
VRGuide: Efficient Testing of Virtual Reality
Scenes via Dynamic Cut Coverage

Xiaoyin Wang and Tahmid Rafi
Department of Computer Science
University of Texas at San Antonio

San Antonio, USA
xiaoyin.wang@utsa.edu, md.tahmidulislam.rafi@utsa.edu

Na Meng
Department of Computer Science

Virginia Tech
Blacksburg, USA
nm8247@vt.edu

Abstract—Virtual Reality (VR) is an emerging technique that
has been applied to more and more areas such as gaming,
remote conference, and education. Since VR user interface has
very different characteristics compared with traditional graphic
user interface (GUI), VR applications also require new testing
techniques for quality assurance. Recently, some frameworks
(e.g., VRTest) have been proposed to automate VR user interface
testing by automatically controlling the player camera. However,
their testing strategies are not able to address VR-specific testing
challenges such as object occlusion and movement. In this paper,
we propose a novel testing technique called VRGuide to explore
VR scenes more efficiently. In particular, VRGuide adapts a
computer geometry technique called Cut Extension to optimize
the camera routes for covering all interact-able objects. We
compared the testing strategy with VRTest on eight top VR
software projects with scenes. The results show that VRGuide is
able to achieve higher test coverage upon testing timeout in two
of the projects, and achieve saturation coverage with averagely
31% less testing time than VRTest on the remaining six projects.
Furthermore, VRGuide detected and reported four unknown
bugs confirmed by developers, only one of which is also detected
by VRTest.

Index Terms—Software Testing, Virtual Reality, Scene Explo-
ration

I. INTRODUCTION

Virtual Reality (VR) is a technique [1] to simulate user
experience similar or completely different from the real world.
Its applications include gaming, virtual exhibition and tour,
training, education, product design, and remote communica-
tion. According to a recent market report [2], the VR market is
emerging and its total market value has reached $11.52 billion
in 2019, and is expected to grow at a high rate of 48.7% per
year in the following five years. The pandemic of COVID-
19 virus further triggered the requirement and accelerated the
adoption of VR techniques. VR software is an indispensable
part of VR techniques, and its market value has also reached
$1.9 billion in 2019 [3]. In year 2020, thousands of apps were
uploaded to Google Play [4], Apple Store [5], and Oculus
Market [6], and these apps have been downloaded by more
than 171 million users [7].

VR applications also need testing to validate their quality,
but they raise new challenges for automatic testing techniques.
Although VR scenes can still be considered as a type of
Graphic User Interface (GUI), existing 2D GUI testing tech-
niques can hardly be applied because users typically observe

VR scenes through a player camera and only a small portion of
the scenes can be observed and interacted with. Furthermore,
the exploration of the scene and the whole user interface is
mainly done by moving and rotating the camera rather than
clicking buttons.

Most recently, researchers have developed novel techniques
to test VR applications by automatically moving and rotating
cameras. Autowalker [8] is a tool that automatically drives the
player camera to randomly explore a VR scene. VRTest [9]
further monitors the positions of all virtual objects and drives
the player camera toward the nearest interactable objects
that have not been triggered yet. However, although these
techniques addressed challenges caused by new exploration
patterns in VR scenes (camera movement vs. mouse clicks),
their exploration strategies are not optimized because they did
not consider the following major characteristics of VR scenes:

• Object Occlusion. In traditional 2D GUI, all GUI con-
trols in the current window show up on the screen, and
a test driver can directly trigger any interactable control
given its coordinates. If a GUI control is occluded by
another GUI control, it is typically considered a bug, and
the user (or test driver) will not be able to trigger the
occluded GUI control at all. However, in VR scenes, due
to relative positions of objects and view angles of the
camera, interactable objects are often occluded by other
interactable or non-interactable objects and the camera
needs to be moved and rotated properly to make the
occluded objects become visible and interactable.

• Object Location Affects Testing Efficiency. Since ac-
cessing an interactable object requires camera actions
and thus will take time, testing efficiency can be largely
affected by the order (and route) of visiting different
interactable objects. Theoretically, if the test driver can
find a shortest route for the user camera driver to visit
the objects to be interacted, the testing efficiency can
be optimized. However, this is a well known NP-hard
problem. The run-time creation as well as movement of
objects and their ability to occlude each other make the
problem even more complicated. This is a unique factor to
be considered in determining camera movement / rotation
strategy for testing VR scenes.

• Huge Input Space. VR software provides an immersive
experience for users, so typically a user is allowed to
move in the scene and change watching angle freely
(sometimes within a scope) within the virtual space.
Therefore, each camera state corresponds to six float
values (three dimensions of position coordinates and three
dimensions of watching angle). These dimensions form
a very large input space, making efficient strategy of
moving / rotating the player camera very important.

In this paper, to efficiently test virtual reality scenes with
consideration of the above three characteristics, we propose an
automatic testing technique VRGuide. In particular, VRGuide
takes into consideration the information of the entire VR scene
(i.e., locations of all objects) to calculate interaction values of
locations (measured by how many interactable objects can be
triggered at the location), and move the camera towards the
locations with highest interaction values. The basic intuition
behind VRGuide strategy is that a user camera does not need
to move to an object’s exact location to access it, but it may
access the object at a distance as long as the object is in
its view and is not occluded by other objects. Therefore,
there may exist some locations where multiple interactable
objects are visible, and it is more efficient for the user camera
to move to those locations if they are close. To guide the
camera toward a more efficient route in a VR scene to be
tested, we leverage a technique called Cut Extension from
computer geometry, and adapt it as Dynamic Cut Extension to
handle moving and dynamically created objects in VR scenes.
We evaluated VRGuide on the four software projects used in
VRTest [9] evaluation, and four other top Unity VR software
projects (based on number of stars) from Github. Although
our evaluation focuses on Unity-based software, we believe
this scope of subject selection is reasonable because Unity
dominates VR software development with over 60% market
share according to multiple sources [10], [11], and Unity
integrates with almost all existing VR / AR platforms, includ-
ing Apple ARKit [12], Android Daydream / Cardboard [13],
[14], Google ARCore [15], Steam VR [16], Windows Mixed
Reality (Hololens) [17], etc., so the testing technique can be
largely generalized. The evaluation results show that VRGuide
achieved higher object coverage and higher method coverage
compared with VRTest (VRGreed stategy) in two out of the
eight projects upon testing timeout. For the remaining six
projects, VRGuide uses 31% less time to reach coverage satu-
ration compared with VRTest (VRGreed stategy). VRGuide
also detected four previously unknown bugs confirmed by
developers (only one of them is also detected by VRTest) in
real-world projects.

To sum up, this paper makes the following contributions.

