
Broadly Enabling KLEE to Effortlessly Find Unrecoverable Errors
in Rust

Ying Zhang∗
yingzhang@vt.edu

Virginia Tech
Blacksburg, VA, USA

Peng Li∗
peli@zoox.com

Zoox
Foster City, CA, USA

Yu Ding∗
dingelish@google.com

Google
Mountain View, CA, USA

Wang Lingxiang∗
lingxwang@microsoft.com

Microsoft
Redmond, WA, USA

Dan Williams
djwillia@vt.edu
Virginia Tech

Blacksburg, VA, USA

Na Meng
nm8247@vt.edu
Virginia Tech

Blacksburg, VA, USA

ABSTRACT
Rust is a general-purpose programming language designed for per-
formance and safety. Unrecoverable errors (e.g., Divide by Zero)
in Rust programs are critical, as they signal bad program states
and terminate programs abruptly. Previous work has contributed
to utilizing KLEE, a dynamic symbolic test engine, to verify the
program would not panic. However, it is difficult for engineers
who lack domain expertise to write test code correctly. Besides, the
effectiveness of KLEE in finding panics in production Rust code has
not been evaluated. We created an approach, called PanicCheck, to
hide the complexity of verifying Rust programs with KLEE. Using
PanicCheck, engineers only need to annotate the function-to-verify
with #[panic_check]. The annotation guides PanicCheck to gener-
ate test code, compile the function together with tests, and execute
KLEE for verification. After applying PanicCheck to 21 open-source
and 2 closed-source projects, we found 61 test inputs that triggered
panics; 59 of the 61 panics have been addressed by developers so far.
Our research shows promising verification results by KLEE, while
revealing technical challenges in using KLEE. Our experience will
shed light on future practice and research in program verification.
ACM Reference Format:
Ying Zhang, Peng Li, Yu Ding,Wang Lingxiang, DanWilliams, and NaMeng.
2024. Broadly Enabling KLEE to Effortlessly Find Unrecoverable Errors in
Rust. In 46th International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP ’24), April 14–20, 2024, Lisbon, Portugal.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3639477.3639714

1 INTRODUCTION
Rust was created to ensure high performance comparable to that
offered by C and C++, while emphasizing the code’s safety—the
Achilles heel of the other two languages [1]. Rust’s error handling
offers a robust and expressive mechanism that encourages develop-
ers to handle errors gracefully and explicitly.
∗Indicates authors who were previously employed by ByteDance Ltd.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0501-4/24/04.
https://doi.org/10.1145/3639477.3639714

Rust groups errors into two categories: recoverable and unre-
coverable errors [2]. A recoverable error (e.g, File Not Found) is
an error that does not cause the program to terminate abruptly.
A program can retry the failed operation or specify alternative
actions when it encounters a recoverable error [3]. For instance, if
a Rust program attempts to open a file that does not exist, it is a
recoverable error because the program can then proceed to create
the file [4]. An unrecoverable error (e.g., Index Out Of Bounds)
causes a program to fail abruptly. A program cannot revert to its
normal state if an unrecoverable error occurs. It cannot retry the
failed operation or undo the error. Namely, unrecoverable errors
are symptoms of bugs, more dangerous than recoverable ones.

Most languages do not distinguish between these two kinds
of errors; they handle both in the same way using mechanisms
such as exceptions. Rust does not have exceptions [3]. Instead, it
has the type Result<T, E> for recoverable errors and the panic! macro
(a Rust macro is like a function) that stops execution when the
program encounters an unrecoverable error. By checking whether
the return-type of a Rust function is Result<T, E>, developers can
easily identify recoverable errors, and implement code to eagerly
handle those errors before compiling or running their software.
However, it is much harder to identify unrecoverable errors. This is
because such errors are not signaled by any dedicated return-type;
developers have to reason about program semantics intensively to
reveal errors. For simplicity, this paper uses panics to consistently
refer to unrecoverable errors [5].

To explore potential panics in Rust code, prior work leverages
symbolic execution to verify Rust programs. Specifically, they tried
to compile Rust source code to LLVM bitcode, and used KLEE [6–8],
a symbolic execution engine for LLVM, to symbolically execute Rust
test code and uncover panics. For instance, Rust verification tools
(RVT) [8, 9] is a collection of tools/libraries to support both random
testing and verification of Rust programs. RVT provides libraries to
patch the LLVM IR to support KLEE features like symbolic values. It
requires users to manually define parametrized unit tests, compiles
those tests together with Rust code into bitcode files, and automates
the process of invoking KLEE on bitcode files.

However, it is challenging for developers who lack the domain
expertise to write a parametrized unit test [10]. This specialized
skill set requires an in-depth understanding of the function’s intri-
cacies, potential edge cases, and symbolic execution background
to call that function in specialized ways [11]. Besides, even with

https://doi.org/10.1145/3639477.3639714
https://doi.org/10.1145/3639477.3639714

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Ying Zhang, Peng Li, Yu Ding, Wang Lingxiang, Dan Williams, and Na Meng

#[panic_check]
fn fname(param_list)
-> return_type{…}

I. Context
Extraction

II. Symbolic
Variable Creation

III. Test
Generation

fn fname(param_list)
-> return_type{…}
#[test]
fn test_fname() {…}

PanicCheck

Test input(s)
triggering

panics

IV. KLEE
execution

Figure 1: PanicCheck consists of four phases

RVT’s help, it is still infeasible to do a large-scale evaluation due
to too much human effort to configure and write tests for every
project. This raises questions about its real-world applicability and
reliability when used in Rust-based environments. As a result, many
developers may hesitate to adopt symbolic execution until user-
friendly tools emerge or case studies emerge that demonstrate its
prowess in the Rust ecosystem.

To fill these gaps, we developed PanicCheck, a semi-push-button [12]
dynamic test verification tool tailored for Rust. PanicCheck only
requires engineers to annotate functions with #[panic_check]. It then
handles compilation, test generation, symbolic execution, and panic
checking automatically. This automation enables large-scale empir-
ical evaluation of PanicCheck on Rust code. As shown in Figure 1,
with PanicCheck, we can verify function fname(...) by annotating it
with #[panic_check]. Given the annotated program, PanicCheck goes
through four phases. Phase I compiles the program to extract the
function name and parameters. Phase II determines how to create
a symbolic variable for each parameter. Phase III creates and com-
piles a parametrized unit test to declare symbolic variables and call
fname(...) with those variables. Phase IV executes the test with KLEE,
to output any test inputs that trigger panics.

We evaluated PanicCheck and KLEE on real-world Rust projects,
guided by two goals. First, we aimed to rigorously measure KLEE’s
effectiveness at finding panics in production Rust code. Second, we
sought to identify areas for improvement in the symbolic execution
workflow for Rust. We applied PanicCheck to 21 popular open-
source Rust programs, and 2 large production-grade closed-source
Rust programs that served as key infrastructures at ByteDance. We
annotated hundreds of functions with #[panic_check], and passed all
annotated functions to PanicCheck for program verification. In total,
PanicCheck revealed 61 panics in 6 of the projects. By examining
developers’ later changes to their projects, we found that 52 of the
panics were fixed. Furthermore, we filed bug issues or pull requests
for the remaining nine panics; so far, developers have fixed seven.
The results provide new insights into KLEE’s capabilities as well as
guides future tool development.

We made the following contributions in this paper:

• We created a tool PanicCheck, which wraps the usage of
KLEE and streamlines the verification process. Because little
manual effort is required, PanicCheck enables us to conduct
the large-scale case study, and helps us avoid human errors
when creating unit tests.

• We conducted a case study by applying PanicCheck to 23
real-world Rust projects, in order to verify hundreds of Rust
functions in those projects. No prior work conducts such a
large-scale study as what we did.

• By observing the runtime behaviors of KLEE and analyzing
all 61 panics it revealed in our study, we characterized the
strengths and weaknesses presented by the tool.

In the following sections, we will first introduce the technical
background KLEE and RVT (Section 2.1), and describe a running
example (Section 2.3). Then we will explain PanicCheck (Section 3)
and our experiment in detail (Section 4).

2 BACKGROUND AND MOTIVATION
In this section, we will first introduce the technical background of
KLEE and RVT. Then we will describe a concrete scenario of Rust
code verification to motivate our research.

