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In this paper, we conduct a measurement study to comprehensively compare the accuracy impacts of multiple embedding

options in cryptographic API completion tasks. Embedding is the process of automatically learning vector representations of

program elements. Our measurement focuses on design choices of three important aspects, program analysis preprocessing,

token-level embedding, and sequence-level embedding. Our indings show that program analysis is necessary even under

advanced embedding. The results show 36.20% accuracy improvement on average when program analysis preprocessing is

applied to transfer bytecode sequences into API dependence paths. With program analysis and the token-level embedding

training, the embedding dep2vec improves the task accuracy from 55.80% to 92.04%. Moreover, only a slight accuracy advantage

(0.55% on average) is observed by training the expensive sequence-level embedding compared with the token-level embedding.

Our experiments also suggest the diferences made by the data. In the cross-app learning setup and a data scarcity scenario,

sequence-level embedding is more necessary and results in a more obvious accuracy improvement (5.10%).

CCS Concepts: · Computing methodologies → Machine learning; · Software and its engineering; · Security and

privacy→ Software and application security;

Additional Key Words and Phrases: neural code completion, embedding, deep learning, neural networks, program analysis,

API dependency, cryptography, secure coding, Java

1 INTRODUCTION

Code embedding refers to the process of transforming the program elements into continuous vectors [5, 24, 59].
This transformation is important for deep learning, as the subsequent model training and inference are performed
on the embedding vectors [10, 17, 40, 52, 54]. Despite much progress in this area [5, 18, 20, 24, 29, 36, 48, 59],
it is still unclear the efectiveness and advantages of diferent embedding designs. A side-by-side comparison
would help one better design neural network based methodologies and harness their power for embedding-based
applications.

Ourwork uncovers the impacts of multiple embedding design choices on the API completion task, a foundational
question in AI-based software engineering, through comprehensive comparative experiments. API completion
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aims to predict the next APImethod given the previous code sequence. It is a basic building block formany software
engineering tasks, including code repair and code generation. In our experiments, we choose a speciic application
scenario, cryptographic API completion. Cryptographic APIs are widely known to be error-prone [1, 30, 42, 55, 57].
Misuses, such as predictable random numbers and insecure hash algorithms, severely threaten software security.
Thus, this task is more challenging and not well handled by existing solutions because, beyond correctness,
security is also required. By experimenting on these challenging APIs, we observe and report the accuracy impacts
of diferent embedding choices.

There are usually three key steps for training code embedding vectors. First, programs are preprocessed into
certain representations (e.g., bytecode, control low graphs) that contains meaningful features. This is usually
achieved by program analysis techniques. Based on the preprocessed representations, a basic embedding training
vectorizes every single token by gathering its context information across the entire corpus, which is referred to as
token-level embedding. Beyond embedding a single token, an extra step could be conducted to produce embedding
vectors for a given sequence, which is called sequence-level embedding in our paper. It requires an extra sequence
model pretraining compared with the basic token-level embedding. Therefore, we identify design choices of the
three main aspects ś i) program analysis preprocessing, ii) token-level embedding, and iii) sequence-level embedding

to compare, as shown in Table 1. Such comparison is missing in the literature and needs to be systematically
performed.

Our irst comparison group focuses on the impacts of program analysis preprocessing. Program analysis is
often used to process programs before embedding [4, 9, 23, 58]. This preprocessing is important as it decides what
information is used for embedding training. For example, Henkel et al. [24] extract symbolic traces for embedding
while the state-of-the-art code embeddings (e.g., GraphCodeBERT [22], inst2vec [7]) leverage data lows from
graph representations to embed program elements. In our work, we compare three program representations,
bytecode, program slices, and API dependence paths, obtained with diferent program analysis strategies for
embedding. We explain why the three representations are selected in Section 3.1.
Our second comparison group examines the impacts of token-level embedding. We make comparisons

between token-level embedding and the one-hot encoding baseline. One-hot encoding is a basic vectorization
approach that indexes N tokens and represents the �-th token by an � -dimensional vector that includes a
single 1 at the �-th dimension and 0s for other dimensions. Compared with it, token-level embedding, such
as word2vec [31ś33], is expected to result in low-dimensional semantic-aware vectors that could beneit the
downstream task training. By the experimental comparison, we observe how much accuracy improvement the
token-level embedding can gain.
Our third comparison group learns the impacts of sequence-level embedding (also called contextualized

embedding). We make comparisons between sequence-level embeddings and token-level embeddings. Compared
with token-level embedding, sequence-level embedding is more advanced because the polysemy issue is handled,
by assigning diferent vectors for diferent occurrences of a token. However, it also requires an extra expensive
sequence language model and pretraining process to achieve that. For example, the state-of-the-art natural
language sequence-level embedding BERT [17] is obtained by pretraining the Transformer [51] neural network.
Our experimental comparisons aim to answer at what level the advantage of sequence-level embedding is
over token-level embedding. Fig. 2 concludes the worklow how we generate the one-hot vectors, token-level
embeddings, and sequence-level embeddings.
To evaluate embeddings with diferent design choices, we perform API completion tasks on our Java crypto-

graphic API benchmark. Our benchmark is composed of Java cryptographic code collected from 79,887 Android
apps. To ensure veriiability and reproducibility, our Java cryptographic API benchmark is publicly available on
GitHub 1.

1https://github.com/Anya92929/DL-crypto-api-auto-recommendation
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Next, we explain our research questions along with the comparative experiments designed to answer them.

RQ1: What are the accuracy impacts of token-level embedding obtained from bytecode, slices, and

API dependence paths in cryptographic API completion, respectively? To answer this question, we
pretrain three token-level embeddings, byte2vec, slice2vec, and dep2vec on bytecode, slices, and API dependence
paths, respectively. Bytecode, program slices, and API dependence paths are the outcome of diferent program
analysis preprocessing. The obtained embeddings are compared with the basic setting, one-hot encoding, with
corresponding program analysis preprocessing.

RQ2: What are the accuracy impacts of sequence-level embedding obtained from bytecode, slices,

and API dependence paths in cryptographic API completion, respectively? To answer this question,
we pretrain three sequence-level embeddings, byteBERT, sliceBERT, and depBERT on bytecode, slices, and API
dependence, respectively. They are inetuned for the cryptographic API completion and compared with an
identical Transformer neural network without the pretraining knowledge.

RQ3: Are our embeddings efective for cryptographic API completion on new apps? To answer this, we
perform the experiments not only under the basic within-app setting, but also under the cross-app setting. In the
within-app setting, sequences are extracted from Android apps and randomly split for training and testing. In the
cross-app setting, new Android apps are used to test the model.

RQ4: How well does the state-of-the-art general purpose code embedding work for cryptographic API

completion? Besides the program analysis and embedding choices we covered in Table 1, we further evaluate
two state-of-the-art code embedding GraphCodeBert [22] and CodeBert [20] for cryptographic API completion.
They are two general purpose source code embedding models pretrained by Microsoft on six programming
languages paired with natural language. We inetune the two pretrained models for our API completion task and
form an end-to-end comparison.

Our major indings include:

• Our indings show that program analysis preprocessing plays a signiicant role in cryptographic API
embedding and completion. For both token-level embedding and sequence-level embedding, the API
dependence paths produce higher prediction accuracy, compared with slices and bytecode. With program
analysis, the token-level embedding dep2vec achieves an accuracy 36% higher than byte2vec. The sequence-
level embedding depBERT achieves an accuracy 45.86% higher than byteBERT without program analysis
preprocessing.

• Our indings show that applying embeddings with program analysis signiicantly improves task accuracy
compared with the one-hot baseline (no embedding). On dependence paths, the token-level embedding
dep2vec and sequence-level embedding depBERT both outperform the one-hot encoding baseline by the
accuracy boost of 6% and 7%, respectively. Although sequence-level embedding is slightly (0.55%) better than
token-level embedding in our experiments. Considering the expensive cost of sequence-level embedding,
token-level embedding is more desirable.

• Our indings show that the improvements derived from program analysis and embedding are valid for
cryptographic API completion on new apps. In the cross-app learning scenario, the program analysis guided
embedding depBERT and dep2vec still achieve good accuracy at 95.75% and. 93.58%, respectively. Another
observation is the advantage of depBERT over dep2vec is slightly more obvious by the 2.17% accuracy boost
compared with 0.55% in the basic setting. The sequence-level embedding depBERT is most recommended to
be used in the data scarce situation, as the largest improvement (5.10%) of depBERT compared with dep2vec

is observed on the smallest task dataset with 26,357 dependence paths.
• The state-of-the-art general purpose source code embedding solutions GraphCodeBert and CodeBert are
insuicient in our cryptographic API completion tasks with a low accuracy of 59.94%. Experiments still show
the advantage of applying program analysis preprocessing in their embedding solutions. GraphCodeBert

ACM Trans. Softw. Eng. Methodol.
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substantially outperforms its non-program-analysis counterpart CodeBert by an accuracy boost of 20.07% on
average. The experiments also suggest the method-level context is more recommended than the class-level
context for cryptographic API completion.

