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Abstract

JavaScript (JS) is one of the most popular programming languages due to its

flexibility and versatility, but maintaining JS code is tedious and error-prone. In

our research, we conducted an empirical study to characterize the relationship

between co-changed software entities (e.g., functions and variables), and built a

machine learning (ML)-based approach to recommend additional entity to edit

given developers’ code changes. Specifically, we first crawled 14,747 commits in

10 open-source projects; for each commit, we created at least one change de-

pendency graph (CDG) to model the referencer-referencee relationship between

co-changed entities. Next, we extracted the common subgraphs between CDGs

to locate recurring co-change patterns between entities. Finally, based on those

patterns, we extracted code features from co-changed entities and trained an

ML model that recommends entities-to-change given a program commit.

According to our empirical investigation, (1) three recurring patterns com-

monly exist in all projects; (2) 80%–90% of co-changed function pairs either

invoke the same function(s), access the same variable(s), or contain similar

statement(s); (3) our ML-based approach CoRec recommended entity changes

with high accuracy (73%–78%). CoRec complements prior work because it sug-

gests changes based on program syntax, textual similarity, as well as software

history; it achieved higher accuracy than two existing tools in our evaluation.
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1. Introduction

JavaScript (JS) has become one of the most popular programming languages

because it is lightweight, flexible, and powerful [1]. Developers use JS to build

web pages and games. JS has many new traits (1) it is dynamic and weakly

typed; (2) it has first-class functions; (3) it is a class-free, object-oriented pro-5

gramming language that uses prototypal inheritance instead of classical inheri-

tance; and (4) objects in JS inherit properties from other objects directly and

all these inherited properties can be changed at runtime. All above-mentioned

traits make JS unique and powerful; they also make JS programs very challeng-

ing to maintain and reason about [2, 3, 4].10

To reduce the cost of maintaining software, researchers proposed approaches

that recommend code co-changes [5, 6, 7, 8]. For instance, Zimmermann et

al. [5] and Rolfsnes et al. [6] mined co-change patterns of program entities from

software version history and suggested co-changes accordingly. Wang et al. [7, 8]

studied the co-change patterns of Java program entities and built CMSuggester15

to suggest changes accordingly for any given program commit. However, existing

tools do not characterize any co-change patterns between JS software entities,

neither do they recommend changes by considering the unique language features

of JS or the mined co-changed patterns from JS programs (see Section 8.3) for

detailed discussions).20

To overcome the limitations of the prior approaches, in this paper, we first

conducted a study on 14,747 program commits from 10 open-source JS projects

to investigate (1) what software entities are usually edited together, and (2) how

those simultaneously edited entities are related. Based on this characterization

study for co-change patterns, we further developed a learning-based approach25

CoRec to recommend changes given a program commit.

Specifically in our study, for any program commit, we constructed and com-

pared Abstract Syntax Trees (ASTs) for each edited JS file to identify all edited
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entities (e.g., Deleted Classes (DC), Changed Functions (CF), and Added Vari-

ables (AV)). Next, we created change dependency graphs (CDGs) for each com-30

mit by treating edited entities as nodes and linking entities that have referencer-

referencee relations. Afterwards, we extracted common subgraphs between

CDGs and regarded those common subgraphs as recurring change patterns.

In our study, we explored the following research question:

RQ1: What are the frequent co-change patterns in JS programs?35

We automatically analyzed thousands of program commits from ten JS projects

and revealed the recurring co-change patterns in each project. By manually

inspecting 20 commits sampled for each of the 3 most popular patterns, we

observed that 80%–90% of co-changed function pairs either invoke the same

function(s), access the same variable(s), contain similar statement(s), or get40

frequently co-changed in version history.

Besides the above findings, our study reveals three most popular change pat-

terns: (i) one or more caller functions are changed together with one changed

callee function that they commonly invoke; (ii) one or more functions are

changed together to commonly invoke an added function; (iii) one or more45

functions are changed together to commonly access an added variable. The

co-changed callers in each pattern may share commonality in terms of variable

accesses, function invocations, code similarity, or evolution history.

Based on the above-mentioned observations, we built a machine learning

(ML)-based approach—CoRec—to recommend functions for co-change. Given50

the commits that contain matches for any of the above-mentioned co-change

patterns, CoRec extracts 10 program features to characterize the co-changed

function pairs, and uses those features to train an ML model. Afterwards, given

a new program commit, the model predicts whether any unchanged function

should be changed as well and recommends changes whenever possible. With55

CoRec, we investigated the following research question:

RQ2: How does CoRec perform when suggesting co-changes based

on the observed three most popular patterns?
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We applied CoRec and two existing techniques (i.e., ROSE [5] and Transitive

Associate Rules (TAR) [9]) to the same evaluation datasets, and observed CoRec60

to outperform both techniques by correctly suggesting many more changes.

CoRec’s effectiveness varies significantly with the ML algorithm it adopts. CoRec

works better when it trains three separate ML models corresponding to the three

patterns than training a unified ML model for all patterns. Our results show

that CoRec can recommend co-change functions with 73–78% accuracy; it sig-65

nificantly outperforms two baseline techniques that suggest co-changes purely

based on software evolution.

We envision CoRec to be used in the integrated development environments

(IDE) for JS, code review systems, and version control systems. In this way,

after developers make code changes or before they commit edits to software70

repositories, CoRec can help detect and fix incorrectly applied multi-entity ed-

its. In the sections below, we will first describe a motivating example (Sec-

tion 2), and then introduce the concepts used in our research (Section 3).

Next, we will present the empirical study to characterize co-changes in JS

programs (Section 4). Afterwards, we will explain our change recommenda-75

tion approach CoRec (Section 5) and expound on the evaluation results (Sec-

tion 6). Our program and data are open sourced at: https://github.com/

NiSE-Virginia-Tech/wz649588-CoRec_jsAnalyzer.

2. A Motivating Example

The prior work [10, 11, 12, 13] shows that developers may commit errors80

of omission (i.e., forgetting to apply edits completely) when they have to edit

multiple program locations simultaneously in one maintenance task (i.e., bug

fixing, code improvement, or feature addition). For instance, Fry et al. [10]

reported that developers are over five times more precise at locating errors

of commission than errors of omission. Yin et al. [12] and Park et al. [13]85

separately showed that developers introduced new bugs when applying patches

to fix existing bugs. In particular, Park et al. inspected the supplementary bug
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fixes following the initial bug-fixing trials, and summarized nine major reasons

to explain why the initial fixes were incorrect. Two of the nine reasons were

about the incomplete program edits applied by developers.90

To help developers apply JS edits completely and avoid errors of omission, we

designed and implemented a novel change recommendation approach—CoRec.

This section overviews our approach with a running example, which is extracted

from a program commit to Node.js—an open-source server-side JS runtime envi-

ronment [14]. Figure 1 shows a simplified version of the exemplar program com-95

mit [15]. In this revision, developers added a function maybeCallback(...) to check

whether the pass-in parameter cb is a function, and modified seven functions in

distinct ways to invoke the added function(e.g., changing fs.write(...) on line

10 and line 14). The seven functions include: fs.rmdir(...), fs.appendFile(...),

fs.truncate(...), fs.write(...), fs.readFile(...), fs.writeFile(...), and fs.writeAll100

(...) [15]. However, developers forgot to change an eighth function—fs.read(...)—

to also invoke the added function (see line 19 in Figure 1).

1. + function maybeCallback(cb) {
2. +   return typeof cb === 'function' ? cb : 

rethrow();
3. + } 

4. fs.write = function(fd, buffer, offset, 
length, position, callback) {

5. - callback = 
makeCallback(arguments[arguments.length - 1]);

6. …
7. req.oncomplete = wrapper;
8. if (buffer instanceof Buffer) {
9. …
10.+     callback = maybeCallback(callback);
11. return binding.writeBuffer(…);
12. }
13. …
14.+   callback = maybeCallback(position);
15. return binding.writeBuffer(fd, buffer, 

offset, …);
16. }

17. fs.read = function(fd, buffer, offset, 
length, position, callback) {

18.- callback = 
makeCallback(arguments[arguments.length - 1]);

19. …
// an edit that developers forgot to apply:
//+  callback = maybeCallback(callback);

20. req.oncomplete = wrapper;
21. binding.read(fd, buffer, offset, …);
22. } 

Figure 1: A program commit should add one function and change eight functions to invoke

the newly added one. However, developers forgot to change one of the eight functions—

fs.read(...) [15].

CoRec reveals the missing change with the following steps. CoRec first trains

an ML model with the program co-changes extracted from Node.js software

version history. Then given the exemplar commit, based on the added function105
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maybeCallback(...) and each changed function (e.g., fs.write(...)), CoRec ex-

tracts any commonality between the changed function and any unchanged one.

For each function pair, CoRec applies its ML model to the extracted commonal-

ity features and predicts whether the function pair should be changed together.

Because fs.write(...) and fs.read(...)110

• commonly access one variable binding,

• commonly invoke two functions: makeCallback(...) and wrapper(...),

• declare the same parameters in sequence,

• have token-level similarity as 41%, and

• have statement-level similarity as 42%,115

the pre-trained ML model inside CoRec considers the two functions to share suf-

ficient commonality and thus recommends developers to also change fs.read(...)

to invoke maybeCallback(...). In this way, CoRec can suggest entities for change,

which edits developers may otherwise miss.

3. Terms and Definitions120

This section first introduces concepts relevant to JS programming, and then

describes the terminology used in our research.

ES6 and ES5. ECMA Script is the standardized name for JavaScript [16].

ES6 (or ECMAScript2015) is a major enhancement to ES5, and adds many

features intended to make large-scale software development easier. ES5 is fully125

supported in all modern browsers, and major web browsers support some fea-

tures of ES6. Our research is applicable to both ES5 and ES6 programs.

Software Entity. We use software entity to refer to any defined JS class,

function, variable, or any independent statement block that is not con-

tained by the definition of classes, functions, or variables. When developers130

write JS code, they can define each type of entities in multiple alternative ways.

