
Investigating The Reproducibility of NPM Packages

Pronnoy Goswami Saksham Gupta Zhiyuan Li Na Meng Daphne Yao
Virginia Tech

Blacksburg, United States
pronnoygoswami@vt.edu, saksham@vt.edu, lzy9667@vt.edu, nm8247@vt.edu, danfeng@vt.edu

Abstract—Node.js has been popularly used for web application
development, partially because of its large software ecosystem
known as NPM (Node Package Manager) packages. When using
open-source NPM packages, most developers download prebuilt
packages on npmjs.com instead of building those packages from
available source, and implicitly trust the downloaded packages.
However, it is unknown whether the blindly trusted prebuilt
NPM packages are reproducible (i.e., whether there is always a
verifiable path from source code to any published NPM package).
Therefore, for this paper, we conducted an empirical study to
examine the reproducibility of NPM packages, and to understand
why some packages are not reproducible.

Specifically, we downloaded versions/releases of 226 most
popularly used NPM packages and then built each version with
the available source on GitHub. Next, we applied a differencing
tool to compare the versions we built against versions downloaded
from NPM, and further inspected any reported difference.
Among the 3,390 versions of the 226 packages, only 2,087 versions
are reproducible. Based on our manual analysis, multiple factors
contribute to the non-reproducibility issues, such as flexible
versioning information in package.json file and the divergent
behaviors between distinct versions of tools used in the build
process. Our investigation reveals challenges of verifying NPM
reproducibility with existing tools, and provides insights for
future verifiable build procedures.

Index Terms—NPM packages, reproducibility, JavaScript

I. INTRODUCTION

Node.js is an open-source and cross-platform JavaScript
(JS) runtime environment [7]. In Node.js, a package is a JS
program that groups one or more modules or functions. NPM
(short for Node Package Manager) [8] is the default pack-
age manager for Node.js, and its online database npmjs.com
hosts thousands of packages for reuse. As the widespread
use of Node.js in web application development, more and
more programmers download NPM packages into their local
software environments and develop software on top of that.
Although many packages have their code available at GitHub,
no research was done to verify whether those packages can be
rebuilt from the code. Although developers are recommended
to rely on the integrity and verifiability of NPM packages [2],
[6], we were curious (1) whether the prebuilt packages on
npmjs.com are reproducible; and (2) if reproducibility is not
achieved, what are the potential reasons.

We consider an NPM package version Pni to be repro-
ducible if there is a verifiable path from the related source

This work was supported by ONR Grant N00014-17-1-2498, NSF-1845446,
and NSF-1929701.

code to Pni. To investigate the reproducibility of NPM pack-
ages, we conducted an empirical study. Among 226 most
popularly used NPM packages, we first searched for their
source code at GitHub and tentatively rebuilt each published
package version from the corresponding code version. Next,
we applied an off-the-shelf differencing tool diffoscope [4] to
compare each NPM-released version Pni with the version we
built Poi. If the versions match textually, we consider Pni

to be reproducible; otherwise, Pni is non-reproducible. For
any identified non-reproducible version, we further manually
analyzed the observed differences to reason about the root
causes. There are two research questions (RQs) in our study:

RQ1 What percentage of NPM packages are non-reproducible?
Within the 3,390 versions of the studied 226 packages,
only 2,087 published versions (62%) textually match
the versions we built; 38% of the investigated package
versions are non-reproducible.

RQ2 Why are some package versions non-reproducible? We
classified the differences reported by diffoscope into seven
categories based on their relevance to coding paradigm,
conditional expressions, or other factors. We found that
the differences are mainly due to (1) the version relax-
ation of specified package dependencies in package.json
and (2) distinct versions of build tools being used.

Our research is novel because it explores the reproducibility of
NPM packages for the first time. By revealing the challenges
that developers may encounter when they try to build JS
packages from source, we demonstrate the necessity of new
tool support for verifiable build procedures1.

