
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 Month/Month 2022 Copublished by the IEEE Computer and Reliability Societies 1540-7993/22©2022IEEE

Being the Developers’ Friend: Our
Experience Developing a High-Precision
Tool for Secure Coding
Danfeng (Daphne) Yao | Virginia Tech
Sazzadur Rahaman | University of Arizona
Ya Xiao, Sharmin Afrose, and Miles Frantz | Virginia Tech
Ke Tian | Palo Alto Networks
Na Meng | Virginia Tech
Cristina Cifuentes, Yang Zhao, Nicholas Allen, and Nathan Keynes | Oracle Labs Australia
Barton P. Miller and Elisa Heymann | University of Wisconsin–Madison
Murat Kantarcioglu | University of Texas at Dallas
Fahad Shaon | Data Security Technologies

We discuss the needs and challenges of deployable security research by sharing our experience
designing CryptoGuard, a high-precision tool for detecting cryptographic application programming
interface misuses. Our project has produced multiple benchmarks as well as measurement results on
state-of-the-art solutions.

I n summer 2017, we were shocked to see several highly
influential but misleading StackOverflow (SO) posts

about Java security coding. These posts included sug-
gestions such as disabling cross-site request forgery
(CSRF) tokens, accepting all certificates with an empty
verification method, and using obsolete hash functions
to get rid of compiling errors.1 Virtually all of them
are marked as accepted answers by the question ask-
ers. Collectively, 17 problematic SO posts were viewed
622,922 times as of August 2017, as shown in Table 1.
The high number of views is expected as SO estimates
that 21 million site visitors are professional develop-
ers and university-level students preparing for cod-
ing careers.2 Some SO code makes its way into mobile
devices—15.4% of apps contain code snippets copied
from SO, and most of them contain at least one insecure
code snippet.3 Additionally, we also observed cyberbul-
lying behaviors on SO, where a highly reputed person
dismissed the secure answer offered by an SO user with

a low reputation score. Such cyberbullying behaviors, if
they widely exist, could discourage people from provid-
ing technically correct, sound, and useful information
about secure coding.1

From the aforementioned SO posts, we, as security
researchers, observed a disconnect between security
principles and coding practices. Although a security
researcher may believe that the CSRF problem has long
been eradicated, the SO technical forum evidences the
opposite. An SO user stated, “Adding csrf().disable()
solved the issue!!! I have no idea why it was enabled
by default.” CSRF was a high-profile discovery in 2007.
Since then, this attack and its defenses (including using
validation tokens and examining referrer headers) have
routinely been taught in university cybersecurity classes.
CSRF, also known as a confused deputy problem, is a web
attack where the victim’s cached credential (e.g., session
ID with a bank) is automatically appended to outgoing
requests by the victim’s browser, even when the requests
are forged by attackers, resulting in the attacker’s forged
requests being successfully authenticated and processed
as the victim’s own. Attackers stealing money from a

Digital Object Identifier 10.1109/MSEC.2022.3159481
Date of current version: 26 May 2022

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

www.computer.org/security 3

victim’s online bank account and changing a victim’s
email password are just two examples of possible con-
sequences. A popular third-party security framework,
Spring Security, provides built-in CSRF protection and
enables protection by default. This protection mecha-
nism requires the framework users (e.g., developers of
web applications) to include CSRF tokens when send-
ing state-modification HTTP requests. If a developer
wants to avoid the inconvenience of creating or using
CSRF tokens, they can call “csrf().disable()” to bypass
the protection and destroy the security promise by
Spring Security.

Some users post vulnerable code due to conceptual
misunderstandings. For example, one SO user stated,
“I want my client to accept any certificate (because I’m
only ever pointing to one server).” This statement was
made in the context of public-key certificate verifica-
tion, likely for a specialized app developed to connect to
its back-end server. However, this ever-pointing-to-one-
server concept is troubling because without certificate
verification, attacks such as Domain Name System poi-
soning, phishing apps, and man-in-the-middle attacks
can easily break end-to-end security. Challenges in
coding certificate verification have also been widely
reported by researchers.

Vulnerable code is also making its way into widely
used security software, impacting cryptographic func-
tions. For instance, in December 2015, Willem Pinck-
aers reported on Twitter about the global variable reuse
in Juniper Networks’ Dual Elliptic Curve Deterministic
Random Bit Generator.4 This coding error impacted
an important loop variant, resulting in randomization
operations not being executed at all, which resulted in
exploitable vulnerabilities in network devices.5 In 2017,
Equifax reported a data breach incident that impacted
147 million people partly because of an expired digital
credential.

From the technical discussion by developers on
online forums, we perceived a strong message: develop-
ers need help. They need help with writing secure code
and understanding the security implications under-
neath the coding options.

