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Abstract To facilitate clone maintenance, various automated tools were proposed
to detect code clones by identifying similar token sequences or similar program
syntactic structures in source code. They achieved different trade-offs between pre-
cision and recall. Inspired by prior work, we developed a new approach CCLearner,
a solely token-based clone detection approach using deep learning. Given known
clones pairs and non-clone pairs, CCLearner extracts features from each code
pair, and leverages the features to train a classifier. The classifier is then used to
compare methods pair-by-pair in a given codebase to detect clones. We evaluated
CCLearner by reusing an existing benchmark of real clone code—BigCloneBench.
We split the benchmark such that some data was used for classifier training, and some
data was used for testing. With the testing data, we evaluated CCLearner’s effec-
tiveness of clone detection, and also assessed three existing popular clone detection
tools: SourcererCC, NiCad, and Deckard. CCLearner outperformed existing tools
by achieving a better trade-off between precision and recall. To further investigate
whether othermachine learning algorithms can perform comparatively as deep learn-
ing, we replaced deep learning with five alternative machine learning algorithms in
CCLearner, and observed that CCLearner worked best when using deep learning.
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1 Introduction

In software development, developers copy and paste code to quickly reuse already-
implemented functionalities in multiple program contexts. However, the produced
code clones may be challenging to track and maintain. To overcome the challenge,
researchers built various automated clone detection tools [1, 2, 3, 4, 5, 6]. For
instance, SoucererCC indexes code blocks with the least frequent tokens they use, in
order to quickly retrieve potential clones of a given code block [5]. NiCad leverages
TXL [7] to parse source code, and to convert the parsed syntax trees to a user-specified
normalized code representation [3]. NiCad then detects clones by comparing the
token sequences of normalized representations of different code. Both SourcererCC
and NiCad mostly identify Type-1 (T1) and Type-2 (T2) clones. Deckard parses
syntax trees from code, characterizes subtrees with numerical vectors, and detects
similar code by comparing numerical vectors [2]. Different from SourcererCC and
NiCard, Deckard detects more Type-3 (T3) clones [5].

Inspired by prior work, we designed and implemented CCLearner [8]1, a novel
deep learning-based approach to detect clones solely based on tokens. Our insight is
that tokens (e.g., reserved words, type identifiers, method identifiers, and variable
identifiers) provide good indicators of program implementation. If two code blocks
use the same tokens in identical or similar ways, the blocks are likely to be clones
and may realize identical or similar features. Furthermore, by treating the clone
detection problem analogous to a classification problem that decides whether two
blocks are clones or not, we can leverage machine learning (including deep learning)
to identify clones. In comparison with former approaches whose clone detection
algorithms were manually designed, CCLearner exploits deep learning to train a
classifier based on known clones and non-clones. With the classifier automatically
characterizing any commonality and variation between clone peers, CCLearner
detects clones by enumerating all method pairs in a given codebase and determining
which pair has the cloning relationship.

In our evaluation, we experimented with CCLearner and three existing clone de-
tection tools: Deckard [2], NiCad [3], and SourcererCC [5]. We constructed the eval-
uation data set based on BigCloneBench [9]. CCLearner achieved the best trade-off
between precision and recall among all tools. To further evaluate CCLearner’s ef-
fectiveness when it uses machine learning (ML) algorithms other than deep learning,
we also experimented with five alternative ML algorithms in addition to deep learn-
ing: AdaBoost [10], Decision Tree [11], Naïve Bayes [12], Random Forest [13],
and Support Vector Machine (SVM) [14]. We observed that CCLearner’s clone
detection effectiveness varied a lot between the adopted ML algorithms.

This chapter extends our recent research publication on CCLearner [8]. In the
following sections, we will first overview the published work (Sections 2–4), and
then introduce our new experiment and observations after the publication (Section 5).
Finally, we will discuss the lessons learned from our investigation and share our
thoughts on future research directions.

1 Download link: https://github.com/liuqingli/CCLearner
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Fig. 1: The DNN architecture

This section first introduces deep neural
network (DNN)—the deep learning al-
gorithm used in CCLearner, and then
clarifies our terminology.

