
An Empirical Study of Flaky Tests in Android Apps
Swapna Thorve Chandani Sreshtha Na Meng

Department of Computer Science
Virginia Tech

Blacksburg, Virginia, U.S.
{swapna6, chandani, nm8247}@vt.edu

Abstract—A flaky test is a test that may fail or pass for the
same code under testing (CUT). Flaky tests could be harmful
to developers because the non-deterministic test outcome is not
reliable and developers cannot easily debug the code. A prior
study characterized the root causes and fixing strategies of flaky
tests by analyzing commits of 51 Apache open source projects,
without analyzing any Android app. Due to the popular usage
of Android devices and the multitude of interactions of Android
apps with third-party software libraries, hardware, network, and
users, we were curious to find if the Android apps manifested
unique flakiness patterns and called for any special resolution
for flaky tests as compared to the existing literature.

For this paper, we conducted an empirical study to charac-
terize the flaky tests in Android apps. By classifying the root
causes and fixing strategies of flakiness, we aimed to investigate
how our proposed characterization for flakiness in Android apps
varies from prior findings, and whether there are domain-specific
flakiness patterns. After mining GitHub, we found 29 Android
projects containing 77 commits that were relevant to flakiness.
We identified five root causes of Android apps’ flakiness. We
revealed three novel causes - Dependency, Program Logic, and UI.
Five types of resolution strategies were observed to address the
flaky behavior. Many of the examined commits show developers’
attempt to fix flakiness by changing software implementation in
various ways. However, there are still 13% commits that simply
skipped or removed the flaky tests. Our observations provide
useful insights for future research on flaky tests of Android apps.

Index Terms—Android, flaky tests, empirical

I. INTRODUCTION

Flaky tests are the tests that terminate with non-
deterministic outcomes given the same CUT. When a flaky test
is executed multiple times, the testing results of some runs can
be “passed” while the other runs’ results are “failed”. As the
outcome becomes non-deterministic, developers cannot simply
rely on the outcome to decide whether an app is buggy, neither
can they easily debug the code because the failure symptoms
may not frequently occur. Developers in the software industry
have revealed the extensive existence of flaky tests [1], [2].
John Micco, a senior Google developer, once mentioned in
his blog [1] that across their corpus of tests, a continual rate
of about 1.5% of all test runs were seen to report a “flaky”
result. Almost 16% of their tests had some level of flakiness.
Unlike other bugs, flaky tests are non-deterministic and also
hard to reproduce. Such tests can cost developers and testers
substantial debugging time and effort.

As Android devices have become popular, the rapid de-
velopment and widespread usage of Android apps require

developers to heavily rely on testing for software quality assur-
ance purposes. When test cases are flaky, developers cannot
reliably test or improve their Android apps before releasing
the software products. Consequently, they may dissatisfy the
software consumers with unstable app functionalities.

Luo et al. conducted an empirical study on flaky tests
by analyzing program commits of 51 Apache open source
projects and identified the major root causes and solutions of
flakiness [3]. However, they did not analyze any flaky test for
Android apps. We believe that that the flaky tests in Android
apps should be specially studied for three reasons:

• Platform Fragmentation. As the rapid evolution of the
Android operating system (OS) continues, a great number
of Android OS versions are available in the market,
causing the problem of Android fragmentation [4]. As
a result, apps are likely to behave differently across
different Android platforms and manifest flaky behaviors.

• Diverse Interaction. Android apps usually interact with
various softwares (e.g., third-party libraries), hardware
(e.g., phone devices), networks, different screen sizes,
and users. Intuitively, the more parties interacting with
Android apps, the more likely that they can introduce
non-determinism or uncontrollable behaviors into the
execution environment, causing instability in Android
apps.

• Simple Implementation. Compared with desktop and
server applications, Android apps are usually small, and
implement easy-to-understand functionalities. If we can
characterize certain scenarios for flaky tests (e.g., when
using library A on platform B), in the future, we can
build static or dynamic program analysis techniques to
specially identify such scenarios in new Android apps,
and provide actionable advice to address the flakiness.

