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We discuss the needs and challenges of deployable security research by sharing our experience 
designing CryptoGuard, a high-precision tool for detecting cryptographic application programming 
interface misuses. Our project has produced multiple benchmarks as well as measurement results on 
state-of-the-art solutions. 

I n summer 2017, we were shocked to see several highly 
influential but misleading StackOverflow (SO) posts 

about Java security coding. These posts included sug-
gestions such as disabling cross-site request forgery 
(CSRF) tokens, accepting all certificates with an empty 
verification method, and using obsolete hash functions 
to get rid of compiling errors.1 Virtually all of them 
are marked as accepted answers by the question ask-
ers. Collectively, 17 problematic SO posts were viewed 
622,922 times as of August 2017, as shown in Table 1. 
The high number of views is expected as SO estimates 
that 21 million site visitors are professional develop-
ers and university-level students preparing for cod-
ing careers.2 Some SO code makes its way into mobile 
devices—15.4% of apps contain code snippets copied 
from SO, and most of them contain at least one insecure 
code snippet.3 Additionally, we also observed cyberbul-
lying behaviors on SO, where a highly reputed person 
dismissed the secure answer offered by an SO user with 

a low reputation score. Such cyberbullying behaviors, if 
they widely exist, could discourage people from provid-
ing technically correct, sound, and useful information 
about secure coding.1

From the aforementioned SO posts, we, as security 
researchers, observed a disconnect between security 
principles and coding practices. Although a security 
researcher may believe that the CSRF problem has long 
been eradicated, the SO technical forum evidences the 
opposite. An SO user stated, “Adding csrf().disable() 
solved the issue!!! I have no idea why it was enabled 
by default.” CSRF was a high-profile discovery in 2007. 
Since then, this attack and its defenses (including using 
validation tokens and examining referrer headers) have 
routinely been taught in university cybersecurity classes. 
CSRF, also known as a confused deputy problem, is a web 
attack where the victim’s cached credential (e.g., session 
ID with a bank) is automatically appended to outgoing 
requests by the victim’s browser, even when the requests 
are forged by attackers, resulting in the attacker’s forged 
requests being successfully authenticated and processed 
as the victim’s own. Attackers stealing money from a 
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victim’s online bank account and changing a victim’s 
email password are just two examples of possible con-
sequences. A popular third-party security framework, 
Spring Security, provides built-in CSRF protection and 
enables protection by default. This protection mecha-
nism requires the framework users (e.g., developers of 
web applications) to include CSRF tokens when send-
ing state-modification HTTP requests. If a developer 
wants to avoid the inconvenience of creating or using 
CSRF tokens, they can call “csrf().disable()” to bypass 
the protection and destroy the security promise by 
Spring Security.

Some users post vulnerable code due to conceptual 
misunderstandings. For example, one SO user stated, 
“I want my client to accept any certificate (because I’m 
only ever pointing to one server).” This statement was 
made in the context of public-key certificate verifica-
tion, likely for a specialized app developed to connect to 
its back-end server. However, this ever-pointing-to-one-
server concept is troubling because without certificate 
verification, attacks such as Domain Name System poi-
soning, phishing apps, and man-in-the-middle attacks 
can easily break end-to-end security. Challenges in 
coding certificate verification have also been widely 
reported by researchers.

Vulnerable code is also making its way into widely 
used security software, impacting cryptographic func-
tions. For instance, in December 2015, Willem Pinck-
aers reported on Twitter about the global variable reuse 
in Juniper Networks’ Dual Elliptic Curve Deterministic 
Random Bit Generator.4 This coding error impacted 
an important loop variant, resulting in randomization 
operations not being executed at all, which resulted in 
exploitable vulnerabilities in network devices.5 In 2017, 
Equifax reported a data breach incident that impacted 
147 million people partly because of an expired digital 
credential.

From the technical discussion by developers on 
online forums, we perceived a strong message: develop-
ers need help. They need help with writing secure code 
and understanding the security implications under-
neath the coding options.