Deep Learning (DL) includes a set
of algorithms that can be used to model
high-level abstractions in data. Among
various DL algorithms, the deep neural
network (DNN) [15] is a representative
algorithm that demonstrated impressive performance in a variety of classification
tasks. DNN is an artificial neural network (ANN) that has one input layer, one
output layer, and two or more hidden layers between the input and output layers
(see Fig. 1). Each layer has multiple nodes (i.e., artificial neurons). Every node
combines its inputs with the corresponding weights or coefficients to either amplify
or dampen those inputs. During the learning process, allweights of nodes in DNN are
optimized through backpropagation to minimize the loss between predicted labels
and true labels. In this way, each node infers which inputs are more helpful for the
overall learning task, and how each input progresses through the network to affect
the ultimate outcome, say, an act of classification [16].

In our research, a clone method pair or true clone pair represents two methods
or functions that have similar code. Each method in a true clone pair is denoted as a
clone peer of the other. Similarly, we define non-clone method pair or false clone
pair to represent any two methods that have very different code from each other.
Each method in the false clone pair is called a non-clone peer of the other method.

3 Approach

As shown in Fig. 2, CCLearner consists of two phases: training (Section 3.2) and
testing (Section 3.3). The Feature Extraction procedure (Section 3.1), performed
in both phases, extracts eight features from token sequences. In the training phase,
CCLearner takes in both clone and non-clone method pairs to train a deep learning-
based classifier. In the testing phase, given any codebase, CCLearner uses the
trained classifier to detect clones.

3.1 Feature Extraction

CCLearner extracts features that characterize the clone (or non-clone) relationship
of any method pair (<4Cℎ>3�, <4Cℎ>3�). For each method, CCLearner first tok-
enizes the code to identify all tokens, and uses a token-frequency list to record the
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Fig. 2: The overview of CCLearner

occurrence count of each token. In Fig. 2, C>:4=_ 5 A4@_;8BC� and C>:4=_ 5 A4@_;8BC�
separately represent such token information of <4Cℎ>3� and <4Cℎ>3�. We believe
that different kinds of tokens provide distinct signals to indicate code (dis)similarity,
so we classified tokens into eight categories and CCLearner splits each method’s
token-frequency list into eight sublists accordingly. Next, CCLearner computes a
similarity score for each pair of token sublists between <4Cℎ>3� and <4Cℎ>3�. The
resulting eight similarity scores are then used as features to represent the relationship
between methods.

Token Categorization and Extraction. Different types of tokens may have dif-
ferent capabilities to characterize clones. For instance, clone peers are more likely to
share reserved words (e.g., “for” and “if”) rather than operators (e.g., “+” and “&”),
because they usually have identical program structures but may use slightly different
arithmetic or logic operations. Therefore, we classified tokens into eight categories
based on their syntactic or semantic meanings. Table 1 presents all token categories
and the related exemplar token-frequency sublists.

Table 1: Token categories and related token-frequency sublists

Index Category name An exemplar token-frequency sublist

C1 Reserved words <if, 2>, <new, 3>, <try 2>, . . .
C2 Operators <+=, 2>, <!=, 3>, . . .
C3 Markers <;, 2>, <[, 2>, <], 2>, . . .
C4 Literals <1.3, 2> , <false, 3>, <null, 5>, . . .
C5 Type identifiers <byte, 2> , <URLConnection, 1> ,. . .
C6 Method identifiers <read, 2> , <openConnection, 1>, . . .
C7 Qualified names <System.out, 6>, <arr.length, 1>, . . .
C8 Variable identifiers <conn, 2> , <numRead, 4>, . . .

To create token-frequency (sub)lists based on source code, CCLearner uses
both the ANTLR lexer [17] and Eclipse ASTParser [18]. Given a code block, the
ANTLR lexer extracts all tokens in sequence. As the token sets of reserved words,
operators, and markers are well defined, CCLearner recognizes C1–C3 tokens
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purely based on the lexer’s outputs. The token sets of literals, type identifiers, method
identifiers, qualifier names, and variable identifiers vary with codebases, so the
ANTLR lexer cannot identify C4–C8 tokens precisely. To overcome the lexer’s
limitation, we used Eclipse ASTParser to generate an Abstract Syntax Tree (AST)
for each method, and implemented several ASTVisitors to traverse trees and to
retrieve tokens contained by certain types of AST nodes. For instance, one of the
ASTVisitors extracts method identifiers (C6 tokens) by locating and processing all
method-relevant AST nodes, including MethodDeclaration and MethodInvocation.
Notice that ASTParser complements instead of replacing the ANTLR lexer, because
the parser is unable to reveal all tokens that the lexer detects (e.g., reserved words).