Therefore, we conducted an empirical study on flaky tests
of Android apps. Specifically, we crawled for Android apps
on GitHub and used the keywords “flaky” and “intermittent”
to search for flaky test-relevant commits. By manually
examining the retrieved commits, we found 77 commits in
29 Android projects. We analyzed each commit to investigate
the root cause and fixing strategy of flakiness. This study
addresses the following research questions (RQs):

RQ1: What are the common causes for Android flakiness?
Among the examined commits, we identified five major



causes of flakiness: Concurrency, Dependency, Program
Logic, Network, and UI. Different from prior work [2],
[3], our research revealed two new types of root causes:
Program Logic and UI. This indicates that the flaky
software behaviors are not always caused by complex thread
interleaving or non-stable execution environment; instead,
they may be simply due to program bugs and poor UI designs.

RQ2: What are the common strategies to fix flakiness in
Android apps?
We observed five common strategies taken by developers to
solve flaky tests. Four major strategies were about improving
CUT, changing assertions in tests, replacing a component
(e.g., library) with a more reliable one, and introducing a
retry mechanism to tolerate flakiness. Nevertheless, 10 out of
77 commits showed that some developers commented out the
flaky tests to remove show stoppers.

RQ3: How does flakiness in Android apps compare to
flakiness in non-Android apps?
Compared with a prior study on Apache open source
projects [3], our study shows that concurrency bugs are
still the major cause of flaky tests. Three root causes are
newly revealed for Android flakiness, such as Dependency,
Program Logic, and UI; while some causes reported before
are irrelevant to Android apps, such as test order dependency
and resource leak.

II. RELATED WORK

Some researchers have studied flaky tests and provided
limited knowledge of the domain.

Vahabzadeh et.al [5] conducted an extensive quantitative
and qualitative study on test bugs—the bugs that can fail a
test when CUT is correct (false alarms), or pass a test when
CUT is incorrect. The researchers reported semantic errors,
flaky tests, and environment-related issues as the three major
causes of false alarms. Luo et al. investigated 201 commits
from 51 projects that fixed flaky tests [3]. They identified 10
major causes for flakiness (e.g., Async Wait and Concurrency),
and summarized the fixing strategies (e.g., calling waitFor()

and adding locks). However, the study did not include any
flaky test of Android apps. Lin et al. recently reported that
when using “AsyncTask” to write concurrent code in Android
apps, developers sometimes misused the APIs and produced
concurrency bugs and performance bugs [6].

As per our knowledge, this is the first empirical study on
flaky tests in Android apps. Our research intends to provide
valuable insights and advance the state-of-the-art knowledge
of the area.

III. METHODOLOGY

A two-phase approach is followed to analyze the version-
control commits: filtering and analysis.

Phase I: Filtering
We searched through GitHub to find commits relevant to

the flaky tests in Android apps. This search was carried
out in two steps. First, we invoked GitHub APIs [7] to
search for Android projects. To compose the search query,
we used keyword “Android”, and names of the programming
languages that are relevant to Android apps, including “C”,
“C#”, “PhoneGap” [8], and “HTML”. These language key-
words effectively filtered out many irrelevant projects whose
descriptions accidentally contain “Android”.

In the second step, we used JGit [9] to acquire commits
relevant to flaky tests from the retrieved Android projects.
Specifically for each project, we downloaded the repository,
enumerated all commits, and searched for keywords “flaky”
and “intermittent”. If a commit has its message containing
either of the keywords, the commit was considered as a
candidate for further analysis. To identify more flakiness-
relevant commits, we also searched with other keywords
like “async” and “unstable”, but neither search was successful.

Phase II: Analysis
We manually inspected each candidate commit from Phase I.
We filtered out a commit if:
(1) it is irrelevant to flaky tests, or
(2) it only describes the occurrence of a flaky test, but does
not include any program change to fix the flakiness.

If a commit passes the filters mentioned above, we further
analyzed the root cause and fixing strategy of the flaky test.

To avoid subjective bias, we did not predefine any category
for root causes or fixing strategies. Instead, we took an open-
coding approach [10] to reveal the categories. For every
commit, we analyzed the program context, code changes, com-
mit message, and even the related bug report(s) if available.
After going through the entire dataset, we summarized the
commonality between commits, tentatively defined categories
based on a complete understanding of the data, and refined our
categories by reexamining the entire data set several times.