To help with secure coding, we designed Crypto-
Guard, which focuses on a specific category of vul-
nerabilities, that being the application programming
interface (API) misuses of two Java libraries: Java
Cryptography Architecture (JCA) and Java Secure
Socket Extension (JSSE). We made this design choice
for two reasons. First, Java developers typically use
the APIs offered by both libraries to ease their cryp-
tographic implementation, but misusing some of the
APIs can make the resulting implementation exploit-
able by attackers. Second, our prior work1 and studies
by other researchers3 all show that many developers

misunderstand or misuse the APIs of JCA and JSSE
and need help in understanding the security impli-
cations of alternative API options and addressing
API-misuse issues.

Why Are Some API Misuses
Difficult to Detect?
Although string matching can detect occurrences of
insecure parameters (e.g., uses of insecure crypto-
graphic hash functions MD5 and SHA1, weak block
cipher Data Encryption Standard, or small key sizes),
complications may arise in large software projects.

Tracking variable values across method invocation is
one challenge, where API arguments are instantiated else-
where in a different method or class. Thus, to determine
whether arguments of a cryptographic API are secure, one
needs to track data flows (e.g., definition-and-use relation-
ships) across procedure boundaries. Static, interproce-
dural data flow analysis forms the basis of our detection.
Specifically, we utilize interprocedural backward slicing to
collect program statements (known as the program slice6)
that impact an element of interest (referred to as the slicing
criterion) and then scan the slices for misuse patterns.

Hasn’t Static, Interprocedural Dataflow
Analysis Been Known for Decades?
Yes; however, specializing and customizing general-
purpose static analysis techniques (such as Soot, a static
program analysis framework) for specific security detec-
tion requires much innovation. One challenge is the seman-
tic gap, the difference in meaning between cryptography
and code. An important process in our CryptoGuard work
is to determine exactly what to look for in programs.

We need to map abstract cryptographic concepts
to concrete programming elements and data flow

Table 1. The view numbers of 17 influential insecure posts on the
SO forum.1

Topic of posts

Total
number
of views

Number
of posts

Minimum
number
of views

Maximum
number of
views

Disable CSRF
protection

39,863 5 261 28,183

Trust all
certificates

491,567 9 95 391,464

Obsolete hash
functions

91,492 3 1,897 86,070

Total 622,922 17 — —

1The numbers were collected in August 2017.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE Security & Privacy Month/Month 2022

patterns. Table 2 presents multiple types of crypto-
graphic API misuses in Java and the precision results
of CryptoGuard analysis.7 Precision is the percent-
age of true misuses out of all reported misuses. In
complicated cases, we need to break down the detec-
tion plan into multiple steps, each mapped to a sin-
gle round of static program analysis tasks. One such
example appears in vulnerability type 14 in Table 2. In
this case, detecting insecurely configured public-key
cryptosystems requires two rounds of backward slic-
ing, one round of forward slicing, and field sensitivity
analysis. This manual mapping process is difficult and
time consuming, requiring knowledge of both cryp-
tographic coding and program analysis. Addressing
the semantic gap is a critical process in building many

security defenses, such as malware detection and net-
work intrusion detection.

Hasn’t This Kind of Detection
Been Done Already?
Indeed, publications aiming at exposing insecure cryp-
tographic coding exist, e.g., CryptoLint8 and FixDroid.9
These earlier efforts showed the existence of coding
problems by reporting instances of insecure code dis-
covered in real-world apps and software projects.

However, exposing vulnerabilities and designing
industrial-strength scanners have entirely different
requirements, goals, and testing metrics. For example,
exposing vulnerabilities shows the existence of some
misuses, while the latter (our work) strives to system-
atically produce reports that aim to cover a wide range
of misuses. Thus, it is unclear how well their proto-
types work in practice. To produce deployable-grade
tools, accuracy and scalability challenges need to be
addressed. The number of false positives must be low,
without sacrificing the false-negative rate. Different
goals create opportunities for different-but-equally
valuable security policies, algorithms, insights, princi-
ples, and artifacts. Thus, we need both types of contri-
butions as they are complementary.

We highlight one data flow analysis challenge asso-
ciated with deployment-grade tool development work
like ours, which an ad hoc vulnerability exposure study
might not be able to address. CryptoGuard aims to
capture data flows through fields (i.e., data members)
of a class in Java. When an inappropriate value is passed
through the field of an object, our analysis can accu-
rately keep track of the field without involving other
unnecessary fields of this object. Such an analysis is
called field sensitive as it identifies data flows in the form
of field access (e.g., getter methods). This data flow dif-
fers from the typical assignment- or argument-based
data flows. If an analysis does not capture the influ-
ence through fields, then it is field insensitive.
Field-insensitive analysis may cause false negatives,
which means missing the detection of potentially vul-
nerable API misuses in our case.

Intuitively, field sensitive analysis—differentiating
dataflows through different fields—is likely more accu-
rate than field-insensitive analysis. However, there is a
tradeoff. Maintaining field sensitivity may incur over-
head. In particular, field-sensitive analysis may involve
multiple levels of exploration, for example, as a result
of multiple levels of getters, i.e., a getter within another
getter function. Exploring such data flow rabbit holes
takes time, yet the obtained results may or may not be
relevant to security.