Signiicance of research contributions. Our work provides the irst quantitative and systematic comparison
of the prediction accuracy of multiple API embedding approaches for neural network based code completion.
Our rigorous experiments provide new empirical results that have not been previously reported, including
how various domain-speciic program analyses improve data-driven predictions. These quantitative indings
help guide and design more powerful and accurate code completion solutions, leading to high quality and low
vulnerability software projects in practice. As cryptographic API completion is more diicult and requires a deeper
understanding of the code context, we expect our observations to be valid and useful for general code completion
tasks as well. We keep the general evaluation as our further work. We also publish our new cryptographic API
benchmark along with our deep learning models to help future research.

2 BACKGROUND

We provide the background of embedding and the cryptographic API completion task. We categorize embedding
vectors into token-level embeddings and sequence-level embeddings.

2.1 Token-level Embedding

Token-level embeddings, such as word2vec [31ś33], FastText [8, 25], Glove [39], assign one numeric vector to
represent a token. In our work, we follow the skip-gram [31, 32] algorithm to train token-level embeddings for
API methods and constants. Speciically, a three-layer linear neural network is used to automatically learn the
embeddings of all tokens in an embedding sequence corpus. The token (API method or constant) to be embedded
is the input, and the tokens before and after it within a sliding window are used as the labels to train the neural
network. During the embedding process, the entire embedding corpus is scanned and all the tokens and their
neighbors are used for training. After that, the latent vector at the hidden layer is kept as the embedding of the
input token. In this way, a token’s embedding vector is determined by the statistics of its neighboring tokens in a
large corpus.

2.2 Sequence-level Embedding

Sequence-level embedding assigns a vector for every occurrence of a token. In other words, a token is represented
with diferent vectors when it appears in diferent sequences. To generate this contextualized vector, not only the
token itself but also other tokens in a given sequence are used. There is a neural network based language model
to take a sequence as input and output the embedding vectors of every token in this sequence. For example,
the GPT family [41], BERT [17], RoBERTa [28], are sequence-level embeddings generated from Transformer
neural networks. The sequence-level embedding ELMo [40] is generated from a BiLSTM neural network. This
neural network is pretrained with carefully crafted tasks for producing the sequence-level embedding. Therefore,
it is also referred to as a pretrained language model. The sequence-level embedding of a token is dynamically
generated by the pretrained language model.
To apply the sequence-level embeddings for downstream tasks, a common way is to use the pretrained

model that produces sequence-level embedding as the initial states. An extra application layer is added after the
embedding layer and the entire model is ine-tuned with extra data for a speciic downstream task.

2.3 Cryptographic API Completion

We evaluate diferent embeddings in cryptographic API completion. API completion refers to a task that suggests
one or more next API methods given a preceding sequence of API elements (i.e., API methods and constants). We

ACM Trans. Softw. Eng. Methodol.
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(a) Two bytecode sequences (b) Slice sequence (c) API dependence graph

Fig. 1. API and constant sequences from bytecode, program slices and API dependency graphs

deine two types of cryptographic API completion tasks, i.e., next API completion and next API sequence completion.
The former aims to predict one API method in the next line while the latter produces a sequence of API methods
to invoke sequentially.

3 OUR MEASUREMENT SETTING

We perform comparative experiments to answer our research questions. As shown in Table 1, we compare
diferent design choices of program analysis preprocessing, token-level embedding, and sequence-level embedding.

Table 1. The overview of our comparative setings. Each cell shows the embedding and machine learning model we use for the

cryptographic API completion. We have comparisons between three program analysis preprocessed sequences, token-level

embeddings vs. one-hot, and sequence-level embeddings vs. token-level embeddings.

Program analysis preprocessing

Bytecode Program slices API dependence paths

Token-level

embedding

byte2vec vs. one-hot
(w/ LSTM)

slice2vec vs. one-hot
(w/ LSTM)

dep2vec vs. one-hot
(w/ LSTM)

Sequence-level

embedding

byteBERT vs. byte2vec
(w/ Transformer)

sliceBERT vs. slice2vec
(w/ Transformer)

depBERT vs. dep2vec
(w/ Transformer)

3.1 Program Analysis Preprocessing Strategies

We examine the impacts of using program analysis to guide the embedding. There could be unlimited program
analysis strategies to extract diferent program sequences. Speciically, we compare three types of program
sequences: i) bytecode, ii) program slices, and iii) API dependence paths. The bytecode is from Android apps without
program analysis. The program slices are obtained by conducting interprocedural backward slicing on bytecode.
Moreover, the API dependence paths are extracted from API dependence graphs we construct on program slices
with the datalow dependence between the API calls. We select these three because they embody the increasing
levels of program analysis guidance.

Bytecode sequences.We extract the API sequences directly from the Android bytecode. For each method imple-
mentation, we extract the API methods and constants used in it into one sequence. There is no ordering between
sequences collected from diferent method implementations. Based on our observation, the order of the API
methods and constants in these sequences is close to their order in the source code. We cover the bytecode option
because it relects the efect of embedding without program analysis guidance.

Program slices.We apply a program analysis strategy, interprocedural backward slicing, to obtain program slices.
The slicing starts from the variables used with a cryptographic API invocation. By backwardly tracing the data
lows reaching these variables, all the code statements inluencing the API invocation are kept while irrelevant
code statements are excluded. When reaching the entry point of the current method, we jump to its callers to
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continue the backward tracing until the tracked data facts are empty or there is no caller found. In this way,
the inluencing code context beyond a local method is also collected. When meeting a self-deined method
(i.e., a method that is written by the developer and is not provided by Java libraries) call, we replace it with its
implementation code if available. An example of program slices is shown in Fig. 1b. A major diference between
program slices and bytecode is that the irrelevant predecessors are removed by program analysis.

API dependence paths.With program analysis, the code semantic information, such as program dependencies,
can be extracted. We perform the API dependence graph construction and extract the API dependence paths for
embedding. The API dependence graphs are built through datalow analysis. We add the data dependence edges
between API calls on slices. An example of our API dependence graph is shown in Fig. 1c. It uses an API or a
constant as a node. Two nodes having the data dependence (def-use) relationship are connected directly. The
API dependence paths are covered in our measurement as a representative of the state-of-the-art code semantic
based approaches. [7, 22].

Experimental setup of program analysis preprocessing. We implement an interprocedural, context- and ield-
sensitive datalow analysis to achieve our backward slicing and API dependence graph construction. The analysis
is implemented with the Java program analysis framework Soot [50]. Soot takes the Android bytecode as input
and transforms it into an intermediate representation (IR) Jimple. The program analysis (i.e., slicing or API
dependence graph construction) is performed on Jimple IR. We use Soot 2.5.0, Java 8, and Android SDK 26.1.1.

3.2 Token-level Embedding Setings

We perform the token-level embedding training to produce vectors for tokens in an embedding vocabulary, as
illustrated in Fig. 2b.

Cryptographic code identiication. All the embeddings are produced from the cryptographic code corpus we extract
from decompliled Android Apks. We refer to the code implemented with cryptographic API calls as cryptographic
code. To identify cryptographic code from an Android App, we irst search all the cryptographic API callsites
within the codebase. All the method signatures within the Java package java.security and javax.crypto (see
Table 2) are included in our search list. Then, we start from these cryptographic API callsites to ind other
standard API calls happening before a cryptographic API callsite as its context. However, there might be diferent
accurate levels and scopes of the context according to preprocessing. In bytecode sequences, we can only extract
all the previous API calls within the same method of a cryptographic callsites as its context. When program
analysis technique is applied, we are able to generate more meaningful API call context based on its program
dependency. In our experiments, a cryptographic API callsite and its program-wide dependency code is extracted
as an inter-procedural (cross-method) program slice. The entire slice are regarded as cryptographic code and all
the previous API calls within this slice will be gathered as the context of a cryptograhpic API call.

Embedding vocabulary. The embedding vocabulary is collected during the cryptographic code identiication.
The vocabulary initially includes the standard JAVA cryptographic APIs. Then, we scan the App and perform
interprocedural backward slicing from the detected cryptographic API callsites as entry points. In this way, the
vocabulary expands with all the encountered API calls and constants during backward program slicing. When an
API call is encountered, we irst check whether it is a self-deined method2 If it is, the analysis jumps into the
implementation of this method according to the interprocedural slicing algorithm. Otherwise, the API method
will be collected as an element in our vocabulary. For the collected API methods, we further ilter those that
appear less than ive times. For constants, we manually identiied 104 reserved string constants used as the
arguments of cryptographic APIs. Other constants that appear more than 100 times in the slices are also kept in
the embedding vocabulary. Finally, we have a vocabulary of 4,543 tokens (3,739 APIs and 804 constants). The

2The method deined and implemented by developers within this program.

ACM Trans. Softw. Eng. Methodol.
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API sequences extracted 
from program analysis

seq1 seq2 …

A1

A2

A3

A4

A5

A1

A2

A6

A7

A8

A1

A2

A3

A4

A5

A6

A7

A8

Get the list of all unique APIs and 
convert into vectors.

