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Abstract—The Java platform provides various cryptographic APIs to facilitate secure coding. However, correctly using these APIs is

challenging for developers who lack cybersecurity training. Prior work shows that many developers misused APIs and consequently

introduced vulnerabilities into their software. To eliminate such vulnerabilities, people created tools to detect and/or fix cryptographic

API misuses. However, it is still unknown (1) how current tools are designed to detect cryptographic API misuses, (2) how effectively the

tools work to locate API misuses, and (3) how developers perceive the usefulness of tools’ outputs. For this paper, we conducted an

empirical study to investigate the research questions mentioned above. Specifically, we first conducted a literature survey on existing

tools and compared their approach design from different angles. Then we applied six of the tools to three popularly used benchmarks to

measure tools’ effectiveness of API-misuse detection. Next, we applied the tools to 200 Apache projects and sent 57 vulnerability

reports to developers for their feedback. Our study revealed interesting phenomena. For instance, none of the six tools was found

universally better than the others; however, CogniCrypt, CogniGuard, and Xanitizer outperformed SonarQube. More developers

rejected tools’ reports than those who accepted reports (30 versus 9) due to their concerns on tools’ capabilities, the correctness of

suggested fixes, and the exploitability of reported issues. This study reveals a significant gap between the state-of-the-art tools and

developers’ expectations; it sheds light on future research in vulnerability detection.

Index Terms—Detection of cryptographic API misuses, developers’ feedback, empirical
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1 INTRODUCTION

JCA (Java Cryptography Architecture [1]) and JSSE (Java
Secure Socket Extension [2]) are two cryptographic frame-

works provided by the standard Java platform. The applica-
tion programming interfaces (APIs) offered by these
frameworks intend to ease developers’ secure programming
like generating keys and establishing secure communications.

However, the APIs are actually not easy to use for two rea-
sons. First, someAPIs are overly complicated but poorly docu-
mented [3], [4], [5]. Second, developers lack necessary
cybersecurity training; they are unaware of the security impli-
cations of coding options (e.g., the parameter values, calling
sequences, or overriding logic of APIs) [5], [6], [7], [8]. Conse-
quently, many developers misused cryptographic APIs, built
security functionalities insecurely, and introduced vulnerabil-
ities orweaknesses to software. Specifically, Fischer et al. found
that the cryptographic API misuses posted on StackOver-
flow [9] were copied and pasted into 196,403 Android applica-
tions available on Google Play [10]. Rahaman et al. revealed

similar API misuses in 39 high-quality Apache projects [11].
Fahl et al. [12] and Georgiev et al. [13] separately showed that
hackers could exploit such API-related vulnerabilities to steal
data (e.g., user credentials).

Tools were recently built to scan Java applications, to detect
the specialized category of security vulnerabilities—misuses of cryp-
tographic APIs [10], [11], [14], [15], [16], [17]. However, it is
unclear what are the strengths and weaknesses of these tools,
howwell they help developers improve existing secure coding
practices, and how we can design better approaches. There-
fore, for this paper, we conducted a novel empirical study to
explore (1) how current tools are designed to detect crypto-
graphic API misuses, (2) how effectively the tools work to
locate API misuses, and (3) how developers perceive the use-
fulness of tools’ outputs. Specifically, there are four steps in
our study method. First, we searched in the ACM digital
library for state-of-the-art tools, which analyze Java-based
applications for any API misuses relevant to JCA and JSSE.
Second, we compared the approach design of tools in terms of
API usage pattern representations, pattern-matching logic,
input/output infos, and public availability.

Third, among all explored tools, we identified six
publicly available, executable, and comparable tools: Cog-
niCrypt [18], CryptoGuard [11], CryptoTutor [19], Find-
SecBugs [20], SonarQube [21], and Xanitizer [22]. To
empirically compare tools’ effectiveness, we applied the six
tools to three public program benchmarks: Crypto-
Bench [23], MUBench [24], and OWASP Benchmark [25].
Based on the ground truth of cryptographic API misuses
and manual validation, we evaluated tools’ precision, recall,
and F-score rates. Fourth, to assess the relevance of tool out-
puts, we also applied the 6 tools to another dataset of 200
Apache projects, and filed 57 pull requests (PRs) to seek
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for developers’ feedback. After sending our descriptions to
the owners of 35 projects, we received 47 responses
and analyzed the information to learn about developers’
opinions. Our research explores the following research
questions (RQs):

RQ1. How are current tools designed to detect cryptographic
API misuses?We found that current tools represent mis-
use patterns as either hardcoded rules in tool imple-
mentation, Java code snippets, or templates described
with domain-specific languages (DSL). These tools
match Java programs against known misuse patterns
via static program analysis, clone detection, or machine
learning to reveal API misuses. Among different design
options, most tools adopt hardcoded rules and inter-
procedural static analysis probably because such a
design can effectively locate misuses.

RQ2. How effectively do current tools work to locate crypto-
graphic API misuses? The six experimented tools focus
on slightly different pattern sets and achieved distinct
trade-offs between precision and recall. Specifically,
CryptoGuard outperformed other tools on Crypto-
Bench, getting 85% F-score; Xanitizer acquired the
highest F-score when being applied to OWASP
Benchmark andMUBench (i.e., 100% and 72%). There
is no tool universally better than the others.

RQ2. How do developers perceive the usefulness of tools’ out-
puts? According to the 47 responses we received,
most developers (i.e., 30) rejected the reported vul-
nerabilities, fewer developers (i.e., 17) wanted to
address the reported issues, and even fewer develop-
ers (i.e., 9) replaced API misuses by following tool-
generated guidance. The tools’ reports usually did
not change developers’ coding practices. We identi-
fied three factors that prevent developers from
addressing reported issues. First, the fixing sugges-
tions are vague and incomplete. Second, developers
need evidence of security exploits enabled by those
vulnerabilities. Third, some detected misuses were
in test code or security-irrelevant program contexts,
and developers believed those issues to cause no
security consequence.

To sum up, in this paper, we made the following research
contributions:

� We analyzed the approach design of existing detec-
tors for cryptographic API misuses, and empirically
compared six of those detectors. No prior work did
such a comprehensive and systematic evaluation.

� We conducted a novel study with developers, via
describing for them the security vulnerabilities
reported by current tools.We got surprising feedback.

� By manually inspecting developers’ feedback and
related program context, we characterized the gap
between existing tools and developers’ expectations.

In the following sections, we will first introduce the mis-
use patterns of cryptographic APIs (Section 2). Then we will
present our literature survey, which describes the existing

API-misuse detectors to answer RQ1 (Section 3). Next, we
will describe our empirical evaluation of six state-of-the-art
tools to explore RQ2 (Section 4). Finally, we will explain
our study with developers to investigate RQ3 (Section 5).
At https://github.com/NiSE-Virginia-Tech/TSE-2022/, we
open-sourced our experiment results.

2 MISUSE PATTERNS OF CRYPTOGRAPHIC APIS

The Java platform provides two important frameworks to
enable security implementation: JCA and JSSE. JCA provides
APIs to implement concepts of cryptography such as digital
signatures, message digests, certificates and their validation,
encryption, key generation and management, and secure
random number generation [1]. JSSE enables secure internet
communications; it includesAPIs for creation of secure chan-
nels, data encryption, server authentication, message integ-
rity, and optional client authentication [2].

Listing 1. A Code Snippet That Misuses Three APIs

1 private static byte[] desKey = “12345678“.get-

Bytes();

2 private static byte[] iv = “12345678“.getBytes

();

3 public static void insecureEncrypt(String in) {

4 try {

5 // Declare an IV parameter with constant (CWE-

330).

6 IvParameterSpec ivSpec = new IvParameterSpec

(iv);

7 // Create a secret key with a hardcoded constant

(CWE-798).

8 SecretKey key = new SecretKeySpec(desKey,

“DES“);

9 // Declare a DES cipher although DES is provenly

insecure (CWE-327).

10 Cipher c=Cipher.getInstance(“DES/CBC/

PKCS5Padding“);

11 c.init(Cipher.ENCRYPT_MODE, key, ivSpec);

12 ... } ... }

Among all APIs defined in JCA and JSSE, there are 13
Java types (i.e., classes or interfaces) frequently mentioned
in the API-misuse patterns summarized by prior research
[10], [11], [12], [15], [17], [26], [27]. As shown in Table 1, 10
Java types are from JCA and the other 3 types are from
JSSE. Each of these Java types has one or more method APIs
that are prone to misuse, each API may be misused in one
or multiple ways, and each API misuse pattern is consid-
ered a code vulnerability. To succinctly represent all API
misuse patterns in Table 1, we list all Java type APIs (the
container classes/interfaces of methods) instead of the mis-
used method APIs, and summarize the misuse patterns as
well as related correct usage. In Table 1, column Insecure
describes API misuse patterns, while Secure summarizes the
correct usage patterns with security guarantees.