Thus, one needs to characterize how the depth-of-
field-sensitivity exploration, that is, the number of getter

Table 2. CryptoGuard’s precision under categories of
cryptographic vulnerabilities excluding the category on
untrusted pseudorandom number generator (PRNG), when
evaluating 46 Apache projects.7

Vulnerability types
Number
of alerts

Number
of true
positives Precision (%)

 1 and 2. Predictable keys 264 248 94.1

 3. Hardcoded KeyStore
password

148 148 100

 4. Dummy hostname
verifier

12 12 100

 5. Dummy certification
validation

30 30 100

 6. Improper socket 4 4 100

 7. Using HTTP 222 222 100

 8. Predictable seeds 0 0 —

 9. Static salts 112 112 100

10. Electronic cookbook
mode for symmetric
cryptography

41 41 100

11. Static initialization
vector

41 40 97.6

12. <1,000 PBE iterations 43 42 97.7

13. Broken symmetric
cryptoalgorithm

86 86 100

14. Insecure public-key
cryptography

12 12 100

15. Broken hash 138 138 100

Total 1,153 1,135 98.4

PBE: password-based encryption.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

www.computer.org/security 5

methods in a call stack that the analysis keeps track of,
impacts accuracy and scalability. What is the right depth
of exploration to use? How would the choice of explora-
tion depth impact detection accuracy and runtime? We
conducted an experiment with 30 Apache root subproj-
ects and varied the exploration depth from one to 10. A
depth of one is where a field-related method is invoked
by the main slice. The experiment evaluated our ability
to detect constant values that were relevant to the use of
cryptography.

We obtained some interesting findings. Although
the choice of exploration depth impacts detection
accuracy, our results showed that a depth of one pro-
vides a good balance in our experiments.7 How the
depth-of-field exploration impacts detection accuracy
(represented by F1 scores) is shown in Figure 1. In this
experiment, regardless of the analysis depth, the num-
ber of crypto-relevant constants detected stays the same
(the horizontal line in Figure 1), which we manually
confirmed. The F1 score, based on both precision and
recall, peaked at a depth of one. We observed that the
deeper analysis sometimes results in more pseudoin-
fluencers, i.e., the discovered constants that do not
have security impacts, making the F1 score drop. The
runtime evaluation showed that increasing the analysis
depth does not significantly increase runtime.7 Based
on these results, we set the field-sensitive analysis depth
to one in all later experiments.

This kind of rigorous and intricate field-sensitive
analysis improves accuracy and provides useful insights
for understanding detection capabilities. In contrast,
prototypes designed only to expose vulnerabilities
often miss such insights.

Then, for a researcher who would like to contrib-
ute to deployment-grade code scanners, what is the
number-one priority? What is the biggest feature that
would make such scanners useful in practice?

A Deployment Enabler: False-Positive
Reduction
Arguably, precision is the number one requirement of
a code scanner in practice. All practical static program
analyses are approximations; they estimate program
behaviors. This estimation may cause errors such as
overestimating vulnerabilities, which would generate
false positives, i.e., false alarms. Confirming whether an
alert is real or not needs to be done manually by experts
and is often time consuming. This section explains how
CryptoGuard minimizes false positives in Java API mis-
use detection.

Our approach can be understood as a conditioned
program slicing. Once program slices are obtained, we
scan them for suspicious elements such as hardcoded
passwords. However, our initial attempt at detection

returned many false positives, i.e., many irrelevant con-
stants were flagged. Vulnerability types 1, 2, 3, 9, 11,
and 12 (see Table 2) produced most of the false alarms
because these misuses are constant oriented. For exam-
ple, the detection of the first three vulnerability types
searches for hardcoded keys and KeyStore passwords.
Flagging all constants in a slice may create false posi-
tives as some constants may have nothing to do with
security or are incompatible with the context (e.g., type
mismatch). In other words, not all constants appearing
in cryptographic APIs are important. Some of them do
not impact security and can be safely ignored. We refer
to these constants as pseudoinfluencers.

As a pseudoinfluencer example, an off-the-shelf
detection method would report “UTF-8” as a hard-
coded key when seeing the code

byte[] keyBytes = key.getBytes (“UTF-8”).

However, UTF-8 describes a character encoding
and can be safely excluded. The sizes and indices of
arrays are another type of pseudoinfluencer and can be
removed from slices. We summarize these pseudoinflu-
encers into categories and identify them by our refine-
ment insights.

Another category of pseudoinfluencer is identifi-
ers, specifically those of value sources. For example, in
map.get(“ENCRYPT_KEY”), “ENCRYPT_KEY” is an
identifier (like a name) used for retrieving a value from
the Java Map data structure, not the actual element.
Thus, this type of identifier can be safely ignored. Array
indices are another example of constants that should
be excluded as they do not cause cryptographic
API misuses.