For instance, a class can be defined with a class expression (see Figure 2 (a)) or
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const Rectangle = class {
constructor(height, width) {
this.height = height;
this.width = width;

}
area() {
return this.height * this.width;

}
};

console.log(new Rectangle(5, 8).area());

class Rectangle{
constructor(height, width) {
this.area = height * width;

}
}

console.log(new Rectangle(5, 8).area);

(a) (b)

Figure 2: A JS class can be defined with an expression (see (a)) or a declaration (see (b)).

class declaration (see Figure 2 (b)). Similarly, a function can be defined with

a function expression or function declaration. A variable can be defined with a

variable declaration statement; the statement can either use keyword const to135

declare a constant variable, or use let or var to declare a non-constant variable.

Edited Entity. When maintaining JS software, developers may add, delete,

or change one or more entities. Therefore, as with prior work [17], we defined

a set of edited entities to describe the possible entity-level edits, including

Added Class (AC), Deleted Class (DC), Added Function (AF), Deleted Func-140

tion (DF), Changed Function (CF), Added Variable (AV), Deleted Variable

(DV), Changed Variable (CV), Added Statement Block (AB), Deleted State-

ment Block (DB), and Changed Statement Block (CB). For example, if a new

class is declared to have a constructor and some other methods, we consider the

revision to have one AC, multiple AFs, and one or more AV (depending on how145

many fields are defined in the constructor).

Multi-Entity Edit and CDG. As with prior work [18], we use multi-

entity edit to refer to any commit that has two or more edited entities. We

use change dependency graph (CDG) to visualize the the relationship be-

tween co-changed entities in a commit. Specifically, each CDG has at least two150

nodes and one edge. Each node represents an edited entity, and each edge rep-

resents the referencer-referencee relationship between entities (e.g., a function

calls another function). Namely, if an edited entity E1 refers to another edited

entity E2, we say E1 depends on E2. A related CDG is constructed to connect
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3. Program 
Differencing

for each 
(!", !#)

• AC, AV, AF, AB

• DC, DV, DF, DB

• CV, CF, CB 

1. AST 
Parsing

($%&', $%&()
(f1_old, f1_new)
(f2_old, f2_new)

……
(fn_old, fn_new)

Commit c

2. Entity 
Extraction

($%&', $%&()
(ESo, ESn)

Figure 3: The procedure to extract changed entities given a commit.

the two entities with a directed edge pointing to E2—the entity being depended155

upon (i.e. E1 → E2). For each program commit, we may create zero, one, or

multiple CDGs.

4. Characterization Study

This section introduces our study methodology (Section 4.1) and explains

the empirical findings (Section 4.2). The purpose of this characterization study160

is to identify recurring change pattern (RCP) of JS programs. An RCP is a

CDG subgraph that is commonly shared by the CDGs from at least two distinct

commits. RCPs define different types of edits, and serve as the templates of co-

change rules. Our approach in Section 5 mines concrete co-change rules for the

most common RCPs.165

4.1. Study Methodology

We implemented a tool to automate the analysis. Given a set of program

commits in JS repositories, our tool first characterizes each commit by extract-

ing the edited entities (Section 4.1.1) and constructing CDG(s) (Section 4.1.2).

Next, it compares CDGs across commits to identify RCPs (Section 4.1.3).170

4.1.1. Extraction of Edited Entities

As shown in Figure 3, we took three steps to extract any edited entities for

each commit.

Step 1: AST Parsing. Given a program commit c, this step first locates the

old and new versions of each edited JS file. For every edited file (fo, fn), this175
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Figure 4: Extracting edited entities from a program commit of Meteor [21].

step adopts Esprima [19] and typed-ast-util [20] to generate Abstract Syntax

Trees (ASTs): (asto, astn). Esprima is a high performance, standard-compliant

JavaScript parser that supports the syntax of both ES5 and ES6; however, it

cannot infer the static type binding information of any referenced class, function,

or variable. Meanwhile, given JS files and the project’s package.json file, typed-180

ast-util produces ASTs annotated with structured representations of TypeScript

types, which information can facilitate us to precisely identify the referencer-

referencee relationship between edited entities. We decided to use both tools for

two reasons. First, when a project has package.json file, we rely on Esprima to

identify the code range and token information for each parsed AST node, and185

rely on typed-ast-util to attach relevant type information to those nodes. Sec-

ond, if a project has no package.json file, Esprima is still used to generate ASTs

but we defined a heuristic approach (to be discussed later in Section 4.1.2) to

identify the referencer-referencee relationship between entities with best efforts.

To facilitate our discussion, we introduce a working example from a pro-190

gram revision [21] of Meteor [22]. As shown in Figure 4, the program revi-

sion changes seven JS files. In this step, CoRec creates a pair of ASTs for

each edited file and stores the ASTs into JSON files for later processing (e.g.,

tools/buildmessages-ast.json (old) and tools/buildmessages-ast.json (new)).

Step 2: Entity Extraction. From each pair of ASTs (asto, astn) (i.e., JSON195

files), this step extracts the entity sets (ESo, ESn). In the example shown in

Figure 4, ESo lists all entities from the old JS file, and ESn corresponds to the
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new file. We defined four kinds of entities to extract: variables (V), functions

(F), classes (C), and statement blocks (B). A major technical challenge here

is how to extract entities precisely and consistently. Because JS programming200

supports diverse ways of defining entities and the JS syntax is very flexible,

we cannot simply check AST node types of statements to recognize entity def-

initions. For instance, a variable declaration statement can be interpreted as

a variable-typed entity or a statement block, depending on the program con-

text. To eliminate ambiguity and avoid any confusion between differently typed205

entities, we classify and extract entities in the following way:

• A code block is treated as a function definition if it satisfies either of the fol-

lowing two requirements. First, the AST node type is “FunctionDeclaration”

(e.g., runBenchmarks() on line 7 in Figure 5) or “MethodDefinition”. Sec-

ond, (1) the block is either a “VariableDeclaration” statement (e.g., const210

getRectArea = function(...){...};) or an“Assignment” expression (see line

11 and line 20 of Figure 5); and (2) the right-side operand is either

“FunctionExpression”, or “CallExpression” that outputs another function as

return value of the called function. In particular, if any defined function

has its prototype property explicitly referenced (e.g., Benchmark.prototype215

on lines 20 and 24) or is used as a constructor to create any object (e.g.,

line 12), we reclassify the function definition as a class definition, because

the function usage is more like the usage of a class.

• A code block is considered to be a class definition if it meets either of the

following two criteria. First, the block uses keyword class. Second, the220

block defines a function, while the codebase either references the function’s

prototype (e.g., Benchmark.prototype on lines 20 and 24 in Figure 5) or uses

the function as a constructor to create any object (see line 12).

• A code block is treated as a variable declaration if (1) it is either a

“VariableDeclaration” statement (e.g., var silent = ... on line 2 in Fig-225

ure 5) or an “Assignment” expression, (2) it does not define a function or
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N/A1. var assert = require(‘assert’);
2. var silent = +process.env.NODE_BENCH_SILENT;
3. if (module === require.main) {
4. …
5. runBenchmarks();
6. }
7. function runBenchmarks() {
8. var test = test.shift();
9. …
10.}
11.exports.creatBenchmark = function(fn, options) {
12. return new Benchmark(fn, options);
13.}
14.function Benchmark(fn, options) {
15. this.fn = fn;
16. this.options = options;
17. this.config = parseOpts(options);
18. …
19.}
20.Benchmark.prototype.report = function(value) {
21. var heading = this.getHeading();
22. …
23.};
24.Benchmark.prototype.getHeading = function() {
25. var conf = this.config;
26. …
27.}

variable

statement block

function

function

class
function

function

variable
variable

variable

Figure 5: Code snippets from the file benchmark.common.js of Node.js in revision 00a1d36 [15],

whose related entity types are shown on the right.

class, (3) it does not belong to the definition of any function but may

belong to a constructor (see lines 15-17), and (4) it does not declare a

required module (see line 1). Particularly, when a variable declaration is

an assignment inside a class constructor (e.g., lines 15-17), it is similar to230

the field declaration in Java.

• A code block is treated as a statement block if (1) it purely contains

statements, (2) it does not define any class, function, or variable, and (3)

it does not belong to the definition of any class or function. For example,

lines 3-6 in Figure 5 are classified as a statement block.235

Step 3: Program Differencing. To identify any edited entity between ESo

and ESn, we first matched the definitions of functions, variables, and classes

across entity sets based on their signatures. If any of these entities (e.g., a

function definition) solely exists in ESo, an entity-level deletion (e.g., DF) is

inferred; if an entity (e.g., a variable definition) solely exists in ESn, an entity-240

level insertion (e.g., AV) is inferred. Next, for each pair of matched entities,
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we further exploited a fine-grained AST differencing tool—GumTree [23]—to

identify expression-level and statement-level edits. If any edit is reported, we

inferred an entity-level change (e.g., CF shown in Figure 4). Additionally, we

matched statement blocks across entity sets based on their string similarities.245

Namely, if a statement block b1 ∈ ESo has the longest common subsequence

with a block b2 ∈ ESn and the string similarity is above 50%, we considered

the two blocks to match. Furthermore, if the similarity between two matched

blocks is not 100%, we inferred a block-level change CB.

4.1.2. CDG Construction250

For each program commit, we built CDGs by representing the edited entities

as nodes, and by connecting edited entities with directed edges if they have either

of the following two kinds of relationship:

• Access. If an entity E1 accesses another entity E2 (i.e., by reading/writing

a variable, invoking a function, or using a class), we consider E1 to be de-255

pendent on E2.

• Containment. If the code region of E1 is fully covered by that of E2, we

consider E1 to be dependent on E2.

The technical challenge here is how to identify the relationship between

edited entities. We relied on ESprima’s outputs to compare code regions between260

edited entities in order to reveal the containment relations. Additionally, when

package.json file is available, we leveraged the type binding information inferred

by typed-ast-util to identify the access relationship. For instance, if there is a

function call bar() inside an entity E1 while bar() is defined by a JS module f2,

then typed-ast-util can resolve the fully qualified name of the callee function as265

f2.bar(). Such resolution enables us to effectively link edited entities no matter

whether they are defined in the same module (i.e., JS file) or not.