Each vector has 1 at corresponding 
position and 0s at all other positions.

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

The one-hot coded vectors are then 
used as model inputs.

seq1 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

seq2 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

One-hot encoding
(no embedding)
Helps convert data into model input.

The dimension of each vector is the 
total number of unique APIs.

(a) Workflow of generating one-hot encoded vectors.

0

1

0

0

0

0

0

0

Use the samples to train a skip-gram model. The 
size of hidden layer is a hyperparameter. The size of 
the output layer is the number of unique APIs.

Token-level embedding
Learns the co-occurrence of tokens.

For a given sequence, we extract 
nearby API pairs within a window 
size (e.g., 2) as training samples

A1 A2 A3 A4 A5

A1 A2 A3 A4 A5

A1 A2 A3 A4 A5

A1 A2 A3 A4 A5

A1 A2 A3 A4 A5

Training samples

(A1, A2)
(A1, A3)

(A2, A1)
(A2, A3)
(A2, A4)

(A3, A1), (A3, A2)
(A3, A4), (A3, A5)

(A4, A2)
(A4, A3)
(A4, A5)

(A5, A3)
(A5, A4)

A2 ∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

∑

Hidden layer

Output layer
Probability that 
nearby API is A1

A2

A3

A4

A5

A6

A7

A8

API sequence (seq1)

A1

A2

A3

A4

A5

A6

A7

A8

The trained hidden layer weight 
matrix contains the embedding 
vectors for all APIs. 

The embedding dimension is the 
size of the hidden layer.

(b) Workflow of training token-level embedding using skip-gram.

Masked Language Model (MLM)

We randomly selected 30% of tokens for the model 
to predict (masked) during pretraining.

80% of the time, the tokens are replace with a 
special token:

Sequence-level embedding
Understands the context of the 
entire sequences.

Sequence-level embedding further 
considers the position of tokens

A1 A2 A3 A4 A5

+

1 2 3 4 5
Position 

embedding

Token 
embedding

Input vector

e.g., A1 A2 A3 A4 A5

A1 A2 A3 [MASK] A5

10% of the time, the tokens are replace with a 
random token:

e.g., A1 A2 A3 A4 A5

A1 A2 A3 A7 A5
10% of the time, the tokens are kept:

e.g., A1 A2 A3 A4 A5

A1 A2 A3 A4 A5

BERT

Input vectors
(Token embedding + 
Position embedding)

pretrain

Sequence-level 
embeddings

(contextual embeddings)

(With MLM and 
Transformer layers)

(c) Workflow of training sequence-level embedding using BERT.

Fig. 2. Workflow of generating one-hot encoded vectors, token-level embedding, and sequence-level embedding. Here we

aim to show the high-level idea of the process and what information each type of embedding carries. We refer interested

readers to the original paper of Word2Vec [32] and BERT [17] for technical details.
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API methods include the standard APIs from Java and Android platforms, as well as some third-party APIs that
cannot be inlined because of recursion or phantom methods (whose bodies are inaccessible during the analysis).
Table 2 shows the library distribution of these API methods.

Table 2. The library sources of our embedding APIs

Source # of embedded APIs

Java platform

java.security 510
javax.crypto 166
java.io 138
java.lang 259
others 374

Android platform 486

Third parties 1,827

We train the skip-gram embedding model [32] to obtain the word2vec-like embedding. With diferent program
analysis preprocessing, three types of token-level embeddings, byte2vec, slice2vec, and dep2vec are produced.

• byte2vec is the baseline embedding version that applies word2vec [31, 32] directly on the bytecode corpus.
• slice2vec is the embedding with the inter-procedural backward slicing as the pre-processing method.
• dep2vec applies API dependence graph construction to guide the embedding training.

Experimental setup for token-level embeddings. We follow the convention of the natural language embedding
word2vec to set hyperparameters. The embedding vector length is 300. The sliding window size for neighbors is
5. We also applied subsampling and negative sampling to randomly select 100 false labels to update in each batch.
Based on our preliminary experiments, we train embeddings with a mini-batch size of 1024. The embedding
terminates after 10 epochs. Because we did not observe signiicant improvement by longer epochs and smaller
batch size. Our embedding model is implemented using Tensorlow 1.15. Training runs on the Microsoft AzureML
GPU clusters, which support distributed training with multiple workers. We use a cluster with 8 worker nodes.
The VM size for each node is the (default) standard NC6.

3.3 Sequence-level Embedding Setings

We obtain sequence-level embeddings by applying the method of training the well-known natural language
embedding BERT [17] on program sequences, as shown in Fig. 2c.

byteBERT vs. sliceBERT vs. depBERT. On bytecode, program slices, and API dependence paths, we obtained three
diferent versions of BERT embeddings for API elements, byteBERT, sliceBERT, and depBERT. These BERT-like API
embeddings are produced by pretrained Transformer neural networks. We apply the masked language modeling
(MLM) task to pretrain them. MLM is a task that reconstructs language sequences with masked tokens. It predicts
the missing tokens for a given sequence with random masks. The masked tokens in the input sequence are
either replaced by a special token [MASK] or an arbitrary random token in the vocabulary or kept in original
sequences. We set the probabilities of the three situations as 80%, 10%, and 10%, and follow the convention in NLP.
The masked tokens are randomly selected with a probability of 30% and one sequence is limited to having two
masked tokens at most. These are similar to the setting of the MLM for training BERT [17]. We discard the next
sentence prediction (NSP) of BERT as there is no corresponding concept of the łnext sentencež between two code
sequences. Three types of sequence-level embeddings are trained with identical hyperparameters. Same with the
LSTM training with token-level embedding, the neural network is trained for 10 epochs with a batch size of 1024.
When training the Transformer model, the input tokens are represented as our token-level embedding. To apply

ACM Trans. Softw. Eng. Methodol.
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Table 3. Overview of our datasets

Dataset App Set ID Apps Experiments

Embedding
Basic 1 16,048

API Completion

2 64,478 Embedding
3 11,997 API Completion
4 1,819 API Completion
5 1,055 API Completion

Advanced

6 538 API Completion

these sequence-level embedding in cryptographic API completion, the pretrained neural networks are inetuned
by the given task-speciic data.

Training parameters. Due to the resource constraint, we cannot thoroughly try every possible parameter combina-
tion (grid search). Instead, we select the optimal parameters with some preliminary experiments. We considered
diferent numbers of epochs (up to 20), batch sizes (512, 1024), and learning rates (0.1, 0.01, 0.001). Choosing
diferent learning rates improves the accuracy by no more than 0.02. After training for 10 epochs, the accuracy
increment is less than 0.001 for each extra epoch. Therefore, we chose the inal set of parameters (10 epochs, 0.001
learning rate, and 1024 batch size) to achieve a balance between computational resources and model performance.

For the pretraining of our byteBERT, sliceBERT, and depBERTmodels, we choose the ratio of masking strategies
(80%, 10%, and 10%) following the original BERT paper. We choose the mask ratio of 30% because some of the
sequences are short and we want each sample having one or two masked tokens. As those parameters are
optimized by the authors of BERT, they are also the most commonly used setting in the NLP ield.
Diferential evolution (DE) is not a common practice in choosing hyperparameters for deep learning models,

while it is more frequently used for tuning kernel parameters for SVM. Applying DE on top of LSTM models
and evaluating its impact on model performance can form an interesting research topic by itself. We leave this
extension as our future research direction.

3.4 Dataset Overview

We conduct experiments on Android apps collected from the Google Play store. We choose the Android platform
because of its widespread use and popularity among users. We collect apps from various categories to ensure
the dataset relects a diverse usage of Java cryptographic API in practice. According to the way we split data for
training and testing, we have a basic dataset and an advanced cross-app data setup. Table 3 gives an overview.

3.4.1 Basic Data Split Seting. The basic dataset is composed of 16,048 Android apps from three categories, 5,176
apps from the business category, 4,581 Apps from the communication category, and 6,291 apps from the inance
category. From these apps, we extracted 707,775 API sequences from bytecode, 926,781 API sequences from
program slices, and 566,279 API sequences from API dependence graphs. The number of tokens in the three types
of sequences is shown in Table 4. The tokens refer to the APIs or constants in our embedding vocabulary.

Table 4. Embedding corpora statistics of the basic dataset

Corpora Bytecode Slices
Dependence

paths

# of tokens 28,887,852 12,341,912 38,817,046
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For embedding, we use all of the API sequences to produce the token-level embeddings and sequence-level
embeddings. For API completion tasks, we randomly split all the sequences for training and testing following the
ratio of 4:1.