120

130

140

150

160

170

180

190

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1 2 3 4 5 6 7 8 9 10
Depth of Field-Exploration Analysis

F
1

S
co

re

D
is

co
ve

re
d

C
on

st
an

ts

Discovered Constants F1 ScoreTrue Positives

Figure 1. The impact of field-exploration depth (in the x-axis) on detection
accuracy,7 which is represented by the F1 scores (left y-axis), number of
discovered constants (right y-axis), and number of crypto-relevant constants
discovered (149, the horizontal line).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE Security & Privacy Month/Month 2022

We developed five language-specific refinement
algorithms to automatically reduce false positives.
These five types of refinement are summarized by
collecting and analyzing the sources that cause false
positives. We find that most of them are derived from
language-specific constants. All five language-specific
strategies in CryptoGuard are for systematically
removing irrelevant constants or predictable values
from slices, including the removal of state indicators,
resource identifiers, bookkeeping indices, contextu-
ally incompatible constants, and constants in infea-
sible paths.7 In our experiments, the most effective
refinement insight for Apache and Android code
is the removal of array or collection of bookkeep-
ing information. These five types of refinement
algorithms drastically reduced the number of total
alerts by 76% for 46 Apache projects and by 80%
for 6,181 Android apps tested. Because Apache
projects are open source, we were able to manu-
ally confirm that all the removed alerts are indeed
false positives.

With refinements, CryptoGuard’s accuracy is
of deployment grade. Our manual source-code
analysis on the 1,153 non-PRNG alerts confirmed
98.4% precision (Table 2), which would be rea-
sonably manageable in a real-world deployment. A
manual investigation reveals that some false posi-
tives are related to irrelevant constants discovered
by the field analysis. A false-positive case is due to
path insensitivity in our current data flow analysis.
CryptoGuard cannot tell whether a PRNG method
is used in a security sensitive context or an insen-
sitive context, which also generates false positives.
We could not evaluate the false-negative rate in this
experiment due to the lack of ground truth. This
problem motivated us to produce two benchmarks,
which are described next.

Benchmarks and Comparison
With the State of the Art
As there was not a benchmark at the time, all of our
ground-truth confirmation was performed manually,
which was a time-consuming and tedious task. This effort
strongly motivated our later work on benchmark develop-
ment, including the CryptoAPI-Bench, with 181 manually
created test cases, and ApacheCryptoAPI-Bench, with 121
test cases from 10 real-world Apache software projects.10

For the first time, these benchmarks enable quanti-
tative and side-by-side comparisons with other state-of-
the-art solutions from industry and academia. Because
security coverages of the four tools vary, our compari-
son needs to be conducted within the scope for which
the tool is designed. In other words, we avoid testing a
tool against test cases that the tool is not designed to

detect. To address this requirement, our comparisons
are carefully performed on the common subset of the
vulnerability types, i.e., the shared security capabilities
across all four tools being evaluated. Because of the lack
of documentation in some tools, we need to experimen-
tally identify the shared security capability. We infer a
tool’s coverage based on whether or not it ever generates
any alert in that category.

For ApacheCryptoAPI-Bench, CryptoGuard reported
the highest number of true positives, whereas the free
online version of a commercial tool missed the most
cases.10 Interestingly for SpotBugs, although it per-
formed miserably (0% recall and precision) under
the 84 advanced test cases in CryptoAPI-Bench, it did
quite well under ApacheCryptoAPI-Bench, success-
fully detecting many misuses. These results suggest
that real-world code is likely much simpler than manu-
ally created advanced test cases in terms of data flow pat-
terns. With ground truth, these benchmarks also enable
researchers to investigate and compare false negatives.
CryptoGuard’s small number of false negatives come
from either the truncated field-exploration analysis or
vulnerabilities that are not yet covered. Although it per-
formed well in the two benchmarks, we admit that it is
possible for CryptoGuard to miss some cases neglected
by the benchmark coverage.

Hardening Apache Projects
CryptoGuard also enabled us to identify and report
several cryptographic API misuses in high-profile
Apache projects, including various kinds of predict-
able secrets, vulnerable TLS/SSL certificate verifica-
tion, hardcoded salts, and insufficient iteration counts
in password-based encryption (PBE).7 The Inter-
net Engineering Task Force (IEFT) recommends a
minimum iteration count of 1,000 for PBE, a popular
encryption approach in real-world software projects.
A widely used project for managing Hadoop secu-
rity sets the iteration to the length of the password
plus one, which is too small. The same method also
used the password’s MD5 hash as salt, which is insuf-
ficiently random. The vulnerable code is shown in
“Listing 1.” In addition, the iteration’s dependence
on the length of the password may also create a tim-
ing side-channel—an adversary capable of measuring
PBE execution time (e.g., in multitenant environ-
ments) might be able to infer the length of the pass-
word. After our disclosure, several Apache projects
responded to the vulnerabilities, including Ranger,
Tomcat, Hadoop, Hive, Spark, Ofbiz, and Ambari.
For example, Apache Spark removed the support of
the dummy hostname verifier and dummy trust store.
Apache Ranger fixed constant default values for PBE
and insecure cryptographic primitives.7

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

www.computer.org/security 7

Listing 1. A real-world PBE code snippet with multiple
vulnerabilities. The salt is computed as the MD5 hash
of the password (lines 2 and 3). As a result, an adversary
may quickly recover the password from a leaked salt. In
addition, the iteration count is set as the length of the
password plus one, which is far less than the required
1,000 (line 6).

