
Exploring the Triggering Modes of Spectrum-Based
Fault Localization: An Industrial Case

Tung Dao
Department of Computer Science

Virginia Tech
Blacksburg, VA, USA

tungdm@vt.edu

Max Wang
Platform and Product Engineering Group

International SOS
Trevose, PA, USA

max.q.wang@gmail.com

Na Meng
Department of Computer Science

Virginia Tech
Blacksburg, VA, USA

nm8247@vt.edu

Abstract—Fault localization is important for software devel-
opment and maintenance. Among existing techniques, spectrum-
based fault localization (SBFL) is effective to locate bugs based
on the execution coverage of passed and failed tests. However,
current SBFL tools require the execution of all tests before sug-
gesting any ranked list of suspicious locations. In reality, such all-
test execution can be very time-consuming; SBFL’s outputs based
on the whole-suite execution can significantly delay developers’
debugging activities and jeopardize their productivity.

For this paper, we were curious whether we can apply SBFL
immediately after seeing one or several test failures, instead
of waiting for all tests to finish their run. Specifically, with
28 injected bugs and 13 real bugs in a close-sourced software
product, we collected the statement-level coverage for each test
case, and investigated the usage of 25 alternative SBFL formulas.
We triggered SBFL in five modes: (i) after the first test failure,
(ii) after the first failure and some extra passed tests, (iii) after
every test failure, (iv) at a specified time interval (e.g., every 2
minutes), or (v) after the complete execution of all tests.

Our study shows interesting results. Compared with whole-
suite execution, triggering SBFL formulas earlier based on partial
execution helps locate bugs more effectively. Among the five
modes, the first-failure-driven mode works best. Additionally, we
conducted similar experiments on 57 real bugs from the Defects4J
dataset and observed similar phenomena. Our observations imply
that instead of waiting for the completion of all test runs, it is
quite promising to apply SBFL formulas immediately after the
initial test failure. In this way, developers are likely to get better
suggestions within a shorter period of time. Our research will
help developers better adopt SBFL in practice.

Index Terms—Spectrum-based fault localization (SBFL), dif-
ferent triggering modes, dynamic ranking update

I. INTRODUCTION

Software debugging is challenging. On average, up to 50%
of developers’ time is spent on finding and fixing bugs, and
software bugs cost the economy $312 billion per year [1]. To
simplify software debugging, various techniques have been in-
troduced to automatically locate bugs or faults in programs [2],
[3], [4], [5], [6]. For instance, information retrieval (IR)-based
fault localization (IBFL) approaches apply IR techniques to
any given bug report and the corresponding buggy program,
in order to retrieve and rank software entities (e.g., classes
and methods) that are relevant to the report. Spectrum-based
fault localization (SBFL) techniques instrument programs to
(1) collect the execution coverage of each passed or failed test,

and (2) compute the suspiciousness score for each executed
program element (i.e., class, method, or statement).

However, existing work is insufficient to localize software
bugs in industry. Specifically, IBFL works only when a report
explicitly mentions the actual bug location [4], [7]. In reality,
however, the bug location is not always mentioned in a report,
and some serious bugs even require developers to urgently
fix bugs before filing any report. Although SBFL tools are
not limited by the availability of bug reports, they identify
and rank suspicious (i.e., potentially buggy) locations only
after executing all test cases. In the highly agile development
environment of software companies, the runtime overhead
of such all-test execution is not always acceptable. This is
because there can be hundreds of thousands of tests, whose
execution can last for hours or days. By waiting for SBFL to
suggest any suspicious location, developers may miss the best
time to fix bugs and deliver software releases.

To provide instant feedback on potential bug locations
when a program fails one or more tests, we were curious
whether SBFL can be triggered before all tests to complete
their execution. For this paper, we conducted a comprehensive
empirical study on (1) different SBFL techniques and (2)
various modes to trigger SBFL. Specifically, we used an off-
the-shelf tool—Clover [8]—to instrument source code, and
to gather the statement-level coverage of each test. With
the collected data for all tests, we applied 25 widely used
SBFL formulas, computed the suspiciousness score of each
statement, and ranked those statements accordingly.

In particular, we developed a framework—Instance Fault
Localization (��!)—to locate bugs in five distinct modes:
• ��!1 triggers SBFL right after the initial test failure.
• ��! 5 triggers SBFL after every test failure.
• ��!> triggers SBFL after the initial failure and several

additional passed tests.
• ��!? triggers SBFL periodically (e.g., every 2 minute).
• ��!2 triggers SBFL after executing the complete suite.