3.4.2 Advanced Data Split Seting. We create an advanced dataset to enable cross-app learning and validate our
indings on new apps. Under this setup, the collected apps are split for embedding and API completion tasks,
respectively. This guarantees that the apps used for API completion tasks are not seen in the embedding training
phase. Our embedding experiments are conducted on 64,478 apps (app set 2), which are much more than the app
sets 3, 4, 5, and 6 that we used for API completion tasks. This consideration is because embeddings are often
pretrained with huge data volumes and released for ine-tuning with smaller task-speciic datasets in the real
world. Then, the apps for API completion tasks are split into training and testing sets. This guarantees that the
apps used for testing are never seen in the training. Compared with the basic dataset, the cross-app setting is
more practical and challenging. It evaluates whether the model trained on a set of apps can be applied to new
apps.

In addition, to observe the impacts of the task data volume, we perform API completion training and testing on
four app sets (app sets 3, 4, 5, 6) varying in data sizes. The largest one, App set 3, is a diverse App set including
11,997 apps from 12 App categories. Besides, there are three smaller App sets (App sets 4, 5, 6) consisting of
1,819 apps from the personalization category, 1,055 apps from the social category, and 538 apps from the weather
category.
Data duplication. For both the basic and advanced dataset, we deduplicate the data in the class ile level to
guarantee that the reused class iles (e.g., libraries) only appear once when extracting the bytecode sequences.
However, we did not deduplicate the program slices and the API dependence paths extracted by program analysis.
The presence of duplicate slices or paths in the training set suggests common coding patterns. The frequency
of API occurrence helps the embedding model learn their relationship. Diferent source code could follow a
similar cryptographic function usage pattern in some cases, as many security principles do not change for various
scenarios. Let the model directly learn the processed highly frequent sequences can signiicantly reduce the
expensive data size and training resource requirement. Moreover, since the apps we collected are all real-world
apps, this duplication should also hold for apps in the wild and will not afect the performance after deployment.
In the cross-app experiments, our goal is to show the model does not make predictions because of the duplicated
code sequences from the same app. If a usage pattern is general across multiple apps, it is reasonable to keep
their duplicated occurrence in our dataset [2].

4 EVALUATION RESULTS

In this section, we report the accuracy of the cryptographic API completion to compare the impacts of diferent
embedding choices and answer our research questions (RQs). In the evaluation, we calculate top-1 accuracy that
only considers the correctness of the top-1 prediction of the model. It is calculated as the number of correct top-1
predictions over the total number of predictions. The top-1 prediction is considered correct if it matches the
ground truth from the sequence itself. For API dependence paths from a graph, there might be multiple correct
answers due to the branches of the graph.

4.1 Performance Improvement from Token-level Embedding (RQ1)

The impact of applying token-level embedding (RQ1) is measured by comparing it with one-hot encoding on
bytecode, slices, and dependence paths, respectively. The accuracies of the API completion tasks are shown in
Tables 5 and 6 and a comparison is shown in Figure 3. We visualize the accuracy diferences brought by various
design choices, namely applying token-level embedding, program analysis preprocessing (i.e., program slicing,
and API dependence graph build), or increasing the model sizes in Figure 8 in the appendix.
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Experimental setup for cryptographic API completion tasks. We train LSTM based models for the task. For next API
completion task, we train the LSTM based sequence model to accept a sequence of API methods or constants
(�1, �2, . . . , ��−1) and output the next API �� . For next API sequence completion task, we train the LSTM based
seq2seq (encoder-decoder) model to accept the irst half API sequence (�1, �2, . . . , ��) and predict the last half of
the sequence (��+1, ��+2, . . . , �2�).

We ilter our code dataset using CryptoGuard [42], which is a static cryptography API misuse detection tool. We
exclude insecure cryptographic API usage to prevent the embeddings and models from learning these vulnerable
patterns [44]. It also helps eliminate the situations that when the models predict secure APIs and the ground truth
itself (from the original data) is insecure, such predictions are counted as incorrect answers. This step contributes
to a more accurate and meaningful evaluation of model performance. We limit the maximum number of LSTM
steps to 10. We use a batch size of 1,024 and a learning rate of 0.001. The highest accuracy achieved within 10
epochs is recorded. These hyperparameters are selected because no obvious accuracy improvement is observed
by longer epochs, smaller batch size or learning rate. We use the stacked LSTM architecture with vanilla LSTM
cells for the LSTM-based models.

Table 5. Top-1 accuracy of the next API token completion on the basic dataset.

LSTM

Units

Bytecode Slices Dependence Paths

1-hot byte2vec 1-hot slice2vec 1-hot dep2vec

64 49.78% 48.31% 66.39% 78.91% 86.00% 86.33%

128 53.01% 53.52% 68.51% 80.57% 84.81% 87.75%

256 54.91% 54.59% 70.35% 82.26% 84.57% 91.07%

512 55.80% 55.96% 71.78% 83.35% 86.34 % 92.04%

Table 6. Accuracy of the next API sequence completion on the basic dataset. We use the LSTM-based sequence model with a

hidden layer size of 256 for this task.

Bytecode Slices Dependence Paths

1-hot byte2vec 1-hot slice2vec 1-hot dep2vec

43.61% 44.63% 64.10% 85.02% 82.94% 89.23%

4.1.1 Bytecode vs. program slices vs. API dependence paths. Tables 5 and 6 show the accuracy results of the next
API completion and the next API sequence completion, respectively. To uncover the impact of the program analysis
preprocessing, both the token-level embedding (i.e., byte2vec, slice2vec, dep2vec) and the one-hot encoding baseline
are used to train the LSTM models on bytecode, slices, and dependence paths.

We observe that program analysis preprocessing shows signiicant beneits. Table 5 shows the accuracy based
on dependence paths is 92%, which is 9% and 36% higher than using slice- and bytecode-based token-level
embedding, respectively. The API completion accuracy with one-hot encoding is also substantially improved by
program analysis. The accuracy with one-hot encoding increases from 56% on bytecode to 72% on slices, and
further to 86% on dependence paths. The results of the next API sequence completion (Table 6) are also consistent
with the conclusion. It shows that the accuracy achieved with byte2vec improved by 40.39% with slice2vec, and
improved by 44.60% with dep2vec.

3dep2vec column - byte2vec column in Table 5
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Fig. 3. Comparison of accuracy of with and without token-level embedding and applying diferent program analysis

preprocessing (based on LSTM-128). The group on the let are results without embedding. The group on the right are

results with token-level embedding. Applying token-level embedding improves the model performance in all three cases.

The three colors represent three diferent program analysis approaches. With or without embedding, the dependence path

outperforms the other two strategies and the slice outperforms bytecode. Compared to applying embedding, program

analysis preprocessing boosts performance more.

Finding 1: For Crypto API completion with token-level embeddings, program analysis signiicantly
improves the accuracy by 36.20%3 on average.

4.1.2 Token-level embedding vs. one-hot vectors. On each program analysis preprocessing representation, we
compare the token-level embedding and the one-hot encoding baseline. We observe signiicant improvements
by applying token-level embeddings on slices and dependence paths. However, the improvement in bytecode is
limited. Table 5 shows that slice2vec improves the accuracy by 11% from its one-hot baseline. dep2vec improves
the accuracy by 6% from its one-hot baseline. These improvements suggest that slice2vec and dep2vec capture
useful information. This conclusion is also observed in the next API sequence recommendation task. slice2vec
and dep2vec improve the accuracy from their baselines by around 21% and 6%, respectively. In contrast, byte2vec
does not show any signiicant improvement from its one-hot baseline.

Finding 2: For cryptographic API completion on program slices and API dependence paths, token-level
embedding achieves an average accuracy improvement of 12.02% and 3.97%, respectively, compared to
one-hot vectors.

We also observe higher accuracy achieved by longer LSTM units, which is as expected. However, the accuracy
beneits gained by increasing the model size from LSTM-64 to LSTM-128, from LSTM-128 to LSTM-256, and from
LSTM-256 to LSTM-512, are smaller and smaller.

Overall, the best accuracy is achieved by dep2vec in both tasks, an accuracy of 92.04% in the next API completion

task and an accuracy of 89.23% in the next API sequence completion task. Compared with the basic one-hot
encoding on bytecode (no program analysis preprocessing), they achieve substantial accuracy improvements
(36% and 46%, respectively) in both tasks. Although all the measures, including token-level embedding, program
analysis preprocessing, and increasing model sizes, improve the accuracy, the two program analysis preprocessing
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Fig. 4. Comparison of accuracy of with and without sequence-level embedding and applying diferent program analysis

preprocessing (based on Transformer-base). The group on the let are results without sequence-level embedding (no pretrain).

The group on the right are results with sequence-level embedding (pretrained). Pretraining sligtly improves the model

performance in all three cases. The three colors represent three diferent program analysis approaches. With or without

pretraining, the dependence path outperforms the other two strategies and the slice outperforms bytecode. Compared to

applying pretraining, program analysis preprocessing boosts performance more.

strategies, program slicing, and API dependence graph construction, are most efective, resulting in 22.03% and
12.10% accuracy diferences on average, respectively.