To help with secure coding, we designed Crypto-
Guard, which focuses on a specific category of vul-
nerabilities, that being the application programming 
interface (API) misuses of two Java libraries: Java 
Cryptography Architecture ( JCA) and Java Secure 
Socket Extension ( JSSE). We made this design choice 
for two reasons. First, Java developers typically use 
the APIs offered by both libraries to ease their cryp-
tographic implementation, but misusing some of the 
APIs can make the resulting implementation exploit-
able by attackers. Second, our prior work1 and studies 
by other researchers3 all show that many developers 

misunderstand or misuse the APIs of JCA and JSSE 
and need help in understanding the security impli-
cations of alternative API options and addressing 
API-misuse issues.

Why Are Some API Misuses  
Difficult to Detect?
Although string matching can detect occurrences of 
insecure parameters (e.g., uses of insecure crypto-
graphic hash functions MD5 and SHA1, weak block 
cipher Data Encryption Standard, or small key sizes), 
complications may arise in large software projects.

Tracking variable values across method invocation is 
one challenge, where API arguments are instantiated else-
where in a different method or class. Thus, to determine 
whether arguments of a cryptographic API are secure, one 
needs to track data flows (e.g., definition-and-use relation-
ships) across procedure boundaries. Static, interproce-
dural data flow analysis forms the basis of our detection. 
Specifically, we utilize interprocedural backward slicing to 
collect program statements (known as the program slice6) 
that impact an element of interest (referred to as the slicing 
criterion) and then scan the slices for misuse patterns.

Hasn’t Static, Interprocedural Dataflow 
Analysis Been Known for Decades?
Yes; however, specializing and customizing general- 
purpose static analysis techniques (such as Soot, a static 
program analysis framework) for specific security detec-
tion requires much innovation. One challenge is the seman-
tic gap, the difference in meaning between cryptography 
and code. An important process in our CryptoGuard work 
is to determine exactly what to look for in programs.

We need to map abstract cryptographic concepts 
to concrete programming elements and data flow 

Table 1. The view numbers of 17 influential insecure posts on the 
SO forum.1

Topic of posts

Total 
number  
of views 

Number  
of posts

Minimum 
number  
of views

Maximum 
number of 
views

Disable CSRF 
protection

39,863 5 261 28,183

Trust all 
certificates

491,567 9 95 391,464

Obsolete hash 
functions

91,492 3 1,897 86,070

Total 622,922 17 — —

1The numbers were collected in August 2017.
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patterns. Table 2 presents multiple types of crypto-
graphic API misuses in Java and the precision results 
of CryptoGuard analysis.7 Precision is the percent-
age of true misuses out of all reported misuses. In 
complicated cases, we need to break down the detec-
tion plan into multiple steps, each mapped to a sin-
gle round of static program analysis tasks. One such 
example appears in vulnerability type 14 in Table 2. In 
this case, detecting insecurely configured public-key 
cryptosystems requires two rounds of backward slic-
ing, one round of forward slicing, and field sensitivity 
analysis. This manual mapping process is difficult and 
time consuming, requiring knowledge of both cryp-
tographic coding and program analysis. Addressing 
the semantic gap is a critical process in building many 

security defenses, such as malware detection and net-
work intrusion detection.

Hasn’t This Kind of Detection  
Been Done Already?
Indeed, publications aiming at exposing insecure cryp-
tographic coding exist, e.g., CryptoLint8 and FixDroid.9 
These earlier efforts showed the existence of coding 
problems by reporting instances of insecure code dis-
covered in real-world apps and software projects.

However, exposing vulnerabilities and designing 
industrial-strength scanners have entirely different 
requirements, goals, and testing metrics. For example, 
exposing vulnerabilities shows the existence of some 
misuses, while the latter (our work) strives to system-
atically produce reports that aim to cover a wide range 
of misuses. Thus, it is unclear how well their proto-
types work in practice. To produce deployable-grade 
tools, accuracy and scalability challenges need to be 
addressed. The number of false positives must be low, 
without sacrificing the false-negative rate. Different 
goals create opportunities for different-but-equally 
valuable security policies, algorithms, insights, princi-
ples, and artifacts. Thus, we need both types of contri-
butions as they are complementary.