The Common Weakness Enumeration (CWE) [28] is a cate-
gory system for software weaknesses and vulnerabilities.
To facilitate understanding of API misuse patterns, we map
the patterns to six CWE categories to explain their security
implications:
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1. CWE-327: Use of a Broken or Risky Cryptographic Algo-
rithm. When the methods APIs of three Java types (i.e.,
Cipher.getInstance(...), MessageDigest.getIn-
stance(...) and SecretKeyFactory.getInstance

(...)) get invoked with improper parameters (e.g., ”DES”
and ”MD5”), security experts consider those invocations to
be vulnerable. This is because the parameter values indicate
usage of broken or risky cryptographic algorithms, and the
usage may result in the exposure of sensitive information
[29]. For instance, ”DES” on line 10 in Listing 1 implies using
the symmetric-key algorithm Data Encryption Standard
(DES), which is proven insecure [30]. Thus, the method invo-
cation on line 10 is considered an instance of APImisuse.

Listing 2. Insecure Method Overriding for TrustAll-

Manager

1 private static TrustManager createTrustAllMan-

ager() {

2 return new X509TrustManager() {

3 // Override checkClientTrusted (...) to have

empty body (CWE-295).

4 @Override

5 public void checkClientTrusted(...) throws

CertificateException {}

6 // Override checkServerTrusted (...) to have

empty body (CWE-295).

7 @Override

8 public void checkServerTrusted(...) throws

CertificateException {}

9 ... };}

2. CWE-295: Improper Certificate Validation. When the
method APIs HostnameVerifier.verify(...), Trust-
Manager.checkClientTrusted(...), and Trust-

Manager.checkServerTrusted(...) get overridden
with (almost) empty code implementation, security experts
consider those overridden methods to be vulnerable. This is
because with naı̈ve or empty code implementation, a soft-
ware program does not validate, or incorrectly validates,
hostnames and/or certificates; it may allow an attacker to
spoof a trusted entity by interfering in the communication
path between the host and client [31]. For instance, Listing 2
shows the empty bodies for checkXXX(...) methods of
TrustManager. Such naı̈ve method overriding actually
voids the intended protection mechanism offered by JSSE.

3. CWE-330: Use of Insufficiently Random Values. When
some methods of four Java types (i.e., IvParameterSpec,
PBEKeySpec, PBEParameterSpec, and SecureRandom)
get called with constants or predictable random values, the
method calls are considered insecure. This is because when
software generates predictable values in a context requiring
unpredictability, it may be possible for an attacker to guess
the next value that will be generated, and use this guess to
impersonate another user or access sensitive information
[32]. Line 6 of Listing 1 presents an exemplar API misuse,
which creates an IvParameterSpec object with a constant
array derived from the string literal ”12345678”.

4. CWE-326: Inadequate Encryption Strength. When certain
methods of two Java types (i.e., KeyPairGenerator and
PBEParameterSpec) are invoked, if the parameter values
are constants within specific value ranges, the invocations
are considered vulnerable. This is because when generating

TABLE 1
The Insecure and Secure Usage Patterns of Method APIs Related to 13 Java Classes/Interfaces
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keys or creating parameters used for password-based
encryption (PBE), if a program specifies relatively low num-
bers for key lengths, salt sizes, or iteration counts, the lever-
aged encryption scheme is theoretically sound but not strong
enough for the level of protection required. The weak
encryption scheme can be subjected to brute force attacks
that have a reasonable chance of succeeding using current
attack methods and resources [33]. Listing 3 shows an exem-
plar misuse of KeyPairGenerator APIs, which initializes
a generator to create RSA key pairs with the 1024-bit key
size; however, the key size should be no smaller than 2048.

Listing 3.An Exemplar Misuse of the KeyPairGenera-
tor APIs

1 KeyPairGenerator gen=KeyPairGenerator.getIn-

stance(“RSA“);

2 // The RSA key size should be at least 2048 (CWE-

326).

3 gen.initialize(1024);

4 KeyPair kp = gen.generateKeyPair();

5. CWE-798: Use of Hardcoded Credentials. When a pro-
gram calls KeyStore.load(...) or SecretKeySpec

(...) with a hardcoded constant as the credential parame-
ter, the method invocation is treated vulnerable. The reason
is that hardcoded credentials typically create a significant
hole that allows an attacker to bypass the authentication
that has been configured by the software administrator [34].
Line 8 in Listing 1 shows an exemplar API misuse of this
category. In the example, SecretKeySpec(...) is
invoked with desKey, which credential comes from a hard-
coded constant ”12345678”.

6. CWE-757: Selection of Less-Secure Algorithm During
Negotiation (’Algorithm Downgrade’). When a program calls

SSLContext.getInstance(...)with any of the follow-
ing parameters: ”SSL”, ”SSLv2”, ”SSLv3”, ”TLSv1.0”,
and ”TLSv1.1”, the invocation is treated insecure. Secure
Socket Layer (SSL) and TLS (Transport Layer Security) are
standard protocols for keeping an internet connection
secure and safeguarding the transmitted data [35]. As a suc-
cessor of SSL, TLS is more secure. Security exerts recom-
mend to enforce TLS 1.2 as the minimum protocol version
and to disallow older versions like TLS 1.0. Failure to do so
could open the door to downgrade attacks: a malicious actor
who is able to intercept the connection could modify the
requested protocol version and downgrade it to a less
secure version [36], [37].

Summary. We defined Table 1 to include only the API
misuse patterns frequently mentioned by literature for three
reasons. First, different literatures sometimes define con-
flicting patterns, so focusing on the most common ones can
avoid arguable cases. Second, these patterns enable us to
empirically compare the effectiveness of different tools on
the same benchmarks. Third, these patterns are representa-
tive, so our study based on them can reflect developers’ gen-
eral perception of security-API misuses.

3 A LITERATURE SURVEY OF CURRENT TOOLS

Tools were built to automatically detect Java cryptographic
API misuses. These tools typically start with certain repre-
sentations of misuse patterns, adopt different techniques to
scan programs for pattern matches, and generate reports
when matches are found.

Table 2 shows an overview of existing detectors. This list
is complete to the best of our knowledge. We searched for
literatures published in 2020, with keywords “secure API
misuse Java” in the ACM digital library. We then read the
retrieved papers together with their references to identify

TABLE 2
Overview of Existing Detectors for Security API Misuses

Name Availability Input Format Pattern
Representation

Pattern-Matching
Strategy

Output

Java JAR APK Built-in Rules Other Intra- Inter- Other Misuse Repair

MalloDroid [12] ✓ ✓ ✓ ✓ ✓
CryptoLint [15] ✓ ✓ ✓ ✓
BinSight [38] ✓ ✓ ✓ ✓
CDRep [39] ✓ ✓ ✓ ✓ ✓
CryptoTutor [19] ✓ ✓ ✓ ✓ ✓ ✓
CMA [40] ✓ ✓ ✓ ✓ ✓
CryptoChecker [41] ✓ ✓ - - - ✓
Amandroid [42] ✓ ✓ ✓ ✓ ✓
CogniCrypt [18] ✓ ✓ ✓ ✓ ✓ ✓ ✓
Hotfixer [43] ✓ ✓ ✓ ✓ ✓ ✓ ✓
Fischer et al.’s tool [10] ✓ ✓ ✓ ✓ ✓ ✓
Xu et al.’s tool [44] ✓ ✓ ✓ ✓ ✓
CryptoGuard [11] ✓ ✓ ✓ ✓ ✓ ✓
VuRLE [45] ✓ ✓ ✓ ✓ ✓
Vulvet [46] ✓ ✓ ✓ ✓ ✓
AndroBugs [47] ✓ ✓ ✓ ✓ ✓
FindSecBugs [20] ✓ ✓ ✓ ✓ ✓
MobSF [48] ✓ ✓ ✓ ✓ ✓ ✓ ✓
SonarQube [21] ✓ ✓ ✓ ✓ ✓
Xanitizer [22] ✓ ✓ ✓ ✓ ✓ ✓

“-” means the information is not publicly available.
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all relevant tools. For each tool, this table summarizes the
pattern representation, pattern-matching strategy, and out-
put; it also characterizes two properties: availability and the
input format. Availability describes whether a tool is pub-
licly available or just has its methodology described in liter-
ature. Input format reflects whether a tool can analyze Java
source code, JAR files, or APK files. Among the 20 tools
studied, there are 15 research prototypes from academia,
and 5 tools from industry or open source communities.