4.2 Performance Improvement from Sequence-level Embedding (RQ2)

Next, we evaluate the efectiveness of sequence-level embedding (RQ2) from the comparison with token-level
embedding on bytecode, slices, and dependence paths, respectively. We ine-tune the sequence-level embedding
(i.e., byteBERT, sliceBERT, or depBERT ) with the task-speciic training before applying them to the API completion
task. Then, the models are compared with unpretrained Transformer networks with token-level embeddings. We
use two Transformer neural networks with diferent sizes, namely Transformer-base and Transformer-small.
The Transformer-base model has 12 hidden layers with size 768 and 12 attention heads. The Transformer-small
model has 4 hidden layers with size 512 and 4 attention heads. Results are shown in Tables 7. We also show a
comparison in Figure 4 and visualize the accuracy diferences in Figure 9 in the appendix.

Table 7. Accuracy of the next API completion with or without sequence-level embedding (pretrain) on the basic dataset.

Model

Size

Bytecode Slices Dependence Paths

Transformer

+ byte2vec

(w/o. pretrain)

byteBert

(w. pretrain)

Transformer

+ slice2vec

(w/o. pretrain)

sliceBert

(w. pretrain)

Transformer

+ dep2vec

(w/o. pretrain)

depBert

(w. pretrain)

Small 44.38% 45.21% 83.37% 84.15% 90.96% 91.07%

Base 56.76% 57.59% 84.80% 84.83% 92.80% 93.52%

4.2.1 Bytecode vs. program slices. vs. API dependence paths. Table 7 shows that program analysis preprocessing
is still necessary even with sequence-level embeddings. The accuracy of using bytecode sequences is low (45.21%
and 57.59%) compared with program slices and API dependence paths. With the program analysis, the small and
base Transformer neural networks with depBERT achieve the accuracy of 91.07% and 93.53%, respectively. When
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there is only token-level embedding, this conclusion still holds. The small and base Transformer neural networks
with dep2vec achieve the accuracy of 90.96% and 92.80%, respectively, which are 46.58% and 36.04% higher than
the byte2vec on bytecode sequences.

Finding 3: For Crypto API completion with sequence-level embedding, program analysis makes a
substantial accuracy improvement of 40.90%4 on average.

According to Figure 4, we observe the impact of program analysis is still the most signiicant way to improve the
accuracy. The average accuracy diferences achieved by program slicing and API dependence path construction
are 33.55% and 7.80%, respectively, which are much more efective than the sequence-level embedding and a larger
Transformer neural network. In Table 7, the small depBERT that has program analysis preprocessing achieves an
accuracy of 91.07%, which is 34.31% higher than the larger model without program analysis, namely the base
byteBERT.
By comparing the Transformer with token-level embeddings in Table 7 and the LSTM with token-level

embeddings in Table 5, we found that the LSTM-512 achieves slightly higher accuracy than the Transformer-small
with a comparable size (hidden size 512).

Finding 4: For Crypto API completion, LSTM-512 shows a 4.22% 5 accuracy advantage on average over
Transformer-small (hidden size 512).

4.2.2 Sequence-level embedding vs. token-level embedding. Sequence-level embeddings only show slight advan-
tages over token-level embeddings. As shown in Table 7, the accuracy trained with the sequence-level embeddings
is only slightly higher (0.55% on average) than the Transformer neural network with their token-level baselines.
One possible reason for this slight improvement observed may be attributed to the strong learning ability of the
Transformer model. Through the use of its attention mechanism, the model can efectively learn and comprehend
contextual information, even with limited embedded information in the input (token-level embedding) and no
pretraining. Another possible reason is the simplicity of programming languages compared to natural languages.
Sequence embedding helps capture the diferent meanings of the same word in various positions or contexts. One
example is the diferent interpretations of the word "like" in the sentence "I like the way you look like." However,
such conditions are less likely to occur in a programming language, leading to a smaller improvement when
being applied to programming languages than natural languages. Therefore, considering the cost, sequence-level
embedding is not recommended in this case.

Besides, the impact of the neural network size is also more obvious than the impact of applying sequence-level
embedding. As shown in Table 7, the base Transformer improves the accuracy by 12.38%, 1.43%, and 1.84%, on
bytecode, slices, and dependence paths, respectively, compared with the small Transformer.

Finding 5: Although resulting in slight accuracy improvement (0.55% 6 on average), sequence-level
embedding is not the irst recommended strategy to improve the cryptographic API completion, compared
with program analysis and a larger model.

4depBERT column - byteBERT column in Table 7
5Compare the Transformer columns in Table 7 with the byte2vec, slice2vec, and dep2vec columns in Table 5
6Compare between BERT columns and Transformer columns in Table 7
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4.3 Cross-app Evaluation (RQ3)

Cross-app learning is a practical scenario in which we expect a pretrained model can be applied to other projects
unseen in the training phase. Therefore, we conduct experiments to verify whether our conclusions still hold for
new apps that never appear in the training.

Table 8. Accuracy of the next API completion with or without sequence-level embedding (pretrain) on dependence paths of

the advanced dataset (cross-app learning).

App Set # of cases

Transformer

+ dep2vec

(w/o. pretrain)

depBert

(w. pretrain)
Improvement

3 813,737 97.23% 98.24% 1.01%

4 97,224 98.66% 99.54% 0.88%

5 88,143 95.09% 96.78% 1.69%

6 26,357 83.34% 88.44% 5.10%

Ave. 256,363 93.58% 95.75% 2.17%

Table 9. Accuracy of the next API completion with or without sequence-level embedding (pretrain) on bytecode sequences of

the advanced dataset (cross-app learning).

App Set # of cases

Transformer

+ byte2vec

(w/o. pretrain)

byteBert

(w. pretrain)
Improvement

3 7,275,324 79.72% 80.00% 0.28%

4 814,551 86.91% 87.21% 0.30%

5 840,381 77.46% 77.96% 0.50%

6 220,543 65.05% 67.41% 2.36%

Ave. 2,287,700 77.29% 78.15% 0.86%

Tables 8 and 9 show the API completion experiments on our advanced dataset (see Section 3.4) which follows
the cross-app learning scenario. App sets 3, 4, 5, and 6 include apps that generate task-speciic data. For every
app category, we randomly select 80% apps of this category to generate training data and 20% apps to generate
testing data. In another word, our training and testing data is cross-app but within a category.
Tables 8 and 9 compare sequence-level embeddings (i.e., depBERT and byteBERT ) with the corresponding

token-level embeddings (i.e., dep2vec and byte2vec). DepBERT and byteBERT are Transformer neural networks
pretrained on app set 2 (see Table 3) with Masked Language Model (MLM). We use the small Transformer neural
network for all the experiments. Figure 10 in the appendix shows the accuracy diferences achieved by program
analysis and sequence-level embedding on App sets 3, 4, 5, and 6, respectively.
We observe similar conclusions with the basic dataset about program analysis. The experiments on API

dependence paths (Table 8) again show signiicant advantages compared with bytecode sequences (Table 9).
Program analysis preprocessing makes signiicant accuracy diferences (16.95% on average) in all situations.

A minor diference we observe is that sequence-level embedding brings more obvious improvement than on the
basic dataset. As shown in Table 8, the average improvement of applying the sequence-level embedding is 2.17%.
This indicates that sequence-level embedding is more signiicant when we train our models in the cross-app
scenario. We observe that the sequence-level embedding substantially improves the accuracy for small data sizes.
It achieves an accuracy 5.10% higher than the Transformer with dep2vec.
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From Table 9, we also observe the improvement of applying sequence-level embedding byteBERT on bytecode
sequences. However, without program analysis, the improvements (0.86% on average) are quite small.

Finding 6: In the cross-app setting, sequence-level embedding achieves more obvious accuracy improve-
ments (2.17% on average) compared with the basic data split setting. We recommend using sequence-level
embedding in cross-app learning when the data size is small.

4.4 Comparison with State-of-the-art (RQ4)

Besides the design choices we covered, we further experiment on two state-of-the-art sequence-level embeddings,
GraphCodeBert [22] and CodeBert [20]. GraphCodeBert and CodeBert are general-purpose code embedding
models pretrained by Microsoft. They adopt the Transformer-based neural architecture and pretrain it on
CodeSearchNet dataset [? ] which includes 2.3 million functions of six programming languages paired with
natural language description. The diferences between them are their code preprocessing parts and sequence-level
embedding tasks. CodeBert treats code as a sequence of tokens and is pretrained by masked language modeling
(MLM). GraphCodeBert uses program analysis to extract datalow information as input and is pretrained by two
extra structure-aware tasks introduced by the authors.
Table 10 shows the next API completion experiments on our app sets 4, 5, and 6. We decompiled .apk iles

into source code for the neural network inputs. Although there might be lost information due to obfuscation.
However, the amount of information loss caused by obfuscation is equal to our three methods (i.e., bytecode
sequences, slices, and dependence paths), CodeBERT, and GraphCodeBert. Therefore, we think it still forms a fair
comparison. For each cryptographic API call, we extract two types of source code context for it, the method-level
context and the class-level context. The former extracts the previous code within the wrapper method where the
target call locates while the latter collects the previous code lines found in the same class of the target call. We
inetune the two models with our data for 10 epochs with batch size 16. We use this setting because no substantial
improvement is observed by longer epochs or smaller batch sizes.

