
A Cost-Effective, Scalable, and Portable IoT Data
Infrastructure for Indoor Environment Sensing

Sheik Murad Hassan Anika, Xinghua Gaob,∗, Na Menga, Philip R Ageeb,
Andrew P McCoyb

aDepartment of Computer Science, Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061, USA

bMyers-Lawson School of Construction, Virginia Polytechnic Institute and State University,
Blacksburg, VA 24061, USA

Abstract

The vast number of facility management systems, home automation systems,

and the ever-increasing number of Internet of Things (IoT) devices are in con-

stant need of environmental monitoring. Indoor environment data can be uti-

lized to improve indoor facilities and better occupants’ working and living expe-

rience, however, such data are scarce because many existing facility monitoring

technologies are expensive and proprietary for certain building systems. With

the aim of addressing the indoor environment data availability issue, the authors

designed and prototyped a cost-effective, distributed, scalable, and portable in-

door environmental data collection system, Building Data Lite (BDL). BDL is

based on Raspberry Pi computers and multiple changeable arrays of sensors,

such as sensors of temperature, humidity, light, motion, sound, vibration, and

multiple types of gases. The system includes a distributed sensing network and

a centralized server. The server provides a web-based graphical user interface

that enables users to access the collected data over the Internet. To evaluate

the BDL system’s functionality, cost effectiveness, scalability, and portability,

the research team conducted a case study in an affordable housing community

where the system prototype is deployed to 12 households. The results indicate

that the system is functioning as designed, costs $73 per zone and provides 12

∗xinghua@vt.edu

1

types of indoor environment data, is easy to scale up, and is fully portable.

This research contributes to the body of knowledge by proposing an innovative

way for establishing a distributed wireless IoT data infrastructure for indoor

environment sensing in new or existing buildings.

Keywords: Internet of Things, Sensing Network, Facilities Management,

Indoor Environment Sensing, Raspberry Pi

1. Introduction

Buildings are one of the most important aspects of human life, and, peo-

ple spend 87% of their time inside buildings [1]. Buildings have both direct

and indirect impacts on human health, comfort, and productivity [1, 2, 3, 4].

Maintaining optimal conditions for a better experience is critical for built envi-

ronments. New techniques and methods are becoming available for this purpose

with the developments of the Internet of Things (IoT) technologies [5, 6]. For

example, an air quality monitoring system can benefit occupants in many ways

from detecting harmful gases to monitoring oxygen levels. There are sensing

systems, such as the ones presented in Zakaria et al. [7] and Marques et al.

[8], that provide indoor air quality monitoring. However, these sensing systems

are dedicated for air quality monitoring only without the capability of exten-

sion to other features such as temperature or humidity monitoring. Another

important application of indoor environment sensing system is to support the

optimization of building energy consumption. Buildings consume about 40%

of total consumed energy, and half of that goes for heating, ventilation, and

air conditioning (HVAC) systems [9]. A significant portion of this consumed

energy is wasted [10], and, using a proper monitoring and control system can

reduce this waste significantly [9]. Even though many building systems already

incorporate proprietary networks of sophisticated sensors and devices, there are

normally very limited inter-system connectivity or exposure to the larger net-

works of IoT devices, which hinders the establishment of a comprehensive IoT

data infrastructure for building automation and management.

2

There are four major challenges in establishing a comprehensive IoT data

infrastructure for buildings. First, the high cost of the sensing devices is a

major reason for the reluctance of building owners and managers to install a

data system in the first place. For example, the average cost per square foot

to outfit a facility with a Building Automation System (BAS) is $2.30, in 2017,

which means it will cost about $230,000 on BAS alone for a typical 100,000

square foot building [11]. Moreover, building systems such as BAS will not last

for the entire life cycle of a building, and there will be upgrade fees for about

every ten years or less. Second, the installation of building systems can be a

challenge for existing buildings. The best time to install a building system, with

numerous wires and devices, is during construction. After a building starts to

operate, installing additional systems or changing the existing ones are usually

disruptive to occupants.

The third challenge is that most of the data generated by commercial build-

ing systems are self-proprietary because most of the existing building systems

are lacking interoperability. Typically, there is a lack of means to use the data

collected in one system for another system’s functions. Different systems need

to generate the indoor environment data they need, and the data are not in a

format that can be used for other purposes, which significantly limits the poten-

tial of smart building innovations. Scalability is the fourth challenge. For many

building systems, after the initial installation during construction, it is usually

difficult to modify the system by adding or removing features, or increasing the

coverage to other building spaces. The system’s functions and scale, including

what kind of indoor environment data to generate, are usually settled by the

time of initial installation. Scaling up the system may cost more than installing

a brand new system that can cover the required functions and spaces. In addi-

tion, current building systems are lacking portability. Usually, after a system is

installed in a building, it normally cannot be ported to a different location later

on. It is very challenging to take out the system from the installed location and

place it in another location without extensive engineering and re-construction.

In this paper, we present a cost-effective, scalable, portable, and distributed

3

indoor environment sensing system, Building Data Lite (BDL), to address the

building data availability challenges, and thus, to provide a means for establish-

ing the IoT data infrastructure of a smart building. To collect indoor environ-

ment data, the system has three types of components: sensing nodes, central

nodes, and inter-node connections. The sensing nodes are an array of digital and

analogue sensors to collect data from the surroundings. Each sensing node has

its local database. A central node is a web-based central server that integrates

data from all local databases and visualizes data on a website. The inter-node

connections link sensing nodes with the central node. The system is scalable

such that each sensing node’s function (what data to generate) is customizable,

and it is easy to add sensing nodes to or remove nodes from an established sys-

tem. The system also includes a web-based Graphical User Interface (GUI) for

users to extract, view, and analyze the generated data. Industry 4.0 [12] intro-

duced a system that enables appliances such as refrigerators or air-conditioners

to capture relevant data and pass it to a cloud storage. The BDL system, on

the contrary, uses dedicated sensing nodes to capture targeted data through

connected sensors. This research proposes an innovative means of establishing

cost-effective, scalable, and portable IoT infrastructure for indoor environment

data generation, integration, processing, and presentation. The research team

developed a prototype of the BDL system to demonstrate how it overcomes the

limitations of existing building systems regarding indoor environment sensing

in the following manners:

a) Cost: The BDL system is built with mini computer Raspberry Pi and

compatible sensor modules. The cost of each sensing node is limited to $40 to

$60, depending on the sensing requirements. Typically, each sensing node can

cover one building zone, and therefore, for a building with 100 zones, the entire

system only costs about $5,000. The BDL system is fairly affordable for indoor

environment sensing requirements by smart building research and innovations.