3.1 Research Prototypes From Academia

Most tools that fall into this category scan the APK files of
Android apps. Among the 15 tools, 10 tools hardcode pat-
terns as built-in rules probably due to the simplicity of such
representations; another 5 tools represent patterns with
code snippets or templates written in a domain-specific lan-
guage. 11 tools conduct inter-procedural static analysis for
pattern matching, perhaps due to the relatively higher pre-
cision of such analysis than intra-procedural analysis and
other techniques. Five tools suggest customized repairs.

MalloDroid [12] scans the decompiled code of Android
apps to detect potential vulnerabilities related to SSL. It
uses intra-procedural static analysis to i) extract networking
API calls and valid HTTP(S) URLs, ii) check the validity of
SSL certificates for all extracted HTTPS hosts, and iii) iden-
tify apps that validate certificates inadequately (CWE-295).

CryptoLint [15] is similar to MalloDroid, because it also
extends Androguard [49]—a tool to decompile APK files
into Dalvik bytecode and to statically analyze the bytecode.
However, CryptoLint hardcodes six rules:

1) Do not use ECB mode for encryption (CWE-327).
2) Do not use a non-random IV for CBC encryption

(CWE-330).
3) Do not use constant encryption keys (CWE-798).
4) Do not use constant salts for PBE (CWE-330).
5) Do not use fewer than 1,000 iterations for PBE (CWE-

326).
6) Do not use static seeds to seed SecureRandom

(...) (CWE-330).
For each located potentially vulnerable API call (e.g.,

Cipher.getInstance(v)), CryptoLint conducts inter-
procedural backward slicing to decide whether the used
parameter value is insecure (e.g., v=”AES/ECB”). Although
its design has been followed by later tools, CryptoLint is not
publicly available.

BinSight [38] reimplements CryptoLint. However, its
design seems better as it maps Java classifiers to their con-
tainer software (i.e., an Android app or a third-party
library) in a semi-automated way. When Android apps are
obfuscated and identifiers are renamed, it is challenging to
correctly map detected vulnerabilities to the original code
or software libraries. To overcome this challenge, BinSight
implements several heuristics to automate identifier
mapping.

CDRep [39] automates both the detection and repair of
security API misuses for Android apps. CDRep reimple-
ments the design of CryptoLint for vulnerability detection.
To repair vulnerabilities, CDRep leverages seven manually
created patch templates, with each template usable to fix
one misuse pattern.

CryptoTutor [19] helps students locate and repair crypto-
graphic API misuses in Java code. Similar to CDRep, Cryp-
toTutor applies program slicing and inter-procedural data
flow analysis to locate misuses. Its built-in rules are also
related to the vulnerabilities of CWE-327, CWE-330, CWE-
798, and CWE-326. However, CryptoTutor focuses on a
larger pattern set; in addition to the misuses examined by
CryptoLint, CryptoTutor also checks API misuses that

1) use weak hash functions (e.g., MD5),
2) use weak encryption algorithms (e.g., DES),
3) use weak random number generators (e.g., Random

(...), and
4) use short-length keys or salts for encryption.
CryptoTutor repairs vulnerabilities by editing abstract

syntax trees (ASTs) for code transformation. Once API mis-
uses are located in the code submitted by a student, Crypto-
Tutor provides coding feedback to help the student
understand why the program is incorrect.

Crypto Misuse Analyzer (CMA) [40] scans Dalvik bytecode
of Android apps and checks for API misuses related to
CWE-327, CWE-295, CWE-330, CWE-326, and CWE-798.
CMA first uses inter-procedural static analysis to identify
all execution paths that may invoke certain cryptographic
APIs. Based on the analysis result, CMA instruments code
to perform dynamic analysis, log execution profiles, and
record how cryptographic APIs are invoked at runtime.
Finally, CMA matches execution profiles with predefined
API-misuse models, to decide whether any API is misused.

CryptoChecker [41] also detects cryptographic API mis-
uses based on built-in rules. Before hardcoding rules into
CryptoChecker, Paletov et al. first built a rule inference
tool called DiffCode. There are three steps in DiffCode.
First, DiffCode mines code changes from GitHub reposito-
ries based on their usage of particular crypto APIs (e.g.,
SecertKeySpec). Second, to filter out irrelevant changes
from the mined corpus, DiffCode represents invoked
APIs and related parameter values with directed acyclic
graphs (DAGs). By comparing DAGs, DiffCode extracts
API usage changes and then clusters similar changes to
infer API misuse patterns. The mined rules are related to
CWE-327, CWE-330, CWE-326, and CWE-798. However,
CryptoChecker’s pattern set is much smaller than that of
CryptoTutor. It is unclear what technique CryptoChecker
adopts to match patterns.

Amandroid [42], [50] is a general-purpose static analysis
framework, to decide points-to information for all objects in
a flow- and context- sensitive way across Android app com-
ponents. This technique seems more accurate than prior
work. As the researchers noted, the event-driven nature
and inter-component communication (ICC) of Android
apps make traditional analysis insufficient and imprecise,
and require additional processing to connect the control
flow graphs of some seemingly irrelevant functions. Wei
et al. [42] demonstrated that Amandroid can be easily
extended to find API misuses that adopt ECB mode for
encryption (CWE-327).

CogniCrypt [18] supports developers to properly use APIs
in two ways. First, for some common tasks (e.g., data
encryption), CogniCrypt generates code from high-level
task descriptions in English. Second, CogniCrypt takes in
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rules defined in a domain-specific language (DSL)—CrySL
[27]—to detect API misuses. Each CrySL rule has five man-
datory sections:

1) OBJECTS declares Java objects;
2) EVENTS lists all security APIs involved;
3) ORDER uses a regular expression to define correct

API call sequences;
4) CONSTRAINTS defines constraints on objects; and
5) ENSURES defines predicates on the relationship

among objects.
Because CogniCrypt translates CrySL rules into context-

sensitive, flow-sensitive, and demand-driven static analysis,
users can extend the tool capability by defining new rules.
For detected API misuses, CogniCrypt offers fixing guid-
ance (e.g., replacing an insecure parameter value with a
secure one). Its pattern set is related to CWE-327, CWE-295,
CWE-330, CWE-326, CWE-798, and CWE-757.

Hotfixer [43] adopts CogniCrypt to detect API misuses,
and applies fixes at runtime without stopping the program
execution. To dynamically update software, Hotfixer trans-
forms handcrafted software patches into hotfixes that are
usable by Java agents, and checks the program execution
status before applying any patch. For instance, if a method
is running and a redefinition of that method is suggested as
a security patch, then the method’s old implementation will
continue running until the execution finishes. Hotfixer
ensures that only future runs of that method will execute
the new implementation.

Fischer et al.’s tool [10] detects misuses in two ways:
machine learning and clone detection. Specifically, their first
approach uses tf-idf to generate features from source code. It
trains a support vector machine (SVM) with an annotated
dataset of code snippets that use APIs securely or inse-
curely. The trained model predicts whether a code snippet
misuses any security API. Their second approach converts
both known vulnerable Java code and Android apps to the
same representation, i.e., the internal representation (IR) of
WALA [51]—a widely used program analysis framework.
The approach scans Android apps for clones (i.e., similar
code) of the known vulnerable code, by finding isomorphic
subgraphs in IR-based program dependency graphs (PDG).
Both tools focus on misuse patterns related to CWE-327,
CWE-295, CWE-330, CWE-326, CWE-798, and CWE-757.

Xu et al.’s tool [44] is similar to that of Fischer et al., as it
also detects misuses via machine learning. The approach
first analyzes the Dalvik bytecode of APK files to extract all
possible API invocation sequences from Android apps, and
uses CogniCrypt to label secure and insecure call sequences.
With the labeled dataset, the tool trains (1) a Hidden Mar-
kov Model (HMM) to predict how likely a given API
sequence is secure, and (2) an n-gram model to further
locate the misused API(s) in a problematic call sequence. As
this tool adopts CogniCrypt to label training data, the pat-
tern set it learns overlaps with, but can be no larger than
that of CogniCrypt.

