to resolve conflicts via either combining edits from both branches
or introducing new code when conflicts consisted of comments, if
statements, or method invocations. They also observed that devel-
opers tended to combine edits from both branches, or choose KL,
or KR when conflicts consisted solely of variables or imports. An-
other study by Vale et al. [65] found that conflict resolution time
has a correlation with the complexity of the code in conflict.
Lesson learned: 𝐸𝐻𝐹s and 𝐵𝐸𝐹s are both useful predictors,
but they only lightly complement each other. We observed in
RQ2 that our motivation for this work was not entirely misguided.
In fact, RPRedictoR provided very similar levels of effectiveness
when using 𝐵𝐸𝐹 s than it did originally by using 𝐸𝐻𝐹 s. The results
obtained by both variants differed in less than 10 pp. for all metrics.

Unfortunately, the predictive power of𝐵𝐸𝐹 s do not seem to com-
plement well the one provided by 𝐸𝐻𝐹 s. We observed in RQ3 that
combining both 𝐸𝐻𝐹 s and 𝐵𝐸𝐹 s still provided about the same ef-
fectiveness as using 𝐸𝐻𝐹 s only. This may mean that 𝐵𝐸𝐹 s were
helpful in predicting the same kinds of conflicts for which 𝐸𝐻𝐹 s
were already good predictors, but they were not as helpful in pre-
dicting the ones that 𝐸𝐻𝐹 s mispredicted. Therefore, future efforts
to improve the effectiveness of RPRedictoR would have to use a
different strategy.
Lesson learned: Future work may study developer prefer-
ences of the trade-off between C-score and F-score. Finally,
we also discovered in this study an unexpected potentially use-
ful future direction: increasing C-score at the expense of F-score.
We discovered that some of the variants that we studied provided
much higher C-score as a trade-off for their lower f-score. The
most clear example of this were the results of the 𝐵𝐸𝐹𝑅𝐷 variant
for cross-project prediction. It provided 41% f-score, which is 3pp.
lower effectiveness than 𝐸𝐻𝐹 s, but it also provided 98% C-score,
which is 18 pp. higher than 𝐸𝐻𝐹 s. This means that this technique
variant was less effective than 𝐸𝐻𝐹 s at recommending resolution
decisions for developers. However, it also means that it made safer
mistakes, i.e., it was much more inclined to wrongly recommend
ME (as opposed to wrongly recommending KL or KR).

In this study, our focus was on the prediction effectiveness pro-
vided by RPRedictoR when using different feature sets. However,
the discovery of the 𝐵𝐸𝐹𝑅𝐷 variant makes us wonder if some de-
velopers would prefer sacrificing (some amount of) f-score for a
higher (some amount of) C-score. We believe that it would be valu-
able to run a future human study to understand developers opin-
ions about different trade-offs of effectiveness (f-score) and recom-
mendation safety (C-score) they prefer, and under what circum-
stances they do so. The results of such study could inspire future
technique designs.

6 RELATED WORK
Empirical Studies onMergeConflicts. Several studies have been
conducted to investigate the relationship between merge conflicts
and various aspects of software maintenance [5, 22, 40, 43, 50]. For
instance, et al. [22] conducted a survey involving 105 student de-
velopers, discovering that the lack of awareness, specifically the
knowledge of ”who’s changing what,” occurs more frequently than
merge conflicts. Leßenich et al. [40] conducted a survey involving

Understanding the Impact of Branch Edit Features for the Automatic Prediction of Merge Conflict Resolutions ICPC ’24, April 15–16, 2024, Lisbon, Portugal

41 developers and pinpointed seven potential indicators, including
metrics like the number of changed files in both branches, which
could be used to anticipate the occurrence of merge conflicts. Fol-
lowing a further investigation of the indicators, the researchers
discovered that none of them had the capability to predict the fre-
quency ofmerge conflicts. Likewise, Owhadi-Kareshk et al. defined
nine features, including metrics such as the number of added and
deleted lines in a branch, to describe merging scenarios. They de-
veloped amachine-learningmodel that could predict conflicts with
an accuracy ranging from 57% to 68% [50].