Since some JS projects have no package.json file, we could not adopt typed-

ast-util to resolve bindings in such scenarios. Therefore, we also built a simpler
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but more applicable approach to automatically speculate the type binding in-270

formation of accessed entities as much as possible. Specifically, suppose that file

f1 defines E1 to access E2. To resolve E2 and link E1 with E2’s definition, this

intuitive approach first scans all entities defined in f1 to see whether there is

any E2 definition locally. If not, this approach further examines all require and

import statements in f1, and checks whether any required or imported module275

defines a corresponding entity with E2’s name; if so, this approach links E1 with

the retrieved E2’s definition.

Compared with typed-ast-util, our approach is less precise because it cannot

infer the return type of any invoked function. For instance, if we have const foo

= bar() where bar() returns a function, our approach simply assumes foo to be a280

variable instead of a function. Consequently, our approach is unable to link foo’s

definition with any of its invocations. Based on our experience of applying both

typed-ast-util and the heuristic method to the same codebase (i.e., nine open-

source projects), the differences between these two methods’ results account for

no more than 5% of all edited entities. It means that our heuristic method is285

still very precise even though no package.json file is available.

Figures 6 and 7 separately present the code changes and CDG related to

tools/buildmessage.js, an edited file mentioned in Figure 4. According to Fig-

ure 6, the program commit modifies file tools/buildmessage.js by defining a

new function spaces(...) and updating an existing function capture(...) to290

invoke the new function. It also changes file tools/commands-package.js by up-

dating the function invocation of capture(...) inside a statement block (i.e.,

main.registerCommand(...);). Given the old and new versions of both edited JS

files, our approach can construct the CDG shown in Figure 7. In this CDG,

each directed edge starts from a dependent entity E1, and points to the entity295

on which E1 depends. Each involved function, variable, or class has its fully

qualified name included in the CDG for clarity. As statement blocks have no

fully qualified names, we created a unique identifier for each block with (1) the

module name (e.g., tools.commands-packages) and (2) index of the block’s first

character in that module (e.g., 69933).300
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1. + var spaces = function (n) {
2. + return _.times(n, function() { return ' ' 

}).join(’’);
3. + };

4. var capture = function (option, f) {
5. …
6. - console.log("START CAPTURE", nestingLevel, 

options.title, "took " + (end - start));
7. +   console.log(spaces(nestingLevel * 2), 

"START CAPTURE", nestingLevel, options.title, 
"took " + (end - start));

8. … 
9. }

1. main.registerCommand({…}, function
(options) {

2. …
3. - var messages = 

buildmessage.capture(function () {
4. +   var messages = buildmessage.capture({ 

title: 'Combining constraints' }, function(){
5. allPackages = 

project.getCurrentCombinedConstraints();
6. });
7. … 

tools/buildmessage.js tools/commands-packages.js

Figure 6: A simplified program commit that adds a function spaces(...), changes a function

capture(...), and changes a statement block [21]

CB	
tools.commands-packages.	
statement_block_69933	

Function	
Invocation	

CF	
tools.buildmessage.	
capture(options,	f)	

AF	
tools.buildmessage.	
spaces(n)	

Function	
Invocation	

Figure 7: The CDG corresponding to the program commit shown in Figure 6

4.1.3. Extraction of Recurring Change Patterns (RCP)

As with prior work [18], we extracted RCPs by comparing CDGs across

program commits. Intuitively, given a CDG g1 from commit c1 and the CDG

g2 from commit c2, we matched nodes based on their edit-entity labels (e.g.,

AF) while ignoring the concrete code details (e.g., tools.buildmessage.spaces(n)305

in Figure 7). We then established edge matches based on those node matches.

Namely, two edges are matched only if they have matching starting nodes and

matching ending nodes. Next, based on all established matches, we identified

the largest common subgraph between g1 and g2 using the off-the-shelf subgraph

isomorphism algorithm VF2 [24]. Such largest common subgraphs are consid-310

ered as RCPs because they commonly exist in CDGs of different commits.

4.2. Empirical Findings

To characterize JS code changes, we applied our study approach to a sub-

set of available commits in 10 open-source projects, as shown in Table 1. We

chose these projects because (1) they are popularly used; (2) they are from315

different application domains; and (3) they contain a large number of available
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Table 1: Subject projects

Project Description
# of

KLOC

# of

Com-

mits

# of

Edited

Entities

Node.js

Node.js [14] is a cross-platform JS

runtime environment. It executes JS

code outside of a browser.

1,755 2,701 11,287

Meteor

Meteor [22] is an ultra-simple

environment for building modern web

applications.

255 3,011 10,274

Ghost

Ghost [25] is the most popular

open-source and headless Node.js content

management system (CMS) for

professional publishing.

115 1,263 5,142

Habitica

Habitica [26] is a habit building program

that treats people’s life like a Role

Playing Game.

129 1,858 6,116

PDF.js
PDF.js [27] is a PDF viewer that is built

with HTML5.
104 1,754 4,255

React
React [28] is a JS library for building

user interfaces.
286 1,050 4,415

Serverless

Serverless [29] is a framework used to

build applications comprised of

microservices that run in response to

events.

63 1,110 3,846

Webpack

Webpack [30] is a module bundler, which

mainly bundles JS files for usage in a

browser. assets.

37 1,099 3,699

Storybook
Storybook [31] is a development

environment for UI components.
43 528 2,277

Electron

Electron [32] is a framework that

supports developers to write

cross-platform desktop applications using

JS, HTML, and CSS.

35 673 1,898
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commits. In particular, we found these 10 projects by (1) ranking the JS repos-

itories available on GitHub based on star counts, (2) picking the projects with

lots of commits (>10,000 commits), and (3) focusing on the projects compliant

with ES5 or ES6—the two mainstream syntax definitions followed by develop-320

ers when they write JS code. For simplicity, to sample the commits that may

fulfill independent maintenance tasks, we searched each software repository for

commits whose messages contain any of the following keywords: “bug”, “fix”,

“error”, “adjust”, and “failure”.

Table 1 shows the statistics related to the sampled commits. In particular,325

column # of KLOC presents the code size of each project (i.e., the number

of kilo lines of code (KLOC)). Column # of Commits reports the number

of commits identified via our keyword-based search. Column # of Edited

Entities reports the number of edited entities extracted from those sampled

commits. According to this table, the code size of projects varies significantly330

from 35 KLOC to 1755 KLOC. Among the 10 projects, 528–3,011 commits

were sampled, and 1,898–11,287 edited entities were included for each project.

Within these projects, only Node.js has no package.json file, so we adopted our

heuristic approach mentioned in Section 4.1.2 to link edited entities. For the

remaining nine projects, as they all have package.json files, we leveraged the type335

binding information inferred by typed-util-ast to connect edited entities.

4.2.1. Commit Distributions Based on The Number of Edited Entities

We first clustered commits based on the number of edited entities they con-

tain. Because the commit distributions of different projects are very similar to

each other, we present the distributions for four projects in Figure 8. Among the340

10 projects, 41%–52% of commits are multi-entity edits. Specifically, 15%–19%

of commits involve two-entity edits, and 7%–10% of commits are three-entity

edits. The number of commits decreases as the number of edited entities in-

creases. The maximum number of edited entities appears in Node.js, where

a single commit modifies 335 entities. We manually checked the commit on345

GitHub [33], and found that four JS files were added and three other JS files
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Figure 8: Commit distributions based on the number of edited entities each of them contains

were changed to implement HTTP/2.

We noticed that about half of sampled program revisions involve multi-entity

edits. This observation implies the importance of co-change recommendation

tools. When developers have to frequently edit multiple entities simultaneously350

to achieve a single maintenance goal, it is crucially important to provide au-

tomatic tool support that can check for the completeness of code changes and

suggest any missing change when possible. In order to build such tools, we de-

cided to further explore relations between co-changed entities (see Section 4.2.2).

Finding 1: Among the 10 studied projects, 41–52% of studied commits

are multi-entity edits. It indicates the necessity of our research to char-

acterize multi-entity edits and to recommend changes accordingly.
355

4.2.2. Commit Distributions Based on The Number of CDGs

We further clustered multi-entity edits based on the number of CDGs con-

structed for each commit. As shown in Table 2, our approach created CDGs for
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Table 2: Multi-entity edits and created CDGs

Project
# of Multi-Entity

Edits

# of Multi-Entity

Edits with CDG(s)

Extracted

% of Multi-Entity

Edits with CDG(s)

Extracted

Node.js 1,401 785 56%

Meteor 1,445 670 46%

Ghost 604 356 59%

Habitica 962 345 36%

PDF.js 711 372 52%

React 538 320 60%

Serverless 480 171 36%

Webpack 483 253 52%

Storybook 243 119 49%

Electron 277 123 44%

36–60% of the multi-entity edits in distinct projects. On average, 49% of multi-

entity edits contain at least one CDG. Due to the complexity and flexibility of360

the JS programming language, it is very challenging to statically infer all possi-

ble referencer-referencee relationship between JS entities. Therefore, the actual

percentage of edits that contain related co-changed entities can be even higher

than our measurement. Figure 9 presents the distributions of multi-entity edits

based on the number of CDGs extracted. Although this figure only presents the365

commit distributions for four projects: Node.js, Meteor, Ghost, and Habitica,

we observed similar distributions in other projects as well. As shown in this

figure, the number of commits decreases significantly as the number of CDGs

increases. Among all 10 projects, 73%–81% of commits contain single CDGs,

9%–18% of commits have two CDGs extracted, and 3%–7% of commits have370

three CDGs each. The commit with the largest number of CDGs constructed

(i.e., 16) is the one with the maximum number of edited entities in Node.js as

mentioned above in Section 4.2.1.

The high percentage of multi-entity edits with CDGs extracted (i.e., 49%)

implies that JS programmers usually change syntactically related entities simul-375
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Figure 9: The distributions of multi-entity edits based on the number of CDGs

taneously in program revisions. Such syntactic relevance between co-changed

entities enlightened us to build tools that recommend co-changes by observing

the syntactic dependences between changed and unchanged program entities.