CryptoGuard [11], [52] extends Soot [53], [54]—a widely
used program analysis framework—to statically analyze
Java bytecode. It focuses on vulnerabilities of CWE-327,
CWE-295, CWE-330, CWE-326, CWE-798, and CWE-757. To
achieve high precision rates when detecting vulnerabilities,

CryptoGuard conducts both backward and forward slicing
in a context- and field- sensitive way. However, because
eight of CryptoGuard’s rules are about the usage of constant
values, naı̈vely applying existing slicing techniques can
falsely report constants that are covered by program slices
but totally irrelevant to security. Therefore, CryptoGuard
defines refinement algorithms to remove false alarms based
on the domain knowledge of cryptography.

VuRLE [45] detects and fixes vulnerabilities. There are
two phases in VuRLE: learning and repair. In Phase I, given
vulnerable programs and corresponding repaired code,
VuRLE first extracts edits by comparing the ASTs of each
hvulnerable, repairedi code pair; it represents each edit as a
sequence of AST edit operations (e.g., node insertion). Next,
VuRLE clusters similar edits based on the longest common
subsequences (LCSs) between edit operations; for each clus-
ter, VuRLE generalizes a htemplate, editi pair. Here, the
template abstractly represents a vulnerable code pattern,
while the edit pattern represents the repair. In Phase II,
given a vulnerable program, VuRLE scans code for matches
of any inferred template. For each template match, VuRLE
customizes the corresponding edit pattern, and applies the
customized changes to repair vulnerabilities. Its pattern set
is about CWE-327, CWE-295, CWE-798, and some categories
outside our research scope (e.g., resource leakage).

Vulvet [46] extends Soot to statically analyze the Dalvik
bytecode of Android apps; it detects and fixes crypto-
graphic API misuses as well as other types of vulnerabilities
(e.g., ICC-related). The patterns Vulvet focuses on are
related to CWE-327, CWE-295, CWE-330, and CWE-798.
Vulvet automatically resolves vulnerabilities by instrument-
ing patches to the Jimple code of Android apps, where Jim-
ple is an internal representation of Soot.

3.2 Tools From Industry or Open Source
Communities

We found five tools that are from either industry or open
source communities. None of them has any paper published
to describe the tool design or implementation. Thus, our
descriptions below are based on tool websites, manual code
inspection of open-source tools, and our first-hand user
experience with tools. Most of these tools hardcode misuse
patterns as built-in rules and conduct inter-procedural anal-
ysis; none of the tools suggests customized repairs.

AndroBugs [47] is an open-source framework to scan
Android apps for vulnerabilities. Among all the vulnerabil-
ity categories AndroBugs considers, two categories are
within our research scope: CWE-295 and CWE-798. Andro-
Bugs implements a naı̈ve string-match method, to detect
API misuses that match certain regular expressions (regex).

FindSecBugs [20] is the SpotBugs [55] plugin for security
audits of Java web applications. Here, SpotBugs is an open-
source tool that statically analyzes Java bytecode for soft-
ware bugs. FindSecBugs performs inter-procedural static
program analysis to find API misuses related to CWE-327,
CWE-295, CWE-330, CWE-326, CWE-798, and CWE-757.
The misuse patterns in FindSecBugs are hardcoded as built-
in rules; however, the software architecture provides exten-
sible interfaces for developers to easily add or remove rules.
For each detected vulnerability, FindSecBugs can provide
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general guidance on repairs by showing code examples; it
does not suggest concrete repairs applicable to any specific
program context.

MobSF [48] is an open-source, automated, all-in-one
mobile application (Android/iOS/Windows) pen-testing,
manual analysis, and security assessment framework. It
performs both static and dynamic analysis to detect a
variety of vulnerabilities. Among the categories listed in
Table 1, MobSF locates API misuses related to CWE-327,
CWE-295, CWE-330, and CWE-798. To identify improper
certificate validation (CWE-295), MobSF hardcodes built-
in rules and performs dynamic program analysis. To
reveal other API misuses, MobSF holds an independent
YAML file to represent misuse patterns with regular
expressions (regex), and conducts regex-based string
match.

SonarQube [21] is an open-source tool that conducts
inter-procedural static analysis to detect bugs, code
smells, and security vulnerabilities. SonarQube hardco-
des built-in rules for vulnerabilities of CWE-327, CWE-
295, CWE-330, CWE-326, and CWE-757. For each
detected vulnerability, SonarQube presents general guid-
ance on repairs by showing (1) secure code examples
and (2) relevant CWE entries.

Xanitizer [22] is a closed-source commercial tool for the
security audit of Java web applications. We were able to use
Xanitizer by requesting for the user license. According to
our experience with the tool, Xanitizer conducts inter-proce-
dural static analysis to reveal API misuses of CWE-327,
CWE-295, CWE-330, CWE-326, CWE-798, and CWE-757. It
scans not only Java code and JAR files, but also configura-
tion files and templates for rendering the HTML output. For
each detected vulnerability, Xanitizer offers a high-level
repair suggestion (e.g., “specify crypto-provider”) together
with relevant CWE entries.

Finding 1. For RQ1, existing tools are different in terms of
their availability, input formats, pattern representations, pat-
tern-matching strategies, and outputs. Most tools represent
patterns as built-in rules, conduct inter-procedural analysis,
and report detected API misuses as outputs.

4 EMPIRICAL COMPARISON OF TOOLS

To empirically compare the tools listed in Table 2, we first
tried to download all tools and deploy them to our desktop,
and then applied the successfully deployed ones to existing
datasets. The configuration of our desktop includes (1) OS:
Linux Mint 20, (2) CPU: i7-8700, (3) memory size: 32 GB,
and (4) JVM heap size: 30 GB. In this section, we will first
introduce the experimented tools (Section 4.1) and evalua-
tion datasets (Section 4.2). Then we will explain our evalua-
tion metrics (Section 4.3) and results (Section 4.4).

4.1 Tools Used in Experiments

Within the tools listed in Table 2, nine tools are unavailable
and do not support any free trial. Although BinSight is
open-source, we could not compile or run it, neither did the
authors respond to our email requests. Thus, we still con-
sider BinSight unavailable. Among the remaining 10 tools,
MalloDroid, Amandroid, AndroBugs, and MobSF are only
applicable to Android apps. Because our evaluation data-
sets include only six Android apps (see Section 4.2), which
are insufficient to evaluate any tool, we decided not to
experiment with these four tools. Finally, we have six tools
usable in the empirical comparison of tools’ detection capa-
bility: CogniCrypt, CryptoGuard, CryptoTutor, FindSec-
Bugs, SonarQube, and Xanitizer. The first three tools are
from academia, while the last three come from industry.
Table 4 shows the tool versions we adopted. As shown in
Table 3, among the six tools, Xanitizer covers the most mis-
use patterns while CryptoTutor covers the fewest.

4.2 Benchmark Datasets

To evaluate the effectiveness of tools, we searched exten-
sively online for third-party benchmarks that label pro-
grams based on their correct or incorrect usage of security
APIs. We found three datasets:

(1) CryptoBench [23], [56] includes 171 handcrafted pro-
grams that use the APIs of JCA and JSSE. In particular, 136
of the programs have cryptographic API misuses, while the
other 35 programs use APIs correctly. To precisely compre-
hend API usage, a tool needs to do intra-procedural analysis
for 40 programs, and perform inter-procedural analysis
for the other 131 programs. Among the 136 vulnerable

TABLE 3
The API Misuse Patterns Covered by Each Tool

Java Type API CogniCrypt CryptoGuard CryptoTutor FindSecBugs SonarQube Xanitizer

Cipher ✓ ✓ ✓ ✓ ✓ ✓
HostnameVerifier ✓ ✓ ✓ ✓
IvParameterSepc ✓ ✓ ✓ ✓ ✓ ✓
KeyPairGenerator ✓ ✓ ✓ ✓ ✓
KeyStore ✓ ✓ ✓ ✓
MessageDigest ✓ ✓ ✓ ✓ ✓ ✓
PBEKeySpec ✓ ✓ ✓ ✓ ✓
PBEParameterSpec ✓ ✓ ✓ ✓ ✓
SecrectKeyFactory ✓ ✓ ✓
SecrectKeySpec ✓ ✓ ✓ ✓ ✓
SecureRandom ✓ ✓ ✓ ✓ ✓ ✓
SSLContext ✓ ✓ ✓ ✓ ✓
TrustManager ✓ ✓ ✓ ✓ ✓ ✓

“✓” means a Java class/interface has at least one method-API misuse pattern covered by a tool.
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programs, only 129 programs contain the API misuses we
focus on (see Table 1).