b) Installation: The distributed sensing nodes (Raspberry Pi computers) of

the BDL system are connected with a centralized server via wireless communica-

tion. Each node can capture multiple indoor environment values of a particular

4

building space. The installation of the sensing nodes requires only power supply

and Internet/WiFi connection.

c) Comprehensiveness: The BDL system uses multiple sensors to collect dif-

ferent environment data simultaneously, and establish a comprehensive database

that can be used for developing multiple smart building applications. The devel-

oped prototype can capture data related to temperature, humidity, light, sound,

motion, vibration, flame, and three types of gas.

d) Scalability: The BDL system is customizable, and the users have the

option to add or remove devices (Raspberry Pis), sensor modules, and functions.

e) Portability: The nodes of BDL system are connected to the central server

via local WiFi or the Internet, which makes them portable to any location with

power supply and under the coverage of wireless network. The sensing nodes can

be removed from one location and then deployed in another location without

any engineering on the building.

f) Open-source: The source code of BDL has been published by the authors

via GitHub [13]. The BDL also provides an open-source, integrated database

system that makes it easier for other systems to utilize the generated data.

This paper is structured as follows: Section 2 reviews relevant studies con-

ducted in the indoor environment sensing field. Section 3 presents the BDL

system’s overall design. Section 4 demonstrates the prototype development.

Section 5 presents the case study in which the BDL system is deployed in 12

households. Section 6 discusses the challenges encountered and corresponding

solutions, potential use cases of the BDL system, and the current limitations

and future research directions. Section 7 concludes the research.

2. Literature Review

The first step to make a building “smart” is to establish the data infrastruc-

ture. Data collection has always been a challenge in the smart building research

domain [14]. Wireless sensor network technologies have been implemented as

solutions to this challenge [15, 7]. However, there is still a lack of cost-effective

5

means to generate, collect, and process the ubiquitous indoor environment data

in existing buildings. In this section, related works in the domain of indoor en-

vironmental sensing system are discussed. The innovation of the proposed BDL

system lies in comprehensively achieving cost-effectiveness, portability, scalabil-

ity, and generalizability. Therefore, the related works are discussed regarding

these properties.

Ferdoush et al. [16] presented a wireless sensor network system using open-

source hardware platforms, Arduino, Raspberry Pi, and XBee module. The

system is low-cost and scalable both in terms of the type of sensors and the

number of sensor nodes. It is suited for a wide variety of applications related to

environmental monitoring. Each sensing node centers around an Arduino board,

which incorporates multiple sensors. The designed prototype collected temper-

ature and humidity data. The Arduino board incorporates a XBee module to

communicate with the base station. The base station is based on a Raspberry

Pi which is connected to the Internet via a router. The XBee module on the

base station works as a coordinator device which has a limitation of supporting

maximum 10 sensing nodes. The system is portable in the sense of placing the

sensing nodes with the approximation of the base station.

To lower energy consumption, Alva et al. [17] used video-based human

occupancy sensing to optimize the lighting strategy. This study involves the de-

velopment of a human occupancy sensing system in MATLAB and the hardware

for lighting controls. Video cameras in this system can be placed in a portable

fashion but the system remains purpose-specific, and the cameras significantly

increase the system’s cost.

Kumar et al. [15] proposed a low-cost Smart Living System, which uses

an Android-based user interface for control of home appliances. This model

integrates temperature and humidity sensor, DHT11, sound sensor, LM393,

and gas sensor, MQ135, with Raspberry Pi 3B microcontroller board. The

system uses an external GPRS module to connect to the internet. The work

presents an experiment on monitoring the air quality, sound, temperature, and

humidity detection. The system uploads the collected data to a cloud server,

6

which decides whether the pollution level has crossed a certain threshold.

Zakaria et al. [7] developed an air quality sensing system by utilizing MQ-135

gas sensor, coupled with the temperature and humidity sensor DHT-22. The

system can detect gaseous components such as NH3, NOx, alcohol, and benzene,

along with sensing temperature and humidity. Coleman et al. [18] developed a

low-cost indoor air quality sensing system capable of measuring volatile organic

compounds (VOCs) and other gaseous concentrations while monitoring temper-

ature and humidity. They identified the Indoor Air Quality (IAQ) matrix as

composed of CO2, VOC, CO, PM, HCHO and NO2. Sahal et al. [19] proposed

a Raspberry Pi v3 based model to capture and monitor gas and sound proper-

ties from the environment. It uses a LM393 sound sensor, MQ135 gas sensor,

DHT11 temperature and humidity sensor, and a GPRS module. The objec-

tive of this research is monitoring the air quality and measuring noise intensity

to mitigate sound pollution. Marques et al. [8] provided an IoT based real-

time indoor air quality monitoring system named iAir. It features an ESP8266

with ATMega168PA MCU as communication and processing unit. The system

utilizes MICS6814 sensor to detect gases such as Carbon Mono-oxide, Nitro-

gen Dioxide, Ethanol, Methane, and, Propane. It uses WiFi connectivity and

smartphone application to provide data access and real-time notification.

The systems proposed in [7, 8, 18, 19] are focused on specific task of air

quality monitoring with a set of fixed sensors, lacking the feature of scalability.

The system in [17] is also task-specific but significantly more expensive than the

other works mentioned here. The systems proposed in [16, 15] offer the property

of cost-effectiveness, portability, and scalability to some extent.

In contrast to the above mentioned works, the BDL system proposed in

our work aims in attaining cost effectiveness, code-free scalability, portability,

while keeping the usability of the system more generic and task independent.