1 PBEKeySpec getPBEParameterSpec(String
password) throws Throwable {

2 MessageDigest md = MessageDigest.
getInstance(MD_ALGO);//MD5

3 byte[] saltGen = md.digest(password.
getBytes());

4 byte[] salt = new byte[SALT_SIZE];
5 System.arraycopy(saltGen, 0, salt,

0, SALT_SIZE);
6 int iteration = password.toChar

Array().length + 1;
7 return new PBEKeySpec(password.

toCharArray(), salt, iteration);}

Frustratingly, not all reported high-severity issues
are fixed because some groups require an executable
exploit demonstration, and our small team just does
not have the resources to develop them. A possible
research direction is to design an easy-to-use frame-
work that could automate cryptographic exploit gen-
eration—sort of like “metasploit” for cryptographic
code. In some other cases, developers acknowledged
the issue,; however, the code could not be hardened
due to backward compatibility or humanless deploy-
ment environments.7

For Android apps, 95% of API misuses came from
libraries, including those from Google, Facebook,
Apache, Umeng, and Tencent, not from the apps’ own
code. We also found that 25.3% of Android apps had
a dummy trust manager (vulnerability type 5), higher
than that of Apache projects (11.7%).

Oracle’s Integration and Industrial
Scanning Scalability
Oracle Labs Australia implemented CryptoGuard’s
detection approach in their internal checker Par-
fait,11 with the help of Ya Xiao as a summer intern in
2019. Parfait12 is a highly scalable static code checker
designed for analyzing codebases in the scale of millions
of lines.11,13 Its development led by Cristina Cifuentes
started in 2007 and spans considerably more than a
decade. Parfait uses low level virtual machine not Soot,
thus CryptoGuard’s detection and refinement approach
needed to be reimplemented for Parfait.

We conducted experiments to evaluate Parfait’s new
cryptographic code-scanning capability. When tested

on 11 large codebases (nine Oracle internal products
and two open source projects), Parfait’s cryptographic
scanner generated 42 alerts, all of which were manually
verified as true positives (100% precision).11 The low
number of false alarms reported in this industrial set-
ting experiment further confirms the deployability of
our detection approach. Weak salts, low iteration counts
in PBE, and bypassing certificate verification were
among the issues identified. An evaluation of Parfait on
CryptoAPI-Bench gave a similar accuracy performance
as CryptoGuard’s, as expected.

A static analysis with ultralow false positives is pos-
sible. The widely held belief that static analysis gener-
ates too many false alarms to be practically useful is not
accurate. As demonstrated by CryptoGuard7 and Ora-
cle’s Parfait,11 there exist application-specific methods
that systematically eliminate categories of false posi-
tives. In our problems, false positives are in the form
of irrelevant constants. Identifying and systematizing
the causes of false positives requires several months’
one-time manual effort by Sazzadur Rahaman, yet the
payoff is substantial.

Both CryptoGuard and Parfait spent substantial
efforts on scalability, which is equally as important
as accuracy for a deployment-quality code scanner.
Understandably, developers prefer faster scanners that
support continuous integration and delivery practice.
Parfait has a creative, layered scheduling architecture
that triages program analysis tasks from quickest to
slowest, aiming at maximizing the number of tasks com-
pleted and issues found in a given period.12 Backward
slicing analyses are broken down and assigned to differ-
ent layers based on their call depth. Specifically, at each
layer, if the analysis is not conclusive (e.g., requiring
the inspection of another method), then further analy-
ses will be scheduled at the next layer. This layer-based
scheduling approach is different from the conventional
approach of fully completing one analysis before start-
ing another. Layered scheduling allows short pro-
gram analysis tasks to be executed first, conceptually
similar to a breadth-first approach (as opposed to a
depth-first search). In practice, complex analysis paths
do not necessarily yield more vulnerabilities as Crypto-
Guard made similar observations in its field-sensitivity
exploration experiment (see Figure 1). As illustrated in
Figure 2, Parfait’s layered scheduling design pays off; it
finishes within 10 min on a typical workstation for most
of the production codebases screened, with multiple
projects having millions of lines of code.

With the focus on cryptographic code, CryptoGuard
speeds up its screening by excluding irrelevant code and
analyzing independent subprojects concurrently. In our
case, building a complete general-purpose data flow
graph is unnecessary as the cryptographic functionality

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE Security & Privacy Month/Month 2022

is often confined within a small fraction of the project.
Our data flow analysis is demand driven; it starts from
the slicing criteria and propagates only to necessary ele-
ments. Thus, this specialized analysis avoids touching
irrelevant subprojects and code regions. For Apache,
CryptoGuard’s average observed runtime was 3.3 min,
with a median of approximately 1 min on a typical
workstation. Including the cutoff ones, the average run-
time and median were 3.2 and 2.85 min, respectively.
(We terminated the unfinished app analysis after 10
min.) When evaluating 30 randomly selected Apache
root subprojects [the lines of code (LoC) ranging from
471 to 1 K] and 30 Android applications (the LoC rang-
ing from 1,453 to 0.4 K), CryptoGuard demonstrated
higher efficiency than a leading academic solution in
this space14.