• We explore and summarize the major challenges in effi-
ciently testing VR scenes.

• We propose a novel testing strategy called VRGuide,
which performs dynamic cut extension based on infor-
mation of objects in the scene collected at run time.

• We perform an evaluation to compare the efficiency of

VRGuide with VRTest on eight top VR software projects,
and the results show that VRGuide achieves higher testing
efficiency in seven out of eight projects, and higher
coverage upon testing timeout in two out of eight projects.

The remaining of this paper is organized as follows. In
Section II, we will introduce some background knowledge
about VR scenes. Then we will introduce cut theory as the
preliminary knowledge in Section III. We will describe the
details of our proposed testing technique in Section IV, and
present the evaluation setup and results in Section V. After
that, we will discuss some important issues in Section VI and
related research efforts in Section VII. Before we conclude
in Section IX, we point to several research directions where
some future research efforts can be made.

II. BACKGROUND

In this section, we introduce some background knowledge
of VR scenes and event triggers.

A. VR Scenes

In VR software, all virtual objects are organized inside a
virtual space called a VR scene. These objects can be either
static (indicating that they are not moving during software
execution) or dynamic (indicating that they may move during
software execution). Typically, a user is initially placed at a
location inside the VR scene, and a user camera is attached
to the user so that the user can watch a portion of the virtual
space based on the watching angle of the camera. A portion
of these objects can be interactable, indicating that they can
receive events triggered by the user. The remaining of these
objects are not interactable, but they may limit the user’s
movement through collision and block the user camera’s view.
Therefore, intuitively exploration testing of a virtual software
can be viewed as moving / rotating the user camera so that
it can see all the interactable virtual objects (while avoiding
all other virtual objects on its way and blocking its view) and
interact with them.

B. Event Triggers

Virtual objects can be interacted with if they have event
triggers registered with them. The interaction types vary in
different VR hardware devices. However, the most commonly
used type of interaction is pointer click. Pointer clicks are
based on a white pointer at the focus of a user’s view. When
a user turns her head to move the white pointer toward an
interactable virtual object, the pointer will become a small
circle. If the user keeps the pointer inside the range of the
object for certain amount of time, the pointer click event will
be triggered. For some VR devices where a clicker is provided,
the user can simply click the button on the clicker when the
pointer is changed to a circle, and then the pointer click will
be triggered.

In Figure 1, we show an exemplar scene and a point click
event being triggered. In particular, the virtual space simulates
an apartment room, in which several objects (the door, the
printer, the TV, etc.) are interactable. When a pointer click

Fig. 1. An Exemplar VR Scene and Pointer Click Event

event is triggered on the printer, a virtual paper object will
be created from the printer’s location, and fall down to the
ground.

While there are also some other types of interactions such as
object grabbing, they are not supported commonly by existing
VR devices so they are also rarely used in existing open
source VR software projects. Based on these observations, our
VRGuide framework focuses on pointer click events. It should
be noted that adding a new type of interaction event to our
VRGuide framework just requires additionally instrumentation
of a new type of event handler, so it is straightforward in
general.

III. PRELIMINARY

A. The Watchman Route Problem

The cut coverage theory origins from the art gallery prob-
lem or museum problem, which is a well-known visibility
problem in computational geometry. The problem asks how
to select a set of fewest points P in a simple polygon so that
for each point q in the polygon, there exists a point p in P , and
line segment pq is inside the polygon (i.e., point q is visible
from at least one point in set P). Its corresponding real-world
problem is guarding an art gallery with the minimum number
of watchmen who together can observe the whole gallery.

One of the problem generalized from the art gallery problem
is called watchman route problem. In this problem, there
exists only one watchman, but he will patrol from a starting
point in the polygon. The goal is to find the shortest route
the watchman needs to follow so that he can observe the
whole polygon along the route. See Figure 2 for two exemplar
watchman routes of a polygon from starting points S1, and S2,
respectively. We can see that the goal to efficiently observe
all the interactable objects in VR testing (if not considering
the run-time creation and movement of objects) is actually a
simplified version of the watchman route problem, where not
the whole scene, but only the interactable objects need to be
observed. The watchman route problem also has several well
known variants such as the zookeeper route problem where

u

u’

v

v’

w

w’

x
x’

s1

s2

Fig. 2. Illustration of the cut theory

the watchman needs to reach all the cages (nested polygons)
without going into them.

B. The Cut Theory

The Cut Theory is a basic technique to solve the watchman
route problem [18]. In a n-sided polygon P , a vertex is called
a convex if its internal angle is strictly larger than its external
angle (i.e., its internal angle is strictly larger than 180 degree).
For example, in Figure 2, vertexes u, v, w, and x are the four
convexes in the polygon. From each convex, we can extend
any one of its two adjacent edges back to the polygon, until
the extended line reaches an edge of the polygon. Clearly,
the generated line segment will split the polygon into two
pieces, so the line segment is referred as a cut of the polygon.
For example, line segments uu′, vv′, ww′, and xx′ are four
different cuts of the polygon.

In the two pieces of polygon split by a cut C, the piece
that does not contain the original edge before extension is
called the essential piece of the cut, denoted as P (C). A
more intuitive explanation of the essential piece is that, if
the watchman is in the essential piece of a cut, then he must
reach the cut to see the original edge. For example, the piece of
polygon to the right of vv′ is the essential piece of vv′, because
the original edge ax is not in the piece, and a watchman in
this essential piece must reach vv′ to see ax (or the non-
essential piece of cut vv′). A cut C is called an essential cut,
if its essential piece is not fully contained by the essential
piece of any other cut C ′. Otherwise, if there exists a cut
C ′ whose essential piece fully contains C’s essential piece,
we say C ′ dominates C. The intuition explanation is that, if
the essential piece P (C1) of cut C1 is fully contained by the
essential piece P (C2) of cut C2, a watchman in P (C1) must
reach C2 to observe the non-essential piece of C2. In such
a scenario, he will inevitably go across C1 on his route to
C2 because P (C2) fully contains P (C1). So, C1 is no longer
important in determining the shortest route. Note that if the
watchman is not in P (C1), then he automatically sees the
non-essential piece of C1, and does not need to reach C1 at

all. As an example, uu′ is not an essential cut, because its
essential piece P (uu′) (shadowed part) is fully contained by
the essential piece of ww′ (the whole area to the left of ww′).
If a watchman is in P (uu′), he needs to reach ww′ anyway
and does not need to worry about the requirement of reaching
uu′. Otherwise, he does not need to reach uu′ at all.