Like these previous studies, our study also characterizes merge
conflicts. Nonetheless, it distinguishes itself in two key ways. First,
our study explores the various features that characterize how de-
velopers approach conflict resolution. Second, Our study is driven
by the goal of automating the prediction of resolution strategies,
whereas previous studies have primarily focused on automating
the prediction of conflict occurrences.

Other studies also characterize the underlying reasons and/or
solutions for textual conflicts [12, 25, 48, 51, 66]. In particular, Yuzuki
et al. inspected hundreds of textual conflicts [66]. Their observa-
tions revealed that 44% of conflicts resulted from conflicting up-
dates to the same line of code, and developers resolved 99% of
these conflicts by choosing either the left- or right version of the
code. Brindescu et al. [12] conducted a manual inspection of 606
textual conflicts.They categorized merge conflicts based on the dif-
ferences in the Abstract Syntax Tree (AST), the size of lines of code
(LOC), and the number of authors involved. They identified three
distinct resolution strategies: ”SELECT ONE” (retaining edits from
one branch), ”INTERLEAVE” (retaining edits from both branches),
and ”ADAPTED” (modifying existing edits and/or introducing new
edits). Pan et al. [51] delved into the analysis of merge conflicts
within the context of Microsoft Edge. They categorized these con-
flicts according to file types, conflict locations, conflict sizes, and
patterns of conflict resolution. Building on the insights from their
empirical research, the researchers explored the application of pro-
gram synthesis techniques for conflict resolution. The initial pro-
totype of their resolution tool only attempts to combine edits from
both branch versions and can’t suggest ”KL” (left-hand version) or
”KR” (right-hand version) resolutions.

Although these studies inspired us to define and investigate po-
tential features that can be valuable in predicting developers’ strate-
gies for conflict resolution, none of these prior studies conducted
statistical analyses to investigate the relationships between these
identified features and developers’ resolution strategies.
Awareness-Raising Tools. Tools [11, 13, 14, 26, 35, 38, 42, 53, 60]
were developed to keep track of and assess programmers’ progress
in their work, aiming to enhance team collaboration. For exam-
ple, CASI [60] and Palantír [53] notify a developer about the mod-
ifications made by their colleagues, determine the significance of
these modifications, and present this information visually. Cassan-
dra [35] serves as a method to reduce conflicts in software develop-
ment. It examines the relationships of super-sub and caller-callee
dependencies among program components. By considering these
dependencies as limitations on tasks involving editing files, Cas-
sandra detects tasks that could clash when executed concurrently.

Subsequently, it schedules tasks in a way that suggests develop-
ment paths that avoid conflicts. Crystal [13, 14] and WeCode [26]
take a proactive approach to identify collaboration conflicts us-
ing speculative analysis. They proactively merge program modi-
fications made in various software branches before these changes
are fully integrated into the main repository within the distributed
version control system (DVCS). These tools employ a sequence of
textual merging, automatic building, and automatic testing to un-
cover potential conflicts between branches.

The previously mentioned tools can proactively detect and no-
tify developers about merge conflicts. However, they do not char-
acterize developers’ resolution preferences, nor do they automati-
cally recommend any resolution strategy.
Automated SoftwareMerge. Various tools have been introduced
to either detect or resolve merge conflicts [2, 9, 10, 15, 19, 39, 45,
49, 62–64, 67, 68]. Mens et al. [45] conducted a survey on tech-
niques for merging software. FSTMerge [2, 10, 15] analyzes code to
create Abstract Syntax Trees (ASTs) and matches nodes between
versions L and R using only class or method signatures as crite-
ria. It subsequently incorporates themodificationswithin each pair
of matched method nodes through a textual merging process. In-
telliMerge [62] enhances the effectiveness of FSTMerge by iden-
tifying and resolving conflicts related to code refactoring. Much
like FSTMerge , JDime [9, 39] also employs the matching of Java
methods and classes based on syntax trees. However, JDime differs
in combining changes within matched methods; it accomplishes
this by matching and manipulating ASTs. AutoMerge [68] builds
upon JDime’s approach. When branch edits cannot be merged, Au-
toMerge endeavors to resolve conflicts by suggesting different strate-
gies for merging versions L and R. SafeMerge [63] verifies whether
a merging scenario has introduced new semantics to the codebase.
RPRedictoR is complementary to these techniques by modeling
and predicting developers’ preferences for resolutions.