(2) MUBench [24], [57] is a benchmark of API-misuse
detectors. Among the different versions of MUBench, we
downloaded a recent version created in 2019 [58], which
contains instances of cryptographic API misuses collected
from 62 Java programs. These programs include 6 Android
apps and 56 non-Android applications. We managed to
compile 37 out of the 56 Java applications into JAR files,
which correspond to 149 labeled instances of API misuses.
Therefore, we used these 149 instances as ground truth in
our evaluation.

(3) OWASP Benchmark [25], [59] is a Java test suite
designed to evaluate the effectiveness of automated vulner-
ability detection. It gathers the vulnerabilities recently
reported on CWE [28], and has been recommended as an
evaluation dataset for Application Security Testing tools.
We downloaded the latest version (v1.2) of this benchmark,
which includes 2,740 Java programs. Because not all pro-
grams involve security APIs, we focused on the data of
three categories: weak cryptography, weak hashing, and
weak randomness. In this way, our experiment includes 975
programs from the original dataset, containing 477 pro-
grams with labeled misuses of security APIs and 498 pro-
grams with correct uses.

Actually not every benchmark covers all the API misuses
summarized by prior work. To ensure rigorous evaluation
of tools, we manually inspected the security APIs labeled in
each benchmark. We present the mapping between bench-
marks and security APIs in Table 5. As shown in the table,
CryptoBench covers the usage of most APIs (i.e., 11 Java
types). The data of OWASP Benchmarks is only relevant to
three Java classes: Cipher, MessageDigest, and
SecureRandom. We chose to use existing benchmark data-
sets instead of creating new ones for two reasons. First,
these benchmarks are public and were manually crafted by
different groups of people, which makes our empirical com-
parison representative, and easy to reproduce by other peo-
ple. Second, some of the benchmarks (e.g., OWASP
Benchmark and MUBench) are widely accepted and have
great industrial impacts, which enables our empirical
results to better characterize the state-of-the-art tools and
inspire future research.

4.3 Evaluation Metrics

We used four metrics to measure tool effectiveness: preci-
sion, recall, F-score, and runtime overhead.

Precision (P) measures among all reported misuses, how
many of them are actual misuses (i.e., true positives)

P ¼ # of true misuses detected

Total # of detected misuses
: (1)

Given a reported set of misuses S1, suppose that the
labeled set of misuses (i.e., ground truth) is S2. Theoreti-
cally, we can automatically evaluate precision based on the
intersection between two sets, i.e., P ¼ jS1 \ S2j=jS1j. Such
automatic evaluation requires the ground truth (i.e., S2) to
be complete. Namely, the labeled set of misuses in each
benchmark should cover all actual misuses existing in
codebases.

Because CryptoBench and OWASP are manually crafted
datasets with injected API misuses, their ground truth sets
are complete. However, MUBench consists of software from
the real world, and the labeled set was crafted based on
manual inspection or tool results. The ground truth of
MUBench is incomplete and thus unusable for automatic
evaluation. To correctly compute precision of tools on
MUBench, we manually inspected all reported misuses and
decided whether they were true positives based on our
security knowledge. Namely, given a reported API misuse,
if our manual inspection of the program context confirms
the misuse, we consider the report to be a true positive; oth-
erwise, it is a false positive.

Recall (R) measures among all known API misuses in
benchmarks, how many of them are detected by a tool

R ¼ # of true misuses detected

Total # of known true misuses
: (2)

Given a reported set of misuses S1, suppose that the labeled
set of misuses is S2. We evaluated recall using jS1 \ S2j=jS2j.

F-score (F) is the harmonic mean of P and R, to reflect a
trade-off between the two metrics

F ¼ 2� P �R

P þR
: (3)

F varies within [0, 1]. The higher F scores are desirable,
because they demonstrate better trade-offs between preci-
sion and recall. Suppose that we have 100 known API mis-
uses in a codebase; a tool reports 120 misuse instances, with

TABLE 4
The Tool Versions Adopted

Tool Version or Commit Id on Github

CogniCrypt 2.7.1
CryptoGuard Release_04.05.03_2020-11-25-02-42
CryptoTutor v202107
FindSecBugs 1.10.1
SonarQube 8.5.1.38104
Xanitizer 5.1.3

TABLE 5
The Security APIs Covered by Each Benchmark

Java Type API CryptoBenchMUBench OWASP
Benchmark

Cipher ✓ ✓ ✓
HostnameVerifier ✓
IvParameterSepc ✓ ✓
KeyPairGenerator ✓
KeyStore ✓
MessageDigest ✓ ✓ ✓
PBEKeySpec ✓
PBEParameterSpec ✓ ✓
SecrectKeyFactory ✓
SecrectKeySpec ✓ ✓
SecureRandom ✓ ✓
SSLContext

TrustManager ✓

“✓” means that a Java class/interface has at least one method API called by
a program benchmark.
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80 of them being true misuses. Then P ¼ 80=120 ¼ 67%,
R ¼ 80=100 ¼ 80%, F ¼ 2� 80%� 67%=ð80%þ 67%Þ ¼ 73%.

Runtime Overheadmeasures the time cost of each tool. The
lower overhead, the better.

4.4 Results Based on Benchmarks

Table 7 shows the measured runtime overheads. Within the
six tools, Xanitizer spent the most time when being applied
to CryptoBench and OWASP (i.e., 95 and 490,729 seconds);
CryptoGuard got the highest time cost when being applied
to MUBench (i.e., 1,918 seconds). Two reasons can explain
the observed time differences among tools. First, these tools
adopt distinct static analysis techniques (e.g., inter-proce-
dural versus intra-procedural) to match patterns, and some
techniques are more time-consuming than others. Second,
tools focus on different vulnerability patterns, although
some patterns are irrelevant to cryptographic APIs. Since
we were unable to revise tools to disable all patterns irrele-
vant to our investigation, the measured costs are higher
than the actual time costs incurred by automatic detection
of cryptographic APIs.

Finding 2 (for RQ2). The measured time costs imply that
given hundreds of programs to scan, the experimented tools
usually respond within six hours (18,000 seconds).

In terms of detection capability, CryptoGuard achieved
the highest F score (85%) among all tools when being
applied to CryptoBench. Meanwhile, Xanitizer acquired the

highest F scores (i.e., 72% and 100%) when being applied to
MUBench and OWASP datasets. In the following subsec-
tions, we will further discuss the precision, recall, and F-
score of tools on each dataset.

4.4.1 CryptoBench

Table 6 shows the evaluation results of different tools on
CryptoBench. Each row in the table corresponds to API mis-
uses related to one Java type (e.g., Cipher); each number
mentioned in the first column (e.g., 36) counts the labeled
cryptographic API misuse instances for a Java type. Among
the 11 Java types covered by CryptoBench, CryptoTutor
and SonarQube separately reported API misuses for 6 Java
types; the other tools reported API misuses related to 9 Java
types. There are only two Java types whose API misuses are
commonly detected by all tools: Cipher and MessageDi-

gest; CryptoGuard consistently outperformed the others
when handling these common cases. Our observation indi-
cates that it is promising to improve vulnerability detection
by combining the results of different tools, although we
have not seen any hybrid approach built in this way.

The overall F-score comparison among tools is Crypto-
Guard>CogniCrypt>Xanitizer> SonarQube>FindSe-
cBugs>CryptoTutor. CryptoTutor obtained much lower
measurements than other tools for two reasons. First, it has
implementation issues, which prevented the tool from cor-
rectly identifying API misuses in many cases. Second, Cryp-
toTutor scans code for fewer patterns than other tools, and
could not reveal the API misuses beyond its pattern set.
SonarQube and FindSecBugs worked worse than Cogni-
Crypt, CryptoGuard, and Xanitizer for two reasons. First,
SonarQube and FindSecBugs have smaller pattern sets.
Second, both tools apply intra-procedural instead of inter-
procedural analysis to locate some API misuses (e.g., using
constant IV values), although the inter-procedural program
analysis is more desirable. As CryptoBench has many pro-
grams that require sophisticated inter-procedural analysis,
neither SonarQube nor FindSecBugs handled well those
programs.

Fig. 1 shows a program whose API misuse was not
detected by either SonarQube or FindSecBugs. On line 9,
Cipher.getInstance(...) is invoked with parameter

TABLE 7
Time Cost Comparison Between Tools (Seconds)

Tool CryptoBench MUBench OWASP

CogniCrypt 7 133 10,773
CryptoGuard 11 1,918 9,045
CryptoTutor 22 530 -*
FindSecBugs 4 59 20,352
SonarQube 28 387 2,188
Xanitizer 95 724 490,729

* CryptoTutor does does not run successfully with the OWASP benchmark.