In the exemplar polygon, cuts vv′, ww′, and xx′ are three
essential cuts. Although an essential cut is not dominated by
any other cut, it can still be dominated by a set of other
essential cuts. For example, as shown in Figure 2, the essential
pieces of cuts vv′ and ww′ contains the essential piece of
xx′ (actually they combined to form the whole polygon).
So, a watchman no longer needs to reach xx′ if he reached
both vv′ and ww′. A subset of essential cuts that dominates
the whole set of essential cuts is called a watchman cut set
(e.g., {vv′, ww′}), and now the original problem of shortest
watchman route is reduced to finding the shortest route to
cover any of the watchman cut sets. To solve this problem,
we can draw perpendicular lines from the starting point to
all the cuts in the watchman cut sets, and concatenate the
intersection points one by one (from the nearest to the farthest)
to form a polygonal chain. Then we can shorten this line-
segment sequence by sliding its intersection points with each
cut along the cut. Some more efficient algorithms have been
proposed recently by researchers.

For briefness, we will not introduce these algorithms be-
cause their goal is to find a globally optimal route for a static
polygon, while in VR testing scenario we have to focus on
dynamically optimizing the route to local cuts (i.e., the cuts
close to the camera) at run time. Since the global layout of
the scene is not static and is always changing, it does not
make much sense to explore the globally optimized route for
the camera in advance. Therefore, the basic notions of the cut
theory will be sufficient to understand our approach.

IV. APPROACH

In Section III, we show that the cut theory can be applied
to find the shortest watchman route in a static VR scene
(i.e., occluding objects can be viewed as holes in a polygon).
However, since the objects can be created and moving in the
scene, it would not be helpful to calculate a global shortest
route at the starting point of the scene or at run time, because
when the camera follows the route, the objects may already
leave their original locations.

Therefore, our approach VRGuide does not consider the
global and static coverage of cuts, but focuses on covering
local cuts (i.e., cuts from interactable objects close to the
player camera) and uses information of local cuts to guide
the next step of the player camera. As an overview, VRGuide
will calculate a distance value for each neighboring positions
of the player camera, and guide the camera to the position with
lowest distance value. The distance value of a specific position
will be calculated by combining its distance to multiple closest
cuts. Once the player camera reaches a new position, VRGuide
will find out which objects are visible from the position, and
rotate the camera to interact with them.

Fig. 3. Bounding Boxes of Virtual Objects from developer.mozilla.org

In the following subsections, we will introduce in more
details how we calculate dynamic cuts for interactable objects,
how we calculate distance value of a position given multiple
dynamic cuts, and the VRGuide algorithm.

A. Dynamic Cuts of interactable Objects

In the original watchman route problem, a cut is defined as
the extension of a convex’s adjacent edge, because a watchman
needs to observe the whole area beyond the convex. However,
this is not required in VR testing where the player camera
needs to see only the interactable objects. Therefore, in VR
guide, we define a dynamic cut of an interactable object as
follows (we first define and illustrate concepts in 2D scenarios
and then generalize them to 3D scenarios).

It should be noted that in VRGuide, all objects are approxi-
mated by their minimal enclosing boxes (see Figure 3), so they
can all be viewed as rectangular cuboids. This approximation
is safe for all obstacles because it enlarges their range in the
space. However, it is not safe for the interactable object to be
interacted with, because seeing part of the object’s enclosing
box may not guarantee that the object is actually visible from
the camera. Therefore, to make sure the interactable object is
visible, it is approximated as a point (i.e., the geometric center
of the object).

Definition 1: In a 2D scenario, when concatenating the
player camera C and an interactable object O with a line L, L
may intersect with edges of multiple objects. The edge closest
to O is defined as O’s facing edge, and the object the edge
belongs to is defined as O’s facing object.

Figure 4 shows interactable objects in different 2D scenar-
ios. In the top case, Edge BD is the facing edge, and in the
bottom case, Edge AB is the facing edge. In both cases, the
object ABCD is the facing object.

Definition 2: Draw a line segment from an interactable
object O to an end point of its facing edge and try to extend
the line. If the extended line does not intersect with O’s facing
object, it is defined as a dynamic cut of object O.

To illustrate, we show dynamic cuts in both cases in figure 4.
Generalizing the definition to 3D, the facing edge will become
the facing surface, with four edges, and concatenating the

Fig. 4. Examples of Dynamic Cuts

interactable object to the four edges will form at most four
cutting surfaces. The definitions are as follows.

Definition 3: In a 3D scenario, when concatenating the
player camera C and an interactable object O with a line L.
L may intersect with surfaces of multiple objects. The surface
closest to O is defined as O’s facing surface.

Definition 4: There exist a surface containing both the
interactable object O and one edge of its facing surface. If
the extended plane from the surface does not intersect with
O’s facing object, the surface is defined as a dynamic cut of
object O.

B. Distance Value Calculation

We assume the coordinates of the interactable object are
(x0, y0, z0). An edge of the facing surface in parallel with
y-axis can be represented as equations {x = x1, z = z1}. It
should be noted that the edges of an object’s enclosing box
are always in parallel with one of the coordination axis. If
the edge is in parallel with another axis, the equations will be
in a similar form, just replacing x, and z with x and y or y
and z. Then we can calculate the dynamic cut as a plane with
equation below.

z − z1 =
(z2 − z1)(x− x1)

(x2 − x1)
(1)

Once we acquired the equation of a dynamic cut (denoted
as Ax + By + Cz + D = 0), we can calculate the distance
from a specific position (x2, y2, z2) in the scene to the cut
using the following formula.

Dist =
|Ax2 +By2 + Cz2 +D|√

A2 +B2 + C2
(2)

C. VRGuide

Once we are able to calculate the distance from the player
camera’s neighboring positions to the dynamic cuts, we can

guide the player camera towards the neighboring position that
has shortest distance to its closest dynamic cut. As illustrated
in the simplified two-dimensional scene in Figure 5, this
strategy can be more efficient than the existing strategy in
VRTest [9] which is based on the distance between the player
camera and the object to be interacted. When the user camera
is at the solid black point, it needs to trigger pointer-click
events on the two interactable objects on the left side and
right side, respectively. Following VRTest’s strategy, it will
first move towards the object on the right and reach position
A, and then go back to position B to trigger the event on the
object on the left. However, VRGuide will direct the player
camera to position C and then position D, which is a much
shorter route.

We take advantage of the existing VRTest framework [9]
to implement VRGuide. In particular, VRTest provides in-
formation (positions and sizes of enclosing boxes) about all
objects in a VR scene, and table recording which objects have
been interacted with. It also provides two interface procedures
for implementing new testing strategies: Move and Rotate.
The framework will execute procedures Move and Rotate
in sequence for each testing step (by default 1 second or 30
frames under 30 fps). So, we insert our VRGuide algorithm
as implementations of these two procedures.