II. RELATED WORK

Reproducible builds require for a set of software devel-
opment practices that create an independently verifiable path
from source to binary code [13]. Developers and researchers
provide tools to facilitate reproducibility checking [13], [21].
For instance, reproducible-builds.org publishes tools to i)
detect differences between files and directories (i.e., diffos-
cope and trydiffoscope), ii) introduce non-determinism into
input data or software environment to verify reproducibility
(i.e., discorderfs and reprotest), or iii) normalize data to
reduce non-reproducibility issues (i.e., strip-nodeterminism
and reproducible-build-maven-plugin). Ren et al. built RepLoc
to localize the problematic files for non-reproducible builds

1At https://zenodo.org/record/3698357#.Xuu74y2ZOL8, we open-sourced
our program and data.

https://www.npmjs.com/package/...
URL of an NPM package

Published versions at

…

Pn1 Pn2 Pn3 Pnm

Code commits at

… … … …

…

c1 c2 c3 cm

…

Rebuilt versions

Po1 Po2 Po3 Pom
1. Data

Crawling

2. Version
Rebuilding

3. Version
Comparison

4. Manual
Inspection

Observed
differences

Fig. 1: The overview of our study approach

of Debian [21]. Namely, when divergent Debian binaries
are generated from the same source code due to distinct
compilation environments, RepLoc uses diffoscope to compare
binaries and obtains a diff log. Next, RepLoc treats the diff log
as a query and considers sources files as text corpus, and then
uses information retrieval methods to find files responsible for
non-reproducibility issues.

Wheeler developed a technique named diverse double com-
piling (DDC) to check whether any compiler injects malicious
code into the compiled version of programs. In particular,
DDC compiles the same source code using two compilers
simultaneously and compares the resulting binary code bit-by-
bit [22]. Similarly, differential testing relies on reproducible
binaries to reveal faults in compilers [20], [19], [17]. These
techniques send the same source code to multiple compilers,
in order to cross validate the outputs by those compilers.

The study most related to our research is conducted by
Carnavalet and Mannan, who checked 16 official binary files
of a widely used encryption tool—TrueCrypt—based on the
corresponding source code [18]. They found that the observed
differences can solely be attributed to non-determinism in
the build process, because the toolchains used in software
packaging have not been designed with verifiability in mind.

III. STUDY APPROACH

As illustrated in Fig. 1, we took a hybrid approach to
investigate the reproducibility of NPM packages. There are
four steps in our approach. Steps 1-3 use scripts and tools to
automatically reveal differences between the published NPM
packages and our packages (Section III-A, III-B, and III-C),
while Step 4 involves manual inspection to reason about the
revealed differences (Section III-D).

A. Data Crawling

We first obtained the URLs of top 1,000 most depended-
upon packages from the npm rank of GitHub [10]. Each
URL corresponds to a webpage on npmjs.com. From each
webpage, this step obtains (1) the related GitHub repository
link, and (2) all published versions of the package NP =
{Pn1, Pn2, . . . , Pnm}.

For each repository, we invoked the releases API of
GitHub [12] to retrieve all releases of the project. Fig. 2
presents an exemplar excerpt of release information output by
GitHub. As shown in the figure, each release/version number
corresponds to a commit ID. By matching the package version
numbers derived from npmjs.com with the release information

… …
{
"name": "4.17.11",
"zipball_url":

"https://api.github.com/repos/lodash/lodash/zipball/4.17.11",
"tarball_url":

"https://api.github.com/repos/lodash/lodash/tarball/4.17.11",
"commit": {
"sha": "0843bd46ef805dd03c0c8d804630804f3ba0ca3c",
"url": "https//api.github.com/repos/lodash/lodash/commits/

0843bd46ef805dd03c0c8d804630804f3ba0ca3c",
},
"node_id": "MDM6UmVmMzk1NTY0Nzo0LjE3LjEx"

},
… …

Release/Version Number

Commit ID

Fig. 2: Response of GitHub’s releases API for project
lodash [5]

{
"name": "lodash",
"version": "5.0.0",
"main": "lodash.js",
… …
"scripts": {
"build": "npm run build:main && npm run build:fp",
"build:main": "node lib/main/build-dist.js",
"build:fp": "node lib/fp/build-dist.js",
"test": "npm run test:main && npm run test:fp",
"test:fp": "node test/test-fp",
"test:main": "node test/test",
… …

},
"devDependencies": {
… …
"mocha": "^5.2.0",
”webpack": "^1.14.0"

},
… …

}
Fig. 3: An exemplar package.json file

output by GitHub, we can identify and check out all related
code commits Com = {c1, c2, . . . , cm}.
B. Version Rebuilding

For each retrieved code commit of a JS program repository,
we used two NPM commands (“npm install” and “npm
run build”) in sequence to build the corresponding package
version. Generally speaking, developers often define a file
package.json (see Fig. 3) in each JS codebase to (a) configure
tools/packages to use and (b) specify tasks to fulfill in the
build procedure. In particular, the dependency information is
specified in the "devDependencies" and/or "dependencies"

objects of package.json; developers may specify one or more
build scripts in the same file.