Finding 7: The state-of-the-art general purpose pretrained models only achieve a low accuracy (59.64%
by GraphCodeBert on average) for cryptographic API completion. The program analysis preprocessing
and the method-level context are recommended.

Table 10. Accuracy of the next API completion by finetuning the general purpose pretrained model GraphCodeBert and

CodeBert.

App
Set

GraphCodeBert CodeBert
Method-level

Context
Class-level
Context

Method-level
Context

Class-level
Context

4 60.45% 39.87% 41.72% 30.82%
5 64.53% 37.83% 41.29% 31.80%
6 54.84% 35.25% 36.60% 31.32%

Ave. 59.94% 37.65% 39.87% 31.31%

We have three observations from Table 10. First, the best accuracy is achieved by GraphCodeBert with the
method-level context. However, the accuracy is still at a low level, an average of 59.94%. Second, GraphCodeBert
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substantially outperforms CodeBert in identical data and context settings. When using method-level context,
GraphCodeBert has an accuracy of 20.07% higher accuracy than CodeBert on average. When using class-level
context, GraphCodeBert achieves 6.34% higher accuracy on average. This conirms our indings 1 and 3 that
program analysis contributes a substantial improvement to the embeddings. Another observation is that method-
level context is much better than class-level context. With GraphCodeBert, the method-level context outperforms
the class-level context by 22.29% accuracy improvement on average. With CodeBert, the method-level context
results in an 8.80% higher accuracy on average. The reason might be that the class-level context includes much
more irrelevant information and makes the prediction worse.

Furthermore, with the rapid development of large language models, their application in code completion and
code repair has been discussed widely. Recent work [45] evaluates ChatGPT, a conversational language model,
on bug ixing and code repairing in Python. The results show that ChatGPT is able to ix 19 out of 40 simple bugs,
comparable to other state-of-the-art solutions. However, while the results look promising, the queries are simple
code snippets that have a few lines. It remains unclear how well ChatGPT can parse complex code context in large
programs. Its performance in identifying vulnerable code (beyond simple syntactic and logic bugs) and providing
secure code suggestions by itself could form an interesting research topic. Other large language model-powered
code completion tools, such as Copilot, have also been published in recent years. These models are trained with
a huge amount of source code without any program analysis preprocessing. Due to limited resources, we are
unable to train comparable models from scratch on program analysis processed data. We leave those comparisons
as our further work.

We summarize our major indings from experiments.

• Program analysis preprocessing is very important even with advanced embedding options. With all the
embedding options (sequence-level embedding, token-level embedding, or one-hot encoding), program
analysis makes big improvements in API completion accuracy. Without program analysis, the best accuracy
on bytecode with the most advanced byteBERT is only 57.59%. With the API dependence graph construction,
depBERT on dependence paths achieves the highest accuracy of 93.52% on the basic dataset.

• Applying token-level embedding in API completion task training makes substantial improvement on
program analysis process code corpora. On slices and dependence paths, the LSTM models trained with
the token-level embedding slice2vec and dep2vec show signiicant accuracy improvements by 12% and 5%,
respectively, compared with the one-hot vectors.

• The accuracy improvement of sequence-level embedding (0.55% on average) is not obvious under the basic
setting. Hence, we do not recommend sequence-level embedding in that case. Meanwhile, we observe
more signiicant improvements (5.10%) in sequence-level embedding under the cross-app scenario when
the task-speciic data size is small (App set 6). Thus, we recommend it for cross-app scenarios with small
task-speciic data.

4.5 Analogy Tests of Token-level Embedding

We perform the analogy tests to intuitively show the quality of token-level embeddings. Besides the impact on
downstream tasks, good embedding vectors should also relect the semantics of a token and its relationship with
other tokens. In natural language processing, the quality of embedding is usually evaluated through analogous
pairs (e.g.,��� −����� ≈ ���� − �����) [31ś33]. Therefore, following the practice in the natural language ield,
we design a few analogy tests to help understand the quality of API embeddings based on diferent program
analysis methods. In our work, we deine analogous pairs as two pairs of APIs or constants, (� and �′) with (� and
�′), having a high degree of relational similarity (i.e., analogous) in terms of some programming property. For
Java cryptographic code, we identify four categories of analogous pairs as follows. We show examples in Table 11.

ACM Trans. Softw. Eng. Methodol.



18 • Xiao et al., Ya Xiao, Wenjia Song, Salman Ahmed, Xinyang Ge, Bimal Viswanath, Na Meng, and Danfeng (Daphne) Yao

Table 11. Four categories of analogous pairs we define among API methods and constants. We give a representative example

for each category, where two pairs (� and �′ vs. � and �′) have a high degree of relational similarity (i.e., analogous) in terms

of some programming property. For each category, the number of analogies used in our top � evaluation (Table 12) is also

shown.

Category Examples of Analogous Pairs # of analogies

Direct

Dependency

�1 javax.crypto.KeyGenerator: javax.crypto.KeyGenerator getInstance(java.lang.String)

4
�′1 javax.crypto.KeyGenerator: void <init>(int)

�1 java.security.KeyStore: java.security.KeyStore getInstance(java.lang.String)

�′1 java.security.KeyStore: void load(java.io.InputStream,char[])

Semantic

Symmetry

�2 javax.crypto.KeyGenerator: javax.crypto.KeyGenerator getInstance(java.lang.String)

4
�′2 javax.crypto.KeyGenerator: javax.crypto.SecretKey generateKey()

�2 java.security.KeyPairGenerator: java.security.KeyPairGenerator getInstance(java.lang.String)

�′2 java.security.KeyPairGenerator: java.security.KeyPair generateKeyPair()

Argument

Symmetry

�3 "AES"

4
�′3 javax.crypto.KeyGenerator: javax.crypto.KeyGenerator getInstance(java.lang.String)

�3 "RSA"

�′3 java.security.KeyPairGenerator: java.security.KeyPairGenerator getInstance(java.lang.String)

Syntactic

Variants

�4 javax.crypto.Cipher: byte[] doFinal(byte[])

2
�′4 javax.crypto.Cipher: int doFinal(byte[],int)

�4 javax.crypto.Mac: byte[] doFinal(byte[])

�′4 javax.crypto.Mac: void doFinal(byte[],int)

Direct Dependency. For two APIs where one always accepts the other’s output, they form a pair having a
direct dependency. For example, after a KeyGenerator instance is created by KeyGenerator.getInstance(.), it
always needs to be initialized through KeyGenerator.init(.). The analogous relation could also be found between
KeyStore.getInstance(.) and KeyStore.load(.) where the latter loads the required information to the KeyStore

instance created by the former. We view the two pairs as analogous pairs under this category.
Semantic Symmetry. For two classes KeyGenerator and KeyPairGenerator, the former generates secret keys
for symmetric cryptography while the latter generates keys for asymmetric cryptography. There is a symmetry
relationship between their APIs. For example, they both have the APIs getInstance(String) to create instances
and APIs to generate the key.
Argument Symmetry. There is an analogous relation between API - constant pairs. For example, symmet-
ric cipher "AES" can be passed to javax.crypto.KeyGenerator: javax.crypto.KeyGenerator getInstance(java.

lang.String) as an argument. For asymmetric ciphers, "RSA" and API java.security.KeyPairGenerator: java.

security.KeyPairGenerator getInstance(java.lang.String) have a similar relation.
Syntactic Variants. Some APIs share the same name but difer in their full signatures. These APIs are functionally
equivalent but have diferent types of arguments or return values. We name them syntactic variants. For example,
there are several APIs with the same name doFinal(.) of the Java class Cipher and Java class MAC.

Based on the analogous pairs, we deine 14 tests. We calculate the vector of the embedded object �′ based on
the other three vectors of �, �′, and �. If the actual embedding vector of �′ appears in the top k nearest list of the
calculated one (ideal value of �′), we say this analogy achieves rank k. Examples of how to calculate rank k are
shown in Figure 5. The results of the 14 tests for dep2vec, slice2vec, and byte2vec are listed in Table 12.
In this small-scale analogous pairs evaluation, dep2vec performs the best. dep2vec achieves the best rank

12 times of the 14 test cases. slice2vec does well in some cases but performs poorly in the syntactic variants
category. This is likely because the syntactic variant APIs usually appear in diferent contexts in slices, making
slice2vec fail to recognize their similarity. For other more complicated relationships like semantic symmetry or

ACM Trans. Softw. Eng. Methodol.



Measurement of Embedding Choices on Cryptographic API Completion Tasks • 19

analogous pairs           and             
should have high relational similarity

given            and   , calculate the ideal 
value of 

find the closest points to the ideal 

Closest point rank:

1.  

2.  

3.  

4. …

rank = 1

(top rank,
good analogy)

if the relational similarity is low,     would 
be far away from the ideal value

Closest point rank:

1.  

2.  

…

100.  