The use of general purpose input and output ports of Raspberry Pi enables the

system to be compatible with a wide range of sensors and makes the system

scalable. Use of these sensors with the Raspberry Pi keeps the overall cost

of the sensing nodes inexpensive. The wireless communication of the sensing

7

Figure 1: The BDL system architecture.

nodes make the system attain the goal of portability. BDL’s architecture is

similar to the one presented by Aheleroff et al. [20], which describes the system

of mirroring digital representatives of physical assets with two-way dynamic

mapping. BDL offers a code-free sensing system. The general concept of code-

free sensing network system can help research work across researchers of different

backgrounds because data regarding building environments can be useful in

multiple academic areas, in which not all researchers have a background of

programming.

3. The System Design of BDL

Unlike previous studies that develop a sensing system for a particular use

case, this research is focusing on how to develop a more generic-purpose, cost-

efficient, scalable, portable, and distributed indoor environment data sensing

system that can be used to establish the data infrastructure for smart building

innovations. This section demonstrates the system design of BDL by describing

the system architecture, central server, sensing node, database configuration

8

Figure 2: An example of BDL deployment.

and data transmission, network configuration, data integration, and graphic

user interface.

3.1. System Architecture

The BDL system, as shown in Figure 1, consists of a central server and multi-

ple individual sensing nodes, which are built around Raspberry Pis. The sensors

in each sensing node capture real-time data from the environment and transfer

the data to the connected Raspberry Pi, which has its own local database. After

a certain interval, the Raspberry Pi communicates with the central server and

upload the newly generated data to the central database. The GUI communi-

cates with the central database to visualize data, and provides functions such as

downloading (selected) data, downloading the error log, modifying the system

by adding or removing sensing modules or sensing nodes.

Figure 2 illustrates an example of the BDL system deployment. The green

portions represent the locations where individual sensing nodes collect environ-

ment data. The blue area denotes the area covered by the wireless network.

The central server is also connected to this network either locally or through

a live server. The sensing nodes are modular, and each node can have differ-

ent sensors. They are portable and can be deployed anywhere with power and

network connection.

All software used in the system is open sourced, and both the database

systems used, MariaDB and MySQL, are free. The system software including

both server and sensing node has been made publicly available and can be found

9

Figure 3: Entity relationship diagram of the central database.

in the GitHub repository [13]. The server is currently available for open access to

help researchers and industry practitioners with the need of indoor environment

sensing.

3.2. Central Server

The central server of BDL is designed as a web-based system. The prototype

uses PHP v7 as the server language. The front-end was written in HTML, CSS,

and JavaScript. The system is designed to use Asynchronous JavaScript and

XML (AJAX) to create a fast and dynamic GUI. JQuery and Chart.js libraries

are used for data visualization. The GUI fetches data from the central database.

The server is live and being hosted in a third party hosting sites with the domain:

building-data-lite.com. Figure 3 shows the entity relationship diagram of the

central database, and it is a general overview of the database schema. Here the

rectangular shapes denote the entities, the circular shapes denote the attributes

of the entities and the rhombus shapes denote the relation between each entities.

10

Figure 4: Data flow in the BDL system.

Each sensing node has its local database system to store offline data. This

is essential because there can be disruptions of communication between the

sensing node and the central server. The sensing nodes use MariaDB for the

local database. To keep data consistency, a temporary data file is being created

every hour consisting of new records that have not been sent to the central server.

The central server provides the information (for example, the timestamp of last

synchronization) to make sure the data in this file are not redundant. In each

synchronization, the file is transferred to the central server, and then, replaced

by a new one to reduce space wastage. Approximately 60 records are present in

each hourly generated file, but this number will be doubled for each occurrence

of communication disruption. The central server performs a synchronization

check of the received data before storing it into the central database. Figure 4

illustrates the data flow in the BDL system.

3.3. Sensing Node

In each sensing node, the Raspberry Pi connects with multiple sensor mod-

ules to collect data from the surroundings. Figure 5 shows the prototype of a

sensing node. The sensors are connected via the GPIO ports of the Raspberry

Pi, with a GPIO extension breadboard for easier deployment. The Raspberry

Pi can take digital inputs only, which is a problem in incorporating analogue

sensors, such as the light sensor and the gas sensors. To resolve this issue, the

authors use an analogue-to-digital converter, MCP3008 [21], to capture read-

11

Figure 5: Sensing node prototype version 1.

ings from the analogue sensors. The MCP3008 has 8 channels, which means it

can connect up to 8 analogue sensors with the Raspberry Pi. The rest of the

GPIO pins on-board will be able to connect one digital sensor each. The sensors

have been categorized in three types depending on their implementation with

the Raspberry Pi. Type 1 is the direct input sensors, for example, the light

dependent resistance sensor (LDR) [22]. These sensors connect to the GPIO

pins and Raspberry Pi can be directly read data from these pins. Type 2 refers

to the sensors that provide a feedback signal to the connected pin when an event

occurs, for example, the sound sensor [19, 23] or the motion sensor [24]. The

third type of sensors do not share a common implementation pattern and needs

to have a specific implementation code. The repository will be continuously up-

dated with new sensors of this type for users to just select and use. Advanced

users can add their custom code in the system for this type of sensors. The code

repository [13] includes a section to add custom codes for this sensor type.

The range of each sensor is different and some sensors include a potentiome-

ter to tune the amplitude of readings or range of the sensor. As the system

is designed to be of generic purpose, the range of a sensing node will depend

on the sensors used in the particular node. For example, the default radius of

a PIR motion sensor is 6 meters with 120 degree angle while a temperature

sensor should capture the temperature of the air surrounding the sensor. The

12

sensing node captures environment data through the connected sensor modules

and stores them in its local database, which is designed based on the connected

sensing modules. It captures one value from each sensor at every given time

frame, for example, 60 seconds. The Raspberry Pi must have an operating sys-

tem installed and include the required packages to run python scripts of the

sensing program. The packages required to run the program is listed in a note

with more instructions on the code repository [13].

There are multiple options for the core of the sensing node design, such

as ESP8266, ESP32, Nodemcu, Arduino, Pycom, and our selected board of

Raspberry Pi. While the other boards are slightly cheaper than Raspberry

Pi (model 4B), they are mostly microcontrollers and/with WiFi connectivity

modules. These boards provide easier connectivity with low-level sensors but

Raspberry Pi boards provide the functionalities of a complete computer sys-

tem with operating system, memory, database, built-in WiFi module, HDMI,

and USB extension ports. It is easier to program, collect and store data in a

Raspberry Pi than the other boards, especially for a non-technical individual.