MergeHelper [49] records the chronological sequence of edit op-
erations programmers perform using the Eclipse Java editor.When
faced with conflicting branch versions, L and R, MergeHelper ex-
amines the recorded edit sequences preceding both versions. Its
goal is to identify the most recent snapshot in the version history
that aligns with both L and R. In simpler terms, MergeHelper rolls
back the edits made by both branches until it reaches an interme-
diate version just before the initial conflict arises. While it offers
detailed edit information to help developers understand conflicts,
it does not provide resolution strategies as RPRedictoR does.

DeepMerge [19],MergeBERT [64], andGMerge [67] employ deep-
learning techniques to resolve conflicts automatically, but Deep-
Merge is designed explicitly for conflicts involving fewer than 30
lines of code [64]. It may not be suitable for more complex conflicts.
When dealing with textual conflicts, both DeepMerge and Merge-
BERT are designed to integrate partial edits from versions L and
R for resolution rather than proposing entirely new solutions rep-
resented as KL or KR. GMerge addresses a distinct type of merge
conflict, which involves edits that can be applied concurrently to
the merged version but result in semantic errors when combined.
In contrast, RPRedictoR complements the learning-basedmethods
discussed earlier and offers additional capabilities or solutions be-
yond those methods. That is, RPRedictoR is capable of predicting

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Adldndni et al.

conflicts that can be resolved using either KL or KR, which, accord-
ing to existing literature, are the most common resolution strate-
gies. Additionally, when RPRedictoR anticipates a Merge Error
(ME), it can be complemented with an alternative approach such
as DeepMerge or MergeBERT to facilitate an automated resolution
by merging lines from conflicting versions.

MESTRE [21] has been introduced recently as a recommender
that predicts the merge resolution strategy. MESTRE predicts the
resolution strategy considering options such as using version 1,
and version 2, combining version 1 and 2 in different ways, merg-
ing lines from both versions, or creating new codemanually.While
both MESTRE and RPRedictoR aim to assist with merge conflict
resolution, they differ in their approach and the granularity of
their predictions. MESTRE focuses on high-level merge strategies,
whereas RPRedictoR provides fine-grained predictions for conflict-
ing chunks, by considering a larger number of code elements and
the nature of edits, considering developer behavior and history.

7 THREATS TO VALIDITY
Construct Validity. Threats to construct validity refer to the con-
fidence in our measurements and conceptual framework.

In our study, the accuracy and completeness of our measure-
ments of changes to fine-grained code elements heavily depends
on the performance of the Gumtree tool [23]. Any limitations or
inaccuracies in Gumtree’s parsing algorithms could introduce er-
rors into our measurements. To mitigate this threat, we conducted
validation checks through the manual analysis of a subset of our
studied code elements. First, we conducted a meticulous manual
analysis for each sampled change hunk, and manually determined
the fine-grained change operations and changed elements that hap-
pened between the two code versions. Then, we compared our as-
sessment with the results produced by Gumtree. We found no con-
tradictions between our manually extracted differences and the re-
sults generated by Gumtree. So, while inaccuracies in Gumtree’s
analysis algorithm are possible, they did not seem to be common,
as per our validation process.

Another threat to construct validity is the fact that developers
may not accept the additional computational cost of computing
ASTs that 𝐵𝐸𝐹 s require, particularly since they provide little im-
provement in RPRedictoR’s predictions. To mitigate this threat,
RPRedictoR could perform its AST analysis in the background and
cache its results to reuse them at prediction time. Still, it would
be useful to better understand developer preferences and limita-
tions in the automatic resolution of merge conflicts through an
interview-based developer study. We plan to perform such a study
in the future (the cost to humans of getting automated recommen-
dations can be high e.g., [29]).
External Validity. Threats to external validity refer to the gener-
alizability of the observations of our study.

While we didn’t observe a strong improvement in the prediction
results of RPRedictoRwith our studied𝐵𝐸𝐹 s, it is still possible that
𝐵𝐸𝐹 s defined for other code elements, or for other programming
languages may provide different results. It is also possible that our
studied 𝐵𝐸𝐹𝑠 (or other 𝐵𝐸𝐹 s) show different impact when studied
over other different software projects. This might impact the gen-
eralizability of our findings. However, we believe that our study

provides reasonable generalizability, since it included a large num-
ber of studied samples and features. We evaluated 𝐸𝐻𝐹 s and 𝐵𝐸𝐹 s
over 15,899 code conflicts within 377 software projects. Also, our
𝐵𝐸𝐹 s captured 396 combinations of 3 types of changes applicable
to 66 fine-grained Java code elements over 2 code branches. Still, in
the future, we plan to conduct larger-scale experiments with more
projects and features for more types of code elements and changes.