For any given JS codebase, the first command “npm
install” we used downloads all depended-upon NPM pack-
ages listed in the "devDependencies" and "dependencies"

objects. This command helps prepare the software environment
in which new package versions can be successfully built.

TABLE I: Summary of the top 1,000 most depended-upon
NPM packages mentioned by the npm rank of GitHub

Type # of Packages
Packages removed from the NPM registry 25
Packages without GitHub URL 10
Packages without package.json 65
Packages without build scripts 674
Packages with build script 226
Total versions explored 3,390

If any package dependency has a version range specified
(e.g., “>1.0”, “˜0.1” or “ˆ4.30.2”), NPM searches among the
available versions of that package, identifies all candidate
versions within the range, and retrieves the latest version
among those candidates.

Afterwards, the second command “npm run build” is used
to run the specified build script(s) in package.json. This
command generates package versions from distinct commits,
obtaining OP = {Po1, Po2, . . . , Pom}.
C. Version Comparison

Between NP and OP , we applied an off-the-shelf dif-
ferencing tool diffoscope [4] to each pair of corresponding
versions (Poi, Pni), where i ∈ [1,m]. We chose diffoscope
because it can recursively unpack many kinds of archives (e.g.,
tarballs, ISO images, and NPM packages). By transforming
various binary formats into human readable forms, diffoscope
can highlight the detected differences for humans.
D. Manual Inspection

Typically, the built version of any NPM package includes
a bin folder, a dist or build folder, the package.json file,
CHANGELOG, and LICENSE. The bin folder usually in-
cludes one or more executable files. The dist/build folder
includes minified versions of JS files. Here, minification
(or minimization) is the process of removing all unnecessary
characters from JS code without altering its functionality. We
were only interested in code differences. Therefore, when
diffoscope outputs all differences between two JS packages, we
had two authors to manually examine differences in minified
JS files. If there is any code difference observed, we conclude
that Pni is non-reproducible.

The reported code differences in minified JS files may
present different patterns and get introduced for various rea-
sons. Therefore, in addition to locating non-reproducible ver-
sions, our manual analysis also classified observed differences
and explored potential root causes for those differences.

IV. MAJOR FINDINGS

This section presents our investigation results for the re-
search questions.
A. Percentage of Non-Reproducible Packages

As indicated by Section III-B, to rebuild package versions
from source code via NPM commands, we need (1) each
JS project to contain package.json, and (2) the JSON file to
specify at least one build script. As shown in Table I, among
the 1,000 most depended-upon NPM packages mentioned by
the npm rank, 25 packages were not available in the NPM

0
5

10
15
20
25
30

1-4 5-8
9-12

13-16
17-20

21-24
25-28

29-32
33-36

37-40

of
non-reproducible
versions

of packages

Fig. 4: The distribution of non-reproducible versions among
packages

online database when we collected data in March 2019. There
are 10 packages whose webpages on npmjs.com contain no
GitHub URL or no link to the source code. Another 65
packages have no package.json file in codebases; while 674
packages mention no build script in their package.json files.
After removing these packages that are not buildable with
NPM commands, we have 226 packages included into our
data set for further reproducibility checking. As each NPM
package has multiple versions published, we investigated in
total 3,390 versions in our study.

Our automatic process successfully built 2,898 counterparts
(i.e., Poi) for later comparison, but failed to produce anything
for the remaining 492 published versions. Thus, these 492
versions are non-reproducible because no software artifact is
created by the standard NPM build process. We randomly
checked 19 build failure messages, and found that 8 failures
were due to deprecated package dependencies. As the NPM
ecosystem evolves, when certain package versions get
deprecated, the software packages depending on those
deprecated versions simply become non-reproducible.

