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Abstract

Categorizing software and detecting similar programs are useful for various purposes including expertise sharing,
program comprehension, and rapid prototyping. However, existing categorization and similar software detection tools
are not sufficient. Some tools only handle applications written in certain languages or belonging to specific domains
like Java or Android. Other tools require significant configuration effort due to their sensitivity to parameter settings,
and may produce excessively large numbers of categories. In this paper, we present a more usable and reliable
approach of Language-Agnostic Software Categorization and similar Application Detection (Lascad). Our approach
applies Latent Dirichlet Allocation (LDA) and hierarchical clustering to programs’ source code in order to reveal
which applications implement similar functionalities. Lascad is easier to use in cases when no domain-specific tool is
available or when users want to find similar software across programming languages.

To evaluate Lascad’s capability of categorizing software, we used three labeled data sets: two sets from prior
work and one larger set that we created with 103 applications implemented in 19 different languages. By comparing
Lascad with prior approaches on these data sets, we found Lascad to be more usable and outperform existing tools.
To evaluate Lascad’s capability of similar application detection, we reused our 103-application data set and a newly
created unlabeled data set of 5,220 applications. The relevance scores of the Top-1 retrieved applications within these
two data sets were, separately, 70% and 71%. Overall, Lascad effectively categorizes and detects similar programs
across languages.

Keywords: Software categorization, similar applications detection, topic modeling, LDA, source code analysis.

1. Introduction

As more projects are open sourced to facilitate com-
munication and collaboration, effectively categorizing
and detecting similar software becomes crucially im-
portant to assist skill learning, expertise sharing, pro-
gram comprehension, and rapid prototyping Kontogian-
nis (1993); Michail and Notkin (1999); Liu et al. (2006);
Sager et al. (2006); Schuler et al. (2007); McMillan
et al. (2012b). Specifically, there are two major sce-
narios in which automatic software categorization and
similar software search are useful:

• Cross-platform software migration. When soft-
ware requirements and execution environments
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change developers may migrate their applications
to new software or hardware platforms (e.g., from
Windows OS to Linux, or from Android phones to
iPhones). As a result, the software, components,
or libraries that work in the original environment
may not work in the new context. Developers have
to search for or build alternative software solutions
to replace the not-working software. For example,
if developers would like to build an iPhone version
for their Android app, they may want to find iOS
apps similar to their Android app, and learn (1)
how other similar apps are implemented for iOS,
and (2) what libraries or technologies they can use
that provide similar functionalities as their original
code.

• Software upgrading. Developers sometimes reim-
plement software with a different programming
language to support more features or to improve
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software quality. For instance, with C, MLBib-
Tex reimplements BibTex (originally implemented
in Pascal) to support the extra multilingual fea-
tures Hufflen (2004). When such reimplemen-
tation information is not well documented, auto-
matic software categorization and similar applica-
tion detection can assist users to discover a useful
reimplementation software, and to further decide
whether to upgrade software and benefit from the
reimplementation.

As of 2017, GitHub has 57 million repositories. De-
spite the availability of millions of open source projects,
the GitHub showcases (now known as Collections) has
less than a 1000 manually labeled applications for the
users to explore. Manually classifying and detecting
similar software is time-consuming and infeasible for
large source code search engines. Added to the chal-
lenge, not all projects have documentation or a detailed
readme file. Thus, more automatic categorization and
similar software detection approaches are needed to uti-
lize the wide availability of open source projects and
to improve software showcases and functionality-based
search engines.

Existing automatic categorization and similar soft-
ware detection approaches Linares-Vásquez et al.
(2016); McMillan et al. (2012a); Bajracharya et al.
(2010); Tian et al. (2009); Kawaguchi et al. (2006);
Michail and Notkin (1999) are limited for a vari-
ety of reasons. CodeWeb identifies similar classes,
functions, and relations based on name matching. It
is sensitive to the naming style of different soft-
ware Michail and Notkin (1999). SSI Bajracharya et al.
(2010), CLAN McMillan et al. (2012a) and CLAN-
droid Linares-Vásquez et al. (2016) detect similar Java
or Android applications based on language-specific
and/or domain-specific features, such as APIs, permis-
sion configurations, and sensor usage. Nevertheless,
these approaches are limited to the domains for which
they are designed. They are not helpful to detect simi-
lar software across languages. MUDABlue Kawaguchi
et al. (2006) and LACT Tian et al. (2009) categorize
software by extracting words from source code, and by
applying Information Retrieval (IR) techniques, such as
Latent Semantic Indexing (LSI) and Latent Dirichlet Al-
location (LDA), to cluster programs containing similar
or relevant words. However, the effectiveness of both
tools is sensitive to parameter settings, which are data-
dependent and thus difficult to tune. In addition, MUD-
ABlue and LACT can produce unbounded numbers of
categories and cannot be used to produce a desired num-
ber of classes. In addition, some cases can require gen-

erating a specific (or at least bounded) number of cate-
gories such as for the purpose of visualization (limited
space) or software browsing catalogs5.

In this paper, we present Lascad—a more usable and
reliable approach for language-agnostic software cate-
gorization and similar application detection using only
the source code. Although developers may build sim-
ilar software differently (e.g., using various languages
and following different coding styles), it is believed that
identifiers used in code and words mentioned in com-
ments are defined or used in meaningful ways that can
indicate similar program semantics Tian et al. (2009);
Kawaguchi et al. (2006). Therefore, we rely on terms
(i.e., identifiers and words) used in source code to clas-
sify and detect similar software.

Specifically, we designed and implemented Lascad
that combines LDA with hierarchical clustering to cate-
gorize and detect similar software. Although LDA is the
most widely used topic modeling method in software
engineering research Chen et al. (2015), its parameter
for specifying the number of latent topics has been noto-
riously difficult to tune Binkley et al. (2014); Grant et al.
(2013); Panichella et al. (2013); Chen et al. (2015). Dif-
ferent from prior work based on LDA, Lascad leverages
hierarchical clustering to eliminate the need for tuning
this specific parameter and to reduce developers’ man-
ual effort of parameter tuning.

Lascad contains three phases. Given a set of open
source applications, Lascad first extracts terms from
the source code of each software, and preprocesses
terms by removing English stop words and program-
ming language keywords, splitting identifiers, and re-
moving most and least frequent terms. In Phase II, Las-
cad uses LDA to identify latent topics of similar or rel-
evant terms in each application. It leverages hierarchi-
cal clustering to recursively merge similar topics until
getting a desired number of categories. By associating
software with the categories, Lascad establishes an ap-
plication database with applications categorized based
on the latent topics in their terms. In Phase III, to detect
applications similar to a query application, Lascad ex-
tracts latent topics from the query application, and then
searches its database for programs with similar topic
distribution using Jensen-Shannon Divergence similar-
ity Lin (1991).

Lascad’s implementation is available at https://

github.com/doaa-altarawy/LASCAD.
We used three data sets to evaluate Lascad’s capabil-

ity of categorizing software. The first is MUDABlue’s

5https://github.com/showcases
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category-labeled data of 41 C programs; the second is
LACT’s labeled data set of 43 programs in 6 languages;
and the third is our newly created labeled data of 103
programs in 19 different languages. We experimented
with these data sets to compare Lascad with two prior
tools: MUDABlue and LACT, and found that Lascad
outperformed other tools in three aspects. First, Las-
cad obtained higher F-scores (i.e., the harmonic mean
of precision and recall) and produced better numbers of
categories. Second, Lascad is easier to use without re-
quiring developers to tune the LDA parameter—number
of topics. Third, Lascad produces a bounded number of
categories while allowing users to directly control its
number. On the other hand, prior tools produced an
undesirably large number of categories with no way to
specify it). Although previous methods attempt to auto-
matically determine the number of categories, they pro-
duce many non-meaningful categories Kawaguchi et al.
(2006) which does not actually make the number of cat-
egories successfully automated.