Another threat to the generalizability of our approach is that
𝐵𝐸𝐹 s only cover the Java programming language. Therefore, our
observations may or may not be applicable to other programming
languages. However, most of our studied 𝐵𝐸𝐹 s capture Java ele-
ments that also exist inmany popular programming languages (see
Table 1). So, while our study only covered Java, we believe that it
could be easily replicated to cover other languages.

8 CONCLUSION
Resolving merge conflicts is a tedious and error-prone process in
software development. Although many tools were proposed to de-
tect and even resolve merge conflicts, little tool support is available
to automatically resolve conflicts by observing and mimicking de-
velopers’ resolution strategies. In past work, we proposed RPRe-
dictoR, which recommends developers strategies to resolve merge
conflicts, based on a set of Evolution History Features (𝐸𝐻𝐹 s) [8].

In this paper, we proposed a new set of Branch Edit Features
(𝐵𝐸𝐹 s) to try to improve the effectiveness of RPRedictoR, inspired
by observations in the literature of the specific fine-grained edits
of the conflict influencing developer decisions to resolve it.

We performed an extensive evaluation of Branch Edit Features
(𝐵𝐸𝐹 s), studying various scenarios in which they could improve
effectiveness: by themselves, combining them with 𝐸𝐻𝐹 s, using
only subsets of them, and combining 𝐸𝐻𝐹 s with subsets of 𝐵𝐸𝐹 s.
Overall, we found that only one of our studied set of features im-
proved the effectiveness of RPRedictoR, but did so very slightly:
the 𝐸𝐻𝐹 s and 𝐵𝐸𝐹𝐿𝐼 set improved over 𝐸𝐻𝐹 s by 3pp. f-score. We
believe that such an incremental improvement may be hard to jus-
tify for developers to spend the effort to implement and maintain
the usage of the new 𝐵𝐸𝐹 s. In the future, we will explore more
features and more ML algorithms, to further try to improve the
effectiveness of RPRedictoR. For example, we will explore addi-
tional prediction features related to, e.g., code-change history [54–
56, 58, 59], testing activity, e.g., [24, 36, 37], decision-making meta-
data, e.g., [6, 7, 46], developer expertise, e.g., [16, 57], build failure
prediction e.g., [28, 30–34], security issue prediction e.g., [17, 27]
or cross-language issues, e.g., [18, 20].

ACKNOWLEDGEMENTS
We thank all reviewers for their valuable feedback. This work was
partially funded by awards NSF CCF-1845446, NSF CCF-2046403,
Virginia Tech’s hiring package, by International Distinguished Re-
searcher award C01INVESDIST by Universidad Rey Juan Carlos,
by Saudi Arabian Cultural Mission (SACM), and by grant PID2022-
142964OA-I00 funded byMCIN/AEI/10.13039/501100011033/FEDER,
UE.

REFERENCES
[1] 2021. git merge - Integrating changes from another branch. https://www.git-

tower.com/learn/git/commands/git-merge.

Understanding the Impact of Branch Edit Features for the Automatic Prediction of Merge Conflict Resolutions ICPC ’24, April 15–16, 2024, Lisbon, Portugal

[2] 2021. jFSTMerge. https://github.com/guilhermejccavalcanti/jFSTMerge.
[3] 2023. Kruskal-Wallis Test. https://www.statisticssolutions.com/kruskal-wallis-

test/.
[4] 2024. Research Artifact for Paper: Understanding the Impact of Branch Edit

Features for the Automatic Prediction of Merge Conflict Resolutions. https:
//zenodo.org/doi/10.5281/zenodo.10553235.

[5] I. Ahmed, C. Brindescu, U. A. Mannan, C. Jensen, and A. Sarma. 2017. An Empir-
ical Examination of the Relationship between Code Smells and Merge Conflicts.
In 2017 ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM). 58–67. https://doi.org/10.1109/ESEM.2017.12

[6] Khadijah Al Safwan, Mohammed Elarnaoty, and Francisco Servant. 2022. De-
velopers’ Need for the Rationale of Code Commits: An In-breadth and In-depth
Study. Journal of Systems and Software (2022).