We highlight one data flow analysis challenge asso-
ciated with deployment-grade tool development work 
like ours, which an ad hoc vulnerability exposure study 
might not be able to address. CryptoGuard aims to 
capture data flows through fields (i.e., data members) 
of a class in Java. When an inappropriate value is passed 
through the field of an object, our analysis can accu-
rately keep track of the field without involving other 
unnecessary fields of this object. Such an analysis is 
called field sensitive as it identifies data flows in the form 
of field access (e.g., getter methods). This data flow dif-
fers from the typical assignment- or argument-based 
data flows. If an analysis does not capture the influ-
ence through fields, then it is field insensitive. 
Field-insensitive analysis may cause false negatives, 
which means missing the detection of potentially vul-
nerable API misuses in our case.

Intuitively, field sensitive analysis—differentiating 
dataflows through different fields—is likely more accu-
rate than field-insensitive analysis. However, there is a 
tradeoff. Maintaining field sensitivity may incur over-
head. In particular, field-sensitive analysis may involve 
multiple levels of exploration, for example, as a result 
of multiple levels of getters, i.e., a getter within another 
getter function. Exploring such data flow rabbit holes 
takes time, yet the obtained results may or may not be 
relevant to security.

Thus, one needs to characterize how the depth-of-
field-sensitivity exploration, that is, the number of getter 

Table 2. CryptoGuard’s precision under categories of 
cryptographic vulnerabilities excluding the category on 
untrusted pseudorandom number generator (PRNG), when 
evaluating 46 Apache projects.7

Vulnerability types
Number 
of alerts

Number 
of true 
positives Precision (%)

 1  and 2. Predictable keys 264 248 94.1

 3.  Hardcoded KeyStore 
password 

148 148 100

 4.  Dummy hostname 
verifier 

12 12 100

 5.  Dummy certification 
validation 

30 30 100

 6. Improper socket 4 4 100

 7. Using HTTP 222 222 100

 8. Predictable seeds 0 0 —

 9. Static salts 112 112 100

10.  Electronic cookbook 
mode for symmetric 
cryptography 

41 41 100

11.  Static initialization 
vector 

41 40 97.6

12. <1,000 PBE iterations 43 42 97.7

13.  Broken symmetric 
cryptoalgorithm 

86 86 100

14.  Insecure public-key 
cryptography 

12 12 100

15. Broken hash 138 138 100

Total 1,153 1,135 98.4

PBE: password-based encryption.
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methods in a call stack that the analysis keeps track of, 
impacts accuracy and scalability. What is the right depth 
of exploration to use? How would the choice of explora-
tion depth impact detection accuracy and runtime? We 
conducted an experiment with 30 Apache root subproj-
ects and varied the exploration depth from one to 10. A 
depth of one is where a field-related method is invoked 
by the main slice. The experiment evaluated our ability 
to detect constant values that were relevant to the use of 
cryptography.

We obtained some interesting findings. Although 
the choice of exploration depth impacts detection 
accuracy, our results showed that a depth of one pro-
vides a good balance in our experiments.7 How the 
depth-of-field exploration impacts detection accuracy 
(represented by F1 scores) is shown in Figure 1. In this 
experiment, regardless of the analysis depth, the num-
ber of crypto-relevant constants detected stays the same 
(the horizontal line in Figure 1), which we manually 
confirmed. The F1 score, based on both precision and 
recall, peaked at a depth of one. We observed that the 
deeper analysis sometimes results in more pseudoin-
fluencers, i.e., the discovered constants that do not 
have security impacts, making the F1 score drop. The 
runtime evaluation showed that increasing the analysis 
depth does not significantly increase runtime.7 Based 
on these results, we set the field-sensitive analysis depth 
to one in all later experiments.

This kind of rigorous and intricate field-sensitive 
analysis improves accuracy and provides useful insights 
for understanding detection capabilities. In contrast, 
prototypes designed only to expose vulnerabilities 
often miss such insights.

Then, for a researcher who would like to contrib-
ute to deployment-grade code scanners, what is the 
number-one priority? What is the biggest feature that 
would make such scanners useful in practice?