2.1 KLEE
KLEE is a dynamic symbolic execution engine built on top of the
LLVM compiler infrastructure [13], to automatically explore paths
through a program and decide what inputs cause which part of the
program to execute. Theoretically speaking, it can run any program
compiled to LLVM bitcode. In practice, it has been mainly applied
to C/C++ programs.

Given a function-to-verify (FTV), KLEE conducts inter-procedural
analysis to explore various possible execution paths, and synthe-
sizes the constraints on symbolic variables for explored paths. For
each path, KLEE uses the constraint solver STP to solve the path
condition, to decide whether that path is feasible. For each feasible
path, KLEE generates a concrete input triggering the path, and
checks if there are any values that can cause an unrecoverable error.
KLEE is known to have the following limitations [14].

• Path explosion: The number of paths through a program
can be exponential in the size of the program. Therefore,
unless the program under analysis is small, KLEE cannot
finish checking all possible paths in a timely manner and
users need to set a timeout to terminate its execution.

• Bounded checks for loops: In general KLEE cannot show
that a loop will always behave correctly. It only checks some
of the possible executions of a loop.

• Long time spent in constraint solving: When some path
conditions or constraints are hard to solve, STP may spend
overly long time trying to find satisfying value assignments.

The kinds of bugs KLEE can find are memory errors (e.g., buffer
overflows and null-pointer dereference), division/modulo by zero,
over shifts, and assertion violations [15].

2.2 Rust Verification Tools (RVT)
RVT [8, 9] is a collection of tools and libraries to support both
random testing and verification of Rust programs. It provides the
functionalities to compile the Rust projects to LLVM bitcodes and
invoke KLEE to verify the program against the LLVM bitcodes. To
write a test with RVT, developers need to 1) define a test function
to assert certain properties for their program (e.g., no panic will
occur), 2) specify how each parameter should be symbolized using

Broadly Enabling KLEE to Effortlessly Find Unrecoverable Errors in Rust ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

RVT’s domain-specific language (DSL) to generate the test inputs.
Then, developers invoke RVT to compile the program into LLVM
bitcode, synthesize the constraints on symbolic variables for each
execution path, and decide whether the property always holds for
the function-to-verify.

It can be challenging for developers to manually write test func-
tions with RVT due to two reasons. First, the test functions involve
the traits or APIs defined by RVT (e.g., abstract_value(...)), requir-
ing that developers have sufficient domain knowledge of RVT and
KLEE. Second, when a test function needs to prepare parameter
inputs of complex data types (e.g., u8 slice reference), developers
have to carefully prepare compound data structures (e.g., vector),
by properly composing symbolic variables.

2.3 A Motivation Example
Lines 1–13 in Listing 1 show a function from a real-world Rust
crate (i.e., compilation unit [16]): integer-encoding-rs-1.1.7 [17].
The function decode_var(...) takes in a variable of type &[u8] as input.
Here, [u8] means u8 slice—a dynamically sized type representing a
view into a contiguous sequence of elements of type u8 [18]; &[u8]
refers to any reference to a variable of type u8 slice. Once an input
is provided, the function decodes the input, and returns a tuple that
includes (1) the decoded content and (2) a value of type usize (i.e.,
the pointer-sized unsigned integer type).

To verify the function together with all functions called by that
function (e.g., zigzag_decode(result)) via RVT, developers need to man-
ually craft a test function similar to the one shown by lines 16–28
of Listing 1. The demonstrated test code prepares a value of type
&[u8], calls decode_var(...) with that value, and checks whether any
panic occurs. Specifically, to prepare the input parameter, the test
code first declares a vector of u8, with an initial size set to 30 (see
lines 18–19). Next, it defines 30 symbolic variables of type u8, by
repetitively calling the function u8::abstract_value() (see lines 20–21).
These symbolic variables are important for KLEE to later verify the
program via symbolic execution. After declaring 30 symbolic vari-
ables and storing them into the vector variable v (see lines 20–23),
the test code tentatively makes the call decode_var(&v), where &v is a
vector reference and is also of the type u8 slice reference.

In summary, when developers write a test, they need to:
• Identify the types of input parameters, no matter whether
they are primitive, compound, or collection types.

• Write code to create symbolic variables of various types that
KLEE can interpret. When a variable has a compound or
collection type, decide on the size and create elements to put
into the compound or collection variable.

• Write the code for verification and panic checking.
To save developers’ manual effort and ensure the quality of pro-

gram verification, we created PanicCheck — an automatic approach
to generate test functions and conduct program verification using
those test functions via KLEE. Given a function annotated with
#[panic_check] (see Listing 2), PanicCheck generates a test function
semantically equivalent to lines 16–28 in Listing 1.

3 PANICCHECK
As described above, it can be tedious and error-prone for developers
to manually write test functions, when they want to verify lots of

Listing 1: A Rust program under testing and the test function
manually defined for the usage of RVT’s KLEE backend

1 //Decode a zigzag encoding value from the slice. Returns the value

and the number of bytes read from the slice↩→
2 fn decode_var(src: &[u8]) -> (Self, usize) {
3 let mut result: u64 = 0;
4 let mut shift = 0;
5 for b in src.iter() {
6 let msb_dropped = b & DROP_MSB;
7 result |= (msb_dropped as u64) << shift;
8 shift += 7;
9 if b & MSB == 0 || shift > (10 * 7) {
10 break;
11 }
12 }
13 (zigzag_decode(result) as Self, shift / 7 as usize)
14 }
15
16 // the test code that a developer needs to write if s/he wants to

adopt the RVT's KLEE backend↩→
17 #[test]
18 fn test_decode_var(){
19 let len = 30;
20 let mut v = Vec::with_capacity(len);
21 for _ in 0..len {
22 let element = u8::abstract_value();
23 v.push(element);
24 }
25 let result = panic::catch_unwind(|| {
26 let _ = decode_var(&v);
27 });
28 assert!(result.is_ok());
29 }

Listing 2: A Rust program annotated with #[panic_check]

1 #[panic_check]
2 fn decode_var(src: &[u8]) -> (Self, usize) { ... }

Rust functions. To save developers’ effort and ensure verification
quality, we developed PanicCheck. Given a function annotated with
#[panic_check], PanicCheck parses that function to extract the function
name, parameters, and their data types. It then generates a test func-
tion. The test function is compiled into LLVM bitcode, so that KLEE
is applicable to verify decode_var(...). The compilation process also
injects value checks to guard critical instructions (e.g., arithmetic
or bitwise operators), and adds panic! macros when value checks fail.
PanicCheck streamlines the verification process by synthesizing
tests for given Rust code, and invoking the existing toolchain in
RVT for Rust-to-bitcode conversion as well as KLEE application.

As shown in Figure 1, PanicCheck defines Phases I–III to generate
a test function from a given annotated function, and defines Phase
IV to execute the test function with KLEE. At the end of Phase III,
PanicCheck produces two versions of the generated test function:
a human-readable Rust code and an executable version for KLEE.
Phase IV feeds KLEE with the generated executable version to
reveal panics. Given an annotated function, PanicCheck executes
all phases by issuing the command “cargo-verify --backend=KLEE --tests”.
This command performs two tasks: (T1) to build the Rust program
as well as all available test functions using the Rust compiler, and
(T2) to execute the built code with KLEE. We implemented Phases
I–III as an integral macro, which rewrites Rust code by creating

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Ying Zhang, Peng Li, Yu Ding, Wang Lingxiang, Dan Williams, and Na Meng

and adding in a parametrized test. The macro is then loaded in
the compilation process (T1), where it receives the token stream of
annotated function from compiler for syntax-tree creation, analysis,
and manipulation. Phase IV corresponds to the execution process
(T2). Because we did not do anything in particular for Phase IV, we
will focus our discussion on Phases I–III.

3.1 Context Extraction
Given the token stream of an annotated Rust function, Phase I uses
a parsing library—syn [19]—to parse tokens. It also invokes APIs
of syn to traverse the resulting syntax tree in order to locate the
function signature, which includes the function’s name, parameter
list, and parameters’ data types.

3.2 Symbolic Variable Creation
For each parameter extracted in Phase I, Phase II determines how
to create a corresponding symbolic variable processable by KLEE.
So far, PanicCheck can provide full or partial support for the sym-
bolic variable creation of 28 data types. These 28 types include 18
primitive types, 4 compound types, and 6 collection types.