To evaluate Lascad’s similar software search capabil-
ity, we reused the third data set mentioned above and
created another data set of 5,220 unlabeled open source
applications implemented in 17 different languages. For
the unlabeled data set, we randomly chose 38 software
applications as queries and used Lascad to search for
similar applications for each of them within the whole
dataset of 5,220 applications. Then, we manually in-
spected the top retrieved results for each query to check
their relevance. For the other data set with ground truth
labels, we used all of the 103 applications as queries.
After inspecting the top retrieved applications of Las-
cad, we found that 71-70% of Top-1 and 64% of Top-5
results were relevant to queries. In addition, the cor-
rectly retrieved similar applications are cross languages.

Finally, we conducted two case studies with the ap-
plications that Lascad did not correctly classify or re-
trieve as similar software. Our case studies can shed
light and help in future design and evaluation of auto-
matic approaches for software classification and similar
application detection.

In summary, this paper makes the following contribu-
tions.

• We developed Lascad, a more usable and reliable
language-agnostic approach to categorize software
and to detect applications with similar function-
alities. Only source code is used and no other
language- or domain-specific information is re-
quired. Our tool is particularly useful when cross
language is needed or when no domain-specific
tool for software classification and detection (such

as Java or Android tools) exists.

• We are the first to design and implement an al-
gorithm, combining LDA with hierarchical clus-
tering, for software categorization that eliminates
the need to tune number of latent topics—a non-
intuitive and well-known hard-to-tune parameter in
LDA.

• With three different data sets, we conducted a com-
prehensive evaluation of three automatic software
categorization approaches. Our evaluation showed
that Lascad outperformed prior tools, and worked
stably well even when varying the number of cate-
gories.

• Unlike previous tools, Lascad gives the user di-
rect control over number of desired categories
and avoids the large and non-meaningful number
of categories produced by previous categorization
tools. In future work, we plan to make this param-
eter optional by investigating appropriate machine
learning methods that can correctly learn number
of categories.

• We created two data sets that can be used as bench-
marks for source code analysis. The first data set
has manually labeled categories and can be used
in software categorization. It has 103 projects be-
longing to 6 categories and implemented in 19 lan-
guages. The second data set contains 5,220 unla-
beled projects written in 17 languages, which can
be used as a pool for finding similar applications
across languages.

• We conducted two case studies with the applica-
tions that Lascad did not correctly classify or re-
trieve as similar software. Our case studies can
shed light on future research directions to design
and evaluate automatic approaches for software
classification and similar application detection.

In the following part of this paper, we will first in-
troduce background knowledge in Section 2, including
LDA, hierarchical clustering, and metrics to measure
categorization effectiveness. In Section 3, we will dis-
cuss our approach in detail. Section 4 will expound on
all our experiments to evaluate Lascad’s capabilities to
categorize software and detect similar software. Sec-
tion 5 presents related work. Section 6 explains threats
to validity, and Section 7 concludes the paper.
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2. Background

This section first introduces the two techniques used
in our approach: LDA and hierarchical clustering. It
then defines four metrics to evaluate Lascad’s catego-
rization effectiveness. Finally, it defines two notations
frequently used in the paper.

2.1. LDA Topic Modeling

Topic modeling Wallach (2006) is a natural language
processing method to discover the abstract “topics” in a
collection of documents. Each topic is a collection of
relevant words. There are various topic modeling meth-
ods, such as LDA Blei et al. (2003) and LSI Deerwester
et al. (1990). Among various topic modeling meth-
ods, we chose to use LDA because it has been widely
used, and has shown more advantages than other meth-
ods Chen et al. (2015).

LDA is a generative statistical model that identifies
a set of latent topics in a collection of documents. In
LDA, each topic has possibilities of generating various
words, and a word can be generated from multiple top-
ics with different probabilities. This gives LDA the flex-
ibility of considering the same word in different con-
texts. Moreover, a document can be represented as a
mixture of several topics Blei and Lafferty (2009).

LDA takes two inputs: the number of latent topics
and a document-term matrix D. For a collection of
documents {d1, d2, . . . , dn}, we can create the matrix D
by extracting terms from documents, and by assigning
each cell Di j with the number of occurrence of term j
in document di. LDA outputs another two matrices:
a document-topic matrix to describe the likelihood of
each document belonging to each topic, and a topic-
word matrix to describe the possibilities of each topic
generating various words.

2.2. Hierarchical Clustering

Clustering or cluster analysis Everitt et al. (2009) is
the task of grouping a set of objects so that similar
objects are put in the same group. Hierarchical clus-
tering Zaki and Meira Jr (2014) is a cluster analysis
method which seeks to build a hierarchy of clusters. To
conduct hierarchical clustering, users often specify one
parameter: number of clusters, which we call catnum.

There are mainly two approaches to perform hierar-
chical clustering: agglomerative and divisive. Given
the objects to cluster, the agglomerative (bottom-up) ap-
proach initiates an independent cluster for each object,
compares clusters pair-by-pair, and merges the most

similar ones into larger clusters. In comparison, the di-
visive (top-down) approach starts with the largest clus-
ter and splits the cluster into smaller ones recursively.
In our approach, we take the agglomerative approach.

Specifically, the agglomerative algorithm works as
follows: Given N objects to cluster, it initializes a clus-
ter for each object, getting N clusters: {C1,C2, . . . ,CN}.
Then it creates an N × N distance matrix by computing
the distance between every two clusters. The more sim-
ilar two objects are to each other, the smaller distance
they have. Next, in each round of cluster merging, the
algorithm looks for any cluster pair with the minimum
distance, such as (Ci, C j) where i, j ∈ [1,N]. Then it
merges the two clusters into a bigger one C′, removes
the original two clusters, and updates the distance ma-
trix accordingly. This merging process continues until
the desired number of clusters are acquired.

2.3. Categorization Effectiveness Metrics
We use four metrics to measure categorization effec-

tiveness: precision, recall, F-score, and logDiff.

2.3.1. Precision
As defined in prior work Kawaguchi et al. (2006),

given a classification approach A (such as Lascad,
MUDABlue, or LACT), precision describes how pre-
cise A’s categorization is compared with an ideal cate-
gorization. Formally,

precision =

∑
s∈S precisionso f t(s)

|S |
(1)

precisionso f t(s) =
|CA(s) ∩CIdeal(s)|

|CA(s)|
(2)

S represents the set of applications under catego-
rization, while s represents an arbitrary applica-
tion in the set. In Formula (1), precision is the
mean of precisionso f t among all applications, where
precisionso f t is called soft precision. Given an appli-
cation s, soft precision compares ideal category labels
CIdeal(s) with A’s category labels CA(s), and decides
what percentage of assigned labels by A are correct.