To concretize our approach design for co-change recommendations, we further

explored the recurring syntactic relevance patterns between co-changed entities,380

i.e., RCPs (see Section 4.2.3).

Finding 2: For 36–60% of multi-entity edits in the studied projects, our

approach created at least one CDG for each commit. It means that many

simultaneously edited entities are syntactically relevant to each other.

4.2.3. Identified RCPs

By comparing CDGs of distinct commits within the same project repository,

we identified RCPs in all projects. As listed in Table 3, 32–205 RCPs are ex-385

tracted from individual projects. In each project, there are 113–782 commits

that contain matches for RCPs. In particular, each project has 228–2,385 sub-

graphs matching RCPs. By comparing this table with Table 2, we found that
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Table 3: Recurring change patterns (RCPs) and their matches

Projects
# of

RCPs

# of Commits with

RCP Matches

# of Subgraphs Matching

the RCPs

Node.js 205 782 2,385

Meteor 182 658 1,719

Ghost 123 351 1,223

Habitica 102 339 706

PDF.js 76 367 640

React 101 316 899

Serverless 52 164 372

Webpack 73 243 583

Storybook 38 113 337

Electron 32 117 228

Pattern Index

Pattern Shape

P1                 P2               P3                 P4               P5

Function Invocation Variable Read/Write

*CF: One or more changed functions       *CB: One or more changed statement blocks

f v

CB

*AF: One or more added functions       AV: One added variable

Figure 10: The 5 most popular recurring change patterns among the 10 projects

95%–100% of the commits with CDGs extracted have matches for RCPs. It

means that if one or more CDGs can be built for a commit, the commit is very390

likely to share common subgraphs with some other commits. In other words,

simultaneously edited entities are usually correlated with each other in a fixed

number of ways. If we can characterize the frequently occurring relationship

between co-changed entities, we may be able to leverage such characterization

to predict co-changes or reveal missing changes.395

By accumulating the subgraph matches for RCPs across projects, we iden-

tified five most popular RCPs, as shown in Figure 10. Here, P1 means that

20



Table 4: The numbers of RCPs revealed by different threshold settings

Projects ≥2 commits ≥3 commits ≥4 commits ≥5 commits

Node.js 205 174 155 118

Meteor 182 145 120 104

Ghost 123 110 91 78

Habitica 102 69 53 43

PDF.js 76 61 56 40

React 101 78 65 53

Serverless 52 35 31 24

Webpack 73 58 43 38

Storybook 38 21 19 17

Electron 32 28 21 16

when a callee function is changed, one or more of its caller functions are also

changed. P2 means that when a new function is added, one or more existing

functions are changed to invoke that new function. P3 shows that when a new400

variable is added, one or more existing functions are changed to read/write the

new variable. P4 presents that when a new variable is added, one or more new

functions are added to read/write the new variable. P5 implies that when a

function is changed, one or more existing statement blocks invoking the function

are also changed. Interestingly, the top three patterns commonly exist in all 10405

projects, while the other two patterns do not exist in some of the projects. The

top three patterns all involve simultaneously changed functions.

The threshold used to identify RCPs. By default, we detected an RCP

if the CDGs of at least two commits share any subgraph. Alternatively, we

can also set this threshold for the number of commits sharing RCP(s) to any410

number beyond 2 (e.g., 3, 4, and 5). To study how the threshold setting affects

our RCP observations, we conducted an experiment to set the value to 3, 4,

and 5 separately. Table 4 presents the experiment results. Unsurprisingly, as

the threshold increases, the number of revealed RCPs decreases because fewer

RCPs can satisfy the requirement on commit counts. Specifically for Meteor,415
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the threshold setting 2 leads to 182 RCPs found, while the threshold setting 5

causes 104 RCPs detected. Although the total number of RCPs decreases as the

threshold increases, we found the most popular five RCPs to remain the same.

To reveal as many RCPs as possible, by default, we set the threshold to 2.

Finding 3: Among the commits with CDGs extracted, 95%–100% of

commits have matches for mined RCPs. In particular, the most popular

three RCPs all involve simultaneously changed functions.
420

4.2.4. Case Studies for The Three Most Popular RCPs

We conducted two sets of case studies to understand (1) the semantic mean-

ings of P1–P3 and (2) any co-change indicators within code for those patterns.

In each set of case studies, we randomly sampled 20 commits matching each of

these RCPs and manually analyzed the code changes in all 60 commits.425

The Semantic Meanings of P1–P3. In the 20 commits sampled for each

pattern, we summarized the semantic relevance of entity-level changes as below.

Observations for P1 (*CF
f−→CF). We found the caller and callee func-

tions changed together in three typical scenarios. First, in about 45% of the in-

spected commits, both caller and callee functions experienced consistent changes430

to invoke the same function(s), access the same variable(s), or execute the same

statement(s). Second, in about 40% of the commits, developers applied adap-

tive changes to callers when callees were modified. The adaptive changes involve

modifying caller implementations when the signatures of callee functions were

updated, or moving code from callees to callers. Third, in 15% of cases, callers435

and callees experienced seemingly irrelevant changes.

Observations for P2 (*CF
f−→AF). Such changes were applied for two

major reasons. First, in 65% of the studied commits, the added function im-

plemented some new logic, which was needed by the changed caller function.

Second, in the other 35% of cases, changes were applied for refactoring purposes.440

Namely, the added function was extracted from one or more existing functions

and those functions were simplified to just invoke the added function.
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Observations for P3 (*CF
v−→AV). Developers applied such changes in two

typical scenarios. First, in 60% of cases, developers added a new variable for

feature addition, which variable was needed by each changed function (i.e., cross-445

cutting concern [34]). Second, in 40% of the cases, developers added variables

for refactoring purposes. For instance, some developers added a variable to

replace a whole function, so all caller functions of the replaced function were

consistently updated to instead access the new variable. Additionally, some

other developers added a variable to replace some expression(s), constant(s), or450

variable(s). Consequently, the functions related to the replaced entities were

consistently updated for the new variable.

The Code Indicators for Co-Changes in P1–P3. To identify potential

ways of recommending changes based on the mined RCPs, we randomly picked

20 commits matching each pattern among P1–P3; we ensured that each sampled455

commit has two or more co-changed functions (e.g., *CF) referencing another

edited entity. We then inspected the co-changed functions in each commit, to

decide whether they share any commonality that may indicate their simultane-

ous changes. As shown in Table 5, the three case studies I–III correspond to the

three patterns P1–P3 in sequence. In our manual analysis, we mainly focused460

on four types of commonality:

• FI: The co-changed functions commonly invoke one or more peer functions

of the depended entity E (i.e., CF in P1, AF in P2, and AV in P3). Here,

peer function is any function that is defined in the same file as E.

• VA: The co-changed functions commonly access one or more peer variables465

of the depended entity E. Here, peer variable is any variable that is

defined in the same file as E.

• ST: The co-changed functions commonly share at least 50% of their to-

ken sequences. We calculated the percentage with the longest common

subsequence algorithm between two token strings.470
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• SS: The co-changed functions commonly share at least 50% of their state-

ments. We computed the percentage by recognizing identical statements

between two given functions f1(...) and f2(...). Assume that the two

functions separately contain n1 and n2 statements, and the number of

common statements is n3. Then the percentage is calculated as

n3 × 2

n1 + n2
× 100% (1)

Table 5: Commonality observed between the co-changed functions

Case Study
Commonality No

FI VA ST SS Commonality

I (for P1: *CF
f−→CF) 8 5 7 4 4

II (for P2: *CF
f−→AF) 12 7 8 6 2

III (for P3: *CF
v−→AV) 6 13 6 5 3

We will define more commonalities between co-changed functions in Sec-

tion 5.2 and Table 6. We studied the above-mentioned four kinds of commonality

for two reasons. First, ST and SS capture the typical textual/syntactic similar-

ity between functions; Second, FI and VA reflect the typical semantic similarity

between functions (i.e., invoking the same functions or accessing the same vari-475

ables). We were inspired to check these four types of commonality by prior

research on recommendation systems [35, 36, 37] and code clones [38, 39, 40].

Each of these inspiring papers is relevant to identifying similarity between pro-

gram entities. For instance, CCFinder [38] explores and adopts three types of

commonality: similar token sequences, common variable usage, and common480

function calls.

According to Table 5, 80%–90% of co-changed functions share certain com-

monality with each other. There are only 2–4 commits in each study where the

co-changed functions share nothing in common. Particularly, in the first case

study, the FI commonality exists in eight commits, VA exists in five commits,485

ST occurs in seven commits, and SS occurs in four commits. The summation of

these commonality occurrences is larger than 20, because the co-changed func-

tions in some commits share more than one type of commonality. Additionally,
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the occurrence rates of the four types of commonality are different between case

studies. For instance, FI has 8 occurrences in the first case study; it occurs in490

12 commits of the second study and occurs in only 6 commits of the third study.

As another example, most commits (i.e., 13) in the third study share the VA

commonality, while there are only 5 commits in the first study having such com-

monality. The observed differences between our case studies imply that when

developers apply multi-entity edits matching different RCPs, the commonality495

shared between co-changed functions also varies.

Finding 4: When inspecting the relationship between co-changed func-

tions in three case studies, we found that these functions usually share

certain commonality. This indicates great opportunities for developing

co-change recommendation approaches.

5. Our Change Recommendation Approach: CoRec

In our characterization study (see Section 4), we identified three most pop-

ular RCPs: *CF
f−→CF, *CF

f−→AF, and *CF
v−→AV. In all these patterns, there500

is at least one or more changed functions (i.e., *CF) that references another

edited entity E (i.e., CF, AF, or AV). In the scenarios when two or more

co-changed functions commonly depend on E, we also observed certain com-

monality between those functions. This section introduces our recommendation

system—CoRec—which is developed based on the above-mentioned insights.505

As shown in Figure 11, CoRec has three phases. In the following subsections

(Sections 5.1-5.3), we explain each phase in detail.