3.4. Database Configuration and Data Transmission

There are two separate database designs in the BDL system. One is used in

the sensing nodes (shown in Figure 6) and another in the central server (shown

in Figure 3). The database share some common entities such as “error logs” and

“sensors”. The “data storage” table of the local database represents a specific

Raspberry Pi table in the central database with the name “rpi n” where n

represents the raspberry pi identification number.

Specific implementation of the system will vary according to what sensor

modules are used by each customized sensor nodes. The “placements” table

records Raspberry Pi nodes presents in the system. It has a column “updated”

which refers to changes made in the Raspberry Pi. It will be 1 if a sensor has

been added in the system or removed from the system and 0 otherwise. The en-

tity “rpi 1...n” represents sensing nodes based on Raspberry Pi boards. A new

table marked with an increasing identification number is created every time a

13

Figure 6: Local database design.

new node is inserted in the system. Every node can have different set of sensors

connected to it. The dynamic set of sensors makes changes of sensor columns

“sensor1 1...n” in the corresponding Raspberry Pi table. The sensor information

of each sensing node is also recorded in the “sensors” table which contain imple-

mentation specific information, such as sensor type and connecting pin number.

Each record in the “rpi” table is denoted by a unique id generated from the

combination of date time and rpi id. The date time and rpi id (Raspberry Pi

ID) are string data and are present in separate columns to enable faster queries.

The rest of the columns represent different information record related to the

sensors, such as light presence, temperature, sound, etc. The central database

contains additional tables to keep track of the sensing node placements and sen-

sor modules. The “error logs” table contains exception message logs. The local

database system used in each sensing module is MariaDB, which is usual for

Raspberry Pi systems. The central database is created using MySQL. MariaDB

and MySQL are similar in many aspects, and to keep concurrency between them

does not take much effort.

Data transmission in the system is done through post methods in Hypertext

14

Transfer Protocol Secure (HTTPS) which is secure. Relaying on the security

of HTTPS, external encryption and decryption mechanisms have not yet in-

troduced in the current BDL system but there are plans to introduce those in

future. The frequency of requests in the system will depend on the number of

sensing nodes in the system and not the number of sensors in each node. This

is because the a sensing node will send chunk of data collected from all its con-

nected sensors in a preset interval which can be an hour or a day or a month.

This practically eliminates the limit of server request bottleneck because it is

very unlikely that multiple sensing nodes will hit the server at the exact same

time. Even if such scenario occurs, the HTTPS server can handle at least 200

requests a minute.

3.5. Network Configuration

The BDL system is designed to run in both local and global connectivity.

For the global setup, the server needs to be running in a live domain. Many live

domain hosting providers are capable of running PHP server. It is one of the

most common server languages and easy to implement. After the server project

folder has been uploaded to the server’s public HTML folder, the server can

start running at the domain address. The domain address needs to be set in all

sensing nodes, by the change of a single line of code. Each sensing connects to a

wireless network. If a server is deployed in local mode (on one of the Raspberry

Pis rather than on an independent computer), then all sensing nodes and the

server needs to be connected to the same network. If working in the global

mode, then each node and the server need to be connected to the Internet.

The DBL system prototype 1 adopts the Raspberry Pi model 4B, and the

prototype 2 and 3 adopts the Raspberry Pi Zero W because they all have built-

in WiFi modules for wireless network connections. Data are transferred from

the sensing nodes to the central server via the network, which can be WiFi or

wireless Internet (4G, 5G, etc.). If the network connection is broken for some

reason, the sensing nodes will keep working in offline mode, in which they will

keep generating data and storing them in their local databases. The data will

15

be synced whenever the connection is resumed.

3.6. Data Integration

In each sensing node, the sensors output data to the connect Raspberry

Pi either directly or through an analogue to digital converter (ADC), and the

Raspberry Pi receives the data through the GPIO ports. The sensing node

is programmed to run in an infinite loop to collect data continuously. In the

prototypes, there is a 60 seconds interval between the readings, and it can be

changed according to demand. The data record interval does not need to be

manually adjusted and the user can view the data in different intervals on the

GUI regardless of the input interval. The viewing interval however can be either

equal or greater than the recorded interval, for example, if data is recorded

every minute then the records cannot be viewed per 30 seconds but they can

be viewed as per minute or as per 10 minutes. The Raspberry Pi collects all

sensor readings each minute and merge them together to make a record. The

record is then stored in the local database with a timestamp and other necessary

information, such as location and the identifiers of sensor modules. If any of

the sensor faults in providing data, a system exception is thrown. The sensing

node records the exception details with the timestamp in a separate table in the

local database. The data is stored in numeric format. Each sensor is different in

regards to its readings, for example, the temperature sensor (DHT11) provides

readings in degree centigrade while the humidity reading is in percentage. Figure

7 illustrates some data format sample from the sensors connected in the designed

prototype. Here, each column from ‘temperature’ to ‘lpg’ refers to a sensor name

and the records show the different type of values each sensor generates.

In the prototype system, the sensing node is programmed to communicate

with the central server once every hour (which can be changed). Each sensing

node sends its identification string to the central server, and the server returns

the ID of the latest stored data from the corresponding sensing node. After

receiving that ID, the sensing node queries the local database for all the records

inserted after that given ID. The local database then returns the newly inserted

16

Figure 7: Sample data format

records to the sensing node. These are the records that are present in the sensing

node but not yet inserted in the central database. The sensing node then creates

a CSV file with these records and sends the generated file to the server. The

central server receives the data and performs another synchronization check

before inserting them to the central database.

3.7. Graphical User Interface

The BDL system’s GUI has five functions, which are 1) data visualization,

2) data download, 3) error log download, 4) add or remove sensing nodes (Rasp-

berry Pis), 5) modify sensor modules on each sensing node. Figure 8(a) illus-

trates the home page, which updates dynamically on the value change of the

control fields. To visualize the data, the user can specify sensing node(s), the

time range, time interval, and sensor module(s). The data is generated by the

sensors connected to the sensing nodes. The data is represented in a graph

chart with the date-time in x-axis and sensor reading in the y-axis. The user

can also download the numeric data in a CSV file through the data download

page shown in Figure 8(c). The user has the option to select the sensing node

and sensors from the list of connected sensors. The system’s error log collects

error information from all the sensing nodes and it can be downloaded for each

17

Figure 8: BDL system’s Graphical User Interface

sensing node and specified time span, similar to data download page as shown

in Figure 8(c).