Specifically, the first two authors initially checked the candi-
date commits from Phase I, identified the root cause and fixing
strategy in each commit, and then clustered similar commits to
iteratively refine categories. Next, the last author checked the
categorized data and further refined the categorization. When
authors had different opinions on certain commits, they were
resolved by discussion and majority vote.

IV. DATA SET

In Phase I, we initially found over 1000 Android projects
on GitHub. With keyword-based filtering, we identified less
than 50 projects that had certain commit(s) matching “flaky”
or “intermittent”. After further manual inspection, the dataset
was narrowed down to 77 commits from 29 Android projects.
Table I shows the name, category, and the number of relevant
commits for each included project.

Depending on the functionalities, we classified the 29
projects into 6 categories. Especially, Communication in-
cludes apps for emails (e.g., K-9 Mail), messaging (e.g., Signal
Android), and social media (e.g., Monotweety). Information
Management includes apps to manage either finance (e.g.,



TABLE I: Android projects under consideration

Category Communication Development Tool Game Information
Management

Media Utility

App
Names

K-9 Mail (3), Signal
Android (1), Quill (1),
Tusky (1), Wikimedia
Commons (2), Wikipedia
(3), Monotweety (2)

Dagger (1),
FlexboxLayout (2),
Mute for Sonos
(1), PocketHub (1)

Dungeon Crawl
Stone Soup (5),
Simon Tatham’s
Puzzles (3)

Walleth (2), Key-
base (3), c:geo
(3)

ExoPlayer (2),
VLC (1), Voice (2),
AntennaPod(1),
NewsBlur (1),
MPDroid (1)

Realm (10), StorIO (4),
Battery Historian (1),
Orfox (1), AFWall+ (1),
ConnectBot (2), OkHttp
(16)

Walleth), security keys (e.g., Keybase), or geo location in-
formation (e.g., c:geo). The Media category includes media
players (e.g., ExoPlayer) and news readers (e.g., NewsBlur).
The Utility category includes apps providing utility functions
like database (e.g., Realm), browser (e.g., Orfox), and network
connection management (e.g., AFWall+). In Table I, the bold
numbers in parentheses (e.g., (3) after K-9 Mail) report the
numbers of flaky test-related commits in the corresponding
projects.

Our data set is smaller than the one used by prior work [3].
Two possible reasons can explain that. First, certain flaky
behaviors are so difficult to debug that developers did not
attempt to mention, explain, or solve them. Second, many
developers do not open source their Android apps on Github
(e.g. Whatsapp messenger).

V. MAJOR FINDINGS

We present our investigation results for the research ques-
tions separately in Section V-A, V-B, and V-C.

A. Causes of Flakiness

After analyzing the root causes of each commit, we classi-
fied commits into the six categories discussed below.
(1) Concurrency. 28 out of 77 (36%) commits have flaky tests
related to concurrency bugs. These tests were flaky because
developers made an incorrect assumption about the ordering
of operations performed by different threads. Async wait
describes the scenario in which a test makes an asynchronous
call but does not wait long enough for the result to become
available before using it. Prior work [3] treats async wait
as a different type of root causes from concurrency, but
we consider async wait to belong to concurrency. This is
because when a thread is suspending, it is sometimes hard
to tell whether the thread is waiting for (1) another thread
to complete its task, or (2) an asynchronous call to return a
value. Therefore, we put all flaky tests due to the careless
design of thread interleaving into the same category.

(2) Dependency. 17 of 77 (22%) commits have flakiness
caused by the usage of certain hardware, Android OS version,
or a third-party library. For instance, a commit in FlexboxLay-
out mentioned flaky tests in some devices [11]. To avoid such
device-specific flaky tests, developers relaxed the assertions
to tolerate the nondeterministic values of some variables. As
shown in Figure 1, the original flaky test strictly checked
whether textView1.getLeft() and space had the same value.
In the fixed version, developers checked whether the value of
textView1.getLeft() was in the range [space-1, space+1].