5.1. Phase I: Commit Crawling

Given the repository of a project P , Phase I crawls commits to locate any

data usable for machine learning. Specifically, for each commit in the repository,510

this phase reuses part of our study approach (see Sections 4.1.1 and 4.1.2) to

extract edited entities and to create CDGs. If a commit c has any subgraph
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Figure 11: CoRec consists of three phases: commit crawling, training, and testing

matching P1, P2, or P3, this phase recognizes the entity Em matching E (i.e.,

an entity matching CF in P1, matching AF in P2, or matching AV in P3) and

any co-changed function matching *CF. We denote these co-changed function(s)515

with CF Set = {cf1, cf2, . . .}, and denote the unchanged function(s) in edited

JS files from the same commit with UF Set = {uf1, uf2, . . .}. If CF Set has

at least two co-changed functions, CoRec considers the commit to be usable for

model training and passes Em, CF Set, and UF Set to the next phase.

5.2. Phase II: Training520

This phase has two major inputs: the software repository of program P,

and the extracted data from each relevant commit (i.e., Em, CF Set, and

UF Set). In this phase, CoRec first creates positive and negative training

samples, and then extracts features for each sample. Next, CoRec trains a ma-

chine learning model by applying Adaboost (with Random Forest as the “weak525

learner”) [41] to the extracted features. Specifically, to create positive samples,

CoRec enumerates all possible function pairs in CF Set, because each pair of

these functions were co-changed with Em. We represent the positive samples

with Pos = {(cf1, cf2), (cf2, cf1), (cf1, cf3), . . .}. To create negative samples,

CoRec pairs up each changed function cf ∈ CF Set with an unchanged function530

uf ∈ UF Set, because each of such function pairs were not co-changed. Thus,
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Table 6: A list of features extracted for function pair (f1, f2)

Id Feature Id Feature

1
Number of Em-relevant parameter

types in f2
6

Whether f1 and f2 have the same

return type

2 Whether f2 has the Em-related type 7
Whether f1 and f2 are defined in the

same way

3 Number of common peer variables 8 Token similarity

4 Number of common peer functions 9 Statement similarity

5 Number of common parameter types 10 Co-evolution frequency

we denote the negative samples as Neg = {(cf1, uf1), (uf1, cf1), (cf1, uf2), . . .}.

By preparing positive and negative samples in this way, given certain pair of

functions, we expect the trained model to predict whether the functions should

be co-changed or not.535

CoRec extracts 10 features for each sample. As illustrated in Figure 11, two

features reflect code characteristics of the second function in the pair, seven

features capture the code commonality between functions, and one feature fo-

cuses on the co-evolution relationship between functions. Table 6 presents more

details of each feature. Specifically, the 1st and 2nd features are about the540

relationship between f2 and Em. Their values are calculated as below:

• When Em is CF or AF, the 1st feature records the number of types used in

f2 that match any declared parameter type of Em. Intuitively, the more

type matches, the more likely that f2 should be co-changed with Em. The

2nd feature checks whether the code in f2 uses the return type of Em.545

• When Em is AV, the 1st feature is set to zero, because there is no param-

eter type involved in variable declaration. The 2nd feature checks whether

the code in f2 uses the data type of the newly added variable.

The 3rd and 4th features were calculated in similar ways. Specifically, de-

pending on which JS file defines Em, CoRec locates peer variables (i.e., variables550

defined within the same file as Em) and peer functions (i.e., functions defined in

the same file). Next, CoRec identifies the accessed peer variables (or peer func-
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tions) by each function in the pair, and intersects the sets of both functions to

count the commonly accessed peer variables (or peer functions). Additionally,

the 7th feature checks whether f1 and f2 are defined in the same manner. In555

our research, we consider the following five ways to define functions:

(1) via FunctionDeclaration, e.g., function foo(...){...},

(2) via VariableDeclaration, e.g., var foo = function(...){...},

(3) via MethodDefinition, e.g., Class A {foo(...){...}},

(4) via PrototypeFunction to extend the prototype of an object or a function,560

e.g., x.prototype.foo = function(...){...}, and

(5) via certain exports-related statements, e.g., exports.foo = function(...){...}

and module.exports = {foo: function(...){...}}.

If f1 and f2 are defined in the same way, the 7th feature is set to true. Finally, the

10th feature assesses in the commit history, how many times the pair of functions565

were changed together before the current commit. Inspired by prior work [5],

we believe that the more often two functions were co-changed in history, the

more likely that they are co-changed in the current or future commits.

Depending on the type of Em, CoRec takes in extracted features to actually

train three independent classifiers, with each classifier corresponding to one570

pattern among P1–P3. For instance, one classifier corresponds to P1: *CF
f−→CF.

Namely, when Em is CF and one of its caller functions cf is also changed,

this classifier predicts whether there is any unchanged function uf that invokes

Em and should be also changed. The other two classifiers separately predict

functions for co-change based on P2 and P3. We consider these three binary-575

class classifiers as an integrated machine learning model, because all of them can

take in features from one program commit and related software version history,

in order to recommend co-changed functions when possible.
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5.3. Phase III: Testing

This phase takes in two inputs—a new program commit cn and the re-580

lated software version history, and recommends any unchanged function that

should have been changed by that commit. Specifically, given cn, CoRec reuses

the steps of Phase I (see Section 5.1) to locate Em, CF Set, and UF Set.

CoRec then pairs up every changed function cf ∈ CF Set with every un-

changed one uf ∈ UF Set, obtaining a set of candidate function pairs Candi =585

{(cf1, uf1), (uf1, cf1), (cf1, uf2), . . .}. Next, CoRec extracts features for each

candidate p and sends the features to a pre-trained classifier depending on Em’s

type. If the classifier predicts the function pair to have co-change relationship,

CoRec recommends developers to also modify the unchanged function in p.

6. Evaluation590

In this section, we first introduce our experiment setting (Section 6.1) and the

metrics used to evaluate CoRec’s effectiveness (Section 6.2). Then we explain

our investigation with different ML algorithms and present CoRec’s sensitivity

to the adopted ML algorithms (Section 6.3), through which we finalize the

default ML algorithm applied in CoRec. Next we expound on the effectiveness595

comparison between CoRec and two existing tools: ROSE [5] and Transitive

Associate Rules (TAR) [9] (Section 6.4). Finally, we present the comparison

between CoRec and a variant approach that trains one unified classifier instead

of three distinct classifiers to recommend changes (Section 6.5).

6.1. Experiment Setting600

We mined repositories of the 10 open-source projects introduced in Section 4,

and found three distinct sets of commits in each project that are potentially us-

able for model training and testing. As shown in Table 7, in total, we found 280

commits matching P1, 232 commits matching P2, and 182 commits matching

P3. Each of these pattern matches has at least two co-changed functions (*CF)605

depending on Em. In our evaluation, for each data set of each project, we could
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Table 7: Numbers of commits that are potentially usable for model training and testing

Project
# of Commits

Matching P1

# of Commits

Matching P2

# of Commits

Matching P3

Node.js 92 77 65

Meteor 67 59 39

Ghost 21 24 28

Habitica 11 8 5

PDF.js 14 12 14

React 18 12 5

Serverless 26 12 8

Webpack 22 24 8

Storybook 2 1 4

Electron 7 3 6

Sum 280 232 182

Portion 1

Portion 2

Portion 3

Portion 4

Portion 5

Training

Testing

Commit c1: Em, 
cf1, cf2, …cfn

…

Task t11: Em, cf1, {cf2, …, cfn}

Task t12: Em, cf2, {cf1, cf3, …, cfn}

…

Task t1n: Em, cfn, {cf1, …, cfn-1}
Commit c2: …

Figure 12: Typical data processing for each fold of the five-fold cross validation

use part of the data to train a classifier and use the remaining data to test

the trained classifier. Because Storybook and Electron have few commits, we

excluded them from our evaluation and simply used the identified commits of

the other eight projects to train and test classifiers.610

We decided to use k-fold cross validation to evaluate CoRec’s effectiveness.

Namely, for every data set of each project, we split the mined commits into k

portions roughly evenly; each fold uses (k−1) data portions for training and the

remaining portion for testing. Among the eight projects, because each project

has at least five commits matching each pattern, we set k = 5 to diversify our615

30



evaluation scenarios as much as possible. For instance, Habitica has five commits

matching P3. When evaluating CoRec’s capability of predicting co-changes for

Hibitica based on P3, in each of the five folds, we used four commits for training

and one commit for testing. Figure 12 illustrates our five-fold cross validation

procedure. In the procedure, we ensured that each of the five folds adopted a620

distinct data portion to construct prediction tasks for testing purposes. For any

testing commit that has n co-changed functions (*CF) depending on Em, i.e.,

CF Set = {cf1, cf2, . . . , cfn}, we created n prediction tasks in the following way.

In each prediction task, we included one known changed function cfi (i ∈ [1, n])

together with Em and kept all the other (n − 1) functions unchanged. We625

regarded the (n − 1) functions as ground truth (GT ) to assess how accurately

CoRec can recommend co-changes given Em and cfi.

For instance, one prediction task we created in React includes the followings:

Em = src/isomorphic/classic/types.ReactPropTypes.createChainableTypeChecker(...),

cf = src/isomorphic/classic/types.ReactPropTypes.createObjectOfTypeChecker(...),630

and GT ={src/isomorphic/ classic/types.ReactPropTypes.createShapeTypeChecker(...)}.

When CoRec blindly pairing cf with any unchanged function, it may extract

feature values as below: feature1 = 1, feature2 = true, feature3 = 0, feature4 =

2, feature5 = 0, feature6 = true, feature7 = true, feature8 = 76%, feature9 =

45%, feature10 = 1}. Table 8 shows the total numbers of prediction tasks we635

created for all projects and all patterns among the five-fold cross validation.