2.3.2. Recall
As defined in prior work Kawaguchi et al. (2006), re-

call describes what percentage of ideal category labels
are correctly identified by A. Formally,

recall =

∑
s∈S recallso f t(s)

|S |
(3)

recallso f t(s) =
|CA(s) ∩CIdeal(s)|
|CIdeal(s)|

(4)
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In Formula (3), recall is the mean of recallso f t among all
applications, where recallso f t means soft recall. Given
an application s, soft recall compares the set of ideal
category labels CIdeal(s) with A’s category labels CA(s),
and decides what percentage of ideal labels are identi-
fied by A.

2.3.3. F-score
It computes the harmonic mean of precision and re-

call to weight them evenly. Mathematically,

F-score =
2 ∗ precision ∗ recall

precision + recall
(5)

Suppose given an application s1, CIdeal(s1) = {L1, L2},
and CA(s1) = {L1}. Then precisionso f t = 1

1 = 100%,
because A did not wrongly assign any label to s1. Mean-
while, recallso f t(s1) = 1

2 = 50%, because A only iden-
tified L1, but missed the other correct label L2. Overall,
F-score = 2∗100%∗50%

100%+50% = 67%.

2.3.4. Relative difference of category number (relDiff)
This metric is defined to measure the difference be-

tween the identified number of categories and the ideal
number of categories. If the number of identified cate-
gories is too small compared to the ideal number, many
dissimilar applications are wrongly clustered together.
On the other hand, if the number of identified categories
is much larger than the ideal number, many similar ap-
plications are scattered in different categories and be-
come hard to interpret. Formally, given a set of applica-
tions,

relDiff =
|# of identified categories - # of ideal categories|

# of ideal categories
.

(6)
RelDiff’s range is [0,+∞). When relDiff=0, the num-
ber of identified categories is equal to the ideal number.
The closer relDiff is to 0, the better number of identified
categories we obtain.

2.4. Notations

We use the following notations to facilitate explana-
tion:

• t num represents LDA’s parameter: the number of
latent topics. By default, we set it to 50 in Lascad.

• cat num is Lascad’s parameter: the number of de-
sired software categories. It is set to 20 in our eval-
uation.

3. Approach

There are three phases in Lascad. As shown in Fig. 1,
given a set of software applications, Lascad first pre-
processes the data to prepare for the categorization and
similar application detection (Section 3.1) which is a
common Information Retrieval step. In Phase II, given
cat num, Lascad applies LDA and hierarchical cluster-
ing to classify software into a desired number of cate-
gories (Section 3.2). In Phase III, based on the LDA re-
sults, Lascad retrieves software similar to a given query
application (Section 3.3).

3.1. Phase I: Source Code Preprocessing

Given a collection of documents, source code prepro-
cessing takes three steps to extract and refine terms, and
finally, outputs a document-term matrix.

Extracting terms. For each software application, Las-
cad identifies source code files to extract identifiers in
code and words in comments. These extracted terms
compose the initial corpus generated from applications.
Documentations and HTML files are excluded by Las-
cad, because they do not always exist in every applica-
tion, and may bias topic modeling if they contain a lot
of natural language descriptions.

Refining terms based on language features. We re-
fine the corpus by removing language-specific terms
and by splitting synthesized terms. We remove English-
language stop words like “in”, “are”, “at”, “the”, etc.,
because they are unimportant. We also remove pro-
gramming language-specific keywords, such as “class”,
“for”, “if”, and “while”, because keywords vary with
languages. Specifically, we created a list of keywords
for the most common programming languages and re-
moved those keywords from the corpus. Note that it is
not necessary to remove keywords for each and every
newly added language because most frequent keywords
overlap across several languages.

Developers define identifiers differently. To mitigate
the influence of coding styles on Lascad’s effectiveness,
we split identifier names in camel case and snake case
into simpler terms. For instance, a camel case identi-
fier “methodName” is split to “method” and “name”,
while a snake case identifier “method name” is split to
“method” and “name”. Even though these two identi-
fiers are different, their normalized representations are
the same.
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Figure 1: Lascad overview

Removing overly common and overly rare terms. As
any LDA-based approach does, Lascad removes the
most frequent and the least frequent terms from the cor-
pus, because these terms may not reflect the program’s
real semantics, but can confuse LDA. Formally, suppose
among m documents, a term t occurs in k documents.
Then the document frequency of term t is d f = k

m ,
where d f describes how frequently a term occurs in a
collection of documents. Similar to prior work Chen
et al. (2015), Lascad removes any term whose d f is ei-
ther above 0.8 or below 0.2.

3.2. Phase II: Software Categorization

To categorize software based on the corpus extracted
from source code, we take four steps. Given the desired
number of categories cat num, we first use LDA to ex-
tract topics from the corpus. Then we perform hierar-
chical clustering to group topics until getting cat num
groups. Next, we assign projects to clusters based on
the project-topic matrix and the generated clustering of
topics. Finally, we assign a category label to each group
of projects.

Step 1. After taking in the document-term matrix out-
put from Phase I, LDA discovers latent topics, and pro-
duces two matrices: the topic-term (TT ) matrix and the
project-topic (PT ) matrix. By default, we configured
LDA to identify 50 latent topics in the given corpus, be-
cause our experiment in Section 4.2 showed that Lascad
was not very sensitive to the topic number parameter,
and we could make the parameter transparent to users
by setting a default value.

Step 2. Given a TT matrix created by Step 1, hierar-
chical clustering groups similar topics recursively until
getting cat num clusters, where cat num has the default
value 20. Specifically, the TT matrix represents each
topic with a vector L = [l1, l2, . . . , lm], where m is the

number of extracted terms, and li (i ∈ [1,m]) represents
the likelihood of term ti belonging to the topic. To clus-
ter topics, we initially consider every topic as an inde-
pendent cluster, and then compare every two topics for
the cosine similarity as

Cos S imi j =
Li · L j
||Li|| ||L j||

=

∑m
k=1 likl jk√∑m

k=1 l2ik
√∑m

k=1 l2jk

. (7)

Once we identify the most similar two topics or clusters,
we merge them into a larger cluster, remove the original
two clusters, and calculate the centroid vector for the
new cluster using

Lcen = [
li1 + l j1

2
,

li2 + l j2

2
, . . . ,

lim + l jm

2
]. (8)

For the newly created cluster, we then calculate its sim-
ilarity with other clusters and find the next two clos-
est clusters to group together. As visualized in Fig. 2,
suppose given 6 topics, we set cat num = 2. Clus-
ters are recursively merged in a bottom-up way. In
each round, two clusters with the maximum similar-
ity or minimum distance (i.e. 1 − Cos S im) are cho-
sen and merged until we get 2 topic clusters: (Topic 0,
3, 4) and (Topic 1, 2, 5). To facilitate later explana-
tion, we formally represent the created topic clusters as
Clu = {cls1, cls2, . . . , clscat num}.

Step 3. We group projects based on the project-topic
(PT ) matrix produced by Step 1, and the topic clus-
ters Clu from Step 2. Intuitively, if two projects be-
long to the topics within the same cluster, the projects
are put into the same software group. In this way, we
get cat num software classes, formally represented as
Cls = {cls1, cls2, . . . , clscat num}.