  …
-  assertThat(textView1.getLeft(), is(space));
+ assertTrue(space -1 <= textView1.getLeft() && 
  textView1.getLeft() <= space + 1);   
  …

Fig. 1: A commit that changes assertions [11]

(3) Program Logic. 9 of 77 (12%) commits focused on fixing
erroneous program logic. Developers sometimes had wrong
assumptions on the apps’ program behaviors, so they failed to
implement functionalities properly to handle all corner cases.
Figure 2 illustrates such scenarios with an example [12].
  …
  } catch (IOException e) {
    Util.closeQuietly(MockSpdyPeer.this);
-    throw new RuntimeException(e);
+   e.printStackTrace(); 
  }…

Fig. 2: A commit to fix erroneous program logic [12]

In the commit, the class MockSpdyPeer under testing
could throw an IOException for various reasons that are
not related to the actual test. In the original version, the
program caught the exception and rethrew another exception
RuntimeException, which could terminate the app abruptly.
In the fixed version, the program was modified to simply log
the exception without throwing an exception. In this way,
the code can avoid the intermittent app crash due to any
RuntimeException and mitigate the overall flakiness problem.

(4) Network. 6 commits (8%) were about flakiness caused by
the network. It is normal that the network can be unstable
and network connections may fail now and then. However,
it seems that developers initially did not think carefully about
the nondeterminism, neither did they code correctly to tolerate
the nondeterministic factor. Figure 3 presents such commit that
fixed flakiness by tolerating the unstable network [13].

  …
-  write(IAC);
-  write(SB);
+ //Use List to hold and send entire sequence at one time
+ ArrayList<Byte> byteArray = new ArrayList<>();
+ byteArray.add(IAC);
+ byteArray.add(SB);
  …

Fig. 3: A commit that tolerates nondeterminism [13]

In the buggy version, the response sequence data was sent
when write(...) was called for each byte in the data. As
some bytes were not transferred successfully, the received



sequence was incomplete and caused errors. Therefore, to fix
the bug, developers instead put the whole response sequence
into an ArrayList object. Once all bytes are sent in a single
write(...), the whole sequence is either missing or received,
but is never partially received by the receivers (e.g., servers).

(5) UI. 6 commits (8%) were about the flakiness of User
Interfaces (UIs). When developers carelessly designed the
widget layouts on UIs or misunderstood the underlying UI
rendering process, some widgets were not rendered correctly
or a blank screen showed up now and then. As shown in
Figure 4, the original flaky test did not close the soft keyboard
before invoking click() [14]. As a result, the clicking gesture
might be wrongly captured by the soft keyboard instead of
triggering the expected UI event. Developers resolved the
problem by inserting closeSoftKeyboard() before click().
  …
-  onView(withId(R.id.fab)).perform(click))
+ onView(withId(R.id.fab)).perform(closeSoftKeyboard(),
click())
  …

Fig. 4: A commit to fix UI flakiness [14]

(6) Hard to Classify. We could not identify the root causes for
11 commits. Although developers tried to remove flakiness by
replacing some code implementation or adding if-condition
checks, it seems that developers did not understand why
flakiness occurred and how their edits solved the problems.
Thus, we could not infer the root causes from the flakiness
description or applied fixes.
  …
-  getSherlockActivity().invalidateOptionsMenu();
+ if (getSherlockActivity() != null) {
+   getSherlockActivity().invalidateOptionsMenu();
+ }
  …

Fig. 5: A commit to fix flakiness due to unknown cause(s) [14]

Figure 5 presents a commit attempting to fix random
crash [14]. In the commit message, the developer mentioned:
“I have no idea why this crashed. Adding a guard just in
case”. It seems that the developer did not understand why
crashes happened intermittently. Thus, it is hard to tell how the
inserted null-pointer reference check can remove the flakiness.

B. Solutions of Flakiness

From the analyzed commits, we identified five strategies
developers took to reduce or eliminate flakiness. Table II
presents the distribution of commits among the five strategies.