3.2.1 Primitive Types. As shown in Table 1, by calling the RVT
APIs data_type::abstract_value(), PanicCheck fully supports variable gen-
eration for 16 of the 22 primitive types. It also fully supports the
unit type. Because the unit type has only one value “()”, we do not
need to generate any symbolic variable for the data type, neither
does KLEE need to enumerate values. PanicCheck partially supports
variable generation for the reference type. It can declare symbolic
variables for shared (i.e., immutable) references, but not for exclu-
sive (i.e., mutable) references. Typically, to generate a reference
variable of type T (i.e., &T), PanicCheck needs to first create a sym-
bolic variable of type T (e.g., u8), and then use the reference to that
variable as the created reference variable (e.g., of type &u8). Due to
the time limit, we did not implement PanicCheck to generate syntax
trees or code for exclusive references. We plan to address this limita-
tion in the future, by extending our current parser implementation
as well as the templates for code generation.

Among the remaining four types, PanicCheck does not support
fn or pointer as KLEE does not handle pointers well. This is because
the memory address space is huge; KLEE can easily get stuck with
the state explosion issue when symbolizing a pointer to enumer-
ate address values. Notice that our treatments for references and
pointers are totally different because in Rust, even though refer-
ences and pointers have the same underlying data—addresses for
some memory, they have different constraints and semantics with
the compiler [20]. Namely, references have rules enforced by the
compiler: (1) they cannot outlive what they refer to (the “referent”);
(2) mutable references cannot be aliased. References behave like
the variables they point to. They have a type, and developers can
interactive with that type to read it or (with mutable references)
modify it. On the other hand, pointers are semantically more about
addresses. When developers interact with pointers, they modify ad-
dresses instead of the variables pointed to.When they print pointers
without using the unsafe keyword, addresses are printed out.

Additionally, PanicCheck does not support slice or str. Both slice
and str are dynamically sized types—types without a statically
known size or alignment [21]. Because Rust must know the size

and alignment of things in order to correctly work with them,
dynamically sized types can only get used via references (e.g., &str)
and parameters of these types must be declared as references.

3.2.2 Compound Types. PanicCheck provides partial tool support
for four compound types: array, enum, struct, and tuple. Two rea-
sons can explain why the array type is not fully supported. First,
developers can declare arrays to have arbitrary lengths. When an
array variable contains a very large number of elements (e.g., >30),
PanicCheck needs to define many independent symbolic variables,
adding them to an array in order to generate a symbolic array
variable. When enumerating possible states of all those element
symbolic variables, KLEE will encounter the state explosion prob-
lem and work ineffectively to reveal panics. Second, when an array
has a compound or collection type as its element type, e.g., array
of arrays, too many primitive-typed independent variables can be
nested into the array level-by-level, making KLEE fail. Based on our
experience, KLEE can respond in a timely manner when an array
has at most 30 primitive-typed elements, so we built PanicCheck
accordingly.

PanicCheck does not fully support enum or struct because both
types allow developers to define custom data structures. While
custom data structures can be very different from each other, the
elements of a custom data structure can also have complex data
structures. It can be very challenging to properly generate sym-
bolic variables for such data types. Therefore, currently PanicCheck
only supports variable creation for three widely used built-in types:
Option, Result, and String. In the future, we will conduct more
advanced static program analysis to characterize custom data struc-
tures, and extend PanicCheck to generate symbolic variables for
those structures.

Rust allows each tuple to have 2–11 elements. However, if a tuple
has some compound-typed or collection-typed elements, the total
number of independent variables in the tuple can become too large
for KLEE to explore. To ensure that KLEE can often respond to
PanicCheck in a timely manner, we built PanicCheck to only model
tuples that are declared to have primitive-typed elements.

3.2.3 Collection Types. PanicCheck provides partial support for six
collection types: Vec, VecDeque, LinkedList, BTreeMap, BTreeSet,
and BinaryHeap. This is mainly because each collection can have
an arbitrary number of elements. When elements are symbolized
as independent variables, there is no way that KLEE can fully sup-
port the state enumeration for all variables’ value combinations.
Consequently, we set the length of Vec, VecDeque, and LinkedList
to 30 based on our experimental experience with KLEE. We noticed
that KLEE becomes extremely slow and usually produces no output
if the length goes beyond 30. We set the length of BTreeMap and
BTreeSet to 10. This length is smaller than 30, mainly because the
data types leverage B-Tree, a data structure more complex than
vectors and lists. We set the length of BinaryHeap to 5 also because
of the complexity of the internal data structure.

PanicCheck does not support HashMap or HashSet, because
KLEE often wastes time verifying the hashing algorithm used in
Rust [22, 23] instead of verifying the actual program logic.

Broadly Enabling KLEE to Effortlessly Find Unrecoverable Errors in Rust ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

Table 1: PanicCheck’s creation of symbolic variables for different Rust data types

Category Data Type Tool Support Details

Primitive
Type

bool Full Call the RVT’s API bool::abstract_value() to create a symbolic variable.
char Full Call u32::abstract_value() to create a symbolic variable. Then call char::from_u32(c).unwrap_or_reject() to ensure

that the variable only holds values in [0, 0xD800) or (0xDFFF, 0x10FFFF]—corresponding to valid characters.
f32, f64 Full Call data_type::abstract_value() to create a symbolic variable, where data_type can be f32 or f64.
fn No PanicCheck does not generate any symbolic variable for function pointers (fn), as KLEE does not handle pointers well.
i8, i16, i32, i64,
i128, isize

Full Call data_type::abstract_value() to create a symbolic variable, where data_type can be i8, i16, i32, i64, i128, or isize.

pointer No PanicCheck does not generate any symbolic variable for pointers, as KLEE does not handle pointers well.
reference Partial PanicCheck generates symbolic variables for shared (i.e., immutable) references, but does not generate symbolic variables

for exclusive (i.e., mutable) references.
slice No There is no pass-in parameter to have the data type slice. Instead, a parameter can have the data type of slice reference,

which is fully supported by PanicCheck.
str No There is no pass-in parameter to have the data type str. Instead, a parameter can have the type of str reference, which is

fully supported by PanicCheck.
u8, u16, u32, u64,
u128, usize

Full Call data_type::abstract_value() to create a symbolic variable, where data_type can be u8, u16, u32, u64, u128, or
usize.

unit Full The unit type has exactly one value “()”. When a function parameter has the unit type, PanicCheck generates the constant
value instead of creating any symbolic variable, and sends that value to KLEE.

Compound
Type

array Partial PanicCheck can generate a symbolic array variable for the array type [T;n], where the element type T must be primitive
and n is in [1, 30]. To create such a variable, PanicCheck first declares an array variable with the size specified. It then
repetitively defines symbolic variables of type T and adds those variables to the array. The partial support is delimited by
KLEE’s capability.

enum Partial PanicCheck creates variables for two enum types—Option⟨T⟩ and Result⟨T, E⟩—Rust built-in types widely used to define
function parameters. Although developers are allowed to define their own enum data types, self-defined enum data types
often have distinct structures. Thus, PanicCheck now cannot generate variables for those types.

struct Partial PanicCheck generates variables for one built-in struct—String—a built-in data type widely used to define function parameters.
Although developers can also define their own struct data types, PanicCheck does not support variable generation for those
self-defined data types now.

tuple Partial PanicCheck generates variables for tuples with 2–11 primitive-typed elements, because Rust allows at most 11 elements in a
tuple.

Collection
type

Vec Partial For Vec⟨T⟩, PanicCheck generates a vector of 30 T-typed elements. Each element is a symbolic variable separately generated
for primitive-type T, and then added to the vector.

VecDeque Partial For VecDeque⟨T⟩, PanicCheck generates a queue of 30 elements, with each element a symbolic variable separately generated
for primitive-type T.

LinkedList Partial For LinkedList⟨T⟩, PanicCheck creates a list of 30 elements, with each element a symbolic variable of primitive-type T.
HashMap No KLEE does not handle HashMaps well.
BTreeMap Partial For BTreeMap⟨K, V⟩, PanicCheck generates a map of 10 entries, where each entry’s key and value are separately symbolic

variables of primitive-types K and V.
HashSet No KLEE does not handle HashSets well.
BTreeSet Partial For BTreeSet⟨T⟩, PanicCheck generates a set of 10 elements, with each element a symbolic variable of primitive-type T.
BinaryHeap Partial For BinaryHeap⟨T⟩, PanicCheck a heap with five independent symbolic variables. The type T must be primitive.