With more detail, the PT matrix represents each
project as a vector S = [s1, s2, . . . , st num], where si

6



Figure 2: Clustering similar topics in a bottom-up way

(i ∈ [1, t num]) shows the likelihood of the project be-
longing to the ith topic. A project may belong to mul-
tiple topics, while a topic belongs to exactly one clus-
ter. Therefore, Lascad computes the project-cluster rel-
evance matrix M as follows:

Mi j =

t num∑
k=1

sikbk j, where

bk j =

{
0, if kth topic does not belong to cls j, or
1, if kth topic belongs to cls j

(9)

Intuitively, to compute the relevance of ith project to jth

cluster, we identify all topics inside the cluster, and sum
up the project’s likelihoods for those topics. Since the
sum is not guaranteed to be within [0, 1], we further nor-
malize the values for each project. If the normalized rel-
evance value between the ith project and the jth cluster
is above a relevance threshold r th, it is classified into
the corresponding jth software group cls j; otherwise, it
is not. If a project has multiple relevance values above
r th, it means that the project belongs to multiple groups
simultaneously. By default, we set r th = 0.1 to identify
as many categories as possible for each application.

Step 4. With software grouped based on topic clusters,
we created a category label for each group to complete
software categorization. In prior work Kawaguchi et al.
(2006); Tian et al. (2009), researchers read all projects
in each group and then assigned category labels man-
ually. We can take the same approach. However, as
shown in Section 4.2, since we used software applica-
tions with known category information to evaluate Las-
cad’s categorization effectiveness, we managed to lever-
age the applications’ labels to automatically name clus-
ters. In particular, if a group contains three applications
labeled as “Text Editor”, and one application labeled
as “Web Framework”, Lascad labels the group with the
majority category “Text Editor”.

In future, we would like to investigate two alternative
approaches to automatically label groups if the true la-
bels are unknown. First, in each software group cls j, we
will identify the projects which are most relevant to the
topic cluster cls j, and parse out the most frequent terms
from the projects to label the group. Second, we will
use the most frequent terms in each topic of cluster cls j

to name the software group cls j.

3.3. Phase III: Detecting Similar Applications

In the application pool, when users select an appli-
cation to search for similar applications, Lascad reuses
the project-topic PT matrix computed in Phase II to
calculate the similarity between projects. Specifically,
in the PT matrix, each project corresponds to a vector
S = [s1, s2, . . . , st num], which is considered a proba-
bility distribution of generating the project from these
topics. Lascad computes the similarity between every
two projects based on Jensen-Shannon Divergence Lin
(1991), a metric used to measure the similarity be-
tween two probability distributions. Finally, when users
choose an application in the pool, we query the applica-
tion’s precomputed similarity scores with all other ap-
plications, rank those applications accordingly, and re-
turn the top results in descending order by similarity
scores.

3.4. Implementation

Our tool is implemented in Python. We leveraged
the NLTK Bird et al. (2009) natural language process-
ing library, applied Scikit-learn Buitinck et al. (2013)
for LDA modeling and hierarchical clustering imple-
mentations, and used Pandas McKinney (2011) and
Scipy Jones et al. (2001) to process and analyze data.

We ran Lascad for the 103 projects on a machine with
an Intel Core i7 processor. The preprocessing for all
open source projects took around 2 hours, the LDA al-
gorithm extracted topics in 34 minutes, while the hierar-
chical clustering to create software categories took only
3 seconds.

4. Evaluation

In this section, we first present the four data sets used
in our experiments (Section 4.1). Then we discuss our
evaluations of Lascad for software categorization (Sec-
tion 4.2, 4.3, and 4.4) and similar application detection
(Section 3.3). Finally, we discuss our case studies to
understand why Lascad failed to categorize some appli-
cations or wrongly suggested similar applications (Sec-
tion 4.6).
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Table 1: The category-labeled data set of 103 projects
Machine Data Game Web Text Web

Learning (26) Visualization (22) Engine (20) Framework (16) Editor (12) Game (7)

JavaScript (33) 2 16 - 4 5 6
C++ (15) 7 - 7 - 1 -

Python (14) 6 2 - 4 2 -
Java (8) 5 - 2 1 - -

Ruby (5) 2 - - 3 - -
C# (4) - - 4 - - -

PHP (4) - - - 4 - -
CoffeeScript (3) - 1 - - 2 -

C (3) - - 2 - 1 -
HTML (3) - 2 1 - - -

Objective-C (2) 1 1 - - - -
TypeScript (2) - - 2 - - -

CSS (1) - - - - - 1
Clojure (1) - - - - 1 -

R (1) 1 - - - - -
Go (1) 1 - - - - -

Scala (1) 1 - - - - -
D (1) - - 1 - - -

ActionScript (1) - - 1 - - -

4.1. Data Sets

There are four data sets used in our experiments:
one labeled set borrowed from prior work MUD-
ABlue Kawaguchi et al. (2006), one labeled set from
prior work LACT Tian et al. (2009), one newly created
labeled data set, and one created unlabeled data set. The
first three data sets were used for software categoriza-
tion evaluation, while the last two sets were used for
similar software detection evaluation.

Although there is a publicly available data set with
manual classification of the most popular 5,000 GitHub
repositories Borges and Valente (2017), we chose not to
use the data set in our evaluation. The reason is that their
categorization is too broad while our labels are func-
tionality based. The category labels like “Application
software” and “Software tools” do not mention or indi-
cate any software functionality and can contain diverse
applications.

The MUDABlue labeled data set includes 41 C pro-
grams selected from SourceForge by the MUDABlue
authors. These programs belong to 13 SourceForge cat-
egories provided by LACT Tian et al. (2009): xterm,
Gnome, Conversion, Board Games, Artificial Intelli-
gence, Database Engines, Turn Based Strategy, Text Ed-
itors, Software Development, Internet, Compilers, In-
terpreters, and Cross Compilers. Each application can
belong to multiple categories.

To fairly compare with prior approaches MUDABlue
and LACT, we need to execute these tools and Lascad
on the same data set. Since MUDABlue is not available
(after contacting the authors) and the paper Kawaguchi
et al. (2006) does not include enough technical detail for
us to reimplement the tool, we decided to reuse MUD-
ABlue’s data set, and to compare our results against

MUDABlue’s results that are reported in their paper.
The LACT labeled data set includes 43 programs im-

plemented in 6 languages. These programs belong to
six categories: Game, Editor, Database, Terminal, E-
mail, and Chat. Although LACT is not available (after
contacting the authors), we were able to reimplement it
according to their paper Tian et al. (2009), and experi-
mented with LACT and Lascad on the same data sets.

The New labeled data set was created by us to con-
tain 103 open source projects in 19 different languages.
To avoid any bias in favor of our approach when la-
beling applications, we did not label applications our-
selves. Instead, we collected labeled data from GitHub
Showcases GitHub (2016)—a website organizing pop-
ular repositories by categories. The GitHub developers
manually labeled some projects with category informa-
tion, and then grouped those projects based on the la-
bels. For our experiment, we randomly selected the fol-
lowing six categories of software: Data Visualization,
Game Engines, Machine Learning, Text Editor, Web
Framework, and Web Games. We got 103 labeled ap-
plications in this way, and present them in Table 1. In
the table, JavaScript is the mostly used language, while
Machine Learning contains the most applications. Each
application belongs to only one category.