The BDL system architecture is designed in a way that it is capable of

including or removing sensing nodes and sensors of each node as per the need.

The user has to connect and disconnect the hardware manually, and the BDL

system will adjust the code based on the user inputs from GUI. The GUI has

the option to add/remove sensing nodes and sensors, which can be done by

clicking the button. The user does not need to write any code to add or remove

a sensing node or a sensor. After the operations on hardware, which are set up

the Raspeberry Pi, and connecting or disconnecting sensor modules to it, the

user can use the GUI to finish the system configuration, as shown in Figure 8(b)

and Figure 8(d).

The sensors are categorized in three types as described in section 3.3. The

GUI offers a dropdown list for the user to select the sensor type when adding a

new sensor. The user needs to specify the sensor name, type, and, connected pin

in the GUI as shown in figure 8(d). As mentioned in section 3.3, the sensors of

type-3 require specific implementation code, to minimize the effort on the user,

the GUI of BDL offers a list of supported sensors which the user can directly

18

choose from. This list will be kept up to date to support latest sensors. The

advanced users also have the option to write and add their custom code in the

system for this type of sensors. The code repository[13] includes a section to

add custom codes for this sensor type.

4. Prototype Deployment

In the BDL system, each sensing node is centered around its own Raspberry

Pi, which is connected with a set of analogue and digital sensor modules. Any

sensor that is capable of communicating through the General-Purpose Input

Output (GPIO) ports of the Raspberry Pi system can be connected in this

system. The first two prototypes of the BDL system were developed using

the following sensors: DHT11 (temperature and humidity) sensor, light sensor,

sound sensor, vibration sensor, motion sensor, MQ2 (smoke, natural gas and

carbon mono-oxide) sensor. The third prototype version includes a sensor array

named Enviro Plus [25], which includes light, proximity, gas, and sound sensor.

Each sensing node is connected to the central server via either a WiFi network

or a wireless Internet connection. The prototype 1 and 2 use the central server

in local connectivity mode, in which the server and the sensing nodes need to

be connected in the same wireless network to communicate. The prototype 3

uses the global mode, in which the server is implemented in a live server in

the cloud, eliminating the need for being in the same wireless network with the

sensing nodes. In this mode, each sensing node needs to be connected to the

Internet via either wired or wireless connection. The Raspberry Pi model 4B

used in the first prototype features both types of connections while the other

two prototypes use Raspberry Pi Zero which uses the wireless communication.

The sensing nodes of the BDL system are customizable and can be imple-

mented in different ways. To demonstrate the different implementations, three

separate variations of the sensing node were created and tested. While the

server side remained the same, the physical hardware setup of the sensing nodes

varied. Figure 5 shows the bread-board setup which is completely scalable with

19

Figure 9: Sensing node prototype version 2 (left) and version 3 (right).

plug-in sensors (prototype version 1). Figure 9 (left) shows the Printed Circuit

Board (PCB) version of the bread-board variant using a Raspberry Pi Zero,

which is prototype version 2, and the third version of the prototype, which uses

a Raspberry Pi Zero connected to an Enviro Plus sensor module, is shown in

Figure 9 (right).

Figure 10 shows the structure of one of the prototype sensing node (v1 & v2).

It contains seven sensors and provide 10 type of readings. On the figure, the

solid lines represent the digital data and the dashed lines represent the analogue

data. Prototype v3 has similar design with different set of sensors.

The sensors used in the prototype v1 & v2 are listed as follows:

• Temperature and Humidity sensor (DHT11) : This sensor provides read-

ings for temperature and humidity[26, 27, 28]. The system uses degree

centigrade as the unit of temperature and percentage for the unit of hu-

midity. It uses a capacitive humidity sensor and a thermistor to measure

the surrounding air, and can generate new data every 2 seconds.

• Light sensor (GL5528): The light sensor is one of the digital sensors. It

20

Figure 10: Structure of the prototype’s sensing node.

Figure 11: Sensors used in sensing node prototype.

uses photo-detector GL5528 to detect light intensity of the surrounding

environment. The resistance of the sensor varies depending on the amount

of light it is exposed to which changes the output voltage. It provides 0

when it detects light and 1 if it does not detect any light. The sensor has

a tuning potentiometer (POT) for adjusting the reading threshold [22].

• Microphone Sound sensor: The sound sensor is also a digital sensor. When

module in the intensity of the sound environment does not reach a thresh-

old (set through the included variable resistance), the sensor will output

a high signal. Otherwise, it will output a low signal. The sensor detects a

21

change in sound amplitude and provides a reading [19, 23]. This reading

can be called a beat. The designed sensing node counts the number of

beats in a time interval for the data record.

• Flame sensor: This sensor detects the presence of flame nearby. It is

sensitive to flame wavelengths between 760nm to 1100nm in infrared. It is

a binary sensor and provides 1 for the presence of flame and 0 for otherwise.

There is a tuning potentiometer to adjust the reading threshold of the

sensor [29].

• Vibration sensor (SW420): The vibration sensor can detect nearby vibra-

tion beyond a threshold defined by a potentiometer and provide a binary

reading [30]. The beat counting mechanism has been used to present the

readings of this sensor (how many beats per minute).

• Passive Infrared Motion sensor (HC-SR501): Passive Infrared motion sen-

sor, also known as PIR sensor, records the intensity of motion detected

nearby [24]. It comes with two tuning potentiometers to adjust sensitivity

and reading delay. The output goes high when objects enter the sensing

range, and automatically returns to low when object leaves.

• Gas Sensor (MQ2): This is an analogue gas sensor that requires an addi-

tional analogue to digital converter circuit to incorporate this sensor with

the Raspberry Pi. It can provide continuous readings of smoke, carbon

monoxide (CO), and liquefied petroleum gas (LPG) [31].

Prototype v3 uses a sensor array, Enviro Plus [25], which packs light, prox-

imity, temperature, humidity, gas, and sound sensors. The prototype’s source

code is shared through an open-source project published on by the authors

[13]. The wiring settings of each sensor is written in comments of the source

codes. A GPIO extension for the Raspberry Pi has been used in the prototype

development for the ease of implementation in a breadboard setup (v1). The

digital sensors are directly connected to the GPIO pins of the Raspberry Pi.