Similarity Computation. When two methods are characterized with vectors of
token-frequency sublists, we rely on vector-wise similarities to capture the similarity
ofmethod bodies. Intuitively, themore similar vectors there are between twomethods,
the more likely those methods are clones to each other. Specifically for each token
category �8 (1 ≤ 8 ≤ 8), CCLearner computes a similarity score B8<_B2>A48
between methods’ corresponding token-frequency sublists !�8 and !�8 as below:

B8<_B2>A48 = 1 −

∑
G
| 5 A4@ (!�8 , G) − 5 A4@ (!�8 , G) |∑

G
( 5 A4@ (!�8 , G) + 5 A4@ (!�8 , G))

. (1)

Here G is a token contained by !�8 or !�8 , 5 A4@(!�8 , G) represents the occurrence
count of G in <4Cℎ>3�, and 5 A4@(!�8 , G) denotes G’s frequency in <4Cℎ>3�. The
computed similarity score varies within [0, 1]. In general, the more tokens shared
between lists and the less frequency difference there is for each token, the higher
the similarity score becomes. In particular, when the token-frequency sublists of
a certain category share no token in common, we set the corresponding similarity
score to 0.5 by default. We tried to set the default value as 0 or 1, but none of these
values worked as well as 0.5 during experiment. This may be because when no token
is commonly shared between sublists, the frequency distributions may be similar or
not; 0.5 does not suggest any bias towards either similarity or dissimilarity.

3.2 Training

We need both positive and negative examples to train a classifier for binary clas-
sification. CCLearner takes feature vectors extracted from clone method pairs as
positive examples and feature vectors derived from non-clone pairs as negative ex-
amples. Each data point for training is represented as < B8<8;0A8CH_E42C>A, ;014; >,
where B8<8;0A8CH_E42C>A is an eight-dimensional vector of similarity scores, and
;014; is either 1 (“�!$#�”) or 0 (“#$#_�!$#�”). To avoid any confusion
caused by small clone methods, we refined our training data with methods that con-
tained at least six lines of code. As our approach is built on the token-frequency
list comparison between methods, when method bodies are small, any minor vari-
ation of token usage can cause significant degradation of similarity scores, making
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the training data noisy. We used DeepLearning4j [19] to train a DNN classifier.
The input layer contains eight nodes, with each node taking one feature value in
B8<8;0A8CH_E42C>A. The output layer predicts whether a method pair is “�!$#�”
or “#$#_�!$#�”. CCLearner configures DNN to include 2 hidden layers and
to run 300 iterations for training, as CCLearner worked best with these parameter
settings in our experiment. Each hidden layer is configured to have 10 nodes, as
suggested by literature [20].

3.3 Testing

Given a codebase, CCLearner first detects methods from source files with Eclipse
ASTParser, and then enumerates all possible method pairs. CCLearner feeds each
enumerated method pair to the trained classifier for clone detection. Theoretically,
when = methods are extracted from a codebase, the clone detection algorithm com-
plexity should be$ (=2). To reduce the comparison run-time overhead, we developed
two heuristics to filter out some unnecessary comparison. One filter was applied to
examine two methods’ lines of code (LOC). If one method’s LOC is more than three
times of the other method’s LOC, it is very unlikely that the methods are clones, so
we simply conclude that they compose a non-clone method pair and skip any further
processing. Another filter removes any candidate method having less than six LOC
for two reasons. First, small methods may contain so few tokens that CCLearner
cannot effectively perform clone detection. Second, the six-lineminimum is common
in clone detection benchmarks mentioned in prior research [21, 5]. In CCLearner,
the output layer has two nodes to separately predict the likelihood of clones and
non-clones: ;2 and ;=2 , where ;2 + ;=2 = 1. We set ;2 ≥ 0.98 to detect clones as
precisely as possible without producing many false alarms.

4 Empirical Comparison with Existing Tools

To assess how CCLearner compares with existing tools, we created training and
testing sets based on a large-scale clone benchmark (Section 4.1). We also defined
metrics to measure the effectiveness of automatic clone detection (Section 4.2). By
applying CCLearner and three alternative tools on the datasets, we quantitatively
evaluated different tools’ capabilities of clone detection (Section 4.3).