A Deployment Enabler: False-Positive 
Reduction
Arguably, precision is the number one requirement of 
a code scanner in practice. All practical static program 
analyses are approximations; they estimate program 
behaviors. This estimation may cause errors such as 
overestimating vulnerabilities, which would generate 
false positives, i.e., false alarms. Confirming whether an 
alert is real or not needs to be done manually by experts 
and is often time consuming. This section explains how 
CryptoGuard minimizes false positives in Java API mis-
use detection.

Our approach can be understood as a conditioned 
program slicing. Once program slices are obtained, we 
scan them for suspicious elements such as hardcoded 
passwords. However, our initial attempt at detection 

returned many false positives, i.e., many irrelevant con-
stants were flagged. Vulnerability types 1, 2, 3, 9, 11, 
and 12 (see Table 2) produced most of the false alarms 
because these misuses are constant oriented. For exam-
ple, the detection of the first three vulnerability types 
searches for hardcoded keys and KeyStore passwords. 
Flagging all constants in a slice may create false posi-
tives as some constants may have nothing to do with 
security or are incompatible with the context (e.g., type 
mismatch). In other words, not all constants appearing 
in cryptographic APIs are important. Some of them do 
not impact security and can be safely ignored. We refer 
to these constants as pseudoinfluencers.

As a pseudoinfluencer example, an off-the-shelf 
detection method would report “UTF-8” as a hard-
coded key when seeing the code

byte[] keyBytes = key.getBytes (“UTF-8”).

However, UTF-8 describes a character encoding 
and can be safely excluded. The sizes and indices of 
arrays are another type of pseudoinfluencer and can be 
removed from slices. We summarize these pseudoinflu-
encers into categories and identify them by our refine-
ment insights.

Another category of pseudoinfluencer is identifi-
ers, specifically those of value sources. For example, in 
map.get(“ENCRYPT_KEY”), “ENCRYPT_KEY” is an  
identifier (like a name) used for retrieving a value from 
the Java Map data structure, not the actual element. 
Thus, this type of identifier can be safely ignored. Array 
indices are another example of constants that should 
be excluded as they do not cause cryptographic  
API misuses.

120

130

140

150

160

170

180

190

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1 2 3 4 5 6 7 8 9 10
Depth of Field-Exploration Analysis

F
1 

S
co

re

D
is

co
ve

re
d 

C
on

st
an

ts

Discovered Constants F1 ScoreTrue Positives

Figure 1. The impact of field-exploration depth (in the x-axis) on detection 
accuracy,7 which is represented by the F1 scores (left y-axis), number of 
discovered constants (right y-axis), and number of crypto-relevant constants 
discovered (149, the horizontal line).
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We developed five language-specific refinement 
algorithms to automatically reduce false positives. 
These five types of refinement are summarized by 
collecting and analyzing the sources that cause false 
positives. We find that most of them are derived from 
language-specific constants. All five language-specific 
strategies in CryptoGuard are for systematically 
removing irrelevant constants or predictable values 
from slices, including the removal of state indicators, 
resource identifiers, bookkeeping indices, contextu-
ally incompatible constants, and constants in infea-
sible paths.7 In our experiments, the most effective 
refinement insight for Apache and Android code 
is the removal of array or collection of bookkeep-
ing information. These five types of refinement 
algorithms drastically reduced the number of total 
alerts by 76% for 46 Apache projects and by 80% 
for 6,181 Android apps tested. Because Apache 
projects are open source, we were able to manu-
ally confirm that all the removed alerts are indeed  
false positives.

With refinements, CryptoGuard’s accuracy is 
of deployment grade. Our manual source-code 
analysis on the 1,153 non-PRNG alerts confirmed 
98.4% precision (Table 2), which would be rea-
sonably manageable in a real-world deployment. A 
manual investigation reveals that some false posi-
tives are related to irrelevant constants discovered 
by the field analysis. A false-positive case is due to 
path insensitivity in our current data flow analysis. 
CryptoGuard cannot tell whether a PRNG method 
is used in a security sensitive context or an insen-
sitive context, which also generates false positives. 
We could not evaluate the false-negative rate in this 
experiment due to the lack of ground truth. This 
problem motivated us to produce two benchmarks, 
which are described next.