Within the 2,898 versions we successfully built, 2,087
versions fully match their published counterparts, while the
other 811 versions do not match. These non-reproducible
811 versions belong to 65 distinct packages. Figure 4 shows
how the 811 versions distribute among those 65 packages.
Specifically, 26 out of the 65 packages (i.e., 40%) have 1–
4 non-reproducible versions, while the other 39 packages
(60%) have more versions non-reproducible. Among the 811
versions, there are 57 major versions (i.e., the version number
format is “x.0.0”), 231 minor versions (i.e., “x.y.0”), and 523
patch versions (i.e., “x.y.z”). In particular, vue-router [16]
has the largest number of non-reproducible versions (i.e., 37).

Finding 1: 1,303 out of 3,390 studied versions (38%)
are non-reproducible. With such a large portion of non-
reproducible package versions, developers should not
blindly trust the verifiability of NPM packages.

B. Additional Reasons for Non-Reproducibility

In addition to deprecated package versions mentioned
above, we tried to identify other reasons for non-
reproducibility by examining all reported differences for 811
versions. We classified differences based on their major char-
acteristics and conducted case studies to investigate potential

TABLE II: Classification of inspected code differences in unmatched versions

Category Description # of Versions

C1. Coding Paradigm Poi and Pni have divergent usage of literals (e.g., “undefined”, markers (e.g., “[”), or keywords (e.g., “var”). 265
C2. Conditional Poi and Pni use distinct boolean expressions for condition checking. 109
C3. More/Less Code Poi and Pni contain different numbers of statements or expressions. 326
C4. Variable Name Poi and Pni use distinct variable names. 225
C5. Comment Poi and Pni contain different comments. 278
C6. Ordering Poi and Pni order declared methods differently. 43
C7. Distinct values Poi and Pni assign distinct values to the same variables. 50

85 function thunkMiddleware(_ref) { 85 function thunkMiddleware(_ref) {
86 var dispatch = _ref.dispatch, 86 var dispatch = _ref.dispatch;
87 getState = _ref.getState; 87 var getState = _ref.getState;

The version we built (Poi) The version published at NPM (Pni)

Fig. 5: An example of coding paradigm difference

33 function createAction(type) { 33 function createAction(type) {
34 var payloadCreator = 34 var payloadCreator =

arguments.length > 1 && arguments.length <= 1 ||
arguments[1] !== undefined ? arguments[1] === undefined ?
arguments[1] : _identity2.default :
_identity2.default; arguments[1];

Poi Pni

Fig. 6: An example of conditional difference

root causes for those observed differences. To generate cat-
egory labels, we conducted open coding [1]. In particular,
three authors iteratively inspected differences to build and
refine the taxonomy. As shown in Table II, we identified seven
categories. The column Description explains the meaning
of each category. The column # of Versions counts the
number of unmatched versions containing the differences for
each category. As some versions have multiple categories of
differences, the summation of all version numbers reported in
Table II is greater than 811.

Fig. 5–Fig. 11 separately present exemplar differences for
the seven categories. We further analyzed the build process
and package.json files related to these seven examples, and
identified three major root causes for the observed differences.

a) Version Relaxation: As mentioned in Section III-B,
when version ranges are specified for package dependencies
(e.g., "mocha": "ˆ5.2.0" in Fig. 3), there can be multiple
available versions falling in a given range and the latest version
is downloaded by default. Such flexible version specifica-
tion introduces nondeterminism to the build process. This
is because as packages evolve and newer versions become
available, the packages we downloaded when building Poi can
be different from the original packages downloaded for Pni.

38 export type ConnectedComponent< 38 export type ConnectedComponent<
T: React.Component<*, *>> = { T: React.Component<*, *>> = {

39 getWrappedInstance: { (): T } 39 getWrappedInstance: { (): T},
40 wrapped: ?React.Component<*, *>

40 } & React.Component<*, *> 41 } & React.Component<*, *>

Poi Pni

Fig. 7: An exemplar difference where Poi has less code and
Pni has more code

23 var r = t.started, 23 var r = t.started,
24 n = t.action, n = t.action,
25 c = t.prevState, 25 u = t.prevState,
26 a = t.error, 26 a = t.error,
27 f = t.took, 27 f = t.took,
28 s = t.nextState, 28 d = t.nextState,