Algorithm 1 shows the pseudo code of
Rotate and Move procedures of VRGuide.
The methods getPossibleRotations() and
getPossibleMoves() return all the possible rotations
and moves. In particular, if the action granularity is 1 meter
for move, for the original position (0, 0, 0), all possible
moves (without considering configuration) will be the set of
(0, 0, 1), (0, 0 , -1), (0, 1, 0), (0, -1, 0), (1, 0, 0), and (-1, 0,
0). If the configuration sets the lower-bound of all dimensions
to 0 and does not allow movement in Z-axis, then the only
possible moves (returned by getPossibleMoves()) will
be (1, 0, 0) and (0, 1, 0). Similarly, if the current rotation of
the user camera is (90, 0, 0), then the only possible rotation
returned by getPossibleRotations() will be (80, 0,
0). The reasons are (1) the upper-bound of X-axis rotation
(up and down) is 90, so X-axis rotation cannot go to 100;
(2) no Z-axis rotation is allowed, and (3) Y -axis rotation
is meaningless if the X-axis rotation is at 90 degree (i.e.,
turning east and west does not make sense at the North Pole).

We have Obj as a global variable to share information
between Rotate and Move. Obj stores all the interactable
virtual objects visible at the current position. As long as Obj is
not empty (Line 2), the Rotate procedure will rotate towards
the virtual object in Obj whose direction is closest to the
camera’s current facing direction (Line 4). Otherwise, it will
return CurrentRotation indicating not to rotate and wait for
Move procedure to find more visible objects.

The Move procedure first checks whether there are still cur-
rently visible objects have not been interacted using function
Reachable provided by VRTest (Line 11). If so, the camera
will stay at the current position (Line 17). Otherwise, it will
fetch all neighbor positions that the player camera can move

C

B A

Obstacle

D

Camera

Interact-able
Object1 Interact-able

Object2

Fig. 5. A Simplified Two Dimensional Scene

to in the next step (Line 13), and find the position that has
shortest distance to its closest dynamic cut (Line 14). Then, the
Move procedure will return that position to guide the camera’s
following movement.

Algorithm 1 VRGuide Algorithm
1: procedure ROTATE() ▷ Objs is a global variable.
2: if Objs is not Empty then
3: Opts← getPossibleRotations()
4: Opt← FetchClosest(Opts, Objs)
5: Return Opt
6: else
7: Return CurrentRotation
8: end if
9: end procedure

10: procedure MOVE()
11: Objs←Reachable();
12: if Objs is empty then
13: Opts← getPossibleMoves()
14: Opt← BestNeighbor(Opts)
15: Return Opt
16: else
17: Return CurrentPosition
18: end if
19: end procedure

V. EVALUATION

To evaluate our approach, we compare VRGuide and
VRTest on eight VR software projects on their object coverage,
method coverage, as well as detected bugs. The implementa-
tion of VRGuide and the dataset used in our evaluation is
available on our project website1.

1https://sites.google.com/view/vrguide2023

A. Evaluation Setup

1) Research Questions:

• RQ1: How VRGuide compares with existing approach
on the efficiency to cover different interactable objects in
a VR scene?

• RQ2: How VRGuide compares with existing approach
on the efficiency to cover methods in VR software code?

• RQ3: How VRGuide compares with existing approach
on the detection of bugs in VR software?

2) The Compared Technique: We compare VRGuide with
VRTest [9], a state-of-the-art VR test framework. Since the
implementation of VRGuide is based on VRTest framework,
the difference is only on the testing strategy, so we believe the
comparison with VRTest can fairly reveal the effectiveness of
VRGuide. VRTest supports two testing strategies: VRMonkey,
which is similar to Monkey in mobile testing and randomly
move and rotate the player camera to interact with interactable
objects, and VRGreed, which uses greed algorithm to approach
the closest interactable objects one by one. Although VRGreed
has been shown to be superior than VRMonkey in earlier stud-
ies [9], we still ran VRMonkey in our evaluation and include
its results for reference. Note that we use the average results
of five executions for VRMonkey due to the randomness in
the technique.

3) Evaluation Subjects: In our evaluation, we reuse four
out of five VR software projects from the original evaluation
subject set of VRTest2: UnityVR, UnityVREscapeRoom,
Unity-vr-maze, and Unity-vr-cave-puzzle. We
did not use the remaining VRND_Night_at_the_Museum
because it is no longer compatible with updated version of
Unity.

Besides the four subjects from VRTest’s original subject set,
we further collected four more open source VR projects from
Github. In particular, we searched for keywords “Unity” and
“VR”, and ranked the retrieved projects by the number of stars.
We considered only VR software projects consisting of VR
scenes, so we skipped the VR development libraries and tools
such as XRTK and Google VR Unity SDK. Furthermore,
we considered only projects with at least one virtual object
with at least one event triggers.

The basic information of the eight subject projects in our
evaluation is presented in Table I. In the table, we present
the number of source files, the number of lines of code, and
the number of static virtual objects / prefabs (dynamic virtual
objects are typically created by cloning static virtual objects /
prefabs), respectively.

4) Testing Environment: To perform the evaluation, we
use Unity version 2021.3 LTS with Visual Studio 2017 (for
compilation of C# source code) and run the experiment on a
computer with Intel Core i7-6500U CPU, 8GB of memory, and
Intel HD 520 Graphics card. We set a timeout of 300 seconds,
which is the default timeout value of VRTest. Testing of most
subjects saturate before 300 seconds.

2Downloaded from https://sites.google.com/view/vrtest2021

UnityVR UnityVREscapeRoom Unity-vr-maze

Unity-vr-cave-puzzle UnityRandomBLock UnityrollingVR

UnityCityView VR-Forest Average

Fig. 6. interactable Objects Coverage of Different Testing Techniques

TABLE I
BASIC INFORMATION OF EVALUATION SUBJECTS

Name #Source LOC #Virtual
Files Objects

UnityVR 129 25.6K 36
UnityVREscapeRoom 207 31.2K 109
unity-vr-maze 7 503 26
unity-vr-cave-puzzler 7 8.0K 27
UnityRandomBlocks 144 15.3k 32
UnityrollingVR 136 12.2k 22
UnityCityView 176 19.0k 26
VR-Forest 422 41.1k 43

5) Testing Configuration: When performing VR testing
using VRTest, we need to configure three major parameters:
the rotation scope that limits the user camera’s watching angle,
the moving/rotating speed defines the speed of moving and
rotating the user camera, and the Moving Granularity that
determines the maximal distance to be covered in one move
action.