New unlabeled data set was built by us to contain
5,220 projects implemented in 17 languages. To evalu-
ate Lascad’s effectiveness of detecting similar applica-
tions, we need a large number of applications to pre-
pare Lascad’s application pool. We want to ensure that
for any query application, Lascad can retrieve a suffi-
cient number of relevant applications from the pool. To
prepare the data set, we sampled GitHub projects us-
ing nine keyword queries: Web Framework, Text Ed-
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itor, Compiler, Machine Learning, Chatting, Database,
Game Engine, Mobile App, and Visualization. For each
query, we leveraged the GitHub APIs GitHub (2018)
to download the top 1,000 retrieved projects obtaining
9,000 projects in total as the initial raw data. Notice
that not all these sampled projects implement the func-
tionalities indicated by the keywords. We intentionally
sampled projects in this way to create a noisy data set,
which contain applications relevant or irrelevant to cer-
tain functionality focuses. To facilitate our evaluation,
we further refined the raw data with three filters:

1. Each included programming language should cor-
respond to at least 40 programs. We believe that if
a language is not well represented by a reasonable
number of applications in the pool, it is not quite
useful to evaluate the language-agnostic search ef-
fectiveness. Therefore, if an included language
covered fewer than 40 programs, we removed the
programs from the raw data.

2. The storage size of each included project is at least
250 KB. Alternatively, we can also filter out small
projects based on the lines of code (LOC) they con-
tain.

3. Each included project has received at least 10
stars. A poorly maintained project may lack com-
ments and have confusing identifiers. In GitHub,
users star the projects they appreciate or keep track
of GitHub (2017), making the number of stars a
good indicator of project quality. Therefore, we
set a threshold (i.e. 10) to the number of stars to
filter out possibly low-quality projects.

After refining the raw data, we derive 5,220 projects
which correspond to 17 languages.

4.2. Software Categorization Effectiveness

Fig. 3 includes six heat maps to show the categoriza-
tion results of Lascad on the 103-application labeled
data set. A heat map graphically visualizes a matrix by
representing each digital value with a color Wilkinson
and Friendly (2009). The values are within [0, 1]. The
greater a value is, the darker its corresponding cell is
colored. In Fig. 3, every heat map corresponds to one
known Showcase (or ideal) category. The rows in each
heat map are the projects belonging to the ideal cate-
gory, while the columns are the 20 identified categories.
The more relevant the ith project is to an identified cate-
gory cls j, the darker color cell (i, j) has.

Each heat map has 2-3 darker columns marked with
red circles, indicating the mapping relationship be-
tween the identified categories and the ideal ones. For

instance, in the heat map of Text Editor, categories 11
and 12 (C11 and C12) have more cells darkened, mean-
ing that both identified categories characterize the com-
mon semantics of text editors. In comparison, the heat
map of Web Framework has C11, C12, and C13 dark-
ened. It means that some of these applications have text
editor components (e.g., Derby Derby (2018)) as their
C11 and C12 cells are dark, while C13 mainly captures
the web framework characteristics.

For the 103 projects, Lascad categorized software
with 67% precision, 85% recall, 75% F-score, and 2.33
relDiff. Our case study in Section 4.6 will further dis-
cuss our investigation about why Lascad could not al-
ways correctly categorize software.

Finding 1: Lascad categorized software with
67% precision, 85% recall, 75% F-score, and
2.33 relDiff. For each ideal category, Lascad
identified two or three categories, with each of
which specially characterizing certain function-
ality semantics.

4.3. Categorization Sensitivity to Parameter Settings

One well known challenge for LDA-based ap-
proaches is to tune the LDA parameter t num Binkley
et al. (2014); Grant et al. (2013). By default, we set
t num = 50 in Lascad to eliminate users’ effort to tune
the hard-to-use parameter. Lascad has one parameter
for the user to choose which is the number of cate-
gories: cat num. Number of categories cat num is dif-
ferent from number of latent topics of LDA t num in
two aspects:

1. cat num is a high level parameter corresponds to an
estimated upper bound on the desired categories.
In contrast, t num is number of latent (hidden or
abstract) topics in the data which is not easy to
guess or estimate according to the literature.

2. t num is known to be a difficult to tune parameter
because the accuracy of the results is sensitive to
its value. On the other hand, we show that Las-
cad is not sensitive to cat num thus easier to guess
without compromising accuracy. For instance in
Section 4.2, we set the guess for cat num to 20
(as an upper bound) while the true number of cat-
egories is 6 and still got better performance than
other tools.

To investigate Lascad’s sensitivity to these parame-
ters, we conducted the following two experiments.
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Data Visualization 

Figure 3: Heat maps of Lascad’s categorization results

In the first experiment, as shown in Fig. 4, we fixed
cat num to 20, changed t num from 20 to 100 with 5 in-
crement, and checked how overall effectiveness varied.
The relDiff remained unchanged as cat num was fixed
to 20, so we only compared F-scores. We found that
the F-score did not vary greatly with t num. The mean
value was 71%, while the standard deviation was as low
as 2.9%. This indicates that Lascad is not sensitive to
t num when we fixed cat num. Therefore, it is reason-
able to set a default t num value and make this hard-to-
configure parameter transparent to users. The insensi-
tivity may be due to our usage of hierarchical clustering,
which considerably reduces the impact of t num on the

categorization effectiveness.

For our second experiment, we fixed t num to 50, and
changed cat num from 5 to 50, with 5 increment. We
did not try any number greater than 50. As there are
103 applications, cat num = 50 indicates that appli-
cations may be distributed among so many categories
that interpreting the meaning of each identified cate-
gory is challenging. Therefore, for N applications to
classify, we intentionally set

⌊
N
2

⌋
as the upper bound

of our exploration for cat num. As shown in Figure 5,
the F-score increases significantly with cat num when
cat num ≤ 15. When cat num > 15, F-score becomes
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Figure 4: Lascad’s F-scores with cat num = 20 and t num varying
from 20 to 100

stable. For generality, we chose cat num = 20 as the de-
fault setting in all our following experiments, because
the setting achieves a reasonable trade-off between F-
score and relDiff in this experiment.

Figure 5: Lascad’s F-scores with t num = 50 and cat num varying
from 6 to 50

Finding 2: Lascad’s categorization capability
is not sensitive to t num, and only varies con-
siderably when cat num ≤ 15. We thus set
t num = 50 and cat num = 20 by default for
generality.

4.4. Comparison With Prior Categorization Tools

We conducted several experiments to compare Las-
cadwith two prior approaches: MUDABlue Kawaguchi
et al. (2006) and LACT Tian et al. (2009), because
both tools leverage topic modeling to categorize soft-
ware based on source code. Neither tool is available
(we contacted the authors, but were unable to obtain
the tools), so we tried to reimplement them. However,
the MUDABlue paper lacks implementation details, so
we could not reimplement the tool, and simply reused

MUDABlue’s results reported in the paper. Addition-
ally, the LACT paper contains enough technical details.
We reimplemented the tool, used the best parameter set-
ting mentioned in the paper, and executed LACT on the
same benchmarks as Lascad. LACT requires users to
specify t num, which we set as 40 based on their paper.

Table 2 shows the comparison results on MUD-
ABlue’s data set. We bolded Lascad’s results. Ac-
cording to the table, Lascad worked best by obtaining
the highest F-score and the relDiff closest to 0. Notice
that although MUDABlue’s reported F-score is close
to Lascad’s (72% vs. 74%), it is doubtful if the two
approaches have comparable F-scores because MUD-
ABlue’s authors manually labeled clusters while Las-
cad labels them automatically. Thus, the original MUD-
ABlue evaluation was subject to human bias. Second,
MUDABlue classified 41 programs (of 6 actual cate-
gories) into 40 categories, which is counterintuitive.
According to the paper Kawaguchi et al. (2006), 14 out
of the 40 categories identified by MUDABlue were dif-
ficult to interpret, meaning that MUDABlue produced
meaningless categories. Third, all programs in their
data set were implemented in one programming lan-
guage. Therefore, they do not evaluate MUDABlue’s
capability of categorizing software across languages.