22

The analogue sensors are connected to the MCP3008 analogue-to-digital con-

verter, which forwards a digital output to the Raspberry Pi for the respective

analogue sensor connected. Figure 11 shows the different sensors used in the

sensing node prototype. From the left, DHT11, light sensor, sound sensor, flame

sensor, vibration sensor, motion sensor, and, MQ2 gas sensor. The version 2

uses the same setup in a printed circuit board setup, which makes the setup

more compact.

To demonstrate the flexibility and stability of the sensing nodes, a total of

30 nodes including all three variants have been developed and deployed which

are continuously collecting data for over 4 months.

5. A Case Study

To evaluate and demonstrate the capabilities of the BDL system, the research

team has been conducting a case study. A total of 48 sensing nodes are being

deployed and collecting data continuously in 12 households (four sensing nodes

each, distributed in different rooms) of a affordable community in Richmond,

VA. The data collected by the sensing nodes of BDL prototype 3 system are

being transferred to a live cloud server.

The typical sensing node deployment is illustrated in Figure 2, in which one

of the houses’ floor plan and the locations of the devices are shown. Figure 12

shows a set of images about the deployed devices, and Figure 13 shows an image

of a house in the case study.

The research team use BDL prototype version 3 for the case study because

it is more compact and, with the 3D-printed cases, it is more acceptable for the

house occupants participating in this study. BDL v3 uses Raspberry Pi Zero

with built-in WiFi module, connecting with the Enviro or Enviro Plus sensor

bundles. The Enviro Plus bundle includes proximity, humidity, pressure, light,

sound, and gas sensors. It is the advanced version of Enviro bundle, which

includes all these sensors except for the gas sensor. The research team has to

use some of the Enviro bundle because the global chip shortage is impacting the

23

Figure 12: Image a deployed sensing node.

availability of the Enviro Plus bundle. The server side code is slightly modified

so that both types of the sensor bundles can be installed in the system with just

a single click.

The deployed system’s central server operates in global mode on an Apache

server [32] of the Xampp module [33]. The server is established in a laptop with

Microsoft Windows 10 as the operational system. The central database is built

with MySQL [34]. Local WiFi networks are used to connect each house’s sensing

24

Figure 13: A photo of a house in the case study.

nodes to the cloud-based central server. The sensing nodes’ local databases are

built with MariaDB [35]. If the server becomes unavailable in situations such as

lost Internet connection, the data transfer will be cancelled. Instead of making

a second communication attempt immediately, the sensing node will keep col-

lecting more data and then repeats the data transfer process after another hour.

In this process, the data may pile up in the sensing node, and the generated file

size will keep increasing every hour but 60 records per hour will not make the

file size larger than the transfer capability of the current network systems.

The web-based GUI displays graphs of the data collected from the 12 houses

and stored in the central server. With the proper selection of the control options

(shown in Figure 8a), the graph representation of the collected data can be

presented on the website (building-data-lite.com). The system can show data

graphs for all sensors of a sensing node on a single page, as Figure 14 shows, or

the data graph of a particular sensor with additional detailed information such

as minimum, maximum and average, as Figure 15 shows.

Figure 14 illustrates a truncated view of 6 sensor readings of a sensing node.

25

Figure 14: Visualization of collected data from all sensors of a deployed sensing node.

Figure 15: Visualization of collected data of a single sensor.

26

The graph presents the collected data of this sensing node from 1st August

2021 to 31 August 2021. On the top row, the data of the proximity sensor

and the humidity sensor are shown, and followed by the data of the pressure

sensor and the light sensor on the second row, and then, the data of oxidised

gases and reduced gases on the third row. The Figure 15 shows the temperature

data captured by the sensor node Raspberry Pi #10 (rpi 10). The minimum,

maximum, and the average values are 27.7, 26.3 and, 26.98 centigrade degree,

respectively. In all graphs, x-axis represents the date-time of data and the y-axis

represents the reading of a particular sensor.

The Enviro and Enviro Plus sensor board also include a LCD display. The

BDL v3 sensing nodes utilize this display to provide the house occupants with

a reading of the most recent data.

The deployed devices in this case study are planned to collect data for at

least one year. The data will be collected with full respect to the privacy of the

tenants. These indoor environment data will be used for research studies related

to low-income households, the performance of manufactured houses, and other

related topics.

6. Discussion

6.1. Challenges and Solutions

This section discusses the technical challenges encountered by the authors

and provides corresponding solutions.

Binary sensors: Some of the sensors provide only yes-no data. For example,

the sound sensor gives a reading when detect a sound, but it cannot provide

any measurement of the amplitude of the noise. A beat counting system was

introduced to count the frequency of sounds during a time interval to achieve

an understandable reading from the sensor.

Sudden crashes: There were some sudden run-time crashes during the data

collection phase. The problems were caused by faults in sensor readings, bad

connection, overloaded access, and unavailability of server. Python’s run-time

27

exception handling feature was used to tackle these issues. Two types of excep-

tions were caught during this phase. The first one occurred due to a problem in

sensor reading or sensor connection and the second one occurred due to server

unavailability, longer wait time, or bad network connectivity. These exceptions

were caught and logged in local database and later the log is transferred to the

central database.

Data synchronization: Synchronization is important for the data continuity

and integrity between each sensing module and the central server. The authors

solved this issue using a two-fold solution combined together. First, a routine

update mechanism between sensing node and central server was designed. In-

stead of transferring data records, we transferred files consisting of multiple

records. Second, a record checking system was implemented in the sensing node

to keep data consistency. The databases in both sensing nodes and the central

server were restructured to reduce the number of entries (the database designs

for the sensing node and the central server are shown by Figure 3 and Figure 6,

respectively).

File size limit : The sensing nodes transmit the newly added records to

the central database through a data file. If the transmission is not complete

for some reason, such as the server being unavailable, the sensing node will

wait another hour for the next transmission attempt. The file size increases as

the number of unsent records piles up. The problem occurs when the file size

exceeds 2 Megabytes, which is the default limit of file transfer in the local PHP

server. The authors addressed this issue by manually overwriting the maximum

transferable file size limit in the “php.ini” file.