3.3 Test Generation
Since function-to-verify (FTV) shares a common pattern, we define
a template in PanicCheck. The template contains symbolic variable
declaration and FTV call. For each FTV, PanicCheck generates two
semantically equivalent versions of one test function: (1) source
code and (2) LLVM bitcode.

3.3.1 Source Code Generation. PanicCheck generates tests based
on templates. It has a code template predefined for each data type
it supports (as listed in Table 1) to declare variables; it also has a
predefined template to call FTV with the newly declared symbolic
variables. Actually, to simplify code generation and the static rea-
soning of data types, PanicCheck implements the Strategy design
pattern [24] in code templates. The pattern allows us to define alter-
native algorithms for a specific task (i.e., generating variables given
a data type), while PanicCheck decides the actual algorithms to use
at runtime depending on FTV. Fig. 2 illustrates our strategy-based
software design for the generated test code. Here, bold text high-
lights the newly generated Rust trait and implementations, while
plain text describes the trait predefined by RVT.

During the test generation for FTV, a trait (analogous to Java
interface) named Strategy1 is always declared; it declares a uniform
function interface value_gen(...) that is callable by tests to declare

symbolic variables. For each parameter type declared by FTV (e.g.,
bool), PanicCheck defines an implementation (e.g., impl Strategy1 for

bool) to implement the declared trait and function; the implemented
function invokes API AbstractValue::abstract_value() as needed to cre-
ate symbolic variables. Note that RVT declares and defines the
trait AbstractValue, so that the type that implements this trait can al-
ways generate variables processable by KLEE. Because our software
design follows the Strategy design pattern, the test function Panic-
Check creates is semantically equivalent instead of fully identical
to the one shown in Listing 1.

3.3.2 LLVM Bitcode Generation. The cargo-verify command issued
by PanicCheck (see the beginning of Section 3) automatically con-
verts the source code of generated test function into LLVM bitcode.
Thanks to the command usage, PanicCheck does not need to imple-
ment anything to enable the conversion. In this conversion process,
the command also (1) injects value checks to guard critical instruc-
tions and (2) inserts panic! macros for any potential failure of value
checks. All such insertions are automated by KLEE.

Because the compiled LLVM bitcode is hard to read and explain,
to facilitate presentation, we use Rust code in Listing 3 to present the
semantics of compiled LLVM bitcode for decode_var(...). In the code,
we use “...” to omit less important code details. As shown in the

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Ying Zhang, Peng Li, Yu Ding, Wang Lingxiang, Dan Williams, and Na Meng

Listing 3: A Rust program used to illustrate the program
semantics of compiled LLVM bitcode for decode_var(...)

1 ...
2 for b in src.iter() {
3 let msb_dropped = b & DROP_MSB;
4 // the following if-statement to check for and report

shift-operation overflow (lines 5-7) is injected in the
compilation process

↩→
↩→

5 if (shift > 64) {
6 panic!("... panicked at 'attempt to shift operation with

overflow', ...", ...);↩→
7 } else {
8 result |= (msb_dropped as u64) << shift;
9 // the following if-statement to check for and report arithmetic

overflow (lines 10-12) is also injected in the compilation
process

↩→
↩→

10 if (shift > usize::Max - 7) {
11 panic!("... panicked at 'attempt to add with overflow', ...",

...);↩→
12 } else {
13 shift += 7;
14 ...
15 }
16 }
17 } ...

simplified code, the compilation process injects two if-statements
separately for the bitwise left shift operator (<<) and the plus equals
operator (+=). The first if-statement ensures that the number of bits
specified does not go beyond the total number of bits available in a
u64 number (i.e., 64). If shift > 64, a panic is generated. Similarly, the
second if-statement ensures that the result of plus equals does not
overflow; if the result is larger than usize::Max, the program panics.

With the LLVM bitcode provided, KLEE scans instructions, un-
rolls for-loops as needed, and explores paths reaching panic-statements.
For each explored path, KLEE synthesizes and solves constraints,
to output solutions (i.e., value assignments to symbolic variables)
as panic-triggering test inputs. For our motivating example, KLEE
detects a panic as described below:
running 1 test
Value src = [128, 128, 128, 128, 128, 128, 128, 128, 128,

128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0]
test test_decode_var ... FAILED

...

thread 'test_decode_var' panicked at 'attempt to shift left
with overflow', src/varint.rs:121:23

The output shows the root cause of a panic (“attempt to shift left

with overflow”), the code location (“src/varint.rs:121:23”), and the panic-
triggering test input. Such information can help developers debug
code and fix any software flaw implied by the panic.

4 EVALUATION
We implemented PanicCheck for the Rust version 1.47.0-nightly
(2020-08-02). The LLVM release we leveraged is 10.0.0, and the com-
mit of KLEE versionwe adopted is c51ffcd377097ee80ec9b0d6f07f8ea583a5aa1d.

To investigate how PanicCheck can help with revealing panics in
Rust programs, we applied PanicCheck to both open-source and
closed-source projects. Specifically inside the company ByteDance
Ltd., we applied PanicCheck to two internal projects (closed-source)1.
1The experiment was conducted when first four authors were at ByteDance.

Additionally, we created a dataset of 21 open-source projects by
mining crates.io [25]—the Rust community’s crate registry, in order
to also apply PanicCheck to those projects. In the following part of
this section, we will first introduce our open-source dataset and the
experiment setup. Then we will describe the experiment results.

4.1 The Open-Source Dataset
To build the open-source dataset, we first used the keyword “parser”
to search on crates.io for projects with at least 400,000 downloads.
We chose this keyword based on the advice of domain experts of
formal verification, who mentioned that the Rust libraries related to
parsers are less likely to be well tested and thus more likely to suffer
from panic issues. Among the popular projects with at least 400,000
downloads, we selected projects using the following criteria:

• The project uses only syntax defined by the Rust 2018 edition,
as PanicCheck does not support the new grammar features
introduced by the Rust 2021 edition.

• The entry functions (see Section 4.2 for definition), i.e., func-
tions we will annotate with #[panic_check], do not use any self-
defined (e.g., struct) or complex data types (e.g., HashMap)
that are not supported by PanicCheck.

• The entry functions do not have any parameter decorated
with the lifetime annotation (i.e., the apostrophe character),
as PanicCheck does not analyze or validate variables declared
with the lifetime annotation.

With the criteria mentioned above, we included 20 popular projects
into our dataset. Additionally, we noticed that the open-source
project GNU core utilities (coreutils) [26] was once used to effec-
tively evaluate KLEE [13]. Thus, we also included a Rust version of
coreutils. Please refer to Table 2 for a full list of the open-source
projects in our dataset. All these projects have code publicly avail-
able at GitHub.

4.2 Experiment Setup
In our evaluation, we did not annotate every single function of
subject projects with #[panic_check] for two reasons. First, it is very
time-consuming to verify every function, although some functions
are more important or more frequently executed than the others.
Second, as KLEE conducts inter-procedural analysis, it is quite pos-
sible that the symbolic execution of some functions can fully cover
that of other functions. To verify the most frequently executed
functions without incurring too much effort of redundant verifica-
tion, we decided to annotate only entry functions in each selected
project. Among all functions within a given project, we chose entry
functions using the following criteria:

• If the project has proptests [27] already defined for some
functions, we treat those functions as entry functions be-
cause developers are likely to apply proptest to the most
important functions. Proptest is a property testing frame-
work. It randomly generates inputs to test whether certain
properties always hold for a given program; whenever a fail-
ure is found, it automatically finds the minimal test case to
reproduce the problem.

