
Poster: Comprehensive Comparisons of Embedding Approaches
for Cryptographic API Completion

Ya Xiao1, Salman Ahmed1, Xinyang Ge2,Bimal Viswanath1,Na Meng1, Danfeng (Daphne) Yao1
1Computer Science, Virginia Tech, Blacksburg, VA

2Microsoft Research, Redmond, WA

{yax99,ahmedms,vbimal,nm8247,danfeng}@vt.edu,aegiryy@gmail.com

ABSTRACT

In this paper, we conduct a measurement study to comprehen-

sively compare the accuracy of Cryptographic API completion tasks

trained with multiple API embedding options. Embedding is the

process of automatically learning to represent program elements

as low-dimensional vectors. Our measurement aims to uncover the

impacts of applying program analysis, token-level embedding, and

sequence-level embedding on the Cryptographic API completion

accuracies. Our findings show that program analysis is necessary

even under advanced embedding. The results show 36.10% accuracy

improvement on average when program analysis preprocessing is

applied to transfer byte code sequences into API dependence paths.

The best accuracy (93.52%) is achieved on API dependence paths

with embedding techniques. On the contrary, the pure data-driven

approach without program analysis only achieves a low accuracy

(around 57.60%), even after the powerful sequence-level embedding

is applied. Although sequence-level embedding shows slight accu-

racy advantages (0.55% on average) over token-level embedding

in our basic data split setting, it is not recommended considering

its expensive training cost. A more obvious accuracy improvement

(5.10%) from sequence-level embedding is observed under the cross-

project learning scenario when task data is insufficient. Hence, we

recommend applying sequence-level embedding for cross-project

learning with limited task-specific data.

ACM Reference Format:

Ya Xiao1, Salman Ahmed1, Xinyang Ge2,Bimal Viswanath1,Na Meng1, Dan-

feng (Daphne) Yao1. 2022. Poster: Comprehensive Comparisons of Em-

bedding Approaches for Cryptographic API Completion. In 44th Interna-

tional Conference on Software Engineering Companion (ICSE ’22 Companion),

May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 2 pages.

https://doi.org/10.1145/3510454.3528645

1 INTRODUCTION

API completion aims to predict the next API method given the

previous code context, which is an important building block for

many software engineering tasks. When training a neural network

for API completion, code embedding is a key step. Code embedding

refers to the process of transforming program elements to continu-

ous vectors [1, 4]. This transformation is important, as subsequent

model training and inference are performed on the embeddings.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-6654-9598-1/22/05.
https://doi.org/10.1145/3510454.3528645

Figure 1: Three important settings of our comparative ex-

periments. We perform API completion tasks with different

choices of program analysis preprocessing, token-level em-

bedding, and sequence-level embedding.

Despite existing code embedding work [1–4, 6, 9], it is still un-

clear their effectiveness in API completion. In this paper, we conduct

comprehensive comparative experiments to uncover the impacts

of multiple embedding design choices on API completion accu-

racy. Specifically, we compare design choices of three important

decisions—program analysis preprocessing, token-level embedding,

and sequence-level embedding, as shown in Figure 1. We choose

these three dimensions because they are necessary decisions one

needs to make for embeddings used in downstream task training.

We perform experiments on our Java cryptographic API bench-

mark collected from 79,887 Android Apps. We choose Java cryp-

tographic APIs because the correct usage of them is complicated

for developers [5, 7]. The solutions that generate accurate comple-

tion for Java cryptographic APIs would be very helpful. Our Java

cryptographic API benchmark is publicly available on GitHub 1.

Table 1: Accuracy of the cryptographic API completion with

different token-level embeddings

LSTM

Units

Byte Code Slices Dependence Paths

1-hot byte2vec 1-hot slice2vec 1-hot dep2vec

64 49.78% 48.31% 66.39% 78.91% 86.00% 86.33%

128 53.01% 53.52% 68.51% 80.57% 84.81% 87.75%

256 54.91% 54.59% 70.35% 82.26% 84.57% 91.07%

512 55.80% 55.96% 71.78% 83.35% 86.34 % 92.04%

We explore four research questions through our experiments.

RQ1: What is the impact of program analysis preprocessing

used with token-level embedding on cryptographic API com-

pletion accuracy? To answer this question, we compare the token-

level embeddings, byte2vec, slice2vec, and dep2vec in API completion

tasks. byte2vec is the embedding trained on byte code sequences.

slice2vec is the embedding on program slices while dep2vec is the

1https://github.com/Anya92929/DL-crypto-api-auto-recommendation

360

2022 IEEE/ACM 44th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)
20

22
 IE

EE
/A

C
M

 4
4t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g:
 C

om
pa

ni
on

 P
ro

ce
ed

in
gs

 (I
C

SE
-C

om
pa

ni
on

) |
 9

78
-1

-6
65

4-
95

98
-1

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
SE

-C
om

pa
ni

on
55

29
7.

20
22

.9
79

38
08

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 02,2022 at 18:43:40 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Xiao et al.

Table 2: Accuracy of the next API completion with or without sequence-level embedding (pretrain).