In our evaluation, we follow the default values of VRtest
for all of the four parameters to make sure we have a fair
comparison with VRTest. In particular, we set the rotation
scope with X-axis rotation between -90 degree and 90 degree,

Y -axis rotation between -180 degree and 180 degree, and no
rotation for Z-axis. We use 1 meter per second (1 unit in
Unity-based VR scene represents 1 meter) as the moving speed
and 10 degree per second as the rotation speed. For action
granularity, we use 1 meter and 10 degree as the elementary
step of movement and rotation.

B. Evaluation Results

In our evaluation, we measure the effectiveness of testing
by the interactable object coverage and method coverage. For
interactable object coverage, we count objects of the same
type as one because they are attached with the same set of
listeners and scripts. The evaluation results on interactable
object coverage is presented in Figure 6. The figure consists
of nine sub-charts. In each sub-chart, the x-axis denotes the
amount of testing time passed (in minutes). The y-axis denotes
the interactable object coverage. The first eight sub-charts
present the results for eight subject projects, respectively, and
the last sub-chart presents the average results of eight subject
projects.

From Figure 6, we have the following major observations.
First of all, both VRGreed and VRGuide achieved much higher
interactable object coverage than VRMonkey, reaffirming that

purely random testing strategy does not work well in VR
software (which is different from the case in Android test-
ing). This is perhaps due the huge input space and sparsity
of interactable objects in a VR scene. Second, VRGuide
is more efficient than VRGreed in seven out of eight VR
projects, and in the only remaining project UnityVR both
strategies have the same efficiency. The major reason is that
UnityVR does not have any obstacle and all virtual objects
are visible at the beginning of the scene. Third, in projects
UnityrollingVR and UnityRandomBlocks, VRGuide
achieves higher coverage when the five minute time out is
reached. The reason may be that these projects involve many
moving virtual objects. For the other projects, VRGuide is
able to achieve a coverage saturation using 31% less than time
VRGreed.

The evaluation results on method coverage is presented in
Figure 8. The figure is organized the same way as Figure 6.
From the figure, we can observe a trend similar to that for
interactable object coverage in Figure 6. The major difference
is that, because VR software typically contains a lot of
code in life-cycle methods (e.g., start(), update()) for
animation rendering, such code will always be executed as
long as the VR scene is initialized and executed. Therefore,
even VRMonkey achieved a not-to-bad coverage between 35%
and 45%. However, VRGuide still achieves higher testing
efficiency in seven out of eight projects, and higher coverage
upon testing timeout in two out of eight projects.

C. Bug Detection

The ultimate goal of testing is to detect bugs in software.
Therefore, we further investigate whether our technique is
able to detect real bugs and how it compares with VRTest.
During the testing process, we detected five bugs from
three projects UnityRandomBlocks, UnityrollingVR
and UnityCityView. Four of the five bugs3 have been
confirmed and fixed by the developers. It should be noted
that without automatic oracle, unhandled exceptions are the
only type of bugs we can automatically report. Among
the five bugs, VRTest is able to detect the bug in
UnityCityView (not confirmed yet), and one of the bugs
in UnityRandomBlocks (confirmed and fixed), but missed
the remaining three bugs because those bugs all require the
interaction within time limit or with moving objects which
will be destroyed after a while, and VRTest is not able to
interact with the object in time.

Figure 7 shows the screenshot of one of the bugs we
detected in UnityRandomBlocks. In particular, the blue
ball is dynamically placed and moving in a scene with many
obstacles. It is supposed to stop when caught by the pointer
clicker. A rigid body is required to be attached to the ball when
a force is applied to it. However, the developer forgot to attach
a rigid body to the object, so an exception was thrown. Our

3https://github.com/hfzhg/UnityRandomBlocks/issues/1,
https://github.com/hfzhg/UnityRandomBlocks/issues/2,
https://github.com/spcover/UnityrollingVR/issues/9,
https://github.com/spcover/UnityrollingVR/issues/10

Fig. 7. A Detected Bug in UnityRandomBlocks

bug detection results show that although VRGuide performs
just moderately better than VRTest on the final method / object
coverage, it is more likely to detect real bugs. We believe that
VRGuide’s ability to achieve high coverage within shorter time
allows it to detect time-sensitive bugs that are more difficult
to detect with manual testing. And that is the reason why
VRGuide is able to find more real-world bugs than VRTest.

D. Threats to Validity

The major threat to our construction validity is whether our
experiment setup is the same as the actual usage scenario
of VR testing. Since VRGuide is fully automatic, the only
potential issue is whether the configuration is reasonable. To
reduce this threat, we followed VRTest with all their configura-
tions. We believe the default configuration of VRTest should
provide a fair environment for comparing testing strategies.
The major internal threat to our evaluation is the potential bugs
and errors in our implementation of VRGuide. To reduce this
threat, we carefully reviewed the code of VRGuide, and tested
it with multiple artificial testing projects. The major external
threat to our evaluation is that our results may be specific to
the subject projects we used, or Unity-based VR projects. To
reduce this threat, we collected eight top subject projects with
different features from UnityList and Github. Also, we believe
that Unity-based projects are representative given that Unity is
dominating the VR software development market. To further
reduce this threat in the future, we plan to perform evaluation
more subjects and projects based on a different framework.

VI. DISCUSSION

A. More Event Types

Our VRGuide currently focuses on the pointer click event
type as it is the most commonly supported event type. There
are some other event types supported by certain devices, such
as the grabbing event which allows a user to grab certain
virtual object with their virtual hand, and the colliding event
that allows a user to push or collect certain virtual objects
when the user camera is at the same position or close to an
existing virtual object. Since these events are mainly contact-
based events (i.e., the user camera needs to be very close to the
virtual object to trigger the event), they are less complicated

UnityVR UnityVREscapeRoom Unity-vr-maze

Unity-vr-cave-puzzle UnityRandomBLock UnityrollingVR

UnityCityView VR-Forest Average

Fig. 8. Method Coverage of Different Testing Techniques

to trigger compared with pointer clicks as we do not need to
consider scenarios such as object occluding. Meanwhile, when
considering all types of events, we can measure the interaction
value of a position inside the virtual scene by combining
the number of visible interactable objects (receiving pointer
click events) and the distance from the position to interactable
objects which receive contact-based events.

B. Event Constraints

Similar to GUI software where clicking a button may lead
the user to a new window or make other controls available,
there are also event constraints in VR software where trig-
gering an event on a virtual object leads to the creation /
destroy / movement of virtual objects and even scene switch.
In VRTest, such dynamic objects are currently handled by
periodically retrieving the states of the VR scene (through the
VR Scene Monitor). A more complicated case is when the
virtual objects must be interacted in certain order to lead to
an outcome. None of our three testing techniques intentionally
handle such interaction orders, so whether the outcome can be
triggered may largely rely on repetitive triggering of events
on interactable virtual objects when the methods associated
with them are still not covered. In the future, we plan to
use static analysis to identify the dependencies between event

handlers. Based on the dependencies, VRGuide would be able
to trigger events in more proper order to expose more software
behaviors.