Table 2: Tool comparison based on MUDABlue’s 41 C programs of
13 ideal categories

Tool # of categories Precision Recall F-score RelDiff

MudaBlue 40 - - 72% 5.67
LACT 23 76% 65% 70% 2.83
Lascad 20 83% 67% 74% 2.33

Table 3: Tool comparison based on LACT’s 43 programs of 6 ideal
categories

Tool # of categories Precision Recall F-score RelDiff

LACT 25 56% 72% 64% 3.17
Lascad 20 64% 72% 68% 2.33

Table 4: Tool comparison based on our 103 applications of 6 ideal
categories

Tool # of categories Precision Recall F-score RelDiff

LACT 38 57% 91% 70% 5.33
Lascad 20 67% 85% 75% 2.33

Table 3 shows the comparison results between LACT
and Lascad based on LACT’s data set. We also bolded
Lascad’s results. Lascad outperformed LACT for both
F-score and relDiff. There are three parameters to tune
in LACT but only one parameter in Lascad. Never-
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theless, Lascad performed better with fewer parame-
ters and less parameter tuning effort. Additionally, we
also conducted a similar comparison experiment on the
103-application labeled data set, and observed similar
results. As shown in Table 4, Lascad obtained both bet-
ter F-score and better relDiff.

Table 5: Previous tool LACT’s categorization results on the 103-
application data set with t num changing from 20 to 100. Pay attention
to the great variability in the column # of categories.

t num # of categories Precision Recall F-score RelDiff

20 20 51% 86% 64% 2.33
30 27 54% 94% 68% 3.50
40 35 55% 93% 69% 4.83
50 38 57% 91% 70% 5.33
60 50 63% 88% 73% 7.33
70 47 60% 86% 71% 6.83
80 49 59% 89% 71% 7.17
90 52 58% 82% 68% 7.67

100 54 64% 85% 73% 8.00

Furthermore, we show that the previous tool LACT is
sensitive to t num (which has also been shown in their
paper Tian et al. (2009)). Using the 103-application data
set, we changed LACT’s t num from 20 to 100 with
10 increment, and checked how the overall effective-
ness varied. As shown in Table 5, as t num increased,
the number of generated categories varied a lot. With
t num = 20, LACT identified 20 categories—same as
the default value of cat num in Lascad, but obtained a
much lower F-score (64%). With t num = 60 or 100,
LACT achieved its highest F-score (73%), a slightly
lower score than Lascad’s 75%, but generated too many
categories (50 and 54) for the data set of 6 ideal cate-
gories.

Table 6: Comparing Lascad and LACT’s categorization results on the
103-application data set with approximately similar cat num.

LACT LASCAD

# of categories F-score # of categories F-score

20 64% 20 75%
27 68% 30 75%
35 69% 35 72%
38 70% 40 76%
47 71% 45 74%
50 73% 50 76%

Avg. 68.67% 74.67%

Finally, in Table 6, we compare the F-scores of Las-
cad and LACT when they produced the same num-
ber of categories. Since we cannot directly control
LACT’s cat num, we choose the closest possible gen-
erated cat num in LACT to compare it with LAS-
CAD. According to the table, with 20, 35, and 50 cat-

egories produced, Lascad’s F-scores are 75%, 72%,
and 76%; however, LACT’s F-scores are 64%, 69%,
and 75%. Lascad’s F-scores are always higher than
LACT’s. More importantly, LACT does not allow users
to directly control the number of generated categories.
Instead, users can only manipulate the number of topics
(t num) to indirectly influence the number of produced
categories. In comparison, Lascad is better because it
enables users from directly controlling the number of
categories to identify.

Finding 3: Lascad categorized software stably
better than prior approaches on different data
sets. It allows users to flexibly control the num-
ber of generated categories, without producing
overwhelming numbers of categories as previ-
ous tools do.

4.5. Evaluation of Similar Application Detection
To assess Lascad’s similar software detection capa-

bility, we defined a metric relevance to measure how
relevant retrieved applications are to a given query. With
n query applications {q1, q2, . . . , qn} provided, Lascad
ranks all applications in the pool for each query based
on how similar each application is to the query. The
higher the score is, the higher rank an application gets.
Using the Top m retrieved applications {a1, a2, . . . , am},
we calculated the query relevance ri as

ri =

∑m
j=1 b j

m
, where b j =

{
1, if a j is similar, or
0, if a j is not similar

(10)
Correspondingly, the overall relevance for the n queries
is

relevance =

∑n
i=1 ri

n
(11)

We used the unlabeled data set of 5,220 projects to
initialize Lascad’s application pool, and randomly se-
lected 38 applications from the pool as queries. Then we
manually inspected the Top-1 and Top-5 retrieved appli-
cations for each query. We read the source code and rel-
evant documents to decide whether each inspected ap-
plication had the same major functionality as the query.
In this way, we found that the relevance of the Top-1 and
Top-5 applications was 71% and 64% respectively. Fur-
thermore, those relevant applications belong to various
programming languages demonstrating Lascad’s capa-
bility of finding similar applications across languages
using only source code.

We also used the 103-application labeled data set to
conduct a similar experiment. We prepared Lascad’s
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pool with these applications, and tried each of them as
a query to search for similar applications. For the Top-1
and Top-5 ranked applications of each query, we com-
pared their category labels with that of the query. If the
labels were identical, the retrieved application is consid-
ered relevant. In this way, we calculated the relevance
of Top-1 and Top-5 applications as 70% and 64% re-
spectively.

Comparison Experiments.
We performed three alternative experiments to find

similar software to a query application to compare with
LASCAD using our 5,220 large data set. In the first
experiment, we conducted a random search were the re-
sults of the query are chosen at random. In this case, the
relevance of the Top-1 (as well as any Top-i) result was
approximately %11.

The second experiment is a full text search using the
title and the description of applications. We used the
applications title as the query and searched the other
projects title and description using full text search. The
relevance of the Top-1 results was %8.3. Clearly, this
approach is ineffective because the title of similar appli-
cations does not usually appear in the projects descrip-
tion.

In the third experiment, we used the projects readme
files in an approach similar to RepoPal Zhang et al.
(2017). That is, using topic modeling on readme files
rather than on source code. We have not used RepoPal
because, in addition to readme files, it uses Stars his-
tory which is specific to GitHub. First, we extracted
the readme files of the 5,220 projects using GitHub
API. There were 654 repositories without a readme file.
Next, we processed the readme files into terms and ran
LDA to generate the document-topic matrix. Finally,
we applied similarity search on the LDA output of the
readme files as described in section 3.3. The relevance
of the Top-1 and Top-5 results were %23 and %19 re-
spectively.

Finding 4: Lascad effectively detected similar
software on different data sets. The relevance
of Top-1 and Top-5 retrieved applications was
70-71% and 64% respectively.

4.6. Case Studies

To understand why Lascad did not work well in some
cases, we conducted a case study to manually examine
the applications which were wrongly classified by Las-
cad. We also performed another case study to manually

check the applications that were wrongly retrieved as
similar applications to a query.

Case Study I. We found three reasons to explain why
Lascad did not correctly classify all applications.