Model

Size

Byte Code Slices Dependence Paths

Trans.

+ byte2vec

(w/o. pretrain)

byteBert

(w. pretrain)

Trans.

+ slice2vec

(w/o. pretrain)

sliceBert

(w. pretrain)

Trans.

+ dep2vec

(w/o. pretrain)

depBert

(w. pretrain)

Small 44.38% 45.21% 83.37% 84.15% 90.96% 91.07%

Base 56.76% 57.59% 84.80% 84.83% 92.80% 93.52%

embedding on API dependence paths. They differ in the program

analysis preprocessing choices. We train identical LSTM models

with different embedding options as inputs to achieve the crypto-

graphic API completion. Table 1 shows the results.We observe the

Finding 1 which answers our RQ1.

Finding 1: For Crypto API completion with token-level

embeddings, program analysis significantly improves the

accuracy by 36.10%2 on average.

RQ2: What is the impact of applying token-level embed-

ding on cryptographic API completion accuracy? To answer

this question, we compared token-level embeddings with the base-

line version, one-hot vectors, under identical program analysis

preprocessing. Therefore, we have three groups of comparison be-

tween token-level embeddings and one-hot vectors, on byte code

sequences, program slices, and API dependence paths, as shown in

Table 1. We summarize our finding for RQ2 as follows.

Finding 2: For Crypto API completion on program

slices and API dependence paths, token-level embedding

achieves average accuracy improvement by 12.02% and

3.97%, respectively, compared with one-hot vectors.

RQ3: What is the impact of program analysis preprocessing

used with sequence-level embedding on cryptographic API

completion accuracy?We answer this question by comparing the

sequence-level embeddings byteBERT, sliceBERT, and depBERT in

cryptographic API completion. byteBERT, sliceBERT, and depBERT

are the sequence-level embeddings trained on byte code sequences,

program slices, and API dependence paths, respectively.We pretrain

them on our Java cryptographic code by applying the masked lan-

guage modeling on Transformer models. We observe the following

finding from Table 2.

Finding 3: For Crypto API completion with sequence-level

embedding, program analysis makes substantial accuracy

improvement of 40.90%3 on average.

RQ4: What is the impact of applying sequence-level embed-

ding on cryptographic API completion accuracy? To show

the benefit of sequence-level embeddings, we compare the crypto-

graphic API completion with or without a sequence-level embed-

ding. byteBERT, sliceBERT, and depBERT are compared with the

identical but unpretrained neural network (i.e., Transformer [8]).

We perform the same task-specific training for them. Table 2 sug-

gests the following finding for RQ4.

2dep2vec column - byte2vec column in Table 1
3depBERT column - byteBERT column in Table 2

Finding 4: Despite the slight accuracy improvement (0.55%

on average), sequence-level embedding is not the first rec-

ommended strategy to improve the Crypto API completion,

compared with program analysis and a larger model.

Significance of research contributions. Our work provides the

first quantitative and systematic comparison of the prediction ac-

curacy of multiple API embedding approaches for neural network

based code completion. Our rigorous experiments provide new

empirical results that have not been previously reported, includ-

ing how various domain-specific program analyses improve data-

driven predictions. These quantitative findings, together with the

new cryptographic API benchmark, help guide and design more

powerful and accurate code completion solutions, leading to high

quality and low vulnerability software projects in practice. In addi-

tion, our measurement methodology can be generalized to other

types of APIs, beyond the specific cryptographic setting.

ACKNOWLEDGMENT

This work has been supported by the National Science Foundation

under Grant No. CNS-1929701.

REFERENCES
[1] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learning

distributed representations of code. Proceedings of the ACM on Programming
Languages 3, POPL (2019), 1–29.

[2] Steven HH Ding, Benjamin CM Fung, and Philippe Charland. 2019. Asm2vec:
Boosting static representation robustness for binary clone search against code
obfuscation and compiler optimization. In 2019 IEEE Symposium on Security and
Privacy (SP). IEEE, 472–489.

[3] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020).

[4] Jordan Henkel, Shuvendu K Lahiri, Ben Liblit, and Thomas Reps. 2018. Code
vectors: Understanding programs through embedded abstracted symbolic traces.
In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 163–174.

[5] Na Meng, Stefan Nagy, Danfeng Yao, Wenjie Zhuang, and Gustavo Arango-Argoty.
2018. Secure coding practices in Java: Challenges and vulnerabilities. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). IEEE,
372–383.

[6] Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N Nguyen.
2017. Exploring API embedding for API usages and applications. In 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). IEEE, 438–449.

[7] Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian, Miles Frantz,
Murat Kantarcioglu, and Danfeng Yao. 2019. Cryptoguard: High precision detec-
tion of cryptographic vulnerabilities in massive-sized java projects. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security.
2455–2472.

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, AidanN
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In
Advances in neural information processing systems. 5998–6008.

[9] Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo, Qiang Zeng, and Zhexin Zhang.
2019. Neural machine translation inspired binary code similarity comparison
beyond function pairs.

361

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 02,2022 at 18:43:40 UTC from IEEE Xplore. Restrictions apply.