Poi Pni

Fig. 8: Exemplar differences of variable names

264 /**
265 * Continuous updates must be enabled
266 * if MutationObserver is not supported.
267 * @private (Boolean)
268 */

262 this.isCyclecontinous_ = 269 this.isCyclecontinous_ =
!multationsSupported; !multationsSupported;

Poi Pni

Fig. 9: An example of comment difference

74 }, function(t, r, e) { 74 }, function(t, r, e) {
75 “use strict”; 75 “use strict”;
76 var n = e(1),
77 o = e(0);

…
88 }, function(t, r, e) {
89 “use strict”;
90 t.exports = { 76 t.exports = {
91 read: function(t) { 77 read: function(t) {

… …
115 t.exports = e 101 t.exports = e

102 }, function(t, r, e) {
103 ”use strict”;
104 var n = e(1),
105 o = e(0);

…
116 }]); 116 }]);

Poi Pni

Fig. 10: An exemplar ordering difference

b) The Usage of Babel [3]: Babel is an NPM package
that works as a transpiler in the build process. For JS code
written with ES6 syntax, Babel can convert the code to ES5
JS code so that the converted code can run in all browsers.
In package.json, when the version information of Babel is a
range, distinct versions of Babel can be downloaded for Poi

and Pni. Consequently, the different versions of Babel can
transform the same code to divergent ES5 code, which helps
explain some of the observed differences in Coding Paradigm
category (C1).

c) The Usage of UglifyJS [15]: UglifyJS is an NPM
package used in the build process to minify or uglify JS files
in order to shorten and optimize code. It has a mangler that
reduces names of local variables to single letters (e.g., replace
“complex_var_name” with “a”). The optimizations it can apply
include but are not limited to:

• Join consecutive var/const statements.
• Join consecutive simple statements into sequences using

the “comma operators”.
• Discard unused variables/functions.
• Optimize if-s and conditional expressions.
• Evaluate constant expressions.
• Drop unreachable code.

In package.json, when UglifyJS is specified with an acceptable
version range (e.g., “˜2.7.3”), distinct versions of UglifyJS

76 var u = r(44), 58 var u = r(39),
77 O = r(54); 59 o = r(48);

Poi Pni

Fig. 11: Exemplar differences of variable values

were downloaded to separately build Poi and Pni. These
versions can apply slightly different sets of optimizations to JS
files and cause some categories of observed differences (e.g.,
C1, C2, C3, and C4).

Finding 2: Based on our manual inspection, there are
seven types of differences between Poi and Pni. We found
three major reasons to explain some observed differences:
version relaxation, Babel, and UglifyJS.

V. DISCUSSION

Among the seven categories of observed differences, we
only identified root causes for C1–C4, but could not explain
the differences for C5–C7. The differences belonging to C5
and C6 seem to be less important, because they do not
introduce any semantic difference, neither do they influence
program runtime behaviors. However, C7 differences seem
to be crucially important, because they can impact program
semantics by assigning divergent values to the same variables.
In the future, we plan to further investigate the root causes
and potential impacts of C5–C7 differences, because such
investigation may reveal errors in code transformation tools
(e.g., Babel and UglifyJS) or even expose malicious code
injection into published NPM package versions.

JS developers also noticed that the version relaxation mech-
anism can cause non-reproducibility issues of NPM pack-
ages [14], [9], [11], so they proposed approaches to ensure
the reproducibility of package dependency trees. For instance,
since NPM 5.0.0 released in 2017, package-lock.json can be
automatically generated for any NPM operation that modifies
the node modules tree or package.json. The package-lock.json
file can record the exact dependency package versions used in
the build process, and is intended to be used to reproduce NPM
package versions. Unfortunately, based on our experience,
such lock files were seldom committed to GitHub repositories.
It indicates that developers are reluctant to follow the best
practice of tracking and sharing the actual dependencies,
probably because package reproducibility is not under con-
sideration in their build process.