6.2. Potential Use Cases

The proposed BDL system is an innovative method to create the data in-

frastructure for existing buildings. It is also one step towards many potential

smart building applications. Several example use cases are listed as follows:

Space utilization analysis: The BDL system can be used to collect historical

data of building space usage. These data can be used for space utilization anal-

28

ysis to deduce whether the space is being used properly or not; is it underused

or is it overused; what is the indoor environment when the space is used, etc.

Building control system: The BDL system can provide data to, or be merged

with a building control system to enable automated building control. With

sufficient data and analysis (such as machine learning on occupant behavior),

the system can automatically control the indoor environment, such as light,

temperature, humidity, ventilation, etc.

Emergency management system: The BDL system can be modified to be-

come an emergency warning system. It can warn the building owner if it de-

tects any abnormal characteristics in the indoor environment. The user can

set a threshold for a particular reading to be marked as abnormal, or machine

learning models can be developed to detect anomalies.

Activity monitoring : The BDL system can be used as a monitoring system

for detecting unusual activities. It can provide data to, or be merged with

a building security system that can warn the building owner that there is an

unusual activity, such as burglary, in a particular building space.

6.3. Limitations and Future Research

Although the proposed BDL system’s first prototype has been finished and

experimented with, the system is still under development, and there are some

limitations, which will be resolved or mitigated in the future.

Some of the sensors require fine-tuning and calibration to provide a more

accurate reading. The prototype has been calibrated, but for more accurate

results, the system needs to be calibrated in different environmental conditions.

The authors have plans to create more sensing nodes and deploy them in differ-

ent locations. It will help us in tuning and calibrating the sensors for improved

accuracy.

The BDL system is capable of running in both local connection mode and

global connection mode via local WiFi or Internet connection, respectively. The

current prototype has only been tested in the local mode because of the lack of

29

a live server. In the future, the system will be designed in a way that it will be

able to switch between local mode and global mode.

7. Conclusion

This paper presents the research study that aims to establish a distributed

wireless sensing network for collecting indoor environment data in existing build-

ings. This research contributes to the body of knowledge by proposing an in-

novative way for establishing a cost-effective, scalable, and portable IoT data

infrastructure for indoor environment sensing. A wireless distributed sensing

network named Building Data Lite (BDL) is proposed with the design of the

system and three developed prototype sensing nodes. A case study with one of

the prototypes has been conducted with 12 households of an affordable commu-

nity, equipped with a total of 48 sensing nodes. The data that can be generated

by the prototypes involve temperature, humidity, light, sound, flame, vibration,

motion, smoke, carbon monoxide (CO), and liquefied petroleum gas (LPG).

We vision our system to be implemented in various domains, such as In-

ternet of Things, occupant behavior-related studies. The BDL system provides

a code-free system that means researchers without any coding background can

implement the system and the sensing nodes by following the guide lines. The

system includes a graphical user interface that enables the user to access, visu-

alize, and download the data, and modify the sensing nodes and sensor modules

as needed. The experiment has shown that the proposed system is functional,

portable, and scalable. Each sensing node costs only $70, and the software used

is completely free.

Currently, the system utilizes the general-purpose input-output ports of the

Raspberry Pi for communication with the sensors. There are sensors or devices

such as a microphone or a camera that connects the Raspberry Pi through the

Universal Serial Bus (USB) ports which are not yet supported by our system.

Some of the sensors require customized libraries to provide readings which calls

for some code scripts. It can be further optimized and automated. We plan to

30

integrate these features in the future to further improve the system’s function-

ality and usability.

Funding

This research was funded by NSF-1845446 and NSF-1929701 grants.

Acknowledgements

We thank Zack Miller, Marion Cake, and Madeline Petrie at project:HOMES

for supporting the case study. We thank National Science Foundation, Virginia

Housing Development Authority, and Virginia Center for Housing Research for

the research funding support.

References

[1] I. Mujan, A. S. Andelković, V. Munćan, M. Kljajić, D. Ružić, Influence of

indoor environmental quality on human health and productivity-a review,

Journal of cleaner production 217 (2019) 646–657.

[2] B. Berglund, B. Brunekreef, H. Knöppe, T. Lindvall, M. Maroni,

L. Mølhave, P. Skov, Effects of indoor air pollution on human health, In-

door air 2 (1) (1992) 2–25.

[3] H. Tang, Y. Ding, B. Singer, Interactions and comprehensive effect of in-

door environmental quality factors on occupant satisfaction, Building and

Environment 167 (2020) 106462.

[4] K. W. Tham, Indoor air quality and its effects on humans—a review of

challenges and developments in the last 30 years, Energy and Buildings

130 (2016) 637–650.

[5] T. K. Hui, R. S. Sherratt, D. D. Sánchez, Major requirements for building

smart homes in smart cities based on internet of things technologies, Future

Generation Computer Systems 76 (2017) 358–369.

31

[6] D. Minoli, K. Sohraby, B. Occhiogrosso, Iot considerations, requirements,

and architectures for smart buildings—energy optimization and next-

generation building management systems, IEEE Internet of Things Journal

4 (1) (2017) 269–283.

[7] N. A. Zakaria, Z. Z. Abidin, N. Harum, L. C. Hau, N. S. Ali, F. A. Ja-

far, Wireless internet of things-based air quality device for smart pollution

monitoring, Int. J. Adv. Comput. Sci. Appl 9 (2018) 65–69.

[8] G. Marques, R. Pitarma, A cost-effective air quality supervision solution for

enhanced living environments through the internet of things, Electronics

8 (2) (2019) 170.

[9] T. Ekwevugbe, N. Brown, V. Pakka, D. Fan, Real-time building occupancy

sensing using neural-network based sensor network, in: 2013 7th IEEE

international conference on digital ecosystems and technologies (DEST),

IEEE, 2013, pp. 114–119.

[10] R. J. Meyers, E. D. Williams, H. S. Matthews, Scoping the potential of

monitoring and control technologies to reduce energy use in homes, Energy

and Buildings 42 (5) (2010) 563–569.

[11] ReadyOne, Building automation system cost per square foot (2017).