C. Testing Metrics

In our paper, we use method coverage and interactable
coverage to measure the test effectiveness of our framework
and tools. It is arguable whether these testing metrics are
effective for VR testing because VR software focus more on
user experience. There exist many VR software projects which
do not have much interactions and just have the user to view
the VR scene. For such software, it may be more important
for the testing process to explore the VR scene as much as
possible instead of trying to trigger as many events as possible.
So a different type of test coverage, such as scene coverage,
which measures how much portion of the VR scene has been
observed, may be also suitable for certain types of VR software
projects.

VII. RELATED WORKS

A. Testing and Studies of VR Software

There have been some test frameworks that facilitate au-
tomating VR software testing such as VRTest [9], which we
compare with in our paper, and AutoWalker [8], which is

similar to VRMonkey and randomly guides the player camera
in the VR scene. Gil et al. [19] and Souza el al. [20] proposed
approaches to model AR applications and cover the model
nodes and edges using automatic test cases. However, their
models are at higher level focusing on covering scenes and
their transitions instead of the automatic exploration of VR
scenes. Harms [21] proposed guidelines for the usability eval-
uation of AR applications and categorizes usability issues. Rafi
et al. [22] proposed Predart, which automatically evaluates
realisticness of VR object placement as test oracles and can
be applied to automatic VR and AR testing. Very recently,
Rzig et al. [23] studied the characteristics of unit tests in
VR applications and found they were of lower quality than
their counterparts in other applications. Compared with these
efforts, VRGuide focuses on scene exploration, which is a core
component of VR software testing and none of the existing
works cover it.

There are also some works on game testing which is related
to VR testing. Wuji [24] is a framework to automatically test
games based on evolutionary algorithms and reinforcement
learning. It explores the game spaces and branches as well as
making progress by passing stages. Zhao et al. [25] proposed
an approach to enhancing playing tactics in game testing by
learning from player action sequences. Bergdahl et al. [26]
proposed an approach to augment existing manually written
test scripts with reinforcement learning. However, all of the
above approaches mainly focus on game tactics and are
designed for 2D games, so when applied to 3D software they
still face the challenge of flexible camera movement/rotation
and accessing out-of-view and occluded objects, which are the
focuses of this paper.

There also have been some empirical studies on VR
software and video game software. Murphy-Hill et al. [27]
performed a study on video game developers to understand
the challenges in video game development and how they are
different from traditional software development. Washburn et
al. [28] studied failed game projects to find out the major
pitfalls in game development. Lin et al. [29] studied the
common updates in steam platform to understand the prior-
ity of game updates. Rodriguez and Wang. [30] performed
an empirical study on open source virtual reality software
projects to understand their popularity and common structures.
Pascarella et al. [31] studied open source video game projects
to understand their characteristics and the difference between
game and non-game development. Zhang et al. [32] studied
possible solutions to detect potential privacy leaks in mobile
augmented reality apps. Nusrat et al. [33] studied performance
issues in VR applications from performance repair logs and
identified the major reasons for performance downgrades in
VR applications. Molina et al. [34] developed a novel tech-
nique to extract code dependencies [35] in VR applications
and studied the types of dependencies. From these studies,
we gain knowledge on the characteristics of VR software
projects, which help us to understand VR-specific challenges
when designing VRGuide.

B. GUI Testing

Our VRGuide framework includes a lot of new designs
to address special challenges in VR software testing, but
in general, our research is also related to GUI testing and
more advanced GUI testing strategies can be combined with
VRGuide to better unleash its full power. GUI testing is an
extensively studied research area. Some representative techni-
cal solutions include random techniques, model-based tech-
niques, symbolic-execution-based techniques, search-based
techniques, and learning-based techniques.

Random techniques. Monkey [36], DynoDroid [37],
DroidFuzzer [38], are random-search-based approaches that
randomly explore GUI windows. In particular, DynoDroid [37]
instruments the Android framework and allows sending se-
quential and interleaving events. It further allows human
testers to provide input for input boxes. DroidFuzzer [38]
automatically generates random MIME messages on top of
GUI events. Mimic [39] uses random strategy to detect in-
compatibilities [40] in GUI among different mobile devices.

Model-based techniques. Model-based techniques use
static analysis or dynamic analysis to generate a GUI explo-
ration model and then explore the GUI according to the model.
Examples include GUIRipper [41] and its later extension
MobiGUITAR [42]. A3E [43] and SwiftHand [44] also build
finite state models for UI and generate events to explore states
in the model systematically.

Symbolic-execution-based techniques. The symbolic-
execution-based techniques use static or dynamic symbolic
execution to generate test input that leads control flow to un-
covered code. ACTEve [45] first applied concolic testing to the
exploration of Android apps. It alleviates path explosion by de-
tecting program executions that identify subsumption between
different event sequences. JPF-Android [46], an extension of
JPF (Java Path Finder) [47], uses static symbolic execution
to find all feasible execution paths in an Android app and
generate test inputs to cover them.

Search-based techniques. A representative tool for search-
based testing for Android is EvoDroid [48], which boosts
searching efficiency by considering the constraint of Android
development framework. A more recent work, FuzzDroid [49],
focuses on generating the execution environments (e.g., phone
settings of country or language, other apps installed) by
combining static and dynamic analyses through a search-based
algorithm that steers the app toward a configurable target
location. Sapienz [50] combines pre-defined GUI interaction
patterns with a genetic algorithm to evolve from seed input
sequences and search for the optimized exploration sequences
containing short input sequences while maximizing test cov-
erage and fault revelation. Stoat [51] is a UI test generation
tool combining model-based testing and evolutionary testing.
It first constructs a probabilistic state-transition model via
dynamic exploration and optional static analysis, and then
evolves the model to search for the optimized model with re-
gard to comprehensive fitness scores involving Code coverage,
model coverage, and test-suite diversity.

Learning-based approaches. Researchers have proposed
testing techniques based on learning from the testing process.
Most recently, He et al. [52] proposed a feedback-driven text
input exerciser, which tries to meet the input constrains by
analyzing the hint of the text fields. Pan et al. [53] proposed to
use text similarity in NLP as a guidance to train a model which
generates the test that leads to the state with highest difference.
This approach requires large training set from open-source
apps. Liu et al. [54] proposed to use training apps and human
testers to train a model which can be used to automatically
generate meaningful input for Android apps. Mariani et al. [55]
developed Augusto, which provide high-level testing rules for
three common app functions (i.e., log-in, create-read-update-
delete, save) to guide the model exploration. Qin et al. [56]
proposed to use event sequence mapping to migrate event
sequences from iOS tests to the Android version of the same
app. Behrang and Orso’s recent work [57] further learns test
oracles from existing tests.