• If the project has no proptest defined but contains a file lib.rs,
we treat all application programming interfaces (APIs) listed
in that file as entry functions. The lib.rs file of a project

Broadly Enabling KLEE to Effortlessly Find Unrecoverable Errors in Rust ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

<<Trait>> Strategy1
type Value = propverify::Strategy + std::clone::Clone

fn value_gen(&self) -> Self::Value

impl Strategy1 for bool

fn value_gen()

impl Strategy1 for char

fn value_gen()

impl Strategy1 for BinaryHeap

fn value_gen()
… …

<<Trait>> verification-annotations::verifier::AbstractValue

fn abstract_value() -> Self

<<Trait>>
verification-annotations::verifier::VerifierNonDet

fn verifier_nondet(self) -> Self
fn get_concrete_value(x: Self) -> Self

fn is_symbolic(x: Self) -> bool

verification-annotations/verifier-klee

fn verifier_nondet(self) -> Self
fn get_concrete_value(x: Self) -> Self

fn is_symbolic(x: Self) -> bool

Figure 2: The UML class diagram showing our strategy-based software design for test generation

Table 2: The experiment result on 21 open-source projects

Project

of
Func-
tions
Anno-
tated

Build
Time

without
Panic-

Check (sec)

Build
Time with

Panic-
Check (sec)

Verification
Time (sec) Result Details

https://crates.io/crates/unicode-xid 1 5 111 (22.2x) 26 Pass The formal verification finishes in 26
seconds.

https://crates.io/crates/unsigned-varint 2 7 135 (19.3x) 3, 4 Pass (2) The two functions are separately verified
with 3 and 4 seconds.

https://crates.io/crates/regex 1 23 118 (5.1x) >7200 State explosion KLEE cannot verify the annotated function
due to the state explosion issue.

https://crates.io/crates/ryu 2 4 33 (8.3x) >7200/
function State explosion (2) Same as above.

https://crates.io/crates/yaml-rust 1 7 58(8.3x) >7200 State explosion Same as above.
https://crates.io/crates/untrusted 1 1 18 (18x) >7200 State explosion Same as above.
https://crates.io/crates/csv 1 14 47 (3.4x) >7200 State explosion Same as above.
https://crates.io/crates/utf8parse 1 1 20 (20x) >7200 State explosion Same as above.
https://crates.io/crates/html5ever 1 8 36 (4.5x) >7200 State explosion Same as above.

https://crates.io/crates/der-parser 2 12 27 (2.3x) >7200/
function State explosion (2) Same as above.

https://crates.io/crates/ron 1 14 75 (5.4x) >7200 State explosion Same as above.

https://crates.io/crates/url 1 18 42 (2.3x) >7200 Pass
KLEE can verify some execution paths of
the annotated function, but cannot finish
verification within 2 hours (the timeout
period we specified).

https://crates.io/crates/httparse 1 5 43 (8.6x) >7200 Pass Same as above.

https://crates.io/crates/humantime 3 5 34 (6.8x) >7200/
function Pass (3) Same as above.

https://crates.io/crates/nom 1 14 60 (4.3x) >7200 Pass Same as above.
https://crates.io/crates/gimli 1 5 94 (18.8x) >7200 Pass Same as above.
https://crates.io/crates/lexical 1 14 20 (1.4x) >7200 Pass Same as above.
https://crates.io/crates/minimal-lexical 1 2 23 (11.5x) 1 Panic Attempt to subtract with overflow.
https://crates.io/crates/integer-encoding 1 9 21 (2.3x) 29 Panic Attempt to shift left with overflow.

https://crates.io/crates/coreutils 100 8–21/
subproject

16–59
(1.8x–6.2x)/
subproject

>7200/
function (44),

11–886/
function (56)

Pass (44) + Clap
Panics (45) +

Other Panics(11)

The majority of panics are by Claps. When
excluding Claps, the panics are about
calling unwrap() functions on invalid
values, missing function argument,
incorrect char boundary, or unexpected
invalid UTF-8 code point.

implies the project to be a software library, while the APIs
listed in that file are accessible by library users. Thus, those
APIs are important to verify.

• If the project has no proptest or lib.rs defined but contains a
main function, we treat the function as an entry function. We
believe that the main function typically executes the most
important functionalities.

With the criteria mentioned above, we annotated in total 125 entry
functions in open-source projects and more than 40 functions in
closed-source projects. The column # of Functions Annotated
in Table 2 shows the distribution of the 125 entry functions. In
particular, there are 100 subprojects in coreutils, and each subpro-
ject defines a main function. Thus, we annotated 100 functions in

coreutils. As we conducted all experiments in May 2021–October
2021, all program versions we experimented with were downloaded
during that period.

4.3 Experiment Results
In Table 2, the column Build Time without PanicCheck shows
the time cost of purely building each project without involving any
step of PanicCheck. Build Time with PanicCheck describes the
total time cost of (1) a clean build and (2) the first three steps of
PanicCheck. Namely, any time difference between the two columns
shows the runtime overhead incurred by PanicCheck’s first three
steps. By comparing the measured values for these columns, we
found PanicCheck to incur 6–128 seconds to the build procedure.

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Ying Zhang, Peng Li, Yu Ding, Wang Lingxiang, Dan Williams, and Na Meng

Namely, PanicCheck expanded the compilation overhead by 0.4–21.2
times. Such overheads were introduced macro expansion, Panic-
Check compilation, and bitcode generation. Thanks to the Rust
conditional compilation, such overheads will not affect the build
process in production mode because PanicCheck is only executed
in the testing mode. Thus, developers do not need to remove those
macros when building the production binary.

Column Verification Time shows the runtime overhead of
KLEE execution, corresponding to the fourth step of PanicCheck.
For 56 subprojects of coreutils and 5 other projects, KLEE execution
finished quickly and spent 1–886 seconds on each project. Panic-
Check either reported no panic after exploring all paths or revealed
the first panic it encountered. However, for another 44 subprojects
of coreutils and 16 other projects, KLEE execution could not finish
within the allocated time—2 hours. In particular, for nine projects,
the verification procedure was stuck with the problem of state ex-
plosion: there were too many states for KLEE to enumerate. KLEE
could not enumerate all states or verify any function. For the re-
maining (sub) projects, KLEE could not finish its exploration within
two hours although it was not stuck with state explosion; its explo-
ration got slowed down by the value enumeration for variables of
complex/compound data types or String. We still considered these
projects to partially pass formal verification due to a time limit.

Finding 1: Among the 125 functions annotated for 21 open-source
projects, PanicCheck revealed 59 panics for 59 functions but failed
to verify 11 functions due to state explosion; 3 functions passed
complete verification and 52 functions passed partial verification
due to the time limit.

We also annotated more than 40 functions in 2 closed-source
projects of ByteDance. These two projects belong to the Key Man-
agement System (KMS). KMS is an internal keymanagement service
that other internal services leverage to perform encryption and de-
cryption. The two projects used in our experiment contain several
thousand lines of code in total (no more than 10 thousand LOC).
They are real-world crucial Rust projects, instead of toy exam-
ples crafted by the paper authors for research purposes. Internally,
ByteDance requires KMS to have no unrecoverable error, as panics
in this service can lead to serious consequences like data loss or
service disruption. In our experiment, we applied PanicCheck to
functions related to certificate parsing, encryption, and decryption,
in order to check whether those functions have unrecoverable er-
rors. PanicCheck revealed in total two panics in the projects, both
of which were later confirmed and fixed by ByteDance developers.

In total, we found 61 panics in 23 projects (21 open-source +
2 closed-source), when we performed the experiment in 2021. To
investigate developers’ responses to those panics or software bugs,
we further examined themore recent version of these programs as of
September 2023 (before submitting this paper). to see whether those
bugs were already fixed. If a program’s latest version could take in
the panic-triggering input and execute smoothly, we concluded that
developers recently fixed the bug relevant to that panic. Otherwise,
we filed a bug issue for each revealed but unresolved panic and
sought developers’ feedback. So far, we have observed that 52 panics
were already resolved by developers before we filed any issue report.
We filed 9 reports for the remaining panics; for 7 panics, developers
have confirmed the reported issues and fixed bugs accordingly;

Listing 4: An example to call unwrap() function on the value
returned by options.value_of(...) [29]

1 let duration: Duration = uucore::parse_time::from_str(

options.value_of(options::DURATION).unwrap()). unwrap();↩→

Table 3: The root cause of state explosion projects

Projects Root Cause
ryu Raw Pointer Operation
yaml-rust String Enumeration
regex String Enumeration
untrusted String Enumeration
csv String Enumeration
utf8parse String Enumeration
html5ever String Enumeration
der-parser String Enumeration
ton String Enumeration

developers did not respond for 2 panics. The high fixing rate (i.e.,
59/61) indicates that KLEE detects crucially important bugs; the
high issue-confirmation rate (i.e., 7/9) implies that KLEE’s output
is quite helpful for developers to understand and fix bugs.

Finding 2: PanicCheck revealed 61 panics in 23 projects. So far,
59 of the panics have been addressed by developers. This observa-
tion indicates the great quality of PanicCheck’s outputs and high
relevance of revealed panics.