First, the ground truth categories were not exclusive
to each other. For instance, some Web Game applica-
tions (e.g., clumsy-bird Leão (2017)) contained certain
Data Visualization features (e.g., rendering scenes) or
Game Engine features (e.g., game logic), so Lascad as-
signed multiple category labels to those Web Games.
Since the ground truth data only had one category label
for each application, we strictly considered all extra la-
bels as wrong ones, which can underestimate Lascad’s
categorization precision.

Second, some ground truth labels provided by GitHub
showcases were not complete. For instance, although
the ground truth label of ruby-warrior Bates (2012)
was “Machine Learning”, the application’s website de-
scribed the program as “Game written in Ruby for learn-
ing Ruby and artificial intelligence”. Therefore, the la-
bel “Game Engine” created by Lascad also precisely
summarized the software, even though the label does
not match the ground truth. Since the ground truth la-
bels are incomplete, we might underestimate Lascad’s
categorization effectiveness.

Third, Lascad could not differentiate between some
applications that shared latent topics but had divergent
functionality focuses. For instance, Lascad wrongly put
some Game Engine applications and Text Editor appli-
cations into the same category, because all these pro-
grams supported similar interactions with users. This
observation indicates that in future, we also need a more
fine-tuned approach for term extractions for better soft-
ware categorization.

Finding 5: The generated category labels by
Lascad may be different from the oracle labels
for three reasons. First, the oracle labels are
incomplete. Second, the oracle categorization
contains some incorrect labels. Third, few ap-
plications may share latent topics and features
but actually implement different functionalities.

Case Study II. We identified two reasons that can ex-
plain why Lascad wrongly suggested applications for
certain queries.

First, Lascad did not work well for query applica-
tions that contained few lines of code. For instance,
map-chat Cohen (2017) was a small location-based chat
tool with only six program source files, and Lascad was
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unable to effectively extract topics or suggest relevant
applications for this query. As a result, it wrongly sug-
gested other irrelevant applications such as Web Frame-
works, Text Editors, and Mobile apps.

Second, Lascad could not detect the differences be-
tween applications that had similar topics but different
implementation focuses. For instance, django Django
(2017) is a high-level Web Framework application
that implements templates, authentication, database,
servers, clients, and connections. With this applica-
tion as a query, Lascad wrongly suggested ibid Google
(2018)—a multi-protocol general-purpose chat robot,
because ibid also includes some implementation of au-
thentication, database, templates, and connections. The
extracted topics were similar, although the two applica-
tions actually implemented different program logic. De-
spite that this case is considered a false positive search
result, the two applications are actually functionally
similar but differ in their goals. In future, we can lever-
age program analysis to collect more program context
information, to better model the relationship between
topics for each program, and thus to improve similar
software detection.

Finding 6: Lascad may incorrectly retrieve ap-
plications dissimilar to a query application for
two reasons. First, the query application has a
small codebase. Second, Lascad does not differ-
entiate between applications with similar func-
tionalities but different implementation focuses.

5. Related Work

This section describes related work on similar appli-
cation detection, software categorization, code search,
and LDA parameter settings.

5.1. Similar Application Detection

There are various similar software detection ap-
proaches Linares-Vásquez et al. (2016); McMillan et al.
(2012a); Bajracharya et al. (2010); Tian et al. (2009);
Kawaguchi et al. (2006); Michail and Notkin (1999).
For instance, Google Play has a “Similar” feature to rec-
ommend applications similar to a given Android app.
To decide similarity, it leverages metrics like human-
labeled app category information, app name, app de-
scription, and target country/language. Although these
metrics are helpful to scope similar applications, they
are not effective to filter irrelevant applications, and al-
ways produce false alarms. When approaches are built

on top of such imprecise application suggestion, the ap-
proach effectiveness also suffers Lu et al. (2015).

CodeWeb relies on name matching to identify simi-
lar classes, functions, and relationships in different li-
braries Michail and Notkin (1999). Since it does not
check any implementation detail of program entities, it
can mismatch significantly different classes with acci-
dentally similar names. SSI Bajracharya et al. (2010)
and CLAN McMillan et al. (2012a) rely on API us-
age to find similar applications such as Java APIs. The
basic assumption is that similar applications may in-
voke the same library APIs similarly. However, such
approaches are not designed to recommend applica-
tions across languages or work for other languages be-
cause of the dependence on specific libraries APIs.
CLANDroid detects similar applications in a specific
domain—Android Linares-Vásquez et al. (2016). It is
not directly applicable to programs in other domains.

RepoPal detects similar GitHub repositories based
on the similarity of projects’ readme files, and repos-
itories starred by the same users within the same pe-
riod of time Zhang et al. (2017). Nevertheless, Re-
poPal can only detect similar applications implemented
in the same language, only in GitHub, and with suitable
readme files. In comparison, Lascad automatically de-
tects similar software across languages, from any repos-
itory, and using only source code. Although several
tools are proposed for domain-specific similar applica-
tion detection and are successful within their domain,
they are not directly applicable to other or across do-
mains. SimilarTech is an interesting approach for find-
ing analogical application across languages that uses
tags from Stack Overflow questions Chen et al. (2016b);
Chen and Xing (2016a).

5.2. Software Categorization

Approaches were proposed to automatically cate-
gorize software McMillan et al. (2011); Kawaguchi
et al. (2006); Tian et al. (2009). For instance, McMil-
lan et al. extracted JDK API invocations as features
to train a machine learning model for automatic soft-
ware categorization McMillan et al. (2011). MUD-
ABlue Kawaguchi et al. (2006) and LACT Tian et al.
(2009) apply topic modeling methods to categorize soft-
ware based on the textual relevance of terms extracted
from source code. Although these categorization ap-
proaches can be extended to detect similar applications,
such capability extension has not been fully investi-
gated. McMillian et al. once leveraged MUDABlue to
detect similar Java programs McMillan et al. (2012a),
and found the search relevance was as low as 33%.
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They did not explore the cross-language similar soft-
ware detection effectiveness of categorization-based ap-
proaches.

Compared with MUDABlue and LACT, Lascad
leverages a novel approach to combine LDA with hier-
archical clustering for software categorization and sim-
ilar software detection. Lascad is more usable by re-
quiring less configuration effort while providing better
categorization results. It allows users to manipulate the
number of software categories to generate. More impor-
tantly, Lascad does not produce overwhelming numbers
of categories.

Both Lascad and LACT starts with LDA but proceed
differently afterwards. LACT is a simple idea but with
two difficult to tune parameters. In addition, it produces
unpredictable and uncontrollable number of categories.
LACT starts by LDA without any guidance of how to
choose number of latent topics (which is known to be
difficult to tune). Next, LACT does one pass to merge
topics whose similarity is above a threshold (yet another
difficult to choose parameter). Thus, the results can have
a quadratic number of categories. On the other hand,
Lascad is a simple but an effective approach. First we
perform a properly processed LDA with a fixed num-
ber of latent topics. Next, Lascad iteratively merges the
most similar pairs of topics into new topics. This pro-
cess continues until the desired number of categories is
obtained. The results include the desired number of cat-
egorization with a high f-score at the same time. More
importantly, there is no parameter tuning for the LDAs
number of latent topics, nor data-dependent thresholds.

5.3. Code Search

There are various commercial and open source search
engines built to retrieve code snippets or projects
relevant to the keyword queries, such as Source-
graph Sourcegraph (2017), Google Code Search Google
(2015), and Sourcerer Baldi et al. (2008). GitHub and
other repository hosting services also provide search en-
gines for developers to find projects by topic. However,
none of them is able to retrieve applications implement-
ing the similar functionality as a query application based
on source code.