Notice that our five-fold cross validation is different from the leave-one-out

(LOO) cross validation. With LOO, given N prediction tasks, we need to use

(N−1) tasks for training and 1 task for testing, and to repeat the experiment N

times. However, in our five-fold cross validation, each commit corresponds to a640

different number of tasks (see Table 8). Suppose that we are given five commits

in total, and each commit corresponds to n1, n2, ..., or n5 tasks. When training

a model using the first four commits and testing that model with the fifth one,

we actually use (n1 + n2 + n3 + n4) tasks for training and n5 tasks for testing.
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Table 8: Total numbers of prediction tasks involved in the five-fold cross validation

Project
# of Tasks

Matching P1

# of Tasks

Matching P2

# of Tasks

Matching P3

Node.js 398 309 223

Meteor 401 229 107

Ghost 76 77 99

Habitica 30 23 18

PDF.js 41 31 35

React 72 37 17

Serverless 81 38 23

Webpack 138 90 22

Sum 1,237 834 544

6.2. Metrics645

We defined and used four metrics to measure a tool’s capability of recom-

mending co-changed functions: coverage, precision, recall, and F-score. We also

defined the weighted average to measure a tool’s overall effectiveness among all

subject projects for each of the metrics mentioned above.

Coverage (Cov) is the percentage of tasks for which a tool can provide650

suggestion.

Cov =
# of tasks with a tool’s suggestion

Total # of tasks
× 100% (2)

Coverage varies within [0%, 100%]. If a tool always recommends some change(s)

given a task, its coverage is 100%. All our later evaluations for precision, recall,

and F-score are limited to the tasks covered by a tool. For instance, suppose

that given 100 tasks, a tool can recommend changes for 10 tasks. Then the tool’s655

coverage is 10/100 = 10%, and the evaluations for other metrics are based on

the 10 instead of 100 tasks.

Precision (Pre) measures among all recommendations by a tool, how many

of them are correct:

Pre =
# of correct recommendations

Total # of recommendations by a tool
× 100% (3)

This metric evaluates how precisely a tool recommends changes. If all sugges-

tions by a tool are contained by the ground truth, the precision is 100%.
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Recall (Rec) measures among all the expected recommendations, how

many of them are actually reported by a tool:

Rec =
# of correct recommendations by a tool

Total # of expected recommendations
× 100% (4)

This metric assesses how effectively a tool retrieves the expected co-changed660

functions. Intuitively, if all expected recommendations are reported by a tool,

the recall is 100%.

F-score (F1) measures the accuracy of a tool’s recommendation:

F1 =
2× Pre×Rec

Pre + Rec
× 100% (5)

F-score is the harmonic mean of precision and recall. Its value varies within [0%,

100%]. The higher F-scores are desirable, as they demonstrate better trade-offs

between the precision and recall rates.665

Weighted Average (WA) measures a tool’s overall effectiveness among

all experimented data in terms of coverage, precision, recall, and F-score:

Γoverall =

∑8
i=1 Γi ∗ ni∑8

i=1 ni

. (6)

In the formula, i varies from 1 to 8, representing the 8 projects used in our

evaluation (Storybook and Electron were excluded). Here, i = 1 corresponds to

Node.js and i = 8 corresponds to Webpack; ni represents the number of tasks

built from the ith project. Γi represents any measurement value of the ith project

for coverage, precision, recall, or F-score. By combining such measurement670

values of eight projects in a weighted way, we were able to assess a tool’s overall

effectiveness Γoverall.

6.3. Sensitivity to The Adopted ML Algorithm

We designed CoRec to use Adaboost, with Random Forests as the weak

learners to train classifiers. To make this design decision, we tentatively inte-675

grated CoRec with five alternative algorithms: J48 [42], Random Forest [43],

Näıve Bayes [44], Adaboost (default), and Adaboost (Random Forest).
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(a) The *CF
f−→CF data

(b) The *CF
f−→AF data

(c) The *CF
v−→AV data

Figure 13: Comparison between different ML algorithms on different data sets
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• J48 builds a decision tree as a predictive model to go from observations

about an item (represented in the branches) to conclusions about the

item’s target value (represented in the leaves).680

• Näıve Bayes calculates the probabilities of hypotheses by applying Bayes’

theorem with strong (näıve) independence assumptions between features.

• Random Forest is an ensemble learning method that trains a model to

make predictions based on a number of different models. Random Forest

trains a set of individual models in a parallel way. Each model is trained685

with a random subset of the data. Given a candidate in the testing set,

individual models make their separate predictions and Random Forest uses

the one with the majority vote as its final prediction.

• Adaboost is also an ensemble learning method. However, different from

Random Forest, Adaboost trains a bunch of individual models (i.e., weak690

learners) in a sequential way. Each individual model learns from mis-

takes made by the previous model. We tried two variants of Adaboost:

(1) Adaboost (default) with decision trees as the weak learners, and (2)

Adaboost (Random Forest) with Random Forests as the weak learners.

Figure 13 illustrates the effectiveness comparison when CoRec adopts differ-695

ent ML algorithms. The three subfigures (Figure 13 (a)–(c)) separately present

the comparison results on the data sets of *CF
f−→CF, *CF

f−→AF, and *CF
v−→AV.

We observed similar phenomena in all subfigures. By comparing the first four

basic ML algorithms (J48, Näıve Bayes, Random Forest, and Adaboost (de-

fault)), we noticed that Random Forest achieved the best results in all metrics.700

Among all datasets, Näıve Bayes obtained the lowest recall and accuracy rates.

Although Adaboost obtained the second highest F-score, its coverage is the low-

est probably because it uses decision trees as the default weak learners. Based

on our evaluation with the first four basic algorithms, we were curious how well

Adaboost performs if it integrates Random Forests as weak learners. Thus, we705

also experimented with a fifth algorithm: Adaboost (Random Forest).
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As shown in Figure 13, Adaboost (Random Forest) and Random Forest

achieved very similar effectiveness, and both of them considerably outperformed

the other algorithms. But compared with Random Forest, Adaboost (Random

Forest) obtained better precision, better recall, better accuracy, and equal or710

slightly lower coverage. Thus, we chose Adaboost (Random Forest) as the de-

fault ML algorithm used in CoRec. Our results imply that although ensemble

learning methods generally outperform other ML algorithms, their effectiveness

also depends on (1) what weak learners are used and (2) how we organize weak

learners. Between Adaboost (Random Forest) and Adaboost (default), the only715

difference exists in the used weak learner (Random Forest vs. Decision Tree).

Our evaluation shows that Random Forest helps improve Adaboost’s perfor-

mance when it is used as the weak learner. Additionally, between Random

Forest and Adaboost (default), the only difference is how they combine decision

trees as weak learners. Our evaluation shows that Random Forest outperforms720

Adaboost by training weak learners in a parallel instead of sequential way.

Finding 5: CoRec is sensitive to the adopted ML algorithm. CoRec

obtained the lowest prediction accuracy when Näıve Bayes was used, but

acquired the highest accuracy when Adaboost (Random Forest) was used.

6.4. Effectiveness Comparison with ROSE and TAR

In our evaluation, we compared CoRec with a popularly used tool ROSE [5]

and a more recent tool Transitive Associate Rules (TAR) [9]. Both of these725

tools recommend changes by mining co-change patterns from version history.

We included ROSE into our empirical comparison mainly because it has been

widely cited and can be considered as the most influential existing work to

recommend co-changes. We chose to also experiment with TAR because it is

the state-of-the-art tool that recommends co-changes based on software history.730

Specifically, ROSE mines the association rules between co-changed entities
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from software version history. An exemplar mined rule is shown below:

{( Qdmodule.c, func,GrafObj getattr())} ⇒{
(qdsupport.py, func, outputGetattrHook()).

} (7)

This rule means that whenever the function GrafObj getattr() in a file Qdmodule.c

is changed, the function outputGetattrHook() in another file qdsupport.py should

also be changed. Based on such rules, given a program commit, ROSE ten-735

tatively matches all edited entities with the antecedents of all mined rules and

recommends co-changes if any tentative match succeeds. Similar to ROSE, TAR

also mines association rules from version history. However, in addition to the

mined rules (e.g., E1 ⇒ E2 and E2 ⇒ E3), TAR also leverages transitive

inference to derive more rules (e.g., E1 ⇒ E3); it computes the confidence740

value of each derived rule based on the confidence values of original rules (e.g.,

conf(E1⇒ E3) = conf(E1⇒ E2)× conf(E2⇒ E3)).

In our comparative experiment, we applied ROSE and TAR to the con-

structed prediction tasks and version history of each subject project. We con-

figured ROSE with support count=1 and confidence = 0.1, because the ROSE745

paper [5] mentioned this setting multiple times and it achieved the best results

by balancing recall and precision. For consistency, we also configured TAR with

support count=1 and confidence=0.1.

As shown in Table 9, CoRec outperformed ROSE and TAR in terms of

all measurements. Take Webpack as an example. Among the 138 *CF
f−→CF750

prediction tasks in this project, CoRec provided change recommendations for

89% of tasks; with these recommendations, CoRec achieved 71% precision, 81%

recall, and 75% accuracy. On the other hand, ROSE and TAR recommended

changes for only 50% of tasks; based on its recommendations, ROSE acquired

only 7% precision, 29% recall, and 12% accuracy , while TAR obtained 5%755

precision, 34% recall, and 9% accuracy. Among the eight subject projects, the

weighted average measurements of CoRec include 83% coverage, 72% precision,

73% recall, and 73% accuracy. Meanwhile, the weighted average measurements

of ROSE include 53% coverage, 21% precision, 52% recall, and 29% accuracy.
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Table 9: Evaluation results of CoRec, ROSE, and TAR for *CF
f−→CF tasks (%)

Project
CoRec ROSE TAR

Cov Pre Rec F1 Cov Pre Rec F1 Cov Pre Rec F1

Node.js 77 68 69 69 61 24 56 34 65 15 62 24

Meteor 88 72 70 71 46 16 43 24 52 15 47 23

Ghost 73 67 74 71 50 20 53 29 50 14 57 22

Habitica 80 80 78 79 40 7 37 12 35 5 42 9

PDF.js 71 77 81 79 29 27 41 33 33 8 45 14

React 91 86 76 81 32 59 70 64 32 57 74 64

Serverless 84 77 79 78 64 20 75 32 68 16 80 27

Webpack 89 71 81 75 50 7 29 12 50 5 34 9

WA 83 72 73 73 53 21 52 29 57 15 59 24

TAR achieved 59% average recall, but its average precision and accuracy are760

the lowest among the three tools. Such measurement contrasts indicate that

CoRec usually recommended more changes than ROSE or TAR, and CoRec’s

recommendations were more accurate.