4.1 Dataset Generation

BigCloneBench [9] is a large-scale code clone benchmark. It consists of two parts:
a codebase and a database. Table 2 summarizes the clone data contained by our
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downloaded reduced version of BigCloneBench [22]. As shown in the table, Big-
CloneBench’s codebase has 10 source folders. Each folder hasmultiple Java files, and
each file contains various Java methods. Every method independently implements
one functionality (e.g., sorting). BigCloneBench’s database stores clone information
related to the codebase. It records over 6 million recognized true clone pairs and
260 thousand false clone pairs in the codebase. For each method pair, the database
records their code locations and clone type information. Specifically, VST3, ST3,
MT3,WT3/4 respectively represent “Very Strong T3”, “Strong T3”, “Medium T3”,
“Weak T3 or T4” clones.

Table 2: Data in the downloaded BigCloneBench

Folder Id. # of Files LOC # of True Clone Pairs # of False
T1 T2 VST3 ST3 MT3 WT3/4 Clone Pairs

#2 10,372 1,984,327 1,553 9 22 1,412 2,689 404,277 38,139
#3 4,600 812,629 632 587 525 2,760 24,621 862,652 4,499
#4 22,113 4,676,552 13,802 3,116 1,210 4,666 23,693 4,618,462 197,394
#5 56 3,527 0 0 0 0 1 34 12
#6 472 83,068 4 0 14 50 124 24,338 4,147
#7 1,037 299,525 39 4 21 212 1,658 11,927 15,162
#8 131 18,527 3 7 5 0 2 259 78
#9 669 107,832 0 0 0 0 0 55 1,272
#10 1,014 286,416 152 64 285 925 2,318 236,726 1,762
#11 64 6,736 0 0 1 6 0 245 0
Total 40,528 8,279,139 16,185 3,787 2,083 10,031 55,106 6,158,975 262,465

Table 3: Datasets for training and testing

Dataset # of True Clone Pairs # of False Clone PairsT1 T2 VST3 ST3 MT3 WT3/4

Training 13,750 3,104 1,207 4,602 0 0 22,663
Testing 2,383 671 873 5,365 31,413 1,540,513 0

Compared with other folders, Folder #4 has the largest number of both true and
false clone pairs. Therefore, we leveraged the data in this folder for training and the
data in all other folders for testing. As MT3 and WT3/4 clones can contain totally
different implementations of the same functionality, training a classifier with such
noisy data can cause the resulting classifier to wrongly report a lot of clones and to
produce many false alarms. Therefore, we excluded MT3 and WT3/4 clones from
the training data. We also removed all methods that have five or fewer LOC to reduce
data noise. As Folder #4 has a lot more false clone pairs than true clone pairs, we
randomly sampled a subset of false clone pairs to achieve a count balance between
the positive examples and negative examples used in training. Table 3 presents the
resulting datasets we created based on BigCloneBench.
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4.2 Evaluation Metrics

We defined three metrics to evaluate the effectiveness of automatic clone detection:
Recall measures a tool’s ability to retrieve true clones; it is the fraction or per-

centage of known true clone pairs that are detected by any clone detection approach.
Taking the labeled clones in BigCloneBench as known true clones, we could au-
tomatically evaluate an approach’s recall for individual clone types. Since many
tools cannot effectively retrieve MT3 and WT3/4 clones, as with prior work [5], we
evaluated the overall recall for T1, T2, VST3, and ST3 clones as below:

') 1−() 3 =
# of true clone pairs (of T1-ST3)

Total # of known true clone (of T1-ST3)
. (2)

Precisionmeasures a tool’s ability to correctly report true clones; it is the fraction
of true positives among all clone pairs reported by a tool. The labeled clones in
BigCloneBench cannot be used to automatically compute precision, because based
on our experience, the labeled dataset misses some true clones actually existing in
the codebase. Instead, we need to manually inspect all clones reported by any tool
to decide the precision rates. When a clone detection tool reports thousands of clone
pairs, we cannot afford the manual effort to inspect every pair. Therefore, in our
evaluation, we manually examined a sample set of clones reported by each tool. To
ensure that our sampled data is representative, we chose 385 reported clones among
all clone types for each approach. The number 385 is a statistically significant sample
size with a 95% confidence level and ±5% confidence interval, when the population
size is larger than 200,000. With the manual inspection of 385 sampled clone pairs,
we estimated precision as below:

%4BC8<0C43 =
# of true clone pairs

385 detected clone pair samples
. (3)

C score combines precision and recall to measure the overall accuracy of clone
detection. It is calculated as the harmonic mean of ') 1−() 3 and %4BC8<0C43:

� =
2 ∗ %4BC8<0C43 ∗ ') 1−() 3
%4BC8<0C43 + ') 1−() 3

. (4)

4.3 Effectiveness Comparison of Clone Detection Approaches

To evaluate CCLearner’s capability of clone detection, we compared it with three
popular tools: SourcererCC [5], NiCad [3], and Deckard [2]. We applied all three
existing tools to CCLearner’s testing data with their default tool configurations.

Recall. As shown in Table 4, CCLearner achieved the highest recall among
all tools when detecting T1-ST3 clones; it was unable to detect as many MT3 and
WT3/4 clones as Deckard did. Specifically, CCLearner identified all T1 clones,
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Table 4: Recall comparison among tools (%)

Tool T1 T2 VST3 ST3 MT3 WT3/4 Average (') 1−() 3)

CCLearner 100 98 98 89 28 1 93
SourcererCC 100 97 92 67 5 0 80
NiCad 100 85 98 77 0 0 85
Deckard 96 82 78 78 69 53 83

98% of T2 and ST3 clones, and 89% of ST3 clones. From T1 to WT3/4, as clone
peers become less similar, CCLearner’s recall decreased. The same trend was also
observed for other tools, which could be explained by the increased difficulty of
clone detection as clone peers become more dissimilar to each other. CCLearner
was unable to achieve 100% recall for all clone types, mainly because it relies on
the exactly same terms used in method pairs to compute similarity vectors. When
two clone methods share few identifiers and contain significantly divergent program
structures, CCLearner cannot reveal the clone relationship. In the future, we plan
to devise supplementary techniques for these specialist clones.

Table 5: Comparison among tools for the sampled precision, and the number of
reported and true clone pairs

Tool Vestimated(%) # of reported clone pairs # of estimated true clone pairs

CCLearner 93 548,987 510,558
SourcererCC 98 265,611 260,299
NiCad 68 646,058 439,319
Deckard 71 2,301,526 1,634,083

Precision. Table 5 shows the %4BC8<0C43 , the number of reported clone pairs, and
the number of estimated true clone pairs for all tools. Notice that the number of
true clones was calculated as the product of %4BC8<0C43 and total number of reported
clones. Compared with SourcererCC and NiCad, CCLearner reported more true
clone pairs. Deckard had a lower %4BC8<0C43 of 71% but reported more clones than
any other tool. These numbers indicate that Deckard retrieved more true clones
and produced more false alarms (wrongly reported clones). This may be because
Deckard flexibly matches code snippets by tolerating more differences in the token
usage and program structures.

Table 6: Tool comparison for C scores and runtime costs

Tool I (%) Runtime cost

CCLearner 93 47min
SourcererCC 88 13min
NiCad 76 34min
Deckard 77 4h 24min

C Score and Time Cost. Table 6 lists different tools’ C scores and execution time.
CCLearner obtained the highest � score, which implies that CCLearner detected
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clones more accurately by achieving both high estimated precision and high T1-ST3
recall. Regarding tools’ runtime overhead, SoucererCC ran the fastest (spending
13 minutes). NiCad was slower than SourcererCC (spending 34 minutes). Deckard
worked the most slowly (spending 4 hours and 24 minutes), because it used an
expensive tree matching algorithm. Our observations on the above results align with
the findings in prior work [5]. CCLearner took 47 minutes to detect clones. Similar
to SourcererCC and NiCad, CCLearner worked faster than Deckard since it did
not reason about program structures. However, CCLearner was slower than NiCad
and SourcererCC, because it calculated B8<8;0A8CH_E42C>A and compared methods
pair-by-pair to find clones. In addition, CCLearner spent another five minutes on
training, which could be considered as one-time cost and ignored. Due to the pair-
wise comparison mechanism, CCLearner’s clone detection is an embarrassingly
parallel task [23], indicating that we can easily parallelize the task to further reduce
CCLearner’s time cost in the future.