[7] Khadijah Al Safwan and Francisco Servant. 2019. Decomposing the Rationale
of Code Commits: The Software Developer’s Perspective. In Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering.

[8] Waad Aldndni, Na Meng, and Francisco Servant. 2023. Automatic prediction
of developers’ resolutions for software merge conflicts. Journal of Systems and
Software 206 (2023), 111836. https://doi.org/10.1016/j.jss.2023.111836

[9] Sven Apel, Olaf Lessenich, and Christian Lengauer. 2012. Structured Merge with
Auto-tuning: Balancing Precision and Performance. In Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering (Essen,
Germany) (ASE 2012). ACM, New York, NY, USA, 120–129. https://doi.org/10.1
145/2351676.2351694

[10] SvenApel, Jorg Liebig, Benjamin Brandl, Christian Lengauer, and Christian Kast-
ner. 2011. SemistructuredMerge: RethinkingMerge in Revision Control Systems.
In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Con-
ference on Foundations of Software Engineering (Szeged, Hungary) (ESEC/FSE ’11).
ACM, New York, NY, USA, 190–200. https://doi.org/10.1145/2025113.2025141

[11] Jacob T. Biehl, Mary Czerwinski, Mary Czerwinski, Greg Smith, and George G.
Robertson. 2007. FASTDash: A Visual Dashboard for Fostering Awareness in
Software Teams. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (San Jose, California, USA) (CHI ’07). ACM, New York, NY,
USA, 1313–1322. https://doi.org/10.1145/1240624.1240823

[12] Caius Brindescu, Iftekhar Ahmed, Carlos Jensen, and Anita Sarma. 2020. An
empirical investigation into merge conflicts and their effect on software quality.
Empirical Software Engineering 25, 1 (2020), 562–590. https://doi.org/10.1007/
s10664-019-09735-4

[13] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. 2011. Proactive
Detection of Collaboration Conflicts. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engi-
neering (Szeged, Hungary) (ESEC/FSE ’11). ACM, New York, NY, USA, 168–178.
https://doi.org/10.1145/2025113.2025139

[14] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. 2013. Early Detection of Col-
laboration Conflicts and Risks. IEEE Transactions on Software Engineering 39, 10
(Oct 2013), 1358–1375. https://doi.org/10.1109/TSE.2013.28

[15] Guilherme Cavalcanti, Paulo Borba, and Paola Accioly. 2017. Evaluating and
Improving SemistructuredMerge. Proc. ACM Program. Lang. 1, OOPSLA, Article
59 (Oct. 2017), 27 pages. https://doi.org/10.1145/3133883

[16] Lykes Claytor and Francisco Servant. 2018. Understanding and Leveraging De-
veloper Inexpertise. In International Conference on Software Engineering: Com-
panion Proceeedings.

[17] James C Davis, Christy A Coghlan, Francisco Servant, and Dongyoon Lee. 2018.
The Impact of Regular Expression Denial of Service (ReDoS) in Practice: an Em-
pirical Study at the Ecosystem Scale. In The ACM Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE).

[18] James C. Davis, Louis G. Michael IV, Christy A. Coghlan, Francisco Servant,
and Dongyoon Lee. 2019. Why Aren’t Regular Expressions a Lingua Franca?
An Empirical Study on the Re-Use and Portability of Regular Expressions. In
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering.

[19] Elizabeth Dinella, ToddMytkowicz, Alexey Svyatkovskiy, Christian Bird, Mayur
Naik, and Shuvendu Lahiri. 2023. DeepMerge: Learning to Merge Programs.
IEEE Transactions on Software Engineering 49, 4 (2023), 1599–1614. https://doi.
org/10.1109/TSE.2022.3183955

[20] Mohammed El Arnaoty and Francisco Servant. 2024. OneSpace: Detecting cross-
language clones by learning a common embedding space. Journal of Systems and
Software 208 (2024), 111911. https://doi.org/10.1016/j.jss.2023.111911

[21] Paulo Elias, Heleno de S. Campos, Eduardo Ogasawara, and Leonardo
Gresta Paulino Murta. 2023. Towards accurate recommendations of merge con-
flicts resolution strategies. Information and Software Technology 164 (2023),
107332. https://doi.org/10.1016/j.infsof.2023.107332

[22] H Christian Estler, Martin Nordio, Carlo A Furia, and Bertrand Meyer. 2014.
Awareness andmerge conflicts in distributed software development. In 2014 IEEE
9th International Conference on Global Software Engineering. IEEE, 26–35.