In addition to *CF
f−→CF tasks, we also compared CoRec with ROSE and

TAR for *CF
f−→AF and *CF

v−→AV tasks, as shown in Tables 10 and 11. Similar765

to what we observed in Table 9, CoRec outperformed ROSE and TAR in terms

of all metrics for both types of tasks. As shown in Table 10, given *CF
f−→AF

tasks, on average, CoRec achieved 81% coverage, 76% precision, 80% recall,

and 78% accuracy. ROSE acquired 54% coverage, 21% precision, 48% recall,

and 28% accuracy . TAR obtained 56% coverage, 16% precision, 55% recall,770

and 24% accuracy. In Table 11, for Serverless, CoRec achieved 70% coverage,

80% precision, 85% recall, and 82% accuracy. Meanwhile, ROSE only provided

recommendations for 34% of the tasks, and none of these recommendations

is correct. TAR only provided recommendations for 38% of tasks; with the

recommendations, TAR achieved 1% precision, 13% recall, and 2% accuracy.775

Comparing the results shown in Tables 9–11, we found the effectiveness of

CoRec, ROSE, and TAR to be stable across different types of prediction tasks.

Specifically among the three kinds of tasks, on average, CoRec achieved 79%–
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Table 10: Result comparison among CoRec, ROSE, and TAR for *CF
f−→AF tasks (%)

Project
CoRec ROSE TAR

Cov Pre Rec F1 Cov Pre Rec F1 Cov Pre Rec F1

Node.js 79 69 74 72 59 20 52 29 61 14 61 23

Meteor 86 77 82 80 40 22 44 29 46 21 50 29

Ghost 85 86 85 85 46 18 46 26 50 14 49 22

Habitica 87 77 85 81 56 4 23 7 58 2 39 4

PDF.js 65 87 88 87 22 9 28 14 23 11 58 19

React 71 84 82 83 16 66 7 13 17 67 8 14

Serverless 84 71 85 77 73 19 59 29 74 15 60 24

Webpack 75 79 85 82 53 16 46 24 56 13 49 21

WA 81 76 80 78 54 21 48 28 56 16 55 24

Table 11: Result comparison among CoRec, ROSE, and TAR for *CF
v−→AV tasks (%)

Project
CoRec ROSE TAR

Cov Pre Rec F1 Cov Pre Rec F1 Cov Pre Rec F1

Node.js 79 72 77 74 55 20 65 31 56 16 74 26

Meteor 72 77 84 81 26 2 14 4 27 2 31 3

Ghost 84 75 81 78 46 18 46 26 38 8 70 14

Habitica 89 82 85 83 27 20 45 28 28 17 54 26

PDF.js 78 87 84 85 20 4 28 8 20 5 29 8

React 89 73 78 76 36 8 33 13 12 98 34 50

Serverless 70 80 85 82 34 0 0 - 38 1 13 2

Webpack 87 86 83 85 36 8 33 13 40 3 34 5

WA 79 76 81 78 45 17 54 25 47 12 62 19
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83% coverage, 72%–76% precision, 73%–81% recall, and 73%–78% accuracy.

On the other hand, ROSE achieved 45%–54% coverage, 17%–21% precision,780

48%–54% recall, and 25%–29% accuracy; TAR achieved 47%–56% coverage,

12%–16% precision, 55%–62% recall, and 19%–24% accuracy. The consistent

comparison results imply that CoRec usually recommended co-changed func-

tions for more tasks, and CoRec’s recommendations usually had higher quality.

Two major reasons can explain why CoRec worked best. First, ROSE785

and TAR purely use the co-changed entities in version history to recommend

changes. When the history data is incomplete or some entities were never co-

changed before, both tools may lack evidence to predict co-changes and thus

obtain lower coverage and recall rates. Additionally, TAR derives more rules

than ROSE via transitive inference. Namely, if E1 ⇒ E2 and E2 ⇒ E3, then790

E1 ⇒ E3. However, it is possible that E1 and E3 were never co-changed be-

fore, neither are they related to each other anyhow. Consequently, the derived

rules may contribute to TAR’s lower precision. Meanwhile, CoRec extracts nine

features from a given commit and one feature from the version history; even

though history data provides insufficient indication on the potential co-change795

relationship between entities, the other features can serve as supplements.

Second, ROSE and TAR observe no syntactic or semantic relationship be-

tween co-changed entities; thus, they can infer incorrect rules from co-changed

but unrelated entities and achieve lower precision. In comparison, CoRec ob-

serves the syntactic relationship between co-changed entities by tracing the800

referencer-referencee relations; it also observes the semantic relationship by ex-

tracting features to reflect the commonality (1) between co-changed functions

(*CF), and (2) between any changed function cf and the changed entity E on

which cf depends (E is CF in P1, AF in P2, and AV in P3).

Although CoRec outperformed ROSE and TAR in our experiments, we con-805

sider CoRec as a complementary tool to existing tools. This is because CoRec

bases its change recommendations on the three most popular RCPs we found.

If some changes do not match any of the RCPs, CoRec does not recommend

any change but ROSE may suggest some edits.
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Table 12: The effectiveness of CoRecu when it trains and tests a unified classifier (%)

Project Cov Pre Rec F1

Node.js 72 50 57 53

Meteor 77 59 58 59

Ghost 53 61 70 65

Habitica 55 53 68 60

PDF.js 29 60 73 66

React 76 75 73 74

Serverless 54 47 61 53

Webpack 66 54 63 58

WA 70 56 61 59

Finding 6: CoRec outperformed ROSE and TAR when predicting co-

changed functions based on the three recurring change patterns (P1–P3).

CoRec serves as a good complementary tool to both tools.
810

6.5. Comparison with A Variant Approach

Readers may be tempted to train a unified classifier instead of three separate

classifiers, because the three classifiers all take in the same format of inputs

and output the same types of predictions (i.e., whether to co-change or not).

However, as shown in Table 5, the commonality characteristics between co-815

changed functions vary with RCPs. For instance, the co-changed functions in

P2 usually commonly invoke peer functions (i.e., FI), the co-changed functions

in P3 often commonly read/write peer variables (i.e., VA), and the co-changed

functions in P1 have weaker commonality signals for both FI and ST (i.e.,

common token subsequences). If we mix the co-changed functions matching820

different patterns to train a single classifier, it is quite likely that the extracted

features between co-changed functions become less informative, and the trained

classifier has poorer prediction power.

To validate our approach design, we also built a variant approach of CoRec—

CoRecu—that trains a unified classifier with the program commits matching ei-825

ther of the three RCPs (P1–P3) and predicts co-change functions with the single
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classifier. To evaluate CoRecu, we clustered the data portions matching distinct

RCPs for each project, and conducted five-fold cross validation. As shown in

Table 12, on average, CoRecu recommended changes with 70% coverage, 56%

precision, 61% recall, and 59% accuracy. These measured values are much lower830

than the weighted averages of CoRec reported in Tables 9–11. The empirical

comparison corroborates our hypothesis that when data matching distinct RCPs

are mixed to train a unified classifier, the classifier works less effectively.

Finding 7: CoRecu worked less effectively than CoRec by training a

unified classifier with data matching distinct RCPs. This experiment

validates our approach design of training three separate classifiers.

7. Threats to Validity835

Threats to External Validity: All our observations and experiment results

are limited to the software repositories we used. These observations and results

may not generalize well to other JS projects, especially to the projects that use

the Asynchronous Module Definition (AMD) APIs to define code modules and

their dependencies. In the future, we would like to include more diverse projects840

into our data sets so that our findings are more representative.

Given a project P , CoRec adopts commits in P ’s software version history

to train classifiers that can recommend co-changes for new program commits.

When the version history has few commits to train classifiers, the applicability of

CoRec is limited. CoRec shares such limitation with existing tools that provide845

project-specific change suggestions based on software version history [5, 45, 9].

To further lower CoRec’s requirement to available commits in software version

history, we plan to investigate more ways to extract features from commits and

better capture the characteristics of co-changed functions.

Due to the time limit, we did not experiment with all commits from all sub-850

ject projects. Instead, we sampled a subset of commits in each project based on

the keywords “bug”, “fix”, “error”, “adjust”, and “failure” in commit messages.
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Pattern Index

Pattern Shape

P1’                P2’              P3’                P4’              P5’

Function Invocation Variable Read/Write

*CF: One or more changed functions       

f v

AF

*AF: One or more added functions       AV: One added variable

Figure 14: The five most popular recurring change patterns among all commits of Node.js

Such sampling may jeopardize the generalizability of our findings. Therefore,

to validate the potential threat, we actually conducted an extra experiment to

revisit the characterization study on all commits from Node.js [14]. We observed855

very similar results to what we reported in Section 4.

Specifically, among the 6,555 commits in Node.js that edit JS files, the ma-

jority of commits (i.e., 58%) are multi-entity edits. Within those multi-entity

edits, 25% of commits involve two-entity edits, and 18% of commits are three-

entity edits. The number of commits decreases as the number of edited entities860

increases. Our approach extracted CDGs in 62% of multi-entity edits, most of

which commits (i.e., 74%) have single CDGs extracted. We extracted in total

358 RCPs from CDGs. We found that 96% of the commits with CDGs extracted

have matches for RCPs. Figure 14 shows the five most popular recurring change

patterns among all commits in Node.js. When comparing this figure with Fig-865

ure 10, we noticed that the most popular three patterns P1–P3 remain the same

across different datasets. This experiment shows that our sampling method does

not considerably impact the empirical findings.

Threats to Construct Validity: When creating recommendation tasks for

classifier evaluation, we always assumed that the experimented commits con-870

tain accurate information of all co-changed functions. It is possible that devel-

opers made mistakes when applying multi-entity edits. Therefore, the imper-

fect evaluation data set based on developers’ edits may influence our empirical

comparison between CoRec and ROSE. We share this limitation with prior

work [5, 45, 9, 37, 46, 8, 7]. In the future, we plan to mitigate the problem875
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by conducting user studies with developers. By carefully examining the edits

made by developers and the co-changed functions recommended by tools, we

can better assess the effectiveness of different tools.