VI. CONCLUSION

We examined the reproducibility of NPM packages by (1)
repeating the standard build process that starts from human
readable source code and ends with built package versions
(i.e., Poi), and (2) comparing the versions we built against
those published versions (i.e., Pni). We found that 38% of
explored package versions are non-reproducible. We observed
several major contributors to such non-reproducibility issues,
including (1) deprecated NPM package versions, (2) flexible
version specification in package.json, and (3) the usage of
some code transformation tools (e.g., Babel and UglifyJS).
Although lock files (e.g., package-lock.json) were proposed to
record and retrieve the exact package dependencies when any
package version was automatically built, developers seldom
use those lock files.

It seems that NPM package publishers did not seriously
consider reproducibility when posting software; while the

current software packaging has not been designed with verifi-
ability in mind. Existing tools are insufficient to verify NPM
package reproducibility. To enable package reproducibility,
developers need to ensure that (1) no package version gets
deprecated, (2) links to source code are available, and (3) no
version relaxation is allowed in package.json or alternatively,
lock files are created and shared. In the future, we will
further explore the root causes and potential impacts of some
observed differences (i.e., C5–C7), and also develop tools
to facilitate reproducibility checking. Specifically, new tools
will automatically detect, classify, and assess code differences.
These tools will skip trivial differences (e.g., distinct variable
names) and only draw users’ attention to important differences
(e.g., same variables assigned with distinct values).

ACKNOWLEDGMENT

We thank reviewers for their valueable comments.

REFERENCES

[1] An Introduction to Qualitative Research. Sage Publications Limited,
2018.

[2] 10 Tips and Tricks That Will Make You an npm Ninja. https://www.
sitepoint.com/10-npm-tips-and-tricks/, 2020.

[3] Babel. https://babeljs.io, 2020.
[4] Diffoscope: in-depth comparison of files, archives, and directories. https:

//diffoscope.org, 2020.
[5] lodash/lodash: A modern JavaScript utility library delivering modularity,

performance, & extras. https://github.com/lodash/lodash, 2020.
[6] Master npm in Under 10 Minutes or Get

Your Money Back. https://hashnode.com/post/
master-npm-in-under-10-minutes-or-get-your-money-back-cjqmak3920\
01i7vs2ufdlvcqb, 2020.

[7] Node.js. https://nodejs.org/en/, 2020.
[8] npm — build amazing things. https://www.npmjs.com, 2020.
[9] npm-package-lock.json — npm. https://docs.npmjs.com/

configuring-npm/package-lock-json.html, 2020.
[10] npm rank. https://gist.github.com/anvaka/8e8fa57c7ee1350e3491, 2020.
[11] npm-shrinkwrap.json — npm. https://docs.npmjs.com/configuring-npm/

shrinkwrap-json.html, 2020.
[12] Releases — GitHub Developer Guide. https://developer.github.com/v3/

repos/releases/, 2020.
[13] Reproducible Builds. https://reproducible-builds.org, 2020.
[14] Reproducible Builds with NPM (And Why You Should

Use Yarn Instead). https://spin.atomicobject.com/2016/12/16/
reproducible-builds-npm-yarn/, 2020.

[15] UglifyJS – JavaScript parser, compressor, minifier written in JS. http:
//lisperator.net/uglifyjs/, 2020.

[16] vue-router. https://www.npmjs.com/package/vue-router, 2020.
[17] J. Chen, W. Hu, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie.

An empirical comparison of compiler testing techniques. In 2016
IEEE/ACM 38th International Conference on Software Engineering
(ICSE), pages 180–190, May 2016.

[18] X. de Carné de Carnavalet and M. Mannan. Challenges and implications
of verifiable builds for security-critical open-source software. In Pro-
ceedings of the 30th Annual Computer Security Applications Conference,
pages 16–25. ACM, 2014.

[19] V. Le, M. Afshari, and Z. Su. Compiler validation via equivalence
modulo inputs. SIGPLAN Not., 49(6):216–226, June 2014.

[20] W. M. McKeeman. Differential testing for software. DIGITAL TECH-
NICAL JOURNAL, 10(1):100–107, 1998.

[21] Z. Ren, H. Jiang, J. Xuan, and Z. Yang. Automated localization
for unreproducible builds. In Proceedings of the 40th International
Conference on Software Engineering, pages 71–81. ACM, 2018.

[22] D. A. Wheeler. Countering trusting trust through diverse double-
compiling. In 21st Annual Computer Security Applications Conference
(ACSAC’05), pages 13 pp.–48, Dec 2005.