We further inspected the content of 61 panics, and recognized
two major root causes. First, 45 of the panics share the same error
message “unexpected invalid UTF-8 code point”. These panics all
occurred in subprojects of coreutils, due to the usage of a library
clap [28]. When these subprojects passed invalid UTF-8 strings
(e.g., ./expand "È") to a clap API, the API does not properly handle the
invalid inputs and thus triggers panics. Recently we observed that
the clap developers improved their API implementation, to cause
no panic in any of the projects invoking that API.

Second, nine panics are about calling unwrap() functions on invalid
values. All these panics occurred in subprojects of coreutils. For
instance, in the timeout subproject of coreutils, unwrap()was once called
on the return-value of options.value_of(...) (see Listing 4). Although
developers assumed that options.value_of(...) always returns normal
values, it turned out that the method call can return an Err-typed
value. Calling unwrap() on that value can trigger a panic and halt
the program execution. Developers fixed such bugs by conducting
value checks before calling unwrap() functions.

Finding 3: 54 of the 61 panics occurred because unexpected or
invalid values were used to call method APIs.

To pinpoint the root causes of state explosion, we annotated
functions called by the entry point during execution. However,
functions with unsupported features (e.g., lifetime scope annota-
tions) were excluded from annotating. The identified root causes
are presented in Table 3. Notably, seven projects faced issues due
to string enumeration; given the vast search space of strings or
bytes, KLEE could not verify these projects within the specified
time. For ryu, the parser’s pursuit of optimal performance led to

Broadly Enabling KLEE to Effortlessly Find Unrecoverable Errors in Rust ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

the conversion of unsigned integers into raw pointers. This caused
KLEE to enumerate the memory space, significantly expanding the
state space and consequently triggering state explosion.

Finding 4: PanicCheck cannot handle the string and raw pointers
cases well due to the limited capability of KLEE.

5 THREATS TO VALIDITY
Threats to External Validity. All the empirical observations we

made so far are based on our experimental dataset. These observa-
tions may not generalize well to other Rust programs. In the future,
we would like to include more projects into our evaluation, so that
our findings can become more representative.

Threats to Construct Validity. Our tool implementation is limited
by the Rust edition (i.e., 2018) PanicCheck currently targets and the
KLEE/LLVM versions it uses. Namely, PanicCheck does not support
new features introduced by the more recent releases of Rust, neither
does it support features that are not well supported by KLEE or
LLVM. This is mainly because PanicCheck is based on RVT, and
RVT targets Rust 2018. Currently, PanicCheck does not analyze or
validate variables declared with the lifetime annotation, neither
does it generate symbolic variables for exclusive (i.e., mutable)
references. When running PanicCheck on the newer version of
Rust code, it will throw an unknown error without producing any
unsound result. In the future, we plan to modernize RVT, and extend
the modernized version with PanicCheck’s implementation for both
old and new language features.

6 LESSONS LEARNED
By enabling large-scale usage, PanicCheck reveals both strengths
and weaknesses of KLEE when it is applied to Rust programs.

6.1 Advantages of Applying KLEE to Rust
Programs

Our study confirms that KLEE can generate meaningful test inputs,
and reveal unrecoverable errors existing in Rust programs. All er-
rors reported by KLEE are true positives; there is no false alarm
(false error) reported by KLEE. Furthermore, it can even effectively
identify the unrecoverable errors overlooked by developers or man-
ually developed test suites. One possible reason to explain this
phenomenon is that developers may not be good at thoroughly
testing Rust programs. When program logic is complex, developers
may only focus on the main paths that are frequently executed
and majorly check for design errors. Because KLEE systematically
explores feasible paths in programs, it is able to capture edged cases.
Additionally, KLEE examines software for errors relevant to mem-
ory accesses, division/modulo by zero, over shifts, and assertion
violations; thus, the errors it finds can complement the design errors
that developers focus on.

6.2 Limitations of Applying KLEE to Rust
Programs

We noticed that KLEE is inapplicable to generate test cases for many
functions in our dataset. Three major reasons can explain KLEE’s
limited applicability. First, it cannot analyze concurrent programs.

Second, it cannot symbolize the size of memory allocation. Third, it
provides very limited support for pointers (i.e., memory addresses).

Additionally, even though KLEE is applicable to verify some
functions, it cannot finish verification within a reasonable period
of time (e.g., two hours) for two reasons. First, it supports a very
limited set of built-in collection types (e.g., BinaryHeap). In partic-
ular, when a collection variable contains lots of element variables,
symbolizing each element variable can make the overall program
state space overwhelmingly large, considerably prolonging the ver-
ification procedure. Second, KLEE does not support String variables
to contain characters from big vocabularies (e.g., ASCII, UTF-8).
This is because when a variable can have strings composed of very
diverse characters, generating strings of certain format is almost
infeasible or computationally expensive.

To better verify Rust programs with KLEE, we plan to improve
PanicCheck in two ways. First, we will statically analyze programs
to learn how developers’ customized data types are formulated with
primitive data types. In this way, PanicCheck can automatically gen-
erate symbolic variables for more compound types. Second, when
a function-to-verify is called, some of the parameters it takes may
require specialized values satisfying certain requirements (e.g., syn-
tax or regular expressions), which values can be very hard for KLEE
to generate even though they are not part of the path conditions to
trigger panics. We plan to extend PanicCheck so that developers can
provide concrete inputs for those variables, to accelerate KLEE’s
exploration process and reveal more panics.

7 RELATEDWORK
Our research is related to empirical studies with KLEE and Rust
verification tools.

7.1 Empirical Studies with KLEE
People conducted several empirical studies using KLEE [30–38].
Specifically, Wang et al. [31] compared KLEE-based test suites with
manually developed test suites. They observed that KLEE-based
test suites have advantages in exploring error-handling code and
exhausting options, but are less effective on generating valid string
inputs and exploring meaningful program behaviors. Such comple-
mentarity between KLEE-based tests and human-crafted tests was
also observed by Kurian et al. [38], who applied KLEE to generate
test cases for safety-critical embedded software.

As a DSE engine, KLEE provides 10 path search approaches. Two
of the approaches belong to random search, while eight approaches
belong to heuristic search. To investigate which approach performs
best, Zhang et al. [37] applied the 10 approaches to 53 GNU coreutil
applications. They found that without constraint optimization, one
approach of random search (i.e., random path) outperforms the oth-
ers in terms of the number of completed paths, statement coverage,
and branch coverage. Dong et al. [32] did a similar study through
analyzing the 33 optimization flags implemented by LLVM but used
by KLEE. They observed that on average, applying optimizations
makes symbolic execution worse for coreutils applications.

Two studies were conducted to compare alternative implemen-
tations of KLEE and its extension [33, 34]. In particular, Kapus et
al. [34] compared an implementation of KLEE using a partial solver

ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal Ying Zhang, Peng Li, Yu Ding, Wang Lingxiang, Dan Williams, and Na Meng

based on the theory of integers, with the standard KLEE implemen-
tation using a solver based on the theory of bit vectors. They did
not observe significant differences between the two. Liew et al. [33]
compared two alternative implementations of a KLEE extension
component: floating-point symbolic execution. They observed that
the tools complement each other, and neither offers a silver bullet.

Kim et al. [30] applied symbolic execution tools (CREST-BV and
KLEE) and a static analyzer (Coverity) to the same program, to com-
pare their results. The researchers detected six bugs through sym-
bolic execution, none of which were detected by Coverity. Busse et
al. [36] hypothesized that if a static analyzer (Clang Static Analysis
or Infer) produces (1) a partial program trace, and (2) conditions to
trigger a bug, then KLEE can (a) guide its search to prioritize paths
following that trace, and (b) prune paths using those conditions.
Their experience of implementing the technique highlights two
negative results. First, the partial traces are not that useful in guid-
ing search. Second, static analyzers can rarely find non-trivial bugs.
Xu et al. [35] developed a dataset of logic bombs and a framework
for benchmarking symbolic execution tools automatically.

Our research is different from all the studies mentioned above,
as it applies KLEE to verify Rust instead of C code.