8. Related Work

The related work includes empirical studies on JS code and related program880

changes, JS bug detectors, and co-change recommendation systems.

8.1. Empirical Studies on JS Code and Related Program Changes

Various studies were conducted to investigate JS code and related changes [47,

48, 49, 50, 51]. For instance, Ocariza et al. conducted an empirical study of 317

bug reports from 12 bug repositories, to understand the root cause and con-885

sequence of each reported bug [47]. They observed that 65% of JS bugs were

caused by the faulty interactions between JS code and Document Object Mod-

els (DOMs). Gao et al. empirically investigated the benefits of leveraging static

type systems (e.g., Facebook’s Flow [52] and Microsoft’s TypeScript [53]) to

check JS programs [49]. To do that, they manually added type annotations to890

buggy code and tested whether Flow and TypeScript reported an error on the

buggy code. They observed that both Flow 0.30 and TypeScript 2.0 detected

15% of errors, showing great potential of finding bugs.

Silva et a. [51] extracted changed source files from software version history,

and revealed six co-change patterns by mapping frequently co-changed files to895

their file directories. Our research is different in three ways. First, we focused on

software entities with finer granularities than files; we extracted the co-change

patterns among classes, functions, variables, and statement blocks. Second,

since unrelated entities are sometimes accidentally co-changed in program com-

mits, we exploited the syntactic dependencies between entities to remove such900

data noise and to improve the quality of identified patterns. Third, CoRec

uses the identified patterns to further recommend co-changes with high quality.

Wang et al. [18] recently conducted a study on multi-entity edits applied to
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Java programs, which study is closely relevant to our work. Wang et al. focused

on three kinds of software entities: classes, methods, and fields. They created905

CDGs for individual multi-entity edits, and revealed RCPs by comparing CDGs.

The three most popular RCPs they found are: *CM
m−→CM (a callee method is

co-changed with its caller(s)), *CM
m−→AM (a method is added, and one or more

existing methods are changed to invoke the added method), and *CM
f−→AF (a

field is added, and at least one existing method is changed to access the field).910

Our research is inspired by Wang et al.’s work. We decided to conduct a

similar study on JS programs mainly because JS is very different from Java. For

instance, JS is weakly typed and has more flexible syntax rules; Java is strongly

typed and variables must be declared before being used. JS is a script language

and mainly used to make web pages more interactive; Java is used in more do-915

mains. We were curious whether developers’ maintenance activities vary with

the programming languages they use, and whether there are unique co-change

patterns in JS programs. In our study, we adopted JS parsing tools, identified

four kinds of entities in various ways, and did reveal some co-change patterns

unique to JS programs because of the language’s unique features. Surprisingly,920

the three most popular JS co-change patterns we observed match exactly with

the Java co-change patterns mentioned above. Our study corroborates obser-

vations made by prior work. More importantly, it indicates that even though

different programming languages provide distinct features, developers are likely

to apply multi-entity edits in similar ways. This phenomenon sheds lights on925

future research directions of cross-language co-change recommendations.

8.2. JS Bug Detectors

Researchers built tools to automatically detect bugs or malicious JS code [54,

55, 56, 57, 2, 58, 59, 60]. For example, EventRacer detects harmful data races

in even-driven programs [57]. JSNose combines static and dynamic analysis930

to detect 13 JS smells in client-side code, where smells are code patterns that

can adversely influence program comprehension and software maintenance [2].

TypeDevil adopts dynamic analysis to warn developers about variables, prop-
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erties, and functions that have inconsistent types [59]. DeepBugs is a learning-

based approach that formulates bug detection as a binary classification problem;935

it is able to detect accidentally swapped function arguments, incorrect binary

operators, and incorrect operands in binary operations [60]. EarlyBird conducts

dynamic analysis and adopts machine learning techniques for early identification

of malicious behaviors of JavaScript code [56].

Some other researchers developed tools to suggest bug fixes or code refac-940

torings [61, 62, 63, 64, 65, 66, 67]. With more details, Vejovis suggests program

repairs for DOM-related JS bugs based on two common fix patterns: parameter

replacements and DOM element validations [64]. Monperrus and Maia built a

JS debugger to help resolve “crowd bugs” (i.e., unexpected and incorrect out-

puts or behaviors resulting from the common and intuitive usage of APIs) [65].945

Given a crowd bug, the debugger sends a code query to a server and retrieves all

StackOverflow answers potentially related to the bug fix. An and Tilevich built

a JS refactoring tool to facilitate JS debugging and program repair [67]. Given a

distributed JS application, the tool first converts the program to a semantically

equivalent centralized version by gluing together the client and server parts.950

After developers fixed bugs in the centralized version, the tool generates fixes

for the original distributed version accordingly. In Model-Driven Engineering,

ReVision repairs incorrectly updated models by (1) extracting change patterns

from version history, and (2) matching incorrect updates against those patterns

to suggest repair operations [68].955

Our methodology is most relevant to the approach design of ReVision. How-

ever, our research is different in three aspects. First, our research focuses on

entity-level co-change patterns in JS programs, while ReVision checks for con-

sistencies different UML artifacts (e.g., the signature of a message in a sequence

diagram must correspond to a method signature in the related class diagram).960

Second, the co-changed recommendation by CoRec intends to complete an ap-

plied multi-entity edit, while the repair operations proposed by ReVision tries to

complete consistency-preserving edit operations. Third, we conducted a large-

scale empirical study to characterize multi-entity edits and experimented CoRec
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with eight open-source projects, while ReVision was not empirically evaluated.965

8.3. Co-Change Recommendation Systems

Approaches were introduced to mine software version history and to extract

co-change patterns [51, 69, 70, 36, 5, 71, 45, 9, 72, 73, 74, 75, 76, 6]. Specifically,

Some researchers developed tools (e.g., ROSE) to mine the association rules

between co-changed entities and to suggest possible changes accordingly [5, 71,970

45, 9, 72, 76, 6]. Some other researchers built hybrid approaches by combining

information retrieval (IR) with association rule mining [73, 74, 75]. Given a

software entity E, these approaches use IR techniques to (1) extract terms from

E and any other entity and (2) rank those entities based on their term-usage

overlap with E. Meanwhile, these tools also apply association rule mining to975

commit history in order to rank entities based on the co-change frequency. In

this way, if an entity G has significant term-usage overlap with E and has been

co-changed a lot with E, then G is recommended to be co-changed with E.

Shirabad et al. developed a learning-based approach that predicts whether

two given files should be changed together or not [36]. In particular, the re-980

searchers extracted features from software repository to represent the relation-

ship between each pair of files, adopted those features of file pairs to train an

ML model, and leveraged the model to predict whether any two files are rele-

vant (i.e., should be co-changed) or not. CoRec is closely related to Shirabad

et al.’s work. However, it is different in two aspects. First, CoRec predicts985

co-changed functions instead of co-changed files. With finer-granularity rec-

ommendations, CoRec can help developers to better validate suggested changes

and to edit code more easily. Second, our feature engineering for CoRec is based

on the quantitative analysis of frequent change patterns and qualitative analysis

of the commonality between co-changed functions, while the feature engineer-990

ing by Shirabad is mainly based on their intuitions. Consequently, most of our

features are about the code commonality or co-evolution relationship between

functions; while the features defined by Shirabad et al. mainly focus on file

names/paths, routines referenced by each file, and the code comments together
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with problem reports related to each file.995

Wang et al. built CMSuggester—an automatic approach to suggest method-

level co-changes in Java programs [7, 8]. CoRec and CMSuggester are different in

four aspects. First, the tools take in different inputs. To recommend co-changes

for a project’s commit, CoRec requires two inputs: the commit and the history

data of that project. CMSuggester generates suggestions purely based on the1000

given commit. Second, the tools implement different methodologies. CoRec is

a data-driven instead of rule-based approach; it requires for co-change data to

train an ML model while CMSuggester requires tool builders to hardcode the

suggestion strategies. Third, the target programming languages are different.

CoRec targets JS, so it has unique handlings for ASTs of JS programs to parse1005

four kinds of entities: classes, functions, variables, and blocks. CMSuggester

targets Java, so it has simpler processing for ASTs of Java programs to parse

three kinds of entities: classes, methods, and fields. Fourth, the tools have dif-

ferent applicable scopes. CoRec can recommend changes based on three RCPs:

*CF
f−→CF, *CF

f−→AF, and *CF
v−→AV; CMSuggester only recommends changes1010

based on the last two patterns mentioned above. Overall, CoRec is more flexible

due to its usage of ML and is applicable to more types of co-change scenarios.

9. Conclusion

It is usually tedious and error-prone to develop and maintain JS code. To

facilitate program comprehension and software debugging, we conducted an1015

empirical study on multi-entity edits in JS projects and built an ML-based

co-change recommendation tool CoRec. Our empirical study explored the fre-

quency and composition of multi-entity edits in JS programs, and investigated

the syntactic and semantic relevance between frequently co-changed entities. In

particular, we observed that (i) JS software developers frequently apply multi-1020

entity edits while the co-changed entities are usually syntactically related; (ii)

there are three most popular RCPs that commonly exist in all studied JS code

repositories: *CF
f−→CF, *CF

f−→AF, and *CF
v−→AV; and (iii) among the entities
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matching these three RCPs, co-changed functions usually share certain com-

monality (e.g., common function invocations and common token subsequences).1025

Based on our study, we developed CoRec, which tool extracts code features

from the multi-entity edits that match any of the three RCPs, and trains an ML

model with the extracted features to specially characterize relationship between

co-changed functions. Given a new program commit or a set of entity changes

that developers apply, the trained model extracts features from the program1030

revision and recommends changes to complement applied edits as necessary.

Our evaluation shows that CoRec recommended changes with high accuracy and

outperformed two existing techniques. In the future, we will investigate novel

approaches to provide finer-grained code change suggestions and automate test

case generation for suggested changes.1035
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