VIII. FUTURE WORKS

In the future, we plan to work on the following directions.
First of all, for the testing framework, we plan to extend
it to support more types of events such as grabbing events
and colliding events. Second, our VRGuide testing strategy,
although considering more global information in the VR scene,
is still a greedy-algorithm-based approach, so we plan to fur-
ther enhance it by using AI-based or search-based techniques
which have been shown effective in GUI testing to acquire
a globally optimized route. Third, we plan to evaluate our
framework with more subjects and software projects that are
not based on Unity. Fourth, certain software behavior may be
exposed only when events are triggered in certain order, so we
plan to use static analysis to identify the dependencies between
event handlers. Based on the dependencies, VRGuide would
be able to trigger events in a certain order to expose more
software behaviors.

IX. CONCLUSION

In this paper, we propose a novel testing strategy called
VRGuide to automatically test VR software. The VRGuide
testing strategy is based on the cut theory from computer
geometry and it takes advantage of the intuition that in VR
testing, the player camera can typically interact with an object
as long as the object is within the field of view. The VRGuide
testing strategy involves three major steps: the calculation
of dynamic cuts from interactable objects to their facing
surfaces, the calculation of distances from the player camera’s
neighboring positions to the dynamic cuts, and guiding the
player camera toward the neighboring point that has shortest
distance to its nearest dynamic cut. We evaluated VRGuide
on eight top VR projects from UnityList and Github, and
the evaluation result shows that VRGuide is able to achieve
higher test efficiency and coverage than existing approaches
(i.e., VRTest), and detect unknown bugs in real world projects.

ACKNOWLEDGMENT

The UTSA authors are supported in part by NSF
Grants CNS-1736209, SHF-1846467, SHF-2007718, and
CNS-2221843. The Virginia Tech author is supported in part
by NSF Grants SHF-1845446 and SHF-2006278.

REFERENCES

[1] L. P. Berg and J. M. Vance, “Industry use of virtual reality in product
design and manufacturing: a survey,” Virtual reality, vol. 21, no. 1, pp.
1–17, 2017.

[2] “Mordor intelligence report on virtual reality market,”
https://www.mordorintelligence.com/industry-reports/virtual-reality-
market, 2020, accessed: 2020-06-30.

[3] “Statistica report on virtual reality software market,”
https://www.statista.com/statistics/550474/virtual-reality-software-
market-size-worldwide/, 2020, accessed: 2020-06-30.

[4] “Google play,” https://play.google.com/store, 2020, accessed: 2020-06-
30.

[5] “Apple app store,” https://www.apple.com/ios/app-store/, 2020, ac-
cessed: 2020-06-30.

[6] “Oculus app store,” https://www.oculus.com/experiences/quest/, 2020,
accessed: 2020-06-30.

[7] “Vr user statistics,” https://techjury.net/blog/virtual-reality-statistics/gref,
2020, accessed: 2020-06-30.

[8] (2022) Auto walk unity. https://github.com/onelei/auto-walk-unity.
[9] X. Wang, “Vrtest: An extensible framework for automatic testing of

virtual reality scenes,” in Tool Demo, 2022 IEEE/ACM International
Conference on Software Engineering Companion (ICSE-C). IEEE,
2022, pp. 392–397.

[10] “Unity engine: A unicorn powering the video game and vr/ar
economy,” https://digital.hbs.edu/platform-digit/submission/unity-
engine-a-unicorn-powering-the-video-game-and-vr-ar-economy/, 2020,
accessed: 2020-12-30.

[11] “Unity ipo aims to fuel growth across gaming and beyond,”
https://techcrunch.com/2020/09/10/how-unity-built-a-gaming-engine-
for-the-future/, 2020, accessed: 2020-12-30.

[12] “Apple arkit,” https://developer.apple.com/augmented-reality/, 2020, ac-
cessed: 2020-12-30.

[13] “Google daydream,” https://arvr.google.com/daydream/, 2020, accessed:
2020-12-30.

[14] “Google cardboard,” https://arvr.google.com/cardboard/, 2020, accessed:
2020-12-30.

[15] “Google arcore,” https://developers.google.com/ar, 2020, accessed:
2020-12-30.

[16] “Steam vr,” https://store.steampowered.com/steamvr, 2020, accessed:
2020-12-30.

[17] “Microsoft hololens,” https://www.microsoft.com/en-us/hololens, 2020,
accessed: 2020-12-30.

[18] P. Wang, R. Krishnamurti, and K. Gupta, “Generalized watchman route
problem with discrete view cost,” International Journal of Computa-
tional Geometry & Applications, vol. 20, no. 02, pp. 119–146, 2010.

[19] A. Gil, T. Figueira, E. Ribeiro, A. Costa, and P. Quiroga, “Automated test
of vr applications,” in HCI International 2020–Late Breaking Posters:
22nd International Conference, HCII 2020, Copenhagen, Denmark, July
19–24, 2020, Proceedings, Part II 22. Springer, 2020, pp. 145–149.

[20] A. C. Correa Souza, F. L. Nunes, and M. E. Delamaro, “An automated
functional testing approach for virtual reality applications,” Software
Testing, Verification and Reliability, vol. 28, no. 8, p. e1690, 2018.

[21] P. Harms, “Automated usability evaluation of virtual reality applica-
tions,” ACM Transactions on Computer-Human Interaction (TOCHI),
vol. 26, no. 3, pp. 1–36, 2019.

[22] T. Rafi, X. Zhang, and X. Wang, “Predart: Towards automatic oracle
prediction of object placements in augmented reality testing,” in Pro-
ceedings of the 37th IEEE/ACM International Conference on Automated
Software Engineering, 2022, pp. 1–13.

[23] D. E. Rzig, N. Iqbal, I. Attisano, X. Qin, and F. Hassan, “Virtual reality
(vr) automated testing in the wild: A case study on unity-based vr
applications,” in Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2023, pp. 1269–1281.

[24] Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu, R. Shen,
Y. Chen, and C. Fan, “Wuji: Automatic online combat game testing using
evolutionary deep reinforcement learning,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 772–784.

[25] Y. Zhao, W. Zhang, E. Tang, H. Cai, X. Guo, and N. Meng,
“A lightweight approach of human-like playtesting,” arXiv preprint
arXiv:2102.13026, 2021.

[26] J. Bergdahl, C. Gordillo, K. Tollmar, and L. Gisslén, “Augmenting
automated game testing with deep reinforcement learning,” in 2020 IEEE
Conference on Games (CoG). IEEE, 2020, pp. 600–603.