TABLE 6
The Precision, Recall, and F-Score of Tools Measured Based on CryptoBench (%)

Java Type API CogniCrypt CryptoGuard CryptoTutor FindSecBugs SonarQube Xanitizer

P R F P R F P R F P R F P R F P R F

Cipher (36) 85 78 81 85 97 91 67 22 33 62 36 46 43 17 24 83 83 83
HostnameVerifier (1) - 0 - - 0 - - 0 - 100 100 100 50 100 67 100 100 100
IvParameterSepc (8) 71 63 67 88 88 88 0 0 - 80 100 89 - 0 - 89 100 94
KeyPairGenerator (5) 83 100 91 80 80 80 - 0 - - 0 - - 0 - 83 100 91
KeyStore (7) 75 86 80 88 100 93 - 0 - 100 29 44 - 0 - 100 29 44
MessageDigest (24) 94 67 78 86 100 92 67 26 36 67 33 44 80 83 82 83 83 83
PBEKeySpec (8) 63 63 63 86 75 80 - 0 - 100 25 40 100 50 67 73 100 84
PBEParameterSpec (14) 77 71 74 85 79 81 67 14 24 - 0 - - 0 - - 0 -
SecrectKeySpec (8) 78 88 82 100 38 55 50 13 20 67 25 36 - 0 - 50 13 20
SecureRandom (15) 100 7 13 86 80 83 50 13 21 100 7 13 100 60 75 - 0 -
TrustManager (3) - 0 - - 0 - - 0 - 100 100 100 100 100 100 100 100 100
Overall (129) 81 64 72 86 84 85 61 15 24 73 31 43 75 33 46 83 60 70

”-” means that a tool does not report any misuse for certain Java type APIs, so the related precision and F score values cannot be calculated.
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crypto, whose actual value “Blowfish” implies the adop-
tion of a provenly insecure algorithm. To facilitate under-
standing, in Fig. 1, we underlined all statements involved in
the backward slice of that API invocation (i.e., lines 2–4, 6, 9,
13–14); we also marked the data-dependencies between
statements with arrowed blue curves. As implied by the
data dependencies, a tool has to conduct inter-procedural
backward slicing in order to reveal the API misuse. Never-
theless, SonarQube and FindSecBugs failed to do that.

4.4.2 MUBench

We applied five tools (except CryptoTutor) to MUBench,
because CryptoTutor is quite unique. When running tools
other than CryptoTutor, we managed to launch tools via
commands, apply each tool to every program benchmark,
and automatically process the output text (or files) to com-
pute tools’ P/R/F values. However, CryptoTutor is an
interactive coding assistance tool that is delivered as an

Eclipse plugin. To launch the tool, we have to first launch a
new instance of Eclipse, import all programs into the IDE
for each benchmark, manually right-click all programs to
launch CryptoTutor, read outputs in GUI panes, and manu-
ally inspect subject programs as needed to compute P/R/F
values. Such frequent manual interference can be extremely
time-consuming, when the subject programs are large and
CryptoTutor does not output the code locations of identified
API misuses. As we could not afford the manual effort, we
did not apply CryptoTutor to MUBench.

Our results are shown in Table 8. We observed similar
phenomena in this table and Table 6. Among the six Java
types covered by MUBench, SonarQube revealed API mis-
uses for the fewest Java types (i.e., three). Only two types
have API misuses commonly detected by all tools: Cipher
and MessageDigest. SonarQube achieved the highest F
score (i.e., 86%) for misuses of Cipher’s method APIs, and
CryptoGuard achieved the highest F score (i.e., 89%) for
MessageDigest-related misuses. No tool consistently out-
performed others. The overall F-score comparison is Xaniti-
zer>CogniCrypt>CryptoGuard> FindSecBugs> Sona-
rQube. FindSecBugs and SonarQube obtained much lower F
scores than CogniCrypt, CryptoGuard, and Xanitizer.

4.4.3 OWASP

As shown in Table 9, OWASP Benchmark covers a lot fewer
Java types than the two benchmarks. Among the three Java
types covered, SonarQube only detected API misuses for
Cipher. Xanitizer worked perfectly to report misuses with-
out any incorrect result. The overall F-score comparison
among tools is Xanitizer>FindSecBugs>CryptoGuard>
CogniCrypt> Sona- rQube. This comparison seems contra-
dictory with what we observed in Tables 6 and 8. Namely,
compared with CryptoGuard and CogniCrypt, FindSecBugs
worked better on this dataset but worse on the other
datasets.

TABLE 8
The Precision, Recall, and F-Score of Tools Measured Based on MUBench (%)

Java Type API CogniCrypt CryptoGuard FindSecBugs SonarQube Xanitizer

P R F P R F P R F P R F P R F

Cipher (50) 92 66 77 100 68 81 100 66 80 100 76 86 86 78 82
IvParameterSpec (13) 88 62 72 100 31 47 69 46 55 - 0 - 65 46 54
MessageDigest (31) 89 58 70 100 81 89 77 68 72 86 55 67 85 77 81
PBEParameterSpec (7) 79 100 88 100 100 100 - 0 - 100 29 44 100 57 73
SecretKeyFactory (9) 84 100 91 - 0 - - 0 - - 0 - 82 100 90
SecretKeySpec (39) 48 62 54 100 8 14 100 3 5 - 0 - 100 28 44

Overall (149) 77 66 71 100 49 66 84 41 55 93 38 54 85 62 72

TABLE 9
The Precision, Recall, and F-Score of Tools Measured Based on OWASP Benchmark (%)

Java Type API CogniCrypt CryptoGuard FindSecBugs SonarQube Xanitizer

P R F P R F P R F P R F P R F

Cipher (130) 83 100 91 83 100 91 100 100 100 83 100 91 100 100 100
MessageDigest (129) 100 69 82 100 69 82 100 69 82 - 0 - 100 100 100
SecureRandom (218) - 0 - 100 100 100 100 100 100 - 0 - 100 100 100

Overall (477) 89 46 61 94 92 93 100 92 96 83 27 41 100 100 100

Fig. 1. A program in which SonarQube and FindSecBugs could not find
the API misuse.
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To understand the contradiction, we further inspected
the codebases of FindSecBugs and OWASP benchmark. We
realized that in the benchmark, there are multiple programs
having the same code underlined in Fig. 2. The common
code calls Cipher.getInstance(...) with parameter
algorithm, whose actual string value “AES/CCM/
NoPadding” implies the adoption of a secure algorithm.
However, CryptoGuard and CogniCrypt are not rigorous
enough to determine that algorithm does not hold the
value of “AES/ECB/PKCS5Padding”. Consequently, they
falsely inferred that “AES/ECB/PKCS5Padding” is passed
to Cipher.getInstance(...), and reported API mis-
uses. In comparison, FindSecBugs nicely handled these pro-
grams and did not report any false positive.

Finding 3 (for RQ2). No tool consistently worked best. How-
ever, CogniCrypt, CryptoGuard, and Xanitizer always outper-
formed SonarQube, probably due to their sophisticated inter-
procedural analysis and larger pattern sets.

Among the experimented tools, we observed the highest
F-score that they can achieve on CryptoBench is 85% (by
CryptoGuard); the highest measurement on MUBench is
72% (by Xanitizer). These numbers imply that there is still
improvement space for new approaches to detect misuses
with higher F-scores. Additionally, we noticed that each
adopted benchmark only covers at most 11 of the 13 Java
types frequently involved in cryptographic API misuses. It
means that to better assess the effectiveness of different
tools, we also need new benchmarks that cover various API
misuses related to all Java types.

5 USER STUDY

To understand how existing tools help with developers’
secure coding practices, we performed a user study. We
reported cryptographic API misuses found in open-source
projects to owner developers, to seek for their feedback.
Specifically, we ranked all Apache projects on GitHub in
the descending order of their popularity (i.e., star counts).
We then scanned the source code of top-ranked projects to

find 200 projects that use any of the 13 Java types listed
in Table 1. We chose to explore Apache projects because
(1) they are usually well maintained, and (2) the project
developers are experienced and often respond to pull
requests (PRs).

Next, we applied all 5 experimented tools to the 200
Apache project to reveal cryptographic API misuses.
Because the vulnerability reports by different tools contain
true API misuses, together with false ones and other secu-
rity issues out of scope, we needed to manually refine those
reports before contacting developers for their feedback. To
reduce our manual effort, in each tool’s outputs, we sam-
pled 15 projects. As we used 5 tools, in total we sampled 75
projects based on the reported vulnerabilities.