[23] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. 2014. Fine-Grained and Accurate Source Code Differencing. In Pro-
ceedings of the 29th ACM/IEEE International Conference on Automated Software
Engineering (Vasteras, Sweden) (ASE ’14). Association for Computing Machin-
ery, New York, NY, USA, 313–324. https://doi.org/10.1145/2642937.2642982

[24] Aakash Gautam, Saket Vishwasrao, and Francisco Servant. 2017. An Empirical
Study of Activity, Popularity, Size, Testing, and Stability in Continuous Integra-
tion. In International Conference on Mining Software Repositories.

[25] Gleiph Ghiotto, Leonardo Murta, Márcio Barros, and André van der Hoek. 2018.
On the Nature of Merge Conflicts: a Study of 2,731 Open Source Java Projects
Hosted by GitHub. IEEE Transactions on Software Engineering (2018), 1–1. https:
//doi.org/10.1109/TSE.2018.2871083

[26] M. L. Guimarães and A. R. Silva. 2012. Improving early detection of software
merge conflicts. In 2012 34th International Conference on Software Engineering
(ICSE). 342–352. https://doi.org/10.1109/ICSE.2012.6227180

[27] Sk Adnan Hassan, Zainab Aamir, Dongyoon Lee, James C. Davis, and Francisco
Servant. 2023. Improving Developers’ Understanding of Regex Denial of Service
Tools through Anti-Patterns and Fix Strategies. In 2023 IEEE Symposium on Secu-
rity and Privacy (SP). 1238–1255. https://doi.org/10.1109/SP46215.2023.10179442

[28] Xianhao Jin. 2021. Reducing Cost in Continuous Integration with a Collection of
Build Selection Approaches. In Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering.

[29] Xianhao Jin and Francisco Servant. 2018. The hidden cost of code completion:
understanding the impact of the recommendation-list length on its efficiency. In
Proceedings of the 15th International Conference on Mining Software Repositories
(Gothenburg, Sweden) (MSR ’18). Association for Computing Machinery, New
York, NY, USA, 70–73. https://doi.org/10.1145/3196398.3196474

[30] Xianhao Jin and Francisco Servant. 2020. A Cost-efficient Approach to Building
in Continuous Integration. In International Conference on Software Engineering.

[31] Xianhao Jin and Francisco Servant. 2021. CIBench: A Dataset and Collection of
Techniques for Build and Test Selection and Prioritization in Continuous Inte-
gration. In International Conference on Software Engineering: Companion Proceed-
ings.

[32] Xianhao Jin and Francisco Servant. 2021. What Helped, and What Did Not? An
Evaluation of the Strategies to Improve Continuous Integration. In International
Conference on Software Engineering.

[33] Xianhao Jin and Francisco Servant. 2022. Which Builds are Really Safe to Skip?
Maximizing Failure Observation for Build Selection in Continuous Integration.
Journal of Systems and Software (2022).

[34] Xianhao Jin and Francisco Servant. 2023. HybridCISave: A Combined Build
and Test Selection Approach in Continuous Integration. ACM Transactions on
Software Engineering and Methodology 32, 4, Article 93 (may 2023), 39 pages.
https://doi.org/10.1145/3576038

[35] B. K. Kasi and A. Sarma. 2013. Cassandra: Proactive conflict minimization
through optimized task scheduling. In 2013 35th International Conference on Soft-
ware Engineering (ICSE). 732–741. https://doi.org/10.1109/ICSE.2013.6606619

[36] Ayaan M Kazerouni, James C Davis, Arinjoy Basak, Clifford A Shaffer, Francisco
Servant, and Stephen H Edwards. 2021. Fast and Accurate Incremental Feedback
for Students’ Software Tests using Selective Mutation Analysis. Journal of Sys-
tems and Software (2021).