[27] E. Murphy-Hill, T. Zimmermann, and N. Nagappan, “Cowboys, ankle
sprains, and keepers of quality: How is video game development
different from software development?” in Proceedings of the 36th
International Conference on Software Engineering, 2014, pp. 1–11.

[28] M. Washburn, P. Sathiyanarayanan, M. Nagappan, T. Zimmermann,
and C. Bird, “What went right and what went wrong: An analysis
of 155 postmortems from game development,” in Proceedings of the
38th International Conference on Software Engineering Companion, ser.
ICSE ’16, 2016, p. 280–289.

[29] D. Lin, C.-P. Bezemer, and A. E. Hassan, “Studying the urgent updates of
popular games on the steam platform,” Empirical Software Engineering,
vol. 22, no. 4, pp. 2095–2126, 2017.

[30] I. Rodriguez and X. Wang, “An empirical study of open source virtual
reality software projects,” in 2017 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM). IEEE,
2017, pp. 474–475.

[31] L. Pascarella, F. Palomba, M. Di Penta, and A. Bacchelli, “How is
video game development different from software development in open
source?” in 2018 IEEE/ACM 15th International Conference on Mining
Software Repositories (MSR). IEEE, 2018, pp. 392–402.

[32] X. Zhang, R. Slavin, X. Wang, and J. Niu, “Privacy assurance for android
augmented reality apps,” in 2019 IEEE 24th Pacific Rim International
Symposium on Dependable Computing (PRDC). IEEE, 2019, pp. 114–
1141.

[33] F. Nusrat, F. Hassan, H. Zhong, and X. Wang, “How developers
optimize virtual reality applications: A study of optimization commits
in open source unity projects,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 2021, pp. 473–485.

[34] J. Molina, X. Qin, and X. Wang, “Automatic extraction of code depen-
dency in virtual reality software,” in 2021 IEEE/ACM 29th International
Conference on Program Comprehension (ICPC). IEEE, 2021, pp. 381–
385.

[35] H. Zhong and X. Wang, “Boosting complete-code tool for partial pro-
gram,” in 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, pp. 671–681.

[36] AOSP, “Android Monkey,” https://developer.android.com/stud-
io/test/monkey, 2007.

[37] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input
generation system for android apps,” in Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE
2013. New York, NY, USA: ACM, 2013, pp. 224–234. [Online].
Available: http://doi.acm.org/10.1145/2491411.2491450

[38] H. Ye, S. Cheng, L. Zhang, and F. Jiang, “Droidfuzzer: Fuzzing the
android apps with intent-filter tag,” in Proceedings of International
Conference on Advances in Mobile Computing & Multimedia, ser.
MoMM ’13. New York, NY, USA: ACM, 2013, pp. 68:68–68:74.
[Online]. Available: http://doi.acm.org/10.1145/2536853.2536881

[39] T. Ki, C. M. Park, K. Dantu, S. Y. Ko, and L. Ziarek, “Mimic: Ui
compatibility testing system for android apps,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE, 2019,
pp. 246–256.

[40] L. Chen, F. Hassan, X. Wang, and L. Zhang, “Taming behavioral
backward incompatibilities via cross-project testing and analysis,” in
Proceedings of the ACM/IEEE 42nd International Conference on Soft-
ware Engineering, 2020, pp. 112–124.

[41] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon, “Using gui ripping for automated testing of android
applications,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering. ACM, 2012, pp. 258–
261.

[42] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M.
Memon, “Mobiguitar: Automated model-based testing of mobile apps,”
IEEE software, vol. 32, no. 5, pp. 53–59, 2015.

[43] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of android apps,” in Acm Sigplan Notices, vol. 48,
no. 10. ACM, 2013, pp. 641–660.

[44] W. Choi, G. Necula, and K. Sen, “Guided gui testing of android apps
with minimal restart and approximate learning,” in Acm Sigplan Notices,
vol. 48, no. 10. ACM, 2013, pp. 623–640.

[45] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering.
ACM, 2012, p. 59.

[46] H. van der Merwe, B. van der Merwe, and W. Visser, “Execution and
property specifications for jpf-android,” SIGSOFT Softw. Eng. Notes,
vol. 39, no. 1, pp. 1–5, Feb. 2014.

[47] “Jpf,” http://javapathfinder.sourceforge.net/.
[48] R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: Segmented evo-

lutionary testing of android apps,” in Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, 2014, pp. 599–609.

[49] S. Rasthofer, S. Arzt, S. Triller, and M. Pradel, “Making malory behave
maliciously: Targeted fuzzing of android execution environments,” in
2017 IEEE/ACM 39th International Conference on Software Engineer-
ing (ICSE), 2017, pp. 300–311.

[50] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for android applications,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, ser. ISSTA 2016. New
York, NY, USA: Association for Computing Machinery, 2016, p.
94–105. [Online]. Available: https://doi.org/10.1145/2931037.2931054

[51] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu,
and Z. Su, “Guided, stochastic model-based gui testing of android
apps,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE 2017. New York, NY, USA:
Association for Computing Machinery, 2017, p. 245–256. [Online].
Available: https://doi.org/10.1145/3106237.3106298

[52] Y. He, L. Zhang, Z. Yang, Y. Cao, K. Lian, S. Li, W. Yang, Z. Zhang,
M. Yang, Y. Zhang, and H. Duan, “Textexerciser: Feedback-driven text
input exercising for android applications,” in 2020 IEEE Symposium on
Security and Privacy (SP), 2020, pp. 1071–1087.

[53] M. Pan, A. Huang, G. Wang, T. Zhang, and X. Li, “Reinforcement
learning based curiosity-driven testing of android applications,” in
Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 153–164. [Online].
Available: https://doi.org/10.1145/3395363.3397354

[54] P. Liu, X. Zhang, M. Pistoia, Y. Zheng, M. Marques, and L. Zeng,
“Automatic text input generation for mobile testing,” in Proceedings
of the 39th International Conference on Software Engineering, ICSE
2017, Buenos Aires, Argentina, May 20-28, 2017, 2017, pp. 643–653.
[Online]. Available: https://doi.org/10.1109/ICSE.2017.65

[55] L. Mariani, M. Pezzè, and D. Zuddas, “Augusto: Exploiting popular
functionalities for the generation of semantic gui tests with oracles,” in
2018 IEEE/ACM 40th International Conference on Software Engineer-
ing (ICSE). IEEE, 2018, pp. 280–290.

[56] X. Qin, H. Zhong, and X. Wang, “Testmig: Migrating gui test cases from
ios to android,” in Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2019, p. 284–295.

[57] F. Behrang and A. Orso, “Test migration between mobile apps with
similar functionality,” in 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2019, pp. 54–65.