Benchmarks and Comparison  
With the State of the Art
As there was not a benchmark at the time, all of our 
ground-truth confirmation was performed manually, 
which was a time-consuming and tedious task. This effort 
strongly motivated our later work on benchmark develop-
ment, including the CryptoAPI-Bench, with 181 manually 
created test cases, and ApacheCryptoAPI-Bench, with 121 
test cases from 10 real-world Apache software projects.10

For the first time, these benchmarks enable quanti-
tative and side-by-side comparisons with other state-of-
the-art solutions from industry and academia. Because 
security coverages of the four tools vary, our compari-
son needs to be conducted within the scope for which 
the tool is designed. In other words, we avoid testing a 
tool against test cases that the tool is not designed to 

detect. To address this requirement, our comparisons 
are carefully performed on the common subset of the 
vulnerability types, i.e., the shared security capabilities 
across all four tools being evaluated. Because of the lack 
of documentation in some tools, we need to experimen-
tally identify the shared security capability. We infer a 
tool’s coverage based on whether or not it ever generates 
any alert in that category.

For ApacheCryptoAPI-Bench, CryptoGuard reported 
the highest number of true positives, whereas the free 
online version of a commercial tool missed the most 
cases.10 Interestingly for SpotBugs, although it per-
formed miserably (0% recall and precision) under 
the 84 advanced test cases in CryptoAPI-Bench, it did 
quite well under ApacheCryptoAPI-Bench, success-
fully detecting many misuses. These results suggest 
that real-world code is likely much simpler than manu-
ally created advanced test cases in terms of data flow pat-
terns. With ground truth, these benchmarks also enable 
researchers to investigate and compare false negatives. 
CryptoGuard’s small number of false negatives come 
from either the truncated field-exploration analysis or 
vulnerabilities that are not yet covered. Although it per-
formed well in the two benchmarks, we admit that it is 
possible for CryptoGuard to miss some cases neglected 
by the benchmark coverage.

Hardening Apache Projects
CryptoGuard also enabled us to identify and report 
several cryptographic API misuses in high-profile 
Apache projects, including various kinds of predict-
able secrets, vulnerable TLS/SSL certificate verifica-
tion, hardcoded salts, and insufficient iteration counts 
in password-based encryption (PBE).7 The Inter-
net Engineering Task Force (IEFT) recommends a 
minimum iteration count of 1,000 for PBE, a popular 
encryption approach in real-world software projects. 
A widely used project for managing Hadoop secu-
rity sets the iteration to the length of the password 
plus one, which is too small. The same method also 
used the password’s MD5 hash as salt, which is insuf-
ficiently random. The vulnerable code is shown in 
“Listing 1.” In addition, the iteration’s dependence 
on the length of the password may also create a tim-
ing side-channel—an adversary capable of measuring 
PBE execution time (e.g., in multitenant environ-
ments) might be able to infer the length of the pass-
word. After our disclosure, several Apache projects 
responded to the vulnerabilities, including Ranger, 
Tomcat, Hadoop, Hive, Spark, Ofbiz, and Ambari. 
For example, Apache Spark removed the support of 
the dummy hostname verifier and dummy trust store. 
Apache Ranger fixed constant default values for PBE 
and insecure cryptographic primitives.7
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Listing 1. A real-world PBE code snippet with multiple 
vulnerabilities. The salt is computed as the MD5 hash 
of the password (lines 2 and 3). As a result, an adversary 
may quickly recover the password from a leaked salt. In 
addition, the iteration count is set as the length of the 
password plus one, which is far less than the required 
1,000 (line 6).

1  PBEKeySpec getPBEParameterSpec(String 
password) throws Throwable {

2      MessageDigest md = MessageDigest.
getInstance(MD_ALGO);//MD5

3      byte[] saltGen = md.digest(password.
getBytes());

4      byte[] salt = new byte[SALT_SIZE];
5      System.arraycopy(saltGen, 0, salt, 

0, SALT_SIZE);
6      int iteration = password.toChar 

Array().length + 1;
7      return new PBEKeySpec(password.

toCharArray(), salt, iteration);}

Frustratingly, not all reported high-severity issues 
are fixed because some groups require an executable 
exploit demonstration, and our small team just does 
not have the resources to develop them. A possible 
research direction is to design an easy-to-use frame-
work that could automate cryptographic exploit gen-
eration—sort of like “metasploit” for cryptographic 
code. In some other cases, developers acknowledged 
the issue,; however, the code could not be hardened 
due to backward compatibility or humanless deploy-
ment environments.7

For Android apps, 95% of API misuses came from 
libraries, including those from Google, Facebook, 
Apache, Umeng, and Tencent, not from the apps’ own 
code. We also found that 25.3% of Android apps had 
a dummy trust manager (vulnerability type 5), higher 
than that of Apache projects (11.7%).