URL https://ready.one/building-automation-per-square-foot/

[12] S. Aheleroff, X. Xu, Y. Lu, M. Aristizabal, J. Pablo Velásquez, B. Joa,

Y. Valencia, Iot-enabled smart appliances under industry 4.0: A

case study, Advanced Engineering Informatics 43 (2020) 101043.

doi:https://doi.org/10.1016/j.aei.2020.101043.

URL https://www.sciencedirect.com/science/article/pii/

S1474034620300124

[13] S. M. H. Anik, BDL Project Repository (accessed October 1, 2021).

URL https://github.com/anik801/data_collection

32

https://ready.one/building-automation-per-square-foot/
https://ready.one/building-automation-per-square-foot/
https://www.sciencedirect.com/science/article/pii/S1474034620300124
https://www.sciencedirect.com/science/article/pii/S1474034620300124
https://doi.org/https://doi.org/10.1016/j.aei.2020.101043
https://www.sciencedirect.com/science/article/pii/S1474034620300124
https://www.sciencedirect.com/science/article/pii/S1474034620300124
https://github.com/anik801/data_collection
https://github.com/anik801/data_collection

[14] L. Linder, D. Vionnet, J.-P. Bacher, J. Hennebert, Big building data-a big

data platform for smart buildings, Energy Procedia 122 (2017) 589–594.

[15] S. Kumar, S. R. Lee, Android based smart home system with control via

bluetooth and internet connectivity, in: The 18th IEEE International Sym-

posium on Consumer Electronics (ISCE 2014), IEEE, 2014, pp. 1–2.

[16] S. Ferdoush, X. Li, Wireless sensor network system design using raspberry

pi and arduino for environmental monitoring applications, Procedia Com-

puter Science 34 (2014) 103–110.

[17] A. Alva, K. Shailesh, S. Tanuja, Design and implementation of video based

occupancy sensing for adaptive lighting applications, in: 2012 International

Conference on Emerging Trends in Electrical Engineering and Energy Man-

agement (ICETEEEM), IEEE, 2012, pp. 478–482.

[18] J. Coleman, E. Teitelbaum, H. Guo, J. Read, F. Meggers, Examining ar-

chitectural air and temperature with novel sensing techniques, Energy Pro-

cedia 122 (2017) 1135–1140.

[19] A. K. Saha, S. Sircar, P. Chatterjee, S. Dutta, A. Mitra, A. Chatterjee, S. P.

Chattopadhyay, H. N. Saha, A raspberry pi controlled cloud based air and

sound pollution monitoring system with temperature and humidity sensing,

in: 2018 IEEE 8th Annual Computing and Communication Workshop and

Conference (CCWC), IEEE, 2018, pp. 607–611.

[20] S. Aheleroff, X. Xu, R. Y. Zhong, Y. Lu, Digital twin as a service (dtaas)

in industry 4.0: An architecture reference model, Advanced Engineering

Informatics 47 (2021) 101225.

[21] M. A. Mahmud, K. Bates, T. Wood, A. Abdelgawad, K. Yelamarthi, A

complete internet of things (iot) platform for structural health monitoring

(shm), in: 2018 IEEE 4th World Forum on Internet of Things (WF-IoT),

IEEE, 2018, pp. 275–279.

33

[22] K. Krishnamurthi, S. Thapa, L. Kothari, A. Prakash, Arduino based

weather monitoring system, International Journal of Engineering Research

and General Science 3 (2) (2015) 452–458.

[23] A. F. Symon, N. Hassan, H. Rashid, I. U. Ahmed, S. T. Reza, Design and

development of a smart baby monitoring system based on raspberry pi and

pi camera, in: 2017 4th International Conference on Advances in Electrical

Engineering (ICAEE), IEEE, 2017, pp. 117–122.

[24] H. T. Sukmana, M. G. Farisi, D. Khairani, Prototype utilization of pir

motion sensor for real time surveillance system and web-enabled lamp au-

tomation, in: 2015 IEEE Asia Pacific Conference on Wireless and Mobile

(APWiMob), IEEE, 2015, pp. 183–187.

[25] Pimoroni, Enviro for Raspberry Pi (accessed October 1, 2021).

URL https://www.pi-shop.ch/enviro-for-raspberry-pi

[26] D. Robotics, Dht11 humidity & temperature sensor, DHT11 Datasheet

(2010).

[27] D. Uk, Humidity & temperature sensor, DHT11 Datasheet (2010) 9.

[28] AOSONG, Temperature and Humidity Module, DHT11, Datasheet (2010).

arXiv:arXiv:1011.1669v3, doi:10.1093/acprof:oso/9780195179477.

003.0005.

[29] I. A. Taha, H. M. Marhoon, Implementation of controlled robot for fire

detection and extinguish to closed areas based on arduino, Telkomnika

16 (2) (2018) 654–664.

[30] S. Biansoongnern, B. Plungkang, S. Susuk, Development of low cost vibra-

tion sensor network for early warning system of landslides, Energy Procedia

89 (2016) 417–420.

[31] B. B. L. Heyasa, R. G. Van Ryan Kristopher, Initial development and

testing of microcontroller-mq2 gas sensorfor university air quality monitor-

34

https://www.pi-shop.ch/enviro-for-raspberry-pi
https://www.pi-shop.ch/enviro-for-raspberry-pi
http://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1093/acprof:oso/9780195179477.003.0005
https://doi.org/10.1093/acprof:oso/9780195179477.003.0005

ing, IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE)

12 (3) (2017) 47–53.

[32] A. Mockus, R. T. Fielding, J. Herbsleb, A case study of open source soft-

ware development: the apache server, in: Proceedings of the 22nd interna-

tional conference on Software engineering, 2000, pp. 263–272.

[33] D. D. Dvorski, Installing, configuring, and developing with xampp, Skills

Canada (2007).

[34] C. Shah, A Hands-On Introduction to Data Science, Cambridge University

Press, 2020.

[35] E. Kenler, F. Razzoli, MariaDB Essentials, Packt Publishing Ltd, 2015.

35

	Introduction
	Literature Review
	The System Design of BDL
	System Architecture
	Central Server
	Sensing Node
	Database Configuration and Data Transmission
	Network Configuration
	Data Integration
	Graphical User Interface

	Prototype Deployment
	A Case Study
	Discussion
	Challenges and Solutions
	Potential Use Cases
	Limitations and Future Research

	Conclusion