[37] Ayaan M. Kazerouni, Clifford A. Shaffer, Stephen H. Edwards, and Francisco
Servant. 2019. Assessing Incremental Testing Practices and Their Impact on
Project Outcomes.

[38] Michele Lanza, Marco D’Ambros, Alberto Bacchelli, Lile Hattori, and Francesco
Rigotti. 2013. Manhattan: Supporting real-time visual team activity awareness.
In 2013 21st International Conference on Program Comprehension (ICPC). IEEE,
207–210.

[39] Olaf Leßenich, Sven Apel, and Christian Lengauer. 2015. Balancing Precision
and Performance in Structured Merge. Automated Software Engg. 22, 3 (Sept.
2015), 367–397. https://doi.org/10.1007/s10515-014-0151-5

[40] Olaf Leßenich, Janet Siegmund, Sven Apel, Christian Kästner, and Claus Hunsen.
2018. Indicators for merge conflicts in the wild: survey and empirical study.
Automated Software Engineering 25, 2 (2018), 279–313.

[41] Thomas W. MacFarland and Jan M. Yates. 2016. Kruskal–Wallis H-Test for
Oneway Analysis of Variance (ANOVA) by Ranks. Springer International Pub-
lishing, Cham, 177–211. https://doi.org/10.1007/978-3-319-30634-6_6

[42] ChandraMaddila, Nachiappan Nagappan, Christian Bird, Georgios Gousios, and
Arie van Deursen. 2021. ConE: A Concurrent Edit Detection Tool for Large Scale
Software Development. arXiv preprint arXiv:2101.06542 (2021).

[43] M. Mahmoudi, S. Nadi, and N. Tsantalis. 2019. Are Refactorings to Blame? An
Empirical Study of Refactorings in Merge Conflicts. In 2019 IEEE 26th Interna-
tional Conference on Software Analysis, Evolution and Reengineering (SANER).
151–162. https://doi.org/10.1109/SANER.2019.8668012

[44] J.H. McDonald. 2014. Handbook of Biological Statistics (3rd ed.). Sparky House
Publishing, Baltimore, Maryland, 157–164.

[45] T. Mens. 2002. A state-of-the-art survey on software merging. IEEE Transactions
on Software Engineering 28, 5 (2002), 449–462. https://doi.org/10.1109/TSE.2002
.1000449

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Adldndni et al.

[46] Louis G. Michael, James Donohue, James C. Davis, Dongyoon Lee, and Fran-
cisco Servant. 2019. Regexes are Hard: Decision-Making, Difficulties, and Risks
in Programming Regular Expressions. In International Conference on Automated
Software Engineering.

[47] Nicholas Nelson, Caius Brindescu, Shane McKee, Anita Sarma, and Danny Dig.
2019. The life-cycle of merge conflicts: processes, barriers, and strategies. Empir-
ical Software Engineering (02 2019). https://doi.org/10.1007/s10664-018-9674-x

[48] Hoai Le Nguyen and Claudia-Lavinia Ignat. 2018. An Analysis of Merge Con-
flicts and Resolutions in Git-Based Open Source Projects. Computer Supported
Cooperative Work (CSCW) 27, 3 (01 Dec 2018), 741–765. https://doi.org/10.100
7/s10606-018-9323-3

[49] Yuichi Nishimura and Katsuhisa Maruyama. 2016. Supporting Merge Conflict
Resolution by Using Fine-Grained Code Change History. 2016 IEEE 23rd Inter-
national Conference on Software Analysis, Evolution, and Reengineering (SANER)
1 (2016), 661–664.

[50] Moein Owhadi-Kareshk, Sarah Nadi, and Julia Rubin. 2019. Predicting Merge
Conflicts in Collaborative Software Development. https://arxiv.org/pdf/1907.0
6274.pdf.

[51] Rangeet Pan, Vu Le, Nachiappan Nagappan, Sumit Gulwani, Shuvendu Lahiri,
and Mike Kaufman. 2021. Can Program Synthesis Be Used to Learn Merge Con-
flict Resolutions? An Empirical Analysis. In Proceedings of the 43rd International
Conference on Software Engineering (Madrid, Spain) (ICSE ’21). IEEE Press, 785–
796. https://doi.org/10.1109/ICSE43902.2021.00077

[52] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[53] Anita Sarma, David F Redmiles, and Andre Van Der Hoek. 2011. Palantir: Early
detection of development conflicts arising from parallel code changes. IEEE
Transactions on Software Engineering 38, 4 (2011), 889–908.