According to our manual analysis, the tools reported 416
true positives among the sampled projects. As it is infeasible
for developers to respond to all instances, we further sam-
pled 57 instances by taking a couple of steps. In Step 1, we
classified all instances based on the Java types they are asso-
ciated with. In Step 2, we randomly chose seven unique
instances for each Java type to file PRs, in order to get devel-
opers’ feedback on different kinds of misuses. When there
are insufficient instances reported for any Java type (e.g.,
IvParameterSpec), we included all instances. In each PR,
we specified (a) the code location of an instance, (b) the
security implication, (c) one or two CWE entries showing
the potential exploits, and (d) tool-generated guidance
on fixes. When developers asked us to file issue reports,
we also created issues to describe the above-mentioned
information.

As shown in Table 10, based on our interactions with
developers so far, we have classified developers’ opinions
into three categories: positive feedback, negative feedback,
and no response. Surprisingly, developers rejected 53% of
PRs (i.e., 30/57), agreed with us for 30% of PRs (i.e., 17/57),
and did not respond for 18% of PRs (i.e., 10/57). PRs related
to Cipher got the highest positive rate (i.e., 5/7). However,
PRs related to another four Java types received zero positive
response, including KeyStore, SecretKeyFactory,
SecretKeySpec, and SecureRandom. Such comparison
implies that developers considered certain vulnerability
reports to be more important than others.

TABLE 10
Summary of Developers’ Responses to 57 PRs

Java Type API PRs filed Developers’ Feedback

Positive Negative No Response

Cipher 7 5 2 0
HostnameVerifier 2 1 1 0
IvParameterSepc 1 1 0 0
KeyPairGenerator 3 1 1 1
KeyStore 7 0 6 1
MessageDigest 7 1 6 0
PBEParameterSpec 5 4 0 1
SecretKeyFactory 3 0 1 2
SecretKeySpec 4 0 2 2
SecureRandom 7 0 5 2
SSLContext 4 1 2 1
TrustManager 7 3 4 0

Total 57 17 30 10Fig. 2. A program that is falsely reported to be vulnerable by Crypto-
Guard and CogniCrypt.
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Finding 4 (for RQ3). Developers would like to address the
security issues mentioned in 17 PRs, but rejected 30 PRs. This
phenomenon implies that developers are usually negative
towards the reported security-API misuses.

Among the 17 PRs with positive feedback, developers
finally accepted 9 PRs. They mentioned two challenges
posed by the other eight PRs:

Challenge 1. Incomplete Fixing Suggestion. In four PRs, tool-
generated guidance does not offer all needed information
for repairs. For instance, a project invokes Cipher.get-

Instance(”AES/ECB/PKCS5PADDING”), which misuse
was located by tools and developers were recommended to
replace the parameter with ”AES/CBC/PKCS5PADDING”.
However, naı̈vely applying this edit can cause a runtime
error, because the substitute parameter requires for an addi-
tional initialization vector (IV) parameter when the cipher is
used for encryption/decryption. With more details, Fig. 3
contrasts an incomplete fixing suggestion implied by exist-
ing tools and the complete suggestion that developers need.
As reflected by Fig. 3b, when replacing the insecure parame-
ter value with a secure one, developers must remember to
also update a related API call cipher.init(...) (lines
6–7) and create an IV parameter for that updated call (line 1
and lines 9–15).

As current tools do not guarantee the comprehensiveness
or completeness of their coding suggestions, developers
hesitate to modify code based on the partial information.

Challenge 2. Complex Repair Procedures. Some developers
concurred with the revealed vulnerabilities in six PRs, but
could not cope with the complexity of secure solutions. For
instance, when implementing TrustManager, developers
understood that they should not blindly trust all clients and
servers, neither should they have empty implementation for
the interface methods checkClientTrusted(...) and
checkServerTrusted(...). However, to remove the
vulnerability, they have to not only revise code in order to
check the certificates of both clients and servers, but also
download certificate files to local machines and properly
configure a set of local files. This process is challenging and

time-consuming, and developers have almost zero tool
assistance for non-code artifact configuration.

Finding 5 (for RQ3). For 8 PRs, developers were willing to
address the reported vulnerabilities but could not do that. They
need tools to provide more detailed suggestions on repairing
edits and non-code artifact configuration.

Developers rejected 30 PRs for follwing reasons:
Reason 1. No exploit demo. For four PRs, developers do not

trust the described API misuses or related security implica-
tions; they required actual security attacks to demonstrate
the security exploit. Particularly in one PR, we pinpointed
the insufficient key length of an RSA key pair, provided
guidance on fixes, and included CWE-327 [60] as a refer-
ence. However, developers still need more convincing rea-
sons before accepting the PR. They replied, “we were unable
to identify any security impact. As such, this has been marked as
Not Applicable. If you still believe this to be valid, please submit a
new report which includes detailed information demonstrating
and exploiting the security impact for this issue”.

Listing 4. A Scenario Where MD5 is Irrelevant to Security
[61]

1 public MD5Function(List<Expression> children)

throws SQLException {

2 super(children);

3 try {

4 messageDigest = MessageDigest.getInstance

(“MD5“);

5 } catch (NoSuchAlgorithmException e) {

6 throw new RuntimeException(e);

7 }

8 }

Reason 2. False positives without actual security impact.
Among the 26 PRs, developers believed that the reported
vulnerabilities in 10 PRs exist only in outdated code (i.e.,
archived files or repositories), or in test suites that will not
be included into the released software products. As the
reported vulnerabilities will not influence their software
products, developers do not want to fix the reported mis-
uses. For example, some TrustManager implementation
was intentionally designed to trust all incoming connections
in test code; developers mentioned that they understood the
listed concerns in PRs. However, they have two reasons not
to fix the reported issues: (1) all these test files will not be
shipped with the projects; (2) the trust-all mechanism was
implemented on purpose.

For the remaining 16 PRs, developers considered the
reported vulnerabilities to be totally irrelevant, as the API
misuses are not located in security-sensitive software imple-
mentation. 11 of these PRs are about the usage of Message-
Digest and Random. Although tools consider “MD5” and
“SHA-1” as insecure parameters to use when calling Mes-

sageDigest.getInstance(...), developers totally
disagreed on that. They defended that in their circumstan-
ces, these APIs were called not for cryptographic hashing or
signature requests; instead, the APIs were used only to

Fig. 3. The incomplete and complete fixing suggestions for the misuse
Cipher.getInstance(”AES/ECB/PKCS5PADDING”).
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generate checksums for data integrity checks. Thus, they do
not believe the usage of MD5 or SHA-1 to be security-
sensitive.

Listing 4 shows a scenario where MD5 is used to gener-
ate message digests [61]. Concerning the code, developers
explained, “From a cursory check through Phoenix code, I see
two uses of MD5: 1. An ‘MD5’ SQL function that allows users to
generate MD5 fingerprints of columns. 2. To compare columns of
primary and index tables against each other in the index scrutiny
tool. Neither of these needs a cryptographic hash”.

Similarly, for Random, although tools consider the API to
be a cryptographically weak random value generator and
consistently suggest SecureRandom as a secure substitute,
developers disagreed. For instance, the code in Listing 5
uses Random to randomly pick an endpoint as the target for
gossip (lines 18–22). The developers responded “The gossiper
does not use any random calls for cryptography”. This response
indicates that developers only used randomly generated
values for purposes irrelevant to cryptography, so they did
not believe that their API usage is vulnerable.

Finding 6 (for RQ3). Developers rejected 30 PRs because they
disagreed upon the criteria tools adopted to recognize vulner-
abilities. They need tools to demonstrate security exploits of
vulnerabilities, and to skip issues located in test cases, archived
code, and security-irrelevant context.

6 THREATS TO VALIDITY

Threats to External Validity.Our empirical findingsmay be lim-
ited to the misuse patterns we focused on, the tools we experi-
mented with, the datasets used, and the developers who
responded to our PRs. To mitigate this limitation, we inten-
tionally included themisuse patterns frequentlymentioned in
literature, ran as many tools as possible, randomly sampled
the most popular 200 Apache projects, and proactively dis-
cussed with developers on filed PRs. In the future, we will
includemore patterns, expand ourdatasets, andfilemore PRs.

Threats to Construct Validity. CryptoBench and OWASP
Benchmark solely have crafted code with injected API mis-
use instances; they may not represent actual API misuses in
real-world software. MUBench contains cryptographic API
misuses in open-source programs; however, the ground
truth of labeled misuses seems incomplete, and they may
not represent API misuses in closed-source software. There-
fore, our tool evaluation results may not reflect these tools’
actual effectiveness in the real world. In the future, we will
construct more comprehensive benchmarks using more
real-world programs.