5 CCLearner Sensitivity to Machine Learning Algorithm Used

By default, CCLearner uses DNN to train a classifier for clone detection. To ex-
plore how well CCLearner works when it adopts different machine learning (ML)
algorithms, after the published work [8], we also experimented with five alterna-
tive ML algorithms: AdaBoost [10], Decision Tree [11], Naïve Bayes [12], Random
Forest [13], and Support Vector Machine (SVM) [14]. Specifically for algorithm
implementation, we used Weka [24] because it is a software library implementing a
collection of ML algorithms (including all five algorithms mentioned above). By re-
placingDNNwith each alternative, we trained five distinct learners and thus obtained
five tool variants: CCLearner0, CCLearner3 , CCLearner=, CCLearnerA , and
CCLearnerB . For fair tool comparison, when exploiting each alternative ML algo-
rithm, we reused the training and testing data shown in Table 3 to train a classifier
and to evaluate the resulting clone detection effectiveness.

Table 7: The effectiveness of CCLearner and its variants (%)

Tool ML Algorithm Recall Per Type
XZ1−YZ3 Vestimated IT1 T2 VST3 ST3 MT3 WT3/4

CCLearner DNN 100 98 98 89 28 1 93 93 93
CCLearner 0 AdaBoost 100 98 98 95 58 4 97 63 76
CCLearner 3 Decision Tree 100 98 98 96 61 4 97 59 74
CCLearner = Naïve Bayes 100 98 98 95 59 4 97 70 81
CCLearner A Random Forest 100 98 98 96 62 5 97 56 71
CCLearner B SVM 100 98 98 96 62 5 97 46 63

Effectiveness Comparison between CCLearner and Its Variants. Table 7
presents the evaluation results by CCLearner and its five variants. For instance, row
CCLearner corresponds to the results by the default implementation using DNN;
and row CCLearner0 shows results by the AdaBoost-based implementation. We
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observed an interesting phenomenon in Table 7. Compared with CCLearner, all
variant approaches obtained higher recall rates, lower precision rates, and lower
C scores. Specifically, all variants’ overall recall rates are surprisingly identical:
97%. This number is higher than CCLearner’s recall: 93%. All variants retrieved
MT3 and WT3/4 clones much more effectively than CCLearner. For instance,
both Random Forest and SVM led to the same highest MT3 and WT3/4 recall rates
(i.e., 62% and 5%). Meanwhile, the variants’ precision rates are much lower than
CCLearner’s, ranging from 46% to 70%.Overall, CCLearner acquired the highest
C score—93%, while CCLearner= obtained the second highest C score: 81%. SVM
produced the lowest C score: 63%. Although different ML algorithms were applied
to the same data, they presented distinct trade-offs between precision and recall. The
variants often found more true clones, but those true clones were always mixed in
with a larger number of false clones than would be reported by CCLearner.

(a) Folder #2, 1937566.java (b) Folder #2, 2571726.java
p r i v a t e JSONObject e x e cu t eH t t pGe t (

S t r i n g u r i ) t h rows Excep t i on {
Ht tpGe t r eq=new Ht tpGe t ( u r i ) ;
H t t pC l i e n t c l i e n t =new

De f a u l t H t t p C l i e n t ( ) ;
H t tpResponse r e sLog i n = c l i e n t . e x e c u t e (

r eq ) ;
Bu f f e r edReade r r =new Bu f f e r edReade r (

new Inpu tS t r e amReade r ( r e sLog i n .
g e t E n t i t y ( ) . g e tCon t e n t ( ) ) ) ;

S t r i n g B u i l d e r sb=new S t r i n g B u i l d e r ( ) ;
S t r i n g s= n u l l ;
wh i l e ( ( s= r . r e a dL i n e ( ) ) != n u l l ) {

sb . append ( s ) ;
}
r e t u r n new JSONObject ( sb . t o S t r i n g ( ) ) ;

}

p u b l i c s t a t i c S t r i n g g e t S t r i n gRe s p o n s e
( S t r i n g u r l S t r i n g ) t h rows
Excep t i on {

URL u r l =new URL( u r l S t r i n g ) ;
Bu f f e r edReade r i n =new Bu f f e r edReade r

( new Inpu tS t r e amReade r ( u r l .
openSt ream ( ) ) ) ;