[54] Francisco Servant. 2013. Supporting Bug Investigation using History Analysis.
In International Conference on Automated Software Engineering.

[55] Francisco Servant and James A Jones. 2011. History Slicing. In International
Conference on Automated Software Engineering. IEEE.

[56] Francisco Servant and James A Jones. 2012. History Slicing: Assisting Code-
evolution Tasks. In International Symposium on the Foundations of Software En-
gineering.

[57] Francisco Servant and James A Jones. 2012. WhoseFault: Automatic Developer-
to-Fault Assignment through Fault Localization. In International Conference on
Software Engineering.

[58] Francisco Servant and James A Jones. 2013. Chronos: Visualizing Slices of
Source-code History. In Working Conference on Software Visualization.

[59] Francisco Servant and James A Jones. 2017. Fuzzy Fine-grained Code-history
Analysis. In International Conference on Software Engineering.

[60] Francisco Servant, James A Jones, andAndré VanDerHoek. 2010. CASI: prevent-
ing indirect conflicts through a live visualization. In Proceedings of the 2010 ICSE
Workshop on Cooperative and Human Aspects of Software Engineering. 39–46.

[61] Bowen Shen, MuhammadAli Gulzar, Fei He, and NaMeng. 2022. A Characteriza-
tion Study of Merge Conflicts in Java Projects. ACM Trans. Softw. Eng. Methodol.
(jun 2022). https://doi.org/10.1145/3546944 Just Accepted.

[62] Bo Shen, Wei Zhang, Haiyan Zhao, Guangtai Liang, Zhi Jin, and Qianxiang
Wang. 2019. IntelliMerge: A Refactoring-Aware Software Merging Technique.
Proc. ACM Program. Lang. 3, OOPSLA, Article 170 (Oct. 2019), 28 pages. https:
//doi.org/10.1145/3360596

[63] Marcelo Sousa, Isil Dillig, and Shuvendu Lahiri. 2018. Verified Three-Way Pro-
gram Merge. In Object-Oriented Programming, Systems, Languages & Applica-
tions Conference (OOPSLA 2018). ACM. https://www.microsoft.com/en-
us/research/publication/verified-three-way-program-merge/

[64] Alexey Svyatkovskiy, Sarah Fakhoury, Negar Ghorbani, Todd Mytkowicz, Eliza-
beth Dinella, Christian Bird, Jinu Jang, Neel Sundaresan, and Shuvendu K. Lahiri.
2022. Program Merge Conflict Resolution via Neural Transformers. In Pro-
ceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Singapore, Singapore)
(ESEC/FSE 2022). Association for Computing Machinery, New York, NY, USA,
822–833. https://doi.org/10.1145/3540250.3549163

[65] Gustavo Vale, Claus Hunsen, Eduardo Figueiredo, and Sven Apel. 2021. Chal-
lenges of Resolving Merge Conflicts: A Mining and Survey Study. IEEE Transac-
tions on Software Engineering (2021), 1–1. https://doi.org/10.1109/TSE.2021.313
0098

[66] R. Yuzuki, H. Hata, and K. Matsumoto. 2015. How we resolve conflict: an em-
pirical study of method-level conflict resolution. In 2015 IEEE 1st International
Workshop on Software Analytics (SWAN). 21–24. https://doi.org/10.1109/SWAN
.2015.7070484

[67] Jialu Zhang, Todd Mytkowicz, Mike Kaufman, Ruzica Piskac, and Shuvendu K.
Lahiri. 2022. Using Pre-Trained LanguageModels to Resolve Textual and Seman-
tic Merge Conflicts (Experience Paper). In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis (Virtual, South Korea)
(ISSTA 2022). Association for Computing Machinery, New York, NY, USA, 77–88.

https://doi.org/10.1145/3533767.3534396
[68] Fengmin Zhu and Fei He. 2018. Conflict Resolution for Structured Merge via

Version Space Algebra. Proc. ACM Program. Lang. 2, OOPSLA, Article 166 (Oct.
2018), 25 pages. https://doi.org/10.1145/3276536