(1) Improve Implementation. As expected, developers
improved software to resolve flakiness in most commits.
The improvement either removed, reduced, or tolerated
nondeterminism. Specifically, the flakiness issues related to
Program Logic and UI were usually caused by software
bugs, so developers fixed the bugs. For Concurrency-
related issues, developers either introduced locks, added
Thread.sleep(), or enlarged the existing thread-waiting

time. By scheduling threads in a more deterministic manner,
developers reduced undesirable thread interleavings. For
other issues, as developers had no control over the existence
of nondeterminism, they added extra condition checks or
processing to make software resilient to the non-deterministic
data from platforms or third-party libraries.

(2) Replace Implementation. This strategy was taken when
a third-party library or network was unstable. For instance,
developers replaced a library’s old version with its new
version to resolve flakiness [15]. Alternatively, developers
could replace a code snippet with a semantically equivalent
but syntactically different implementation [16], even though
developers could not explain why such replacement worked.

(3) Retry. This strategy was taken when the nondeterminism
was out of developers’ control, i.e., platform-dependent or hard
to explain. For instance, when an app used Gitorious [17]—a
web hosting service—to automatically download and install
software modules, Gitorious might sometimes fail to grab the
modules [18]. As a solution, developers implemented a retry
mechanism to repeat the procedure until installation success
or reaching the attempt limit (e.g., 5 trials).

(4) Modify Assertions. This solution was taken when flakiness
was caused by developers’ wrong assumptions on program
behaviors. As shown in Figure 1, developers wrongly assumed
that given the same input, the function textView1.getLeft()

should always return the same value. Therefore, developers
corrected the assertions to resolve flakiness.

(5) Remove Tests. Different from the above four strategies,
this strategy is not a “real” fix, because developers skipped,
commented out, or removed the flaky tests or assertions.
Developers mainly took this strategy when the nondeterminism
was due to dependency or unknown reasons. Although we do
not believe that ignoring the flakiness is the right way to solve
problems, we could sense developers’ frustration when they
handled these tricky scenarios [19].

C. Flakiness in Android apps vs. non-Android apps

Similar to prior work [3], we observed Concurrency (and/or
Async Wait) and Network as reasons for flakiness. In addition,
we revealed three new root causes for Android flakiness:
Dependency, Program Logic, and UI. Such root causes are
unique to Android apps, mainly because of (1) the variety of
Android devices with different display sizes [20], and (2) any
evolution inconsistency between Android OS and related third-
party libraries. In the future, we can help developers resolve
the flakiness due to such deterministic factors by (i) extracting
bug-fixing patterns from the commits, and (ii) develop tools
to automatically locate the software bugs.

As with prior work [3], we also found that developers im-
proved their code to fix concurrency bugs and network-related
issues. Additionally, we observed other meaningful strategies
applied to resolve flakiness, such as replacing hardware or