Oracle’s Integration and Industrial 
Scanning Scalability
Oracle Labs Australia implemented CryptoGuard’s 
detection approach in their internal checker Par-
fait,11 with the help of Ya Xiao as a summer intern in 
2019. Parfait12 is a highly scalable static code checker 
designed for analyzing codebases in the scale of millions 
of lines.11,13 Its development led by Cristina Cifuentes 
started in 2007 and spans considerably more than a 
decade. Parfait uses  low level virtual machine not Soot, 
thus CryptoGuard’s detection and refinement approach 
needed to be reimplemented for Parfait.

We conducted experiments to evaluate Parfait’s new 
cryptographic code-scanning capability. When tested 

on 11 large codebases (nine Oracle internal products 
and two open source projects), Parfait’s cryptographic 
scanner generated 42 alerts, all of which were manually 
verified as true positives (100% precision).11 The low 
number of false alarms reported in this industrial set-
ting experiment further confirms the deployability of 
our detection approach. Weak salts, low iteration counts 
in PBE, and bypassing certificate verification were 
among the issues identified. An evaluation of Parfait on 
CryptoAPI-Bench gave a similar accuracy performance 
as CryptoGuard’s, as expected.

A static analysis with ultralow false positives is pos-
sible. The widely held belief that static analysis gener-
ates too many false alarms to be practically useful is not 
accurate. As demonstrated by CryptoGuard7 and Ora-
cle’s Parfait,11 there exist application-specific methods 
that systematically eliminate categories of false posi-
tives. In our problems, false positives are in the form 
of irrelevant constants. Identifying and systematizing 
the causes of false positives requires several months’ 
one-time manual effort by Sazzadur Rahaman, yet the 
payoff is substantial.

Both CryptoGuard and Parfait spent substantial 
efforts on scalability, which is equally as important 
as accuracy for a deployment-quality code scanner. 
Understandably, developers prefer faster scanners that 
support continuous integration and delivery practice. 
Parfait has a creative, layered scheduling architecture 
that triages program analysis tasks from quickest to 
slowest, aiming at maximizing the number of tasks com-
pleted and issues found in a given period.12 Backward 
slicing analyses are broken down and assigned to differ-
ent layers based on their call depth. Specifically, at each 
layer, if the analysis is not conclusive (e.g., requiring 
the inspection of another method), then further analy-
ses will be scheduled at the next layer. This layer-based 
scheduling approach is different from the conventional 
approach of fully completing one analysis before start-
ing another. Layered scheduling allows short pro-
gram analysis tasks to be executed first, conceptually 
similar to a breadth-first approach (as opposed to a 
depth-first search). In practice, complex analysis paths 
do not necessarily yield more vulnerabilities as Crypto-
Guard made similar observations in its field-sensitivity 
exploration experiment (see Figure 1). As illustrated in  
Figure 2, Parfait’s layered scheduling design pays off; it 
finishes within 10 min on a typical workstation for most 
of the production codebases screened, with multiple 
projects having millions of lines of code.

With the focus on cryptographic code, CryptoGuard 
speeds up its screening by excluding irrelevant code and 
analyzing independent subprojects concurrently. In our 
case, building a complete general-purpose data flow 
graph is unnecessary as the cryptographic functionality 
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is often confined within a small fraction of the project. 
Our data flow analysis is demand driven; it starts from 
the slicing criteria and propagates only to necessary ele-
ments. Thus, this specialized analysis avoids touching 
irrelevant subprojects and code regions. For Apache, 
CryptoGuard’s average observed runtime was 3.3 min, 
with a median of approximately 1 min on a typical 
workstation. Including the cutoff ones, the average run-
time and median were 3.2 and 2.85 min, respectively. 
(We terminated the unfinished app analysis after 10 
min.) When evaluating 30 randomly selected Apache 
root subprojects [the lines of code (LoC) ranging from 
471 to 1 K] and 30 Android applications (the LoC rang-
ing from 1,453 to 0.4 K), CryptoGuard demonstrated 
higher efficiency than a leading academic solution in 
this space14.