Threats to Internal Validity. In the user study, we manually
checked tools’ outputs, removed false alarms, and only sam-
pled true misuses to file PRs. It is possible that our manual
analysis is subject to human bias. Tomitigate the problem, we
had two authors inspect each sampled instance. In this way,
we ensured that every filed PR contains a true misuse based
on the pattern set defined in literature; when developers con-
sidered any PRs to be false positives, it indicates the discrep-
ancy between developers’ belief and research literature.

7 RECOMMENDATIONS ON FUTURE TOOLS

Our work compares existing tools and reveals the gap
between tools’ capabilities and developers’ expectations.
Our findings lead us to give the following recommendations.

Listing 5. A Case Where Random is Irrelevant to
Security [62]

1 public class Gossiper implements IFailureDe-

tectionEventListener, GossiperMBean

2 {

3 private final Random random = new Random();

4 ...

5 /**

6 * Returns true if the chosen target was also a

seed. False otherwise

7 *

8 * @param message

9 * @param epSet a set of endpoint from which a

random endpoint is chosen.

10 * @return true if the chosen endpoint is also a

seed.

11 */

12 private boolean sendGossip(Message<Gossip

DigestSyn> message, Set<InetAddressAnd

Port> epSet) {

13 List<InetAddressAndPort> liveEndpoints =

ImmutableList.copyOf(epSet);

14 int size = liveEndpoints.size();

15 if (size < 1)

16 return false;

17 /* Generate a random number from 0 -> size */

18 int index = (size == 1) ? 0 : random.nextInt

(size);

19 InetAddressAndPort to = liveEndpoints.get

(index);

20 ...

21 boolean isSeed = seeds.contains(to);

22 GossiperDiagnostics.sendGossipDigestSyn

(this, to);

23 return isSeed;

24 }

25 }

Improve the F-score and relevance of misuse detection. Tool
developers can improve over the state-of-the-art detectors in
three ways: (1) to increase the accuracy of inter-procedural
program analysis, (2) to skip vulnerabilities in test or out-
dated code, and (3) to perform context-aware analysis that
examines API usage only inside the implementation of secu-
rity functionalities. Especially for (3), new tools may need to
characterize program context by locating cryptographic API
usage, tracking the propagation of any value produced by
those API calls, and deciding whether those value propaga-
tions are related to any security concept (e.g., encryption).

Provide detailed and customized fixing suggestions. To per-
suade developers into removing detected API misuses, it is
important to provide actionable suggestions on how to cor-
rectly use those APIs in developers’ circumstances. Devel-
opers found existing repair guidance to be insufficient.
Therefore, to better help developers, we still need tools
to suggest both code solutions and related non-code
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configurations. Each suggested code solution should be
complete: it not only replaces problematic API calls with
correct ones, but also adjusts related code for correct pro-
gram syntax and semantics. Each non-code configuration
should be clear enough for developers to follow in order to
properly manipulate their local file system.

Automate project-specific exploit generation. To help devel-
opers better diagnose the vulnerabilities in their programs,
future tools can generate hacking code and provide the rec-
ipe for successful attacks. In this way, developers can gain
first-hand experience of security attacks, view their projects’
security issues from a different perspective, deepen their
understanding of secure coding, and further improve their
cryptographic API usage in the future.

8 RELATED WORK

Several studies are relevant to our work [63], [64], [65], [66],
[67], [68]. For instance, Gao et al. applied CogniCrypt to dif-
ferent versions of Android apps; they observed that app
developers are generally unaware of cryptographic API
misuses and hence usually do not fix such issues [65]. Gao
et al. also performed another empirical study on the evolu-
tion of Android app vulnerabilities [67]. The researchers
found that (1) most vulnerabilities could survive at least
three app updates; (2) part of third-party libraries were the
major contributors of most vulnerabilities; (3) all kinds of
vulnerabilities were reintroduced by developers, while
encryption-related ones were reintroduced most often; (4)
some vulnerabilities may foreshadow malware. Our study
is different from both studies, as it compares tools that auto-
matically detect cryptographic API misuses, and investi-
gates developers’ feedback on tool outputs.

Amann et al. [64] did a systematic evaluation of static
API-misuse detectors. They qualitatively compared 12 exist-
ing detectors. They also applied four of the studied tools to
MUBench, to evaluate detection capabilities and analyze
the root causes for low precision and recall. However, none
of the studied tools focus on cryptographic API misuses.

Afrose et al. [68] empirically compared four tools (Find-
SecBugs also named as SpotBugs, CryptoGuard, CogniCrypt
also known as CrySL, and a commercial tool Coverity) on
two program benchmarks. They observed that CryptoGuard
and CogniCrypt cover more rules and detect more API mis-
uses than the other tools. None of the tools supports path-
sensitive analysis. We observed a similar phenomenon con-
cerning the effectiveness comparison among FindSecBugs,
CryptoGuard, and CogniCrypt. However, our research is
different mainly in two aspects. First, it involves a systematic
review of a lot more tools (i.e., 20 tools), and characterizes
the design of existing detectors for security APImisuses. Sec-
ond, we conducted a user study and obtained developers’
valuable feedback on tool outputs.

Oyetoyan et al. [63] studied static application security test-
ing (SAST) tools and explored developers’ opinions on those
tools. The researchers applied five open-source tools (i.e.,
SonarQube, FindSecBugs, Lapse+ [69], JLint [70], and Find-
Bugs [71]) and a commercial tool to two program bench-
marks: OWASP Benchmark and NIST Test Suite [72]. They
also interviewed six developers to understand the desired
features in SAST tools. They reported similar findings to

ours, including (1) one tool is not enough to cover all weak-
ness categories and (2) the capability of current tools is gener-
ally low. Our research is different in two aspects. First, we
focused on cryptographic API misuses; Oyetoyan et al.
focused on 13 weakness categories (e.g., code quality), many
of which are irrelevant to security. Second, our user study
with developers is more rigorous and representative. We
interacted with more developers (47 versus 6) on concrete
APImisuses and general repair suggestions.

Tupsamudre et al. [66] surveyed four SAST tools (FindSec-
Bugs, SonarQube, CryptoGuard, and CogniCrypt) to explore
(1) how tools detect password storage vulnerabilities, and (2)
whether the tool-generated fixes comply with the guidelines
by OWASP or NIST. The researchers found that none of the
tools covered all vulnerabilities related to password storage,
and tools’ suggestions are either imprecise or inconsistent
with the latest guidelines. They also did a study with eight
developers, asking each developer to replace insecure SHA-1
based password storage implementation with the PBKDF2
solution suggested by tools. The results show that, in the
absence of examples, developers chose insecure values for
PBKDF2 parameters (salt, iteration count, key length). Thus,
although the usage of PBKDF2matches tools’ suggestions, the
resulting password storage codemay be insecure in practice.

Our research corroborates the findings mentioned in
Tupsamudre et al.’s work but is different in two ways. First,
we studied more tools, conducted more experiments, and
examined more API-misuse patterns; thus, our work has a
wider and deeper scope. Second, there are more participants
in our user study (47 versus 8); they provided feedback on
not only tool outputs but also future directions. Thus, we
revealedmore challenges and research opportunities.

9 CONCLUSION

With the existence of tools that detect cryptographic APImis-
uses in Java programs, some people believed that the
research problem iswell solved. Ourwork intended to assess
current tools in different aspects and to reveal the gaps
between existing work and developers’ needs. Namely, we
explored the question: Are existing tools good enough to help
developers eliminate cryptographic API misuses?

Our quantitative and qualitative analysis of existing tools
revealed several interesting findings. First, there is no tool
consistently outperforming other tools. Currently, the most
advanced tools detect API misuses using inter-procedural
program analysis. However, developers still need better
detectors, which conductmore accurate inter-procedure anal-
ysis and perform context-aware analysis to report API mis-
uses in security-focused implementation. Second, although
some tools provide general guidance on misuse repairs, they
are insufficient to help developers correctly remove misuses.
More detailed and customized repairing suggestions are
still desperately needed. Third, although some tools explain
reported API misuses by citing vulnerabilities described on
CWE, such citations are sometimes unconvincing to develop-
ers. Itwill be better if future tools can automatically synthesize
program-specific attacks and detail the procedure of security
exploits.

Our study shows that the problem of cryptographic API
misuse detection is far from being well solved. In the future,
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we will build tools to suggest better repairs and to synthe-
size exploits.
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