Exciting Future Directions
An exciting future direction is automatic code genera-
tion and suggestion, which aims at reducing or elimi-
nating error-prone manual coding. The great success
of natural language processing motivates the research
of harnessing machine learning techniques to gener-
ate code. Programming languages have rigid structures,
which are seemingly easier to predict than natural lan-
guages. However, they have a low tolerance for syntac-
tical or semantic mistakes, especially for cryptographic
code. Clearly, machine learning models for natural lan-
guage generation cannot be directly applied to code.
Large-scale code data sets and benchmarks also need
to be developed for systematically measuring the accu-
racy of code-completion solutions. Such measurement
efforts would be equally as important as proposing new
neural network models.

Another direction is to create an easily configurable
detector to automatically generate detection algorithms
on the input of seminatural language statements speci-
fying misuse patterns. Such a transformation capability

would be powerful, making it easier to extend Crypto-
Guard by nonexperts.

For further reducing false alarms, there is a need
to approximate and prioritize security-sensitive code
regions. For example, raise an alert only when Random
is used for security-sensitive tasks, such as generating
session IDs and password reset links, and needs to be
replaced by SecureRandom. One approach is to esti-
mate the sensitivity of programming contexts.

We can leverage CryptoGuard’s success with Java to
cover other programming languages such as Python. We
have also begun examining authentication and autho-
rization misuses in the Java Spring enterprise frame-
work.15 The abuse of Spring security’s customization
capabilities is a source of application insecurity, such as
lifelong access tokens, disabling CSRF protection, and
hardcoded secrets.

Making tools like CryptoGuard fit into the
larger toolchain used in industrial software develop-
ment settings would help increase the adoption of
security solutions. For example, we could produce
development-time code-scanning capabilities in the
form of compiler plug-ins and integrated development
environment (IDE) plug-ins. We have demonstrated
both Maven and Gradle compiler plug-ins for Cryp-
toGuard. Ongoing work is on building IDE plug-ins,
which will help detect and correct misuses early. One
technical focus is to support the ability to analyze par-
tial code. Another future direction is to systematically
measure the usability of code-scanning tools in prac-
tice, in particular analyze the factors that contribute
to developers’ code change decisions, e.g., how to best
provide information to help developers decide whether
or not to modify the code region as suggested by tools.

C ommunity support is crucial to promote practi-
cal deployment-quality tools. To broaden the

101 104

105

106

102

103
R

un
tim

e
(s

)

S
iz

e
(L

oC
)

Pro
jec

t 1

Pro
jec

t 2

Pro
jec

t 3

Pro
jec

t 4

Pro
jec

t 5

Pro
jec

t 6

Pro
jec

t 7

Pro
jec

t 8

Pro
jec

t 9

Pro
jec

t 1
0

Pro
jec

t 1
1

Size

Runtime

Figure 2. The runtime (left y-axis) of Parfait for screening 11 real-world codebases whose lines of code are also shown
(right y-axis), both in log scale.11

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

www.computer.org/security 9

definition of novelty by recognizing deployable secu-
rity will better align the most pressing cyberspace needs
with researchers’ efforts. Several notable initiatives have
already started doing so, including the IEEE Secure
Development Conference (sponsored by the IEEE Com-
puter Society Technical Committee on Security and
Privacy), the Annual Computer Security Applications
Conference’s (ACSAC)’s hard topic theme on deploy-
able and impactful security, the ACM Digital Threats:
Research and Practice journal, the Real World Crypto
Symposium, and the Transition to Practice designation
in the National Science Foundation funding programs.
In addition, some conferences such as ACSAC and
ACM Conference on Data and Application Security and
Privacy encourage and incentivize artifacts and data sub-
missions, which are all extremely encouraging.

Democratizing security knowledge is also a must. It
will help more software developers and practitioners
understand cutting-edge cybersecurity findings, well
beyond our small group of researchers. It is important
to consciously develop outreach resources, such as tuto-
rials, short lessons, videos such as the “Introduction to
Software Security” video series by Elisa Heymann and
Barton Miller,16 and security contests such as Build
It, Break It, Fix It secure-coding competition series.17
These types of efforts need support and recognition
from our cybersecurity community.

Acknowledgments
Funding support for CryptoGuard includes U.S. Office
of Naval Research grant number ONR-N00014-17-1-
2498 and National Science Foundation grant number
CNS-1929701.

References
 1. N. Meng, S. Nagy, D. Yao, W. Zhuang, and G.

Arango-Argoty, “Secure coding practices in Java: Chal-
lenges and vulnerabilities,” in Proc. 40th Int. Conf. Softw.
Eng. (ICSE), Gothenburg, Sweden, May 2018, pp. 372–
383, doi: 10.1145/3180155.3180201.