Exciting Future Directions
An exciting future direction is automatic code genera-
tion and suggestion, which aims at reducing or elimi-
nating error-prone manual coding. The great success 
of natural language processing motivates the research 
of harnessing machine learning techniques to gener-
ate code. Programming languages have rigid structures, 
which are seemingly easier to predict than natural lan-
guages. However, they have a low tolerance for syntac-
tical or semantic mistakes, especially for cryptographic 
code. Clearly, machine learning models for natural lan-
guage generation cannot be directly applied to code. 
Large-scale code data sets and benchmarks also need 
to be developed for systematically measuring the accu-
racy of code-completion solutions. Such measurement 
efforts would be equally as important as proposing new 
neural network models.

Another direction is to create an easily configurable 
detector to automatically generate detection algorithms 
on the input of seminatural language statements speci-
fying misuse patterns. Such a transformation capability 

would be powerful, making it easier to extend Crypto-
Guard by nonexperts.

For further reducing false alarms, there is a need 
to approximate and prioritize security-sensitive code 
regions. For example, raise an alert only when Random 
is used for security-sensitive tasks, such as generating 
session IDs and password reset links, and needs to be 
replaced by SecureRandom. One approach is to esti-
mate the sensitivity of programming contexts.

We can leverage CryptoGuard’s success with Java to 
cover other programming languages such as Python. We 
have also begun examining authentication and autho-
rization misuses in the Java Spring enterprise frame-
work.15 The abuse of Spring security’s customization 
capabilities is a source of application insecurity, such as 
lifelong access tokens, disabling CSRF protection, and 
hardcoded secrets.

Making tools like CryptoGuard fit into the 
larger toolchain used in industrial software develop-
ment settings would help increase the adoption of 
security solutions. For example, we could produce 
development-time code-scanning capabilities in the 
form of compiler plug-ins and integrated development 
environment (IDE) plug-ins. We have demonstrated 
both Maven and Gradle compiler plug-ins for Cryp-
toGuard. Ongoing work is on building IDE plug-ins, 
which will help detect and correct misuses early. One 
technical focus is to support the ability to analyze par-
tial code. Another future direction is to systematically 
measure the usability of code-scanning tools in prac-
tice, in particular analyze the factors that contribute 
to developers’ code change decisions, e.g., how to best 
provide information to help developers decide whether 
or not to modify the code region as suggested by tools.

C ommunity support is crucial to promote practi-
cal deployment-quality tools. To broaden the 
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Figure 2. The runtime (left y-axis) of Parfait for screening 11 real-world codebases whose lines of code are also shown 
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definition of novelty by recognizing deployable secu-
rity will better align the most pressing cyberspace needs 
with researchers’ efforts. Several notable initiatives have 
already started doing so, including the IEEE Secure 
Development Conference (sponsored by the IEEE Com-
puter Society Technical Committee on Security and 
Privacy), the Annual Computer Security Applications 
Conference’s (ACSAC)’s hard topic theme on deploy-
able and impactful security, the ACM Digital Threats: 
Research and Practice journal, the Real World Crypto 
Symposium, and the Transition to Practice designation 
in the National Science Foundation funding programs. 
In addition, some conferences such as ACSAC and 
ACM Conference on Data and Application Security and 
Privacy encourage and incentivize artifacts and data sub-
missions, which are all extremely encouraging.

Democratizing security knowledge is also a must. It 
will help more software developers and practitioners 
understand cutting-edge cybersecurity findings, well 
beyond our small group of researchers. It is important 
to consciously develop outreach resources, such as tuto-
rials, short lessons, videos such as the “Introduction to 
Software Security” video series by Elisa Heymann and 
Barton Miller,16 and security contests such as Build 
It, Break It, Fix It secure-coding competition series.17 
These types of efforts need support and recognition 
from our cybersecurity community. 
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