TABLE II: Distribution of 77 commits among the root causes and flakiness resolution strategies
`````````Cause

Strategy Improve Replace Retry (4) Modify Remove
Implementation (53) Implementation (6) Assertions (4) Tests (10)

Concurrency (28) 26 - - 2 -
Dependency (17) 4 5 3 1 4

Program Logic (9) 8 - - 1 -
Network (6) 5 1 - - -

UI (6) 6 - - - -
Hard to Classify (11) 4 - 1 - 6

software dependencies, replacing API invocations, introducing
retry mechanisms, and updating assertions. Such mechanisms
will guide us to automatically generate fixes for flakiness.

D. Threats to Validity
Our observations may not generalize well to the unexplored

Android projects. Although we analyzed the commits based
on our best knowledge and categorized commits by iteratively
inspecting all data, our observations are still subject to human
bias. The research could have been stronger if we had repro-
duced the flaky tests to better understand the symptoms and
solutions. However, we were unable to accomplish that due
to our limited domain knowledge, platform dependencies, and
the inaccessibility of some test suites.

VI. CONCLUSION AND FUTURE WORK

We are not aware of any prior work that examines Android
flakiness. In this study, we identified some unique root causes
and fixing strategies for the flakiness of Android apps. We
also observed that different kinds of apps can have different
flakiness issues. For instance, the flakiness in Utility apps
is usually caused by Concurrency issues, while the flakiness
in Development Tool and Media is caused by Dependency
problems. Our study provides the following insights:

• Developers seldom describe flaky tests in commit mes-
sages with much detail, which poses challenges for other
developers and researchers to analyze the problems.

• There are flakiness issues caused by deterministic factors,
such as software bugs related to Problem Logic and UI.
Such issues are easier to reproduce and resolve.

• Some developers simply skipped flaky tests and gave up
trying to solve the problems, which indicates the difficulty
of resolving flakiness and necessity of good tool support.

In the future, we plan to investigate ways to resolve flaky
tests. For instance, we can define anti-patterns for any wrong
usage of the APIs provided by third-party libraries, networks,
or UI frameworks. We can build approaches that hardcode the
anti-patterns and fixing strategies to either reduce or tolerate
nondeterminism. Given a codebase with flaky tests, new ap-
proaches will generate patches, apply one patch each time, and
run the patched program until all patches are investigated or
the flakiness is resolved. We can also set up an online forum
for developers to share their experience, and collaboratively
establish the community’s knowledge base of flaky tests.

ACKNOWLEDGMENTS

We thank the reviewers for their valuable feedback.

REFERENCES

[1] “Flaky tests at google and how we mitigate them,”
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-
how-we.html.

[2] “How to address flaky tests,” https://blog.testmunk.com/how-to-address-
flaky-tests/, 2018.

[3] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis of
flaky tests,” in Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2014.
New York, NY, USA: ACM, 2014, pp. 643–653. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2635920

[4] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia, “Un-
derstanding android fragmentation with topic analysis of vendor-specific
bugs,” in 2012 19th Working Conference on Reverse Engineering, Oct
2012, pp. 83–92.

[5] A. Vahabzadeh, A. M. Fard, and A. Mesbah, “An empirical study of
bugs in test code,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), Sept 2015, pp. 101–110.

[6] Y. Lin, C. Radoi, and D. Dig, “Retrofitting concurrency
for android applications through refactoring,” in Proceedings
of the 22Nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE 2014. New
York, NY, USA: ACM, 2014, pp. 341–352. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2635903

[7] “GitHub API,” https://developer.github.com/v3/.
[8] “PhoneGap,” https://phonegap.com.
[9] “JGit,” https://www.eclipse.org/jgit/.

[10] A. Strauss and J. Corbin, Basics of Qualitative Research: Grounded
Theory Procedures and Techniques. Newbury Park, California: Sage
Publications, 1990.

[11] “Fix the FlexItemEditFragment not to crash when large inte-
ger is filled in the EditText,” https://github.com/google/flexbox-
layout/commit/1f1f57e84057b7deeddc774108a4306fbb82871d.

[12] “Prevent MockSpdyPeer interfering with Android tests,”
https://github.com/square/okhttp/commit/7a3bb19ea44f6771a20d3f5c323
cc8bd15d73a56.

[13] “TelnetProtocolHandler Fix,” https://github.com/connectbot/connectbot/
commit/8e4f663.

[14] “Make sure to dismiss the keyboard to fix flaky test,”
https://github.com/walleth/walleth/commit/80a9ad271ac8b2a2f700b8e00
236698912d1e07f.

[15] “Update ALPN,” https://github.com/square/okhttp/commit/03bb6befe286
7d69f631c2ef03c92b1d5a9e47e7.

[16] “MPDStatusMonitor: Workaround an Android 5 bug.”
https://github.com/abarisain/dmix/commit/dd8a344f6d54d8185215ed679
80e4fcebb88bc55.

[17] “Gitorious,” https://github.com/gitorious.
[18] “Also retry things during dependency installation,”

https://github.com/crawl/crawl/commit/53b308e.
[19] “Force a validation test to be ignored in

the open-source maven build (for now),”
https://github.com/square/dagger/commit/d7fa773181a1ff1e71a591a858
3796f708d7dd21.

[20] M. Fazzini and A. Orso, “Automated cross-platform inconsistency
detection for mobile apps,” in Proceedings of the 32Nd IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
2017. Piscataway, NJ, USA: IEEE Press, 2017, pp. 308–318. [Online].
Available: http://dl.acm.org/citation.cfm?id=3155562.3155604