 2. “Developer survey results.” Stack Overflow. https://
insights.stackoverflow.com/survey/2019 (Accessed: May
11, 2022).

 3. F. Fischer et al., “Stack overflow considered harmful? The
impact of Copy&Paste on Android application security,”
in Proc. 38th IEEE Symp. Security Privacy (S&P), San
Jose, CA, USA, May 2017, pp. 121–136, doi: 10.1109/
SP.2017.31.

 4. “Tweet by _dvorak_.” Twitter. https://twitter.com/_dvor
ak_/status/679109591708205056 (Accessed: May 11,
2022).

 5. S. Checkoway et al., “Where did I leave my keys?: Lessons
from the Juniper Dual EC incident,” Commun. ACM, vol.
61, no. 11, pp. 148–155, 2018, doi: 10.1145/3266291.

 6. M. D. Weiser, “Program slices: Formal, psychological, and
practical investigations of an automatic program abstrac-
tion method,” Ph.D. thesis, Univ. Michigan, Ann Arbor,
MI, USA, 1979.

 7. S. Rahaman et al., “CryptoGuard: High precision detec-
tion of cryptographic vulnerabilities in massive-sized
Java projects,” in Proc. 26th ACM Conf. Comput. Commun.
Security (CCS), London, U.K., Nov. 2019, pp. 2455–2472,
doi: 10.1145/3319535.3345659.

 8. M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel,
“An empirical study of cryptographic misuse in Android
applications,” in Proc. 20th ACM SIGSAC Conf. Comput.
Commun. Security (CCS), Berlin, Germany, Nov. 2013, pp.
73–84, doi: 10.1145/2508859.2516693.

 9. D. C. Nguyen, D. Wermke, Y. Acar, M. Backes, C. Weir,
and S. Fahl, “A stitch in time: Supporting Android devel-
opers in writing secure code,” in Proc. 24th ACM Conf.
Comput. Commun. Security (CCS), Dallas, TX, USA, Nov.
2017, pp. 1065–1077, doi: 10.1145/3133956.3133977.

 10. S. Afrose, Y. Xiao, S. Rahaman, B. P. Miller, and D.
(Daphne)Yao, “Evaluation of static vulnerability detec-
tion tools with Java cryptographic API benchmarks,”
IEEE Trans. Softw. Eng., early access, Feb. 2022, doi:
10.1109/TSE.2022.3154717.

 11. Y. Xiao, Y. Zhao, N. Allen, N. Keynes, D. (Daphne)
Yao, and C. Cifuentes, “Industrial experience of finding
cryptographic vulnerabilities in large-scale codebases,”
ACM Digit. Threats, Res. Pract., to be published, doi:
10.1145/3507682.

 12. C. Cifuentes and B. Scholz, “Parfait: Designing a scal-
able bug checker,” in Proc. Workshop Static Analy-
sis, Tucson, AZ, USA, Jun. 2008, pp. 4–11, doi:
10.1145/1394504.1394505.

 13. “Parfait project details.” Oracle Labs. https://labs.oracle.
com/pls/apex/f ?p=94065:12:17236785846387:13
(Accessed: May 11, 2022).

 14. S. Krüger, J. Späth, K. Ali, E. Bodden, and M. Mezini,
“CrySL: An extensible approach to validating the cor-
rect usage of cryptographic APIs,” in Proc. Eur. Conf.
Object-Oriented Program. (ECOOP), Amsterdam, The
Netherlands, Jul. 2018, pp. 1–27, doi: 10.4230/LIPIcs.
ECOOP.2018.10.

 15. M. Islam, S. Rahaman, N. Meng, B. Hassanshahi, P.
Krishnan, and D. (Daphne)Yao, “Coding practices and
recommendations of spring security for enterprise appli-
cations,” in Proc. IEEE Secure Development (SecDev),
May 2020, pp. 49–57, doi: 10.1109/SecDev45635.
2020.00024.

 16. E. Heymann, B. P. Miller, and L. Kohnfelder. (2022). Intro-
duction to software security. [Online]. Available: https://
research.cs.wisc.edu/mist/SoftwareSecurityCourse/

 17. A. Ruef, M. Hicks, J. Parker, D. Levin, M. L. Mazurek, and
P. Mardziel, “Build it, break it, fix it: Contesting secure
development,” in Proc. 23th ACM SIGSAC Conf. Comput.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE Security & Privacy Month/Month 2022

Commun. Security (CCS), Vienna, Austria, Oct. 2016, pp.
690–703, doi: 10.1145/2976749.2978382.

Danfeng (Daphne) Yao is a professor of computer sci-
ence at Virginia Tech, Blacksburg, Virginia, 24061,
USA. Her research interests include software and
system security, with a special focus on measurable
guarantees and performance. Yao received a Ph.D. in
computer science from Brown University. She is an
ACM Distinguished Scientist and a Senior Member
of IEEE. Contact her at danfeng@vt.edu.