7.2 Verification Tools for Rust Programs
Various techniques were recently created to verify Rust programs [6,
7, 39–44]. CBMC [45] is a bounded model checker for C and C++
programs. CRUST [40] and Kani [42] verify Rust programs by trans-
lating code into C-like languages and using CBMC. Facebook’s
experimental MIRAI [43] is an abstract interpreter for the Rust
compiler’s mid-level intermediate representation (MIR). It explic-
itly prioritizes a low false-positive rate for bugs rather than a low
false-negative rate, and thus does not claim to provide sound veri-
fication [42]. Similar to KLEE, Crux-MIR [44] conducts symbolic
execution to verify programs written in C/C++ and Rust. However,
it models memory usage differently from KLEE.

Prusti [41] is a Rust compiler plugin built on the Viper verifi-
cation infrastructure [46]. It analyzes information from the Rust
compiler and synthesizes a corresponding core proof for the pro-
gram. To verify correctness properties beyond memory safety, users
can annotate Rust programs with specifications at the abstraction
level of Rust expressions; the technique waives all annotations
into the core proof to verify modularly whether these specifications
hold. SMACK [39] is a software verification toolchain that translates
LLVM IR code into Boogie intermediate verification language [47],
which is verified by Boogie verifiers like Corral [48]. SMACK was
initially designed to support Clang as a frontend; Baranowski et
al. [49] extended SMACK to also verify Rust code.

Lindner et al. [6, 7] recently proposed two alternative approaches
to verify Rust programs based on the KLEE symbolic execution.
One approach is contract-based verification [6]. The researchers
demonstrated that by properly implementing contracts (i.e., pre-
and post- conditions of Rust functions) in Rust programs, they en-
abled KLEE to find contradictions between contracts, and thus to
explore the composite behaviors of functions with reduced com-
plexity. The other approach is annotation-based verification [7].
The researchers demonstrated the new approach using a safety
function (eq) from the PLCopen library. Given the function, the

researchers first formulated assertions directly from the overall
safety properties of the PLCopen specification; then they verified
the overall safety with KLEE.

The techniques mentioned above were proposed to verify Rust
programs in various ways. Our work is wrapped in the usage of
KLEE in PanicCheck to explore KLEE’s effectiveness in verifying
Rust programs. With our wrapping logic, the KLEE could be simply
changed to the verification engines mentioned above. Developers
can implement the underlying trait to support different verification
tools they desired.

8 CONCLUSION
In this paper, we developed PanicCheck that relieves the program-
mers’ burden of writing test cases and enables large-scale study of
KLEE on Rust programs. We then use PanicCheck to carry out a
case study to investigate how effectively KLEE can help developers
reveal panics in practice. The major findings of our study include:
(1) among the functions we studied, KLEE revealed in total 61 panics
that reside in 6 projects; (2) 59 of the 61 panics have been addressed
by developers; (3) 54 of the panics occurred because unexpected or
invalid values were provided to method APIs; (4) KLEE does not
work effectively when FTV involves concurrency or complex data
types. In the future, we plan to further improve PanicCheck to sup-
port more Rust-specific features (e.g., lifetime annotation) and to
integrate more formal verification techniques (e.g., SeaHorn [50]).
In this way, we can assess the verification effectiveness of more
techniques, and recommend techniques to developers accordingly.

9 DATA AVAILABILITY
Our data is available at https://github.com/NEUZhangy/ICSE-SEIP-
2024.

ACKNOWLEDGEMENT
We thank all reviewers for their valuable feedback. This work was
partially funded by NSF CCF-1845446 and NSF-1929701. The first
author started working on the project when doing an internship at
ByteDance Ltd.

REFERENCES
[1] “Why is Rust programming language so popular?” https://codilime.com/blog/

why-is-rust-programming-language-so-popular/, 2021.
[2] “Error Handling,” https://doc.rust-lang.org/book/ch09-00-error-handling.html,

2022.
[3] “Rust - Error Handling,” https://www.tutorialspoint.com/rust/rust_error_

handling.htm, 2022.
[4] “Rust Error Handling In Practice,” https://medium.com/coinmonks/rust-error-

handling-in-practice-376d86ba12ca, 2023.
[5] “Panics - Comprehensive Rust,” https://google.github.io/comprehensive-rust/

error-handling/panics.html, 2023.
[6] M. Lindner, J. Aparicius, and P. Lindgren, “No panic! verification of rust programs

by symbolic execution,” in 2018 IEEE 16th International Conference on Industrial
Informatics (INDIN). IEEE, 2018, pp. 108–114.

[7] M. Lindner, N. Fitinghoff, J. Eriksson, and P. Lindgren, “Verification of safety
functions implemented in rust - a symbolic execution based approach,” in 2019
IEEE 17th International Conference on Industrial Informatics (INDIN), vol. 1. IEEE,
2019, pp. 432–439.

[8] “project-oak/rust-verification-tools,” https://github.com/project-oak/rust-
verification-tools//, 2022.

[9] A. Reid, L. Church, S. Flur, S. de Haas, M. Johnson, and B. Laurie, “Towards
making formal methods normal: meeting developers where they are,” CoRR, vol.
abs/2010.16345, 2020. [Online]. Available: https://arxiv.org/abs/2010.16345

https://github.com/NEUZhangy/ICSE-SEIP-2024
https://github.com/NEUZhangy/ICSE-SEIP-2024
https://codilime.com/blog/why-is-rust-programming-language-so-popular/
https://codilime.com/blog/why-is-rust-programming-language-so-popular/
https://doc.rust-lang.org/book/ch09-00-error-handling.html
https://www.tutorialspoint.com/rust/rust_error_handling.htm
https://www.tutorialspoint.com/rust/rust_error_handling.htm
https://medium.com/coinmonks/rust-error-handling-in-practice-376d86ba12ca
https://medium.com/coinmonks/rust-error-handling-in-practice-376d86ba12ca
https://google.github.io/comprehensive-rust/error-handling/panics.html
https://google.github.io/comprehensive-rust/error-handling/panics.html
https://github.com/project-oak/rust-verification-tools//
https://github.com/project-oak/rust-verification-tools//
https://arxiv.org/abs/2010.16345

Broadly Enabling KLEE to Effortlessly Find Unrecoverable Errors in Rust ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

[10] N. Tillmann and W. Schulte, “Parameterized unit tests,” in Proceedings of the
10th European Software Engineering Conference Held Jointly with 13th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, ser.
ESEC/FSE-13. New York, NY, USA: Association for Computing Machinery,
2005, pp. 253–262. [Online]. Available: https://doi.org/10.1145/1081706.1081749

[11] “Rust/KLEE status update,” https://project-oak.github.io/rust-verification-tools/
2021/03/29/klee-status.html, 2021.

[12] H. Sigurbjarnarson, J. Bornholt, E. Torlak, and X. Wang, “Push-Button
verification of file systems via crash refinement,” in 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16). Savannah, GA:
USENIX Association, Nov. 2016, pp. 1–16. [Online]. Available: https://www.
usenix.org/conference/osdi16/technical-sessions/presentation/sigurbjarnarson

[13] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs,” in Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, ser. OSDI’08.
USA: USENIX Association, 2008, pp. 209–224.

[14] “Automatic Rust verification tools (2021),” https://alastairreid.github.io/
automatic-rust-verification-tools-2021/, 2021.

[15] “Type of bugs that KLEE can find,” http://mailman.ic.ac.uk/pipermail/klee-dev/
2020-April/001983.html, 2020.

[16] “Crates,” https://doc.rust-lang.org/rust-by-example/crates.html.
[17] “integer-encoding 1.1.7,” https://crates.io/crates/integer-encoding/1.1.7, 2021.
[18] “Primitive Type slice,” https://doc.rust-lang.org/std/primitive.slice.html.
[19] “syn,” https://docs.rs/syn/latest/syn/, 2022.
[20] “What’s the difference between references and pointers in Rust?” https://ntietz.

com/blog/rust-references-vs-pointers/, 2023.
[21] “Basic-Topic-String-and-string-Slice,” https://users.rust-lang.org/t/basic-topic-

string-and-string-slice/41479, 2020.
[22] “HashMap in std::collections - Rust,” https://doc.rust-lang.org/std/collections/

struct.HashMap.html, 2022.
[23] “HashSet in std::collections - Rust,” https://doc.rust-lang.org/std/collections/

hash_set/struct.HashSet.html, 2022.
[24] “Strategy - Rust Design Patterns,” https://rust-unofficial.github.io/patterns/

patterns/behavioural/strategy.html, 2022.
[25] “crates.io: Rust Package Registry,” https://crates.io, 2022.
[26] “Coreutils - GNU core utilities,” https://www.gnu.org/software/coreutils/, 2022.
[27] “Proptest Book,” https://altsysrq.github.io/proptest-book/intro.html, 2022.
[28] “clap – Rust,” https://docs.rs/clap/latest/clap/, 2022.
[29] ““timeout” needs better errormessage,” https://github.com/uutils/coreutils/issues/

3040, 2022.
[30] Y. Kim, M. Kim, Y. Kim, and Y. Jang, “Industrial application of concolic testing

approach: A case study on libexif by using crest-bv and klee,” in Proceedings of
the 34th International Conference on Software Engineering, ser. ICSE ’12. IEEE
Press, 2012, pp. 1143–1152.