5.4. LDA Parameter Settings

LDA is well known to be sensitive to the selected
number of latent topics, and tuning this parameter is
challenging Binkley et al. (2014); Grant et al. (2013);
Panichella et al. (2013); Chen et al. (2015). For in-
stance, Binkley et al. conducted an empirical study to
understand how LDA parameter settings affect source

code analysis results Binkley et al. (2014). They con-
cluded that there is no universal best parameter setting
because the appropriate setting depends on the problems
being solved and the input corpus. Grant et al. pro-
posed various heuristics to estimate an appropriate num-
ber of latent topics in source code analysis, such as us-
ing 300 or fewer latent topics when analyzing projects
with 20, 000 or fewer lines of code Grant et al. (2013).
However, such heuristics are not applicable to data sets
of variable-sized projects. This motivated us to design
and implement an approach to make this specific pa-
rameter transparent, and to eliminate the need for user
configuration for the parameter.

6. Threats to Validity

To evaluate Lascad’s similar software detection ca-
pability on the unlabeled data set, and since there is
no ground truth for applications relevance, we manu-
ally checked the similarity of the retrieved applications
to the query applications using our best knowledge. We
require both the query and the retrieved application to
strictly implement the same main functionality in order
for them to be considered relevant. To better decide ap-
plications relevance, a user study can be conducted in
the future to recruit developers, ask them to separately
compare applications, and then leverage their majority
judgments to evaluate Lascad.

Also in the evaluation of Lascad for similar appli-
cation detection, we randomly chose 38 applications
as queries to search for similar software in the whole
pool of 5220 unlabeled applications. For each query,
we manually checked the Top-10 retrieved applications,
inspecting in total 38 + 38 ∗ 10 = 418 applications. We
were unable to further increase the number of queries
due to the long manual effort needed for result verifi-
cation. However, using the 103 already labeled appli-
cations, we were able to use the whole 103 projects as
queries (achieving similar relevance as the former data
set).

We reimplemented LACT for tool comparison be-
cause the original tool is not available even after con-
tacting the authors. Our reimplementation may not ex-
actly reproduce the original tool and our parameter con-
figuration may not be optimal. However, we tried our
best to reimplement the tool following the descriptions
in the paper and used the best parameter values reported
by the paper. Furthermore, the results produced by our
reimplementation match those reported in their paper on
their data set.

In our approach, we eliminated the need for devel-
opers to manually configure the hard-to-tune parame-
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ter: number of latent topics of LDA, t num, by using
an algorithm that utilizes both LDA and hierarchical
clustering, and we showed in Section 4.3 the Lascad is
not sensitive to that parameter. Thus, we set a default
value to t num in Lascad to save users’ configuration
effort. Although such default value is not guaranteed
to achieve optimal performance, perfectly configuring
parameters has been a challenging problem for IR re-
searchers. Even though our default setting is not opti-
mal, it did not affect Lascad’s effectiveness to categorize
and detect similar software.

We also mitigate the issue of unbounded number of
categories (and also many non-meaningful categories)
produced by previous tools by using an agglomerative
clustering approach which requires guessing number of
clusters. Although our experiments showed that Las-
cad is not sensitive to this parameter, and the user can
safely choose an upper bound, it is useful in the future
to investigate approaches that can automatically find the
correct number of categories without producing non-
meaningful clusters.

Within the three labeled data sets, only one dataset
assigns multiple category labels per application as the
ground true. For the showcases dataset, we avoided
modifying the ground truth labels and left it as presented
in GitHub to be objective, although an application may
actually belong to multiple categories simultaneously.
With such datasets containing partial category ground
truth, we may underestimate the effectiveness of Las-
cad. In the future, we plan to create a data set that con-
tains applications with multiple known category labels.
Chen et al. built an approach to mine for analogical li-
braries across programming languages Chen and Xing
(2016b); Chen et al. (2016a). With Chen’s approach, we
may automatically detect software that can have mul-
tiple category labels, and efficiently build a better and
larger data set.

7. Conclusion

This paper presents Lascad, an approach to catego-
rize software and detect similar applications. Our tool
is easy to implement and to use, language-agnostic and
is solely based on the software source code. Lascad can
be particularly useful when no domain-specific tool ex-
ists or when cross-language software categorization and
detection capabilities are needed.

Furthermore, by combining LDA with hierarchical
clustering and the proper data processing, Lascad is less
sensitive to the number of latent topics of the LDA,
t num, which is known to be difficult to tune Binkley
et al. (2014); Grant et al. (2013). Therefore unlike prior

LDA-based approaches, we were able to set a default
value to t num and make the parameter transparent to
users which makes Lascad more usable.

Lascad mitigated another problem in previous tools
by producing a bounded number of categories. Al-
though previous tools claimed to automatically gener-
ate number of categories, in practice they generate an
excessively large and hard to interpret number of cat-
egories. According to their paper Kawaguchi et al.
(2006), 14 out of the 40 categories identified by MUD-
ABlue were difficult to interpret in a dataset of only 41
applications and 6 actual categories. Lascad allows the
user to specify an upper bound on the desired number
of categories, and we showed that Lascad is not sensi-
tive to this parameter permitting a rough estimate from
the user. Although an actual automated approach would
be useful, in some cases users may need a specific (or
bounded) number of categories for the purpose of vi-
sualization or software showcases in app stores or web
catalogs.

We evaluated Lascad for software categorization us-
ing three labeled data sets, with two data sets from the
literature, and one data set we built. For all three data
sets, Lascad consistently outperformed prior tools by
achieving higher F-score accuracy and obtaining lower
relDiff values without showing sensitivity to parameter
settings. Our investigation with the 103-application data
set also revealed that Lascad was less sensitive to pa-
rameter settings than LACT, showing that Lascad was
easier to configure. We also evaluated Lascad for sim-
ilar application detection using two data sets. For the
unlabeled data set of 5,220 applications and given 38
queries, the relevance of the Top-1 and Top-5 applica-
tions was 71% and 64% respectively, whereas the rele-
vance of the top-1 results of the search based on readme
files was only 23%.

In summary, Lascad demonstrates great usability and
reliability when categorizing and detecting similar soft-
ware regardless of the application domains or imple-
mentation languages of software. With Lascad’s better
effectiveness than existing tools, we envision our tool
will further facilitate expertise sharing, program com-
prehension, rapid prototyping, and plagiarism detection.

Lascad, and similar source code based categorization
and application search, can play a big role in transform-
ing source code search engines such as GitHub. Huge
number of open source projects can be automatically
categorized into groups regardless if they have docu-
mentation or not. Each group can be inspected and la-
beled based on a sample of the projects it has. This
approach can build large showcases or label projects for
better functionality-based search.
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By providing high-quality similar software, Lascad
will also boost relevant research areas such as automatic
program repair Sidiroglou-Douskos et al. (2015) and se-
curity vulnerability detection Lu et al. (2015), which
compare similar software for anomalies and reveal po-
tential software defects.

This paper is our first step to improve existing soft-
ware categorization and similar software search tech-
niques by integrating LDA with hierarchical clustering.
As the next step, we aim to combine the keywords of
the identified latent topics with program static analy-
sis to further establish finer-grained mappings between
source code files of different applications. In this way,
we can facilitate program comprehension by helping de-
velopers more precisely locate the similar code imple-
mentation they are looking for, and by highlighting the
distinct implementation between similar software.
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