…

rank = 100

(low rank,
bad analogy)

Fig. 5. Example of relational similarity of analogous pairs and how embedding rank is calculated. Generally, top rank implies

the target embedding vector is of high quality, reflecting the semantics of the API well.

Table 12. The rank � of 14 analogous pairs in diferent embedding vectors. Smaller � suggests more accurate embedding

vectors that beter maintain analogous relationships. dep2vec outperforms others in most cases.

Category
Rank � (of correct vector)

dep2vec slice2vec byte2vec

Direct
Dependency

2 2 50
2 4 14
3 13 41
1 2 42

Semantic
Symmetry

2 65 2
20 3 8
9 204 385
4 239 355

Argument
Symmetry

1 94 5
1 49 16

Syntactic
Variants

15 84 2
9 95 249
2 326 191
9 278 419

Average 5.7 104 127

argument symmetry, the APIs and constants belonging to a pair often appear far away from each other in the
code, increasing the diiculty of the test.

5 CASE STUDIES AND DISCUSSION

In this section, we provide a few case studies and discuss the practical design implications derived from our
experiments.

5.1 Case Studies

To help interpret how program analysis and embedding vectors help API completion, we show several case
studies.

Case Study 1. This case study is on the efectiveness of the API dependence graph construction. Figure 6(a) shows
a slice-based test case that is mispredicted by both slice2vec and its one-hot baseline. For digest calculation, it
is common for MessageDigest.update(.) to be followed by MessageDigest.digest(.), appearing 6,697 times in
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Input

String.getBytes()

MessageDigest.getInstance(.)

“SHA-256”

MessageDigest.digest(.)

Next	token	(Ground	truth):

MessageDigest.update(.)

Prediction (with	1-hot	encoding)

SecretKeySpec.<init>(.)

MessageDigest.getinstance(.)

MessageDigest.update(.)

MessageDigest.digest(.)

if	condition

Prediction (with	slice2vec)

SecretKeySpec.<init>(.)

(a) (b)

Fig. 6. Case Study 1. (a) A slice sequence that is predicted incorrectly. (b) The model trained on API dependence graphs

makes the correct prediction.

training. However, Figure 6(a) shows a reverse order, which is caused by the if-else branch shown in Figure 6(b).
When MessageDigest.update(.) appears in an if branch, there is no guarantee which branch would appear irst
in slices. This reverse order is less frequent, appearing 1,720 times in training. Thanks to the API dependence
graph construction, this confusion is eliminated, which predicts this case correctly.

Case Study 2. This case study is on the ability to recognize new previously unseen test cases. The slices in Figure 7(a)
and Figure 7(b) slightly difer in the arguments of the irst API. slice2vecmakes the correct predictions in both cases,
while its one-hot baseline fails in Figure 7(a). MessageDigest.getInstance(String) appears much more frequent
than MessageDigest.getInstance(String,Provider) in our dataset. Speciically, the former API appears 207,321
times, out of which 61,047 times are followed by the expected next token MessageDigest.digest(.). In contrast, the
latter API ś where one-hot fails ś only appears 178 times, none of which is followed by MessageDigest.digest().
In slice2vec, the cosine similarity between MessageDigest.getInstance(String,Provider) and MessageDigest.

getInstance(String) is 0.68. 7 This similarity, as the result of slice2vec embedding, substantially improves the
model’s ability to make inferences and recognize similar-yet-unseen cases.

5.2 Practical Design Implications

Our indings empirically demonstrate that, among various design choices, applying program analysis brings the
most signiicant improvement in the cryptographic code completion task, up to 45.8%. While upgrading to larger
models and increasing model sizes also boost the accuracy, the signiicance of improvements is not comparable
to applying semantically meaningful preprocessing. We observe only a 2.45% improvement when upgrading the
Transformer model size. While large language models substantially changed the natural language processing
ield, applying them to programming languages as is may not be ideal. As shown in section 4.2.2, pretraining
provides only trivial enhancement to the model performance. This result suggests that instead of consuming high
computational power for a slight boost, one should consider how to incorporate the most efective information
for the prediction tasks.

7For one-hot vectors, this similarity is 0.
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Input

MessageDigest.getInstance(String,Provider)

“SHA-512”

MessageDigest.reset(.)

Next	token	(Ground	truth):

MessageDigest.digest(.)

Prediction (with	1-hot	encoding)

MessageDigest.getInstance(String)

Prediction (with	slice2vec)

MessageDigest.digest(.)

Input

MessageDigest.getInstance(String)

“SHA-512”

MessageDigest.reset(.)

Next	token	(Ground	truth):

MessageDigest.digest(.)

Prediction (with	1-hot	encoding)

MessageDigest.digest(.)

Prediction (with	slice2vec)

MessageDigest.digest(.)

(a) (b)

Fig. 7. Case Study 2. (a) A test case that is correctly predicted with slice2vec, but incorrectly with a one-hot vector. (b) A test

case similar to (a), but both slice2vec and one-hot give the correct prediction.

Another key contribution of our paper is the comparison between diferent program analysis strategies. The
evaluation reveals that the dependence path brings the best accuracy. A possible reason could be that the analysis
goes beyond the method boundary and collects dependence paths across the entire program. In this way, all
information related to the target API is preserved in the path and gets embedded into the input. Therefore, a
key step in building a code completion model is to incorporate program analysis and the dependence path is a
recommended method.

After deploying a code completion tool, a practical use scenario is to predict the next tokens on uncompleted
programs. There exist more challenges when applying program analysis to code under development. Incorporating
methods such as partial program analysis (PPA) [15, 16] is an important next step.

Soundness. Our conclusions are based on a rigorous approach with carefully controlled experiments. For the
three dimensions, program analysis, token-level embedding, and sequence-level embedding, we measure the
impact of a speciic design by comparing the API completion trained with or without it.

Limitations.We briely discuss our limitations and threats to validity. First, we perform security sanitization
to ilter insecure code in our dataset. However, security sanitization relies on a static analyzer that may not
be perfect. Second, we apply static analysis to extract program slices and dependence paths. However, static
analysis tends to overestimate execution paths. Thus, the slices and dependence paths used for learning might not
necessarily occur. Third, we do not try other embedding techniques such as ELMo [40]. We met an incompatibility
issue when adapting the published ELMo code for our API completion task. The published code requires outdated
libraries such as TensorFlow v1.2, and CUDA 8 while our learning environment only supports CUDA 9 or later.
We will consider adding more embedding models in the future. Lastly, our work focuses on Java cryptographic
APIs. The generalizability to other languages, such as Python, is out of the scope of this work.

An internal threat to validity is that we use identical training hyperparameters for all the API completion
experiments. When applying diferent program analysis and embedding techniques, we train neural networks
with identical training hyperparameters. We did not tune hyperparameters to ind the best practices for every
case. An external threat to validity comes from the dataset we use in the measurement. We only perform API
completion experiments with Java cryptographic API benchmark, although the embedding method is for general
purposes. We choose Java cryptographic APIs because it is complicated and the code completion task is more
challenging. Our future work will extend the benchmark with more diverse APIs to conirm our results.
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6 RELATED WORK

There are two main branches of code embedding solutions.
Embedding without program analysis. First, a line of research develops pure data-driven solutions on general
source code tokens without program analysis [3, 12, 14, 20, 26, 27, 46, 49]. They train neural network solutions
to take as input programs that are treated as sequences of source code tokens. In [12], Buratti et al. claimed
that the language model built on top of raw source code is able to discover abstract syntax tree (AST) features
automatically.
Embedding with program analysis. Second, some studies (e.g., [4, 9, 23, 58]) leverage the program structural
information through program analysis. For example, the authors of [58] learned code embedding after constructing
the graph representations (e.g., control low graphs, data low graphs) of code. Hellendoor et al. [23] advocated a
hybrid embedding method that considers both the graph structure and the raw sequences to overcome the size
limit of graphs. To remove noises in code, Henkel et al. performed intra-procedural symbolic execution irst and
trained embedding vectors of symbolic abstractions from symbolic traces [24]. However, there have not been
systematic studies on how various hybrid approaches compare with a pure data-driven approach or with each
other, in terms of downstream task performance.
Since there are various program intermediate representations (IRs) under program analysis, the embedding

objects also vary from approach to approach. For example, Henkel et al. obtained embeddings for self-deined
symbolic abstractions. Ding et al. [18] obtained embedding vectors asm2vec for assembly code instructions. Ben-
Nun et al. [7] embedded LLVM IR instructions of code. Although the idea of leveraging the program structural
information in embeddings is identical, these embeddings for low-level instructions, or LLVM IRs cannot be
directly compared with embeddings for API elements. Our dep2vec and depBERT can be viewed as graph-based
embedding approaches applied to API elements.
A line of work focuses on API embeddings and related tasks [6, 11, 13, 19, 21, 35, 36, 56]. Our work also lies

in this category. Nguyen et al. [35, 36] use API sequences in source code to produce embeddings for Java APIs
and C# APIs. Using these vectors, they successfully mapped the semantic similar Java APIs with C# APIs. Our
byte2vec can be viewed similarly to it as our API call sequences from bytecode are similar to their source code
order. Chen et al. [13] trained the API embedding based on the API description (name and documents) and usage
semantics. The obtained API embeddings are used to infer the likely analogical APIs between third party libraries.
However, these solutions employ embeddings to help map analogical APIs, which is diferent from our task, API
completion. In API completion work [34, 37, 38, 43, 47], there is either no discussion about the impacts derived
from diferent embedding options.