S t r i n g i n p u t L i n e ;
S t r i n gB u i l d e r b u f f e r =new

S t r i n gB u i l d e r ( ) ;
wh i l e ( ( i n p u t L i n e = i n . r e a dL i n e ( ) ) !=

n u l l ) {
b u f f e r . append ( i n p u t L i n e ) ;

}
i n . c l o s e ( ) ;
r e t u r n b u f f e r . t o S t r i n g ( ) ;

}

Fig. 3: An MT3 clone pair detected by all variants but missed by CCLearner

Table 8: Time cost
comparison

Tool Time Cost

CCLearner 47min
CCLearner0 49min
CCLearner3 49min
CCLearner= 50min
CCLearnerA 49min
CCLearnerB 52min

A Case Study. To understand how CCLearner’s vari-
ants detect clones differently from CCLearner, we sam-
pled 10 reported clone pairs for manual inspection. Among
the 10 pairs, 5 pairs were identified by CCLearner but
missed by some of its variants, while the other 5 pairs
were revealed by all variants but missed by CCLearner.
We observed that each of the variants achieved higher re-
call and lower precision because they tolerated more dif-
ferences between clones. Figure 3 presents a clone pair
detected by all variants but missed by CCLearner. The clone peers invoke different
methods (e.g., HttpGet() and URL()) and use different types (e.g., HttpClient and
InputStreamReader). The tool variants reported this clone pair by matching code
more flexibly than CCLearner. They achieved different trade-offs between preci-
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sion and recall, and all outperformed CCLearner in terms of recall at the cost of
sacrificing precision.

Effectiveness Comparison between Learning-Based and Non-Learning-Based
Approaches.We compared the effectiveness of variant approaches with the results of
non-learning-based tools shown in Tables 4-6. We found that the learning-based ap-
proaches obtained higher recalls but lower precisions. Specifically, all CCLearner’s
variants achieved the same ') 1−() 3: 97%. This number is much higher than the re-
call rates of non-learning-based approaches (i.e., SourcereCC, NiCad, and Deckard),
which were 80%–85%. All variants’ MT3 and WT3/4 recall rates are lower than
Deckard’s, but higher than those rates of SoucererCC and NiCad. On the other hand,
the learning-based variants obtained relatively lower precision rates (46%–70%)
than non-learning-based approaches (68%–98%). Although the Naïve Bayes-based
approach (CCLearner=) achieved the highest precision rate (70%) among all vari-
ants, the rate is only comparable to that of NiCad (68%) or Deckard’s (71%). Overall,
CCLearner= worked better than the other variants, but its C score (81%) is much
lower than SourcereCC’s 88%—the highest C score obtained by the explored non-
learning-based approaches.

Table 8 presents the time cost comparison between CCLearner and its variants.
All variants have similar time costs to CCLearner, with slightly higher runtime
overhead. According to Table 6, all these variants are slower than SourcererCC and
NiCad, but faster than Deckard.

6 Conclusion

We designed and implemented a deep learning-based clone detection approach—
CCLearner. Different from traditional clone detection tools, CCLearner does not
containmanually defined rules or algorithms to specially characterize clones. Instead,
it computes token-level similarity vectors between given code blocks, and relies on
DNN to characterize the similarity vectors for both clone pairs and non-clone pairs.
More learning-based clone detection tools have been recently proposed [25, 26,
27, 28, 29]. These tools process source code to extract tokens, ASTs, control flows
and/or data flows, and to create vectorized program representations accordingly;
they also adopt more complex neural networks (e.g., recurrent neural network [30],
recursive neural network [31], and convolutional neural networks [32]) to take in the
vector representations and to better learn the characteristics of clone pairs. All these
approaches demonstrate the nice fusion of static program analysis and deep learning.
They also evidence that to better interpret the syntax or semantics of programs, we
need to improve both program representations and machine learning architectures.

We foresee that more and more learning-based approaches will be proposed
in the future to detect clones, analyze code, locate bugs, and repair code. As the
future research directions, we plan to conduct empirical comparison between similar
tools and understand which learning-based approach design is superior to others.
Additionally, we are also curious about the limitation of deep learning (DL)-based
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approaches. It seems that DL is good at performing certain tasks and perhaps bad at
doing other things. Although it is still unclear what is the domain where DL does
not quite fit, we will explore more usage of DL in Software Engineering research to
better characterize its application scope.
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