Sazzadur Rahaman is an assistant professor of computer
science at the University of Arizona, Tucson, Arizona,
85721, USA. His research interests include building
robust systems and methodologies for security. Saz-
zadur received a Ph.D. in computer science from Vir-
ginia Tech. Contact him at sazz@cs.arizona.edu.

Ya Xiao is a Ph.D. candidate with the Virginia Tech
Department of Computer Science, Blacksburg, Vir-
ginia, 24061, USA. Her research interests include
software security, deep learning, program analysis,
and applied cryptography. Xiao received a master’s
from Beijing University of Posts and Telecommunica-
tions. Contact her at yax99@vt.edu.

Sharmin Afrose is a Ph.D. candidate with the Virginia
Tech Department of Computer Science, Blacks-
burg, Virginia, 24061, USA. Her research interests
include trustworthy machine learning in health care
and software security. Afrose received a bachelor’s
in computer science from Bangladesh University
of Engineering and Technology. Contact her at
sharminafrose@vt.edu.

Miles Frantz is a Ph.D. candidate with the Virginia Tech
Department of Computer Science, Blacksburg, Vir-
ginia, 24061, USA, where he received a master’s in
computer science. He research interests include creat-
ing code analysis tools to assist software developers.
Contact him at frantzme@vt.edu.

Ke Tian is a senior machine learning engineer at Palo
Alto Networks, Santa Clara, California, 95054, USA.
His research interests include cybersecurity, anom-
aly detection, and applied machine learning. Tian
received a Ph.D. in computer science from Virginia
Tech. Contact him at ketian.yy@gmail.com.

Na Meng is an associate professor of computer science at
Virginia Tech, Blacksburg, Virginia, 24061, USA. Her
research interests include software engineering, pro-
gramming languages, software security, and artificial

intelligence. Meng received a Ph.D. in computer sci-
ence from the University of Texas at Austin. Contact
her at nm8247@vt.edu.

Cristina Cifuentes is a senior director of R&D at Oracle
Labs Australia, Brisbane, Queensland, 4000, Australia,
serving as director of the Software Assurance organi-
zation. Her research focuses on intelligent application
security, aiming at making intelligent security of appli-
cations a reality, at scale. Cifuentes received a Ph.D. in
computer science from the Queensland University of
Technology. Contact her at cristina.cifuentes@oracle.
com.

Yang Zhao is a research engineer at Oracle Labs Austra-
lia, and is currently a solicitor and software developer
at IT and Startup Lawyers, Brisbane, Queensland,
4000, Australia. His research interests include soft-
ware security, program analysis, model checking and
machine learning. Zhao received a Ph.D. in computer
science from the University of Wisconsin–Milwau-
kee. Contact him at yang.yz.zhao@oracle.com.

Nicholas Allen is a principal research engineer at Oracle
Labs Australia, Brisbane, Queensland, 4000, Australia.
His research interests include scalable software analysis.
Allen received a bachelor’s in software engineering from
the University of Queensland. Contact him at nicholas.
allen@oracle.com.

Nathan Keynes is the vice president of technology at
Shorthand, Brisbane, Queensland, 4000, Austra-
lia. His research interests include static program
analysis, systems integration, and e-commerce.
Keynes received a bachelor’s from the University of
Queensland. Contact him at nkeynes@deadcode
removal.net.

Barton P. Miller is a Vilas Distinguished Achievement
Professor and Amar & Belinder Sohi Professor in
Computer Sciences at the University of Wisconsin–
Madison, Madison, Wisconsin, 53706, USA. His
research interests include software security, tools for
high-performance computing, binary program analy-
sis, and instrumentation technologies. Miller received
a Ph.D. in computer science from the University of
California, Berkeley. He is a Fellow of the Association
for Computing Machinery. Contact him at bart@
cs.wisc.edu.

Elisa Heymann is an associate professor at the Auton-
omous University of Barcelona, Barcelona, 08193,
Spain, and a senior scientist at the National Science
Foundation Cybersecurity Center of Excellence

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

www.computer.org/security 11

with the University of Wisconsin–Madison, Madi-
son, Wisconsin, 53706, USA. Her research interests
include software security and assurance. Heymann
received a Ph.D. in computer science from the
Autonomous University of Barcelona. Contact her at
elisa@cs.wisc.edu.

Murat Kantarcioglu is the Ashbel Smith Professor of
Computer Science at the University of Texas at Dal-
las, Dallas, Texas, 75080, USA. His research interests
include working on security and privacy issues raised
by data mining and machine learning applications,
such as social networks, databases, and health care.

Kantarcioglu received a Ph.D. in computer science
from Purdue University. He is a distinguished mem-
ber of the Association for Computing Machinery.
He is a Fellow of IEEE and the American Associa-
tion for the Advancement of Science. Contact him at
muratk@utdallas.edu.

Fahad Shaon is the CTO of Data Security Technologies,
Richardson, Texas, 75083, USA. His core research
interests include secure cloud computing, trusted com-
puting, and program analysis. Shaon received a Ph.D. in
computer science from the University of Texas at Dal-
las. Contact him at fahad@datasectech.com.