7 CONCLUSION

Our measurement study, including the new benchmark, provides deep insights into the strengths and weaknesses
of neural network techniques in the context of code completion. Our quantitative experimental results highlight
the importance of program-speciic analysis, which brings the most signiicant improvement for the code
completion task, even with powerful data-driven deep learning approaches. The direct application of neural
network approaches originally designed for natural languages may not give optimal accuracy, as programming
languages have unique characteristics. Therefore, we emphasize the need for careful consideration and appropriate
preprocessing when adapting natural language processing techniques for code-related tasks. Our ongoing and
future work is on designing new neural architectures speciic to software engineering tasks.
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A HYPERPARAMETER SELECTION IN OUR MEASUREMENT STUDY

There are many hyperparameters in our measurement study. Within each comparison group, we keep identical
hyperparameters to guarantee a fair comparison.

A.1 Hyperparameters for training LSTM

With speciic embeddings, we need to train a neural network model (e.g., LSTM or Transformer) to perform API
completion. For those comparisons, we choose the number of epochs, learning rate, and batch size through some
preliminary experiments. We train the LSTM model with slice2vec with diferent batch sizes, and learning rates,
and check their accuracies within 20 epochs.

Table 13. The prediction accuracies obtained by LSTM with slice2vec with diferent hyperparameters.

Batch size Learning rate Epoch Accuracy

1024 0.001 1 0.47

512 0.001 1 0.48

1024 0.01 1 0.48

1024 0.1 1 0.49

1024 0.001 10 0.83

1024 0.001 20 0.83

Based on our observation in Table 13, the accuracy diferences between batch sizes 1024 and 512 are slight.
We use batch size 1024 to reduce the training time. We compare the LSTM trained with learning rates of 0.001,
0.01, and 0.1. Their diference is also small. Therefore, we use batch size 1024 and a learning rate of 0.001 for all
of the training tasks for API completion. For epoch, we found that the accuracy improvement after epoch 10 is
negligible.
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A.2 Hyperparameters for GraphCodeBert and CodeBert Training

We inetune the pretrained model GraphCodeBert and CodeBert on our dataset. To determine the batch size,
we try diferent batch size options in inetuning GraphCodeBert on our dataset 6. The accuracy results after 10
epochs are shown in Table 14.
Table 14 suggests that a smaller batch size could result in higher accuracy. When we decrease the batch size

from 512 to 16, the prediction accuracy keeps increasing. However, it also shows that batch size 16 is good enough
as smaller batch size 8 results in no improvement. Therefore, we apply batch size 16 to all the comparative
experiments on GraphCodeBert and CodeBert.

Table 14. The prediction accuracies obtained by GraphCodeBert finetuned with diferent batch size options.

Batch size Epoch Accuracy

512 10 0.38

256 10 0.48

128 10 0.51

64 10 0.53

32 10 0.54

16 10 0.55

8 10 0.55

A.3 Impact of diferent design choices on prediction accuracy

We report the improvement brought by diferent design choices, including embedding strategies, program analysis
preprocessing, and model size, on the API completion task prediction accuracy (Figures 8, 9, and 10).

A.4 Applying Deep Learning to Sotware Engineering Checklist

In this section, we provide details of our design choices for deep learning models, following the DL4SE guidelines
in [53].

Step 1: Preprocessing and Exploring Sotware Data.We extract API sequences from 16,048 Android apps for
our experiments. Our program analysis preprocessing approaches (i.e., bytecode, program slices, and dependence
graph) yield 708k, 927k, and 566k sequences, respectively (section 3.4). The data size is suicient for large deep
learning models to learn from. We use 80% of the data for training and 20% for testing.

Step 2: Perform Feature Engineering.We use three diferent strategies to extract API sequences from Android
apps and train embedding vectors representing the API. The corresponding API embedding sequences are used
as input to the model. The dataset is labeled as we have the ground truth for our API prediction tasks. For the
token prediction task, the ground truth is the last API token in the sequence. For the sequence prediction task,
the ground truth is the API sequence following the input sequence. Examples of API sequences generated from
the three preprocessing strategies are shown in Figure 1.
Step 3: Select a Deep Learning Architecture. Because of the sequential nature of the data, we use deep

learning models LSTM and Transformer in our experiment. Both models have been used for code completion tasks
in previous works. We train the models for 10 epochs because, after 10 epochs, the accuracy improvement from
each additional epoch is less than 0.001. We provide details about the hyperparameters used for each experiment
in their corresponding section (i.e., section 4.1 for RQ1, 4.2 for RQ2, 4.3 for RQ3, and 4.4 for RQ4).
Step 4: Check for Learning Principles. Our data are composed of Java cryptographic APIs extracted from

Android apps, covering 3,739 unique APIs from various libraries. This variety provides enough representation of
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Improvement from applying token-level embedding

(a) Token-level embedding over one-hot encoding 
(Acctoken-level embedding - Accno embedding)

Improvement from applying different program analyses

(b) Program slice over byte code
        (Accslice - Accbyte code)

(c) Dependence paths over program slice
        (Accdependence path - Accslice)

Improvement from applying different sizes of LSTM models

(d) LSTM-128 over LSTM-64
        (AccLSTM-128  - AccLSTM-64)

LSTM size LSTM size

LSTM size

(e) LSTM-256 over LSTM-128
        (AccLSTM-256  - AccLSTM-128)

(f) LSTM-512 over LSTM-256
        (AccLSTM-512  - AccLSTM-256)

Fig. 8. The accuracy diferences of token-level embedding, program analysis preprocessing, and increasing model sizes. (a)

shows the accuracy diference of token-level embedding, which are the accuracies achieved with token-level embedding

minus the accuracies achieved without token-level embedding. (b) shows the accuracy diference of program slicing, which is

the accuracies achieved on program slices minus the accuracies achieved on bytecode sequences. (c) is the accuracy diference

of API dependence graph construction, which is the accuracies on API dependence paths minus those on program slices. (d)

(e) (f) are accuracy diferences of increasing the LSTM hidden vector size from 64 to 128, from 128 to 256, and from 256 to

512, respectively.
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Improvement from applying different program analyses
Transformer model size

Improvement from applying 
sequence-level embedding

Improvement from applying 
different sizes of Transformer models

(a) Program slice over byte code
        (Accslice - Accbyte code)

(b) Dependence paths over program slice
        (Accdependence path - Accslice)

(c) Sequence-level embedding 
over token-level embedding 

(Accsequence-level embedding - Accno pretrain)

(d) Transformer-base over 
Transformer-small

        (AccTransformer-base  - AccTransformer-small)

Fig. 9. The accuracy diferences of sequence-level embedding, program analysis preprocessing, and increasing model sizes. (a)

shows the accuracy diference of slicing, which are the accuracies achieved on program slices minus the accuracies achieved

on byte code sequences. (b) is the accuracy diference of API dependence graph construction, which is the accuracies on API

dependence paths minus those on program slices. (c) shows the accuracy diference of applying sequence-level embedding,

and (d) is the accuracy diferences between using Transformer-small and Transformer-base neural networks.
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Improvement from applying 
program analysis preprocessing

(cross-app learning)

Dataset # Dataset #

Improvement from applying 
sequence-level embedding

(cross-app learning)

(a) Dependence paths over byte code
        (Accdependence path - Accbyte code)

(b) Sequence-level embedding over token-level embedding
        (Accsequence-level embedding - Accno pretrain)

Fig. 10. The accuracy diferences of sequence-level embedding, and program analysis preprocessing one new App sets 3, 4, 5, 6.

(a) shows the accuracy diference of program analysis preprocessing (program slicing + API dependence graph construction),

which are the accuracies achieved on API dependence paths minus the accuracies achieved on bytecode sequences. (b) is the

accuracy diference of sequence-level embedding, which is the accuracies achieved with sequence-level embedding minus

the accuracies achieved without sequence-level embedding.

cryptographic API usage. We report the eiciency of program analysis-aided embedding through comparison
with the naive approach (i.e., bytecode).

Step 5: Check for Generalizability. Our experiments are conducted on API sequences extracted from 12
diferent categories, covering a wide range of Android apps in practice. This proves that our results are gen-
eralizable to apps for diverse purposes. To conirm our models are not overitted to the apps used in training,
we further conduct a cross-app evaluation (i.e., 20% of apps are for testing only). The model accuracies in the
cross-app setting are comparable with our basic setting, verifying there is no overitting. Lastly, we compare our
embedding approaches with the state-of-the-art models, namely CodeBERT and GraphCodeBERT, on the same
dataset using the same metric to support our results.
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