[31] X. Wang, L. Zhang, and P. Tanofsky, “Experience report: How is dynamic
symbolic execution different frommanual testing? a study on klee,” in Proceedings
of the 2015 International Symposium on Software Testing and Analysis, ser. ISSTA
2015. New York, NY, USA: Association for Computing Machinery, 2015, pp.
199–210. [Online]. Available: https://doi.org/10.1145/2771783.2771818

[32] S. Dong, O. Olivo, L. Zhang, and S. Khurshid, “Studying the influence of standard
compiler optimizations on symbolic execution,” in 2015 IEEE 26th International
Symposium on Software Reliability Engineering (ISSRE), 2015, pp. 205–215.

[33] D. Liew, D. Schemmel, C. Cadar, A. F. Donaldson, R. Zähl, and K.Wehrle, “Floating-
point symbolic execution: A case study in n-version programming,” in Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software Engineering,
ser. ASE ’17. IEEE Press, 2017, pp. 601–612.

[34] T. Kapus, M. Nowack, and C. Cadar, “Constraints in dynamic symbolic execution:
Bitvectors or integers?” in Tests and Proofs: 13th International Conference, TAP
2019, Held as Part of the Third World Congress on Formal Methods 2019, Porto,
Portugal, October 9–11, 2019, Proceedings. Berlin, Heidelberg: Springer-Verlag,
2019, pp. 41–54. [Online]. Available: https://doi.org/10.1007/978-3-030-31157-5_3

[35] H. Xu, Z. Zhao, Y. Zhou, and M. R. Lyu, “Benchmarking the capability of symbolic
execution tools with logic bombs,” IEEE Transactions on Dependable and Secure
Computing, vol. 17, no. 6, pp. 1243–1256, 2020.

[36] F. Busse, P. Gharat, C. Cadar, andA. F. Donaldson, “Combining static analysis error
traces with dynamic symbolic execution (experience paper),” in Proceedings of
the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis,
ser. ISSTA 2022. New York, NY, USA: Association for Computing Machinery,
2022, pp. 568–579. [Online]. Available: https://doi.org/10.1145/3533767.3534384

[37] Z. Zhang, Z. Wang, F. Yang, J. Wei, Y. Zhou, and Z. Huang, “Random or
heuristic? an empirical study on path search strategies for test generation
in klee,” Journal of Systems and Software, vol. 188, p. 111269, 2022. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0164121222000334

[38] E. Kurian, D. Briola, P. Braione, and G. Denaro, “Automatically generating
test cases for safety-critical software via symbolic execution,” Journal
of Systems and Software, vol. 199, p. 111629, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121223000249

[39] Z. Rakamarić andM. Emmi, “Smack: Decoupling source language details from ver-
ifier implementations,” in International Conference on Computer Aided Verification.
Springer, 2014, pp. 106–113.

[40] J. Toman, S. Pernsteiner, and E. Torlak, “Crust: a bounded verifier for rust (n),” in
2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 2015, pp. 75–80.

[41] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers, “Leveraging rust types for
modular specification and verification,” Proc. ACM Program. Lang., vol. 3, no.
OOPSLA, oct 2019. [Online]. Available: https://doi.org/10.1145/3360573

[42] A. VanHattum, D. Schwartz-Narbonne, N. Chong, and A. Sampson, “Verifying
dynamic trait objects in rust,” in 2022 IEEE/ACM 44th International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP), 2022, pp.
321–330.

[43] Facebook, “MIRAI,” https://github.com/facebookexperimental/MIRAI, 2019.
[44] “Crux-MIR,” https://github.com/GaloisInc/crucible/blob/master/crux-mir, 2020.
[45] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ansi-c programs,” in

Tools and Algorithms for the Construction and Analysis of Systems, K. Jensen
and A. Podelski, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp.
168–176.

[46] P. Müller, M. Schwerhoff, and A. J. Summers, “Viper: A verification infrastructure
for permission-based reasoning,” in Verification, Model Checking, and Abstract
Interpretation, B. Jobstmann and K. R. M. Leino, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016, pp. 41–62.

[47] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino, “Boogie:
A modular reusable verifier for object-oriented programs,” in Formal Methods
for Components and Objects, F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-
P. de Roever, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp.
364–387.

[48] A. Lal, S. Qadeer, and S. K. Lahiri, “A solver for reachability modulo theories,”
in Computer Aided Verification, P. Madhusudan and S. A. Seshia, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 427–443.

[49] M. Baranowski, S. He, and Z. Rakamarić, “Verifying rust programs with smack,”
in International Symposium on Automated Technology for Verification and Analysis.
Springer, 2018, pp. 528–535.

[50] “Seahorn,” https://github.com/seahorn/seahorn, 2011.

https://doi.org/10.1145/1081706.1081749
https://project-oak.github.io/rust-verification-tools/2021/03/29/klee-status.html
https://project-oak.github.io/rust-verification-tools/2021/03/29/klee-status.html
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/sigurbjarnarson
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/sigurbjarnarson
https://alastairreid.github.io/automatic-rust-verification-tools-2021/
https://alastairreid.github.io/automatic-rust-verification-tools-2021/
http://mailman.ic.ac.uk/pipermail/klee-dev/2020-April/001983.html
http://mailman.ic.ac.uk/pipermail/klee-dev/2020-April/001983.html
https://doc.rust-lang.org/rust-by-example/crates.html
https://crates.io/crates/integer-encoding/1.1.7
https://doc.rust-lang.org/std/primitive.slice.html
https://docs.rs/syn/latest/syn/
https://ntietz.com/blog/rust-references-vs-pointers/
https://ntietz.com/blog/rust-references-vs-pointers/
https://users.rust-lang.org/t/basic-topic-string-and-string-slice/41479
https://users.rust-lang.org/t/basic-topic-string-and-string-slice/41479
https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/std/collections/hash_set/struct.HashSet.html
https://doc.rust-lang.org/std/collections/hash_set/struct.HashSet.html
https://rust-unofficial.github.io/patterns/patterns/behavioural/strategy.html
https://rust-unofficial.github.io/patterns/patterns/behavioural/strategy.html
https://crates.io
https://www.gnu.org/software/coreutils/
https://altsysrq.github.io/proptest-book/intro.html
https://docs.rs/clap/latest/clap/
https://github.com/uutils/coreutils/issues/3040
https://github.com/uutils/coreutils/issues/3040
https://doi.org/10.1145/2771783.2771818
https://doi.org/10.1007/978-3-030-31157-5_3
https://doi.org/10.1145/3533767.3534384
https://www.sciencedirect.com/science/article/pii/S0164121222000334
https://www.sciencedirect.com/science/article/pii/S0164121223000249
https://doi.org/10.1145/3360573
https://github.com/facebookexperimental/MIRAI
https://github.com/GaloisInc/crucible/blob/master/crux-mir
https://github.com/seahorn/seahorn

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 KLEE
	2.2 Rust Verification Tools (RVT)
	2.3 A Motivation Example

	3 PanicCheck
	3.1 Context Extraction
	3.2 Symbolic Variable Creation
	3.3 Test Generation

	4 Evaluation
	4.1 The Open-Source Dataset
	4.2 Experiment Setup
	4.3 Experiment Results

	5 Threats to Validity
	6 Lessons Learned
	6.1 Advantages of Applying KLEE to Rust Programs
	6.2 Limitations of Applying KLEE to Rust Programs

	7 Related Work
	7.1 Empirical Studies with KLEE
	7.2 Verification Tools for Rust Programs

	8 Conclusion
	9 Data Availability
	References