In our study, we applied ��! to a software product in the
first author’s company. The product contains 35,091 lines of
code (LOC) for implementation and has 1,295 test cases (with
48,982 LOC). We constructed two data sets of bugs. The
first set includes 28 injected bugs (i.e., the logical errors we
manually introduced), while the second set has 13 real bugs.

TABLE I: The investigated 25 SBFL formulas
Name Formula Name Formula

Ample |
4 5

4 5 + = 5

−
4?

4? + =?
| Anderberg

4 5

4 5 + 2 ∗ 4? + 2 ∗ = 5

Dice
2 ∗ 4 5

4 5 + 4? + = 5

Euclid √
4 5 + =?

Goodman
2 ∗ 4 5 − = 5 − 4?
2 ∗ 4 5 + = 5 + 4?

Hamann
4 5 + =? − 4? − = 5

4 5 + 4? + = 5 + =?
Hamming 4 5 + =? Jaccard

4 5

4 5 + 4? + = 5

Kulczynski1
4 5

= 5 + 4?
Kulczynski2

1
2
∗ (

4 5

4 5 + = 5

+
4 5

4 5 + 4?
)

M1
4 5 + =?
= 5 + 4?

M2
4 5

4 5 + =? + 2 ∗ = 5 + 2 ∗ 4?
Ochiai

4 5√
(4 5 + 4?) ∗ (4 5 + = 5)

Ochiai2
4 5 ∗ =?√

(4 5 + 4?) ∗ (= 5 + =?) ∗ (4 5 + =?) ∗ (4? + = 5)
Overlap

4 5

min(4 5 , 4? , = 5)
RogersTanimoto

4 5 + =?
4 5 + =? + 2 ∗ = 5 + 2 ∗ 4?

RussellRao
4 5

4 5 + 4? + = 5 + =?
SimpleMatching

4 5 + =?
4 5 + 4? + = 5 + =?

Sokal
2 ∗ 4 5 + 2 ∗ =?

2 ∗ 4 5 + 2 ∗ =? + = 5 + 4?
SqrensenDice

2 ∗ 4 5
2 ∗ 4 5 + 4? + = 5

Tarantula

4 5

4 5 + = 5

4 5

4 5 + = 5

+
4?

4? + =?

Wong1 4 5

Wong2 4 5 − 4? Zoltar
4 5

4 5 + 4? + = 5 + 10000 ∗ = 5 ∗
4?

4 5

Wong3 4 5 − ℎ, where ℎ =

2 + 0.1 ∗ (4? − 2) if 2 < 4? <= 10
2.8 + 0.01 ∗ (4? − 10) if 4? > 10
4? otherwise

Note: = 5 and =? separately represent the total number of failed and passed tests by a program. For any executed program element
4, 4 5 and 4? separately represent the number of failed and passed tests covering 4.

We experimented ��! with different triggering mechanisms
and various SBFL formulas, and evaluated the outputs by
different settings in terms of precision (i.e., MAP), recall (i.e.,
Top-1 and Top-5), and runtime overhead.

Based on our experiments, ��!1 outperformed the other
four modes when using Ample [9] as its default SBFL formula.
Among the 25 formulas, for injected bugs, ��!2 obtained 56%
MAP and 66% Top-5 recall, and spent 663 seconds executing
all tests on average. In comparison, ��!1 achieved 73% MAP
and 86% Top-5 recall, and spent only 135 seconds executing
roughly 20% of tests. For real bugs, ��!2 acquired 46% MAP
and 56% Top-5 recall based on all-test execution; while ��!1
achieved 76% MAP and 92% Top-5 recall after executing test
cases for only 106 seconds. Additionally, we conducted similar
experiments on the 57 real bugs from a third-party database of
software faults—Defects4J [10], [11]. These bugs are located
in versions of four open-source projects: jfreechart, commons-
lang, commons-math, and mockito. We observed that ��!1
obtained better results than ��!2 (i.e., 22% vs. 19% MAP,
and 32% vs. 26% Top-5), by executing only 47% of test cases.

In summary, this paper makes the following contributions:
• We built ��!, a tool infrastructure that can trigger SBFL

in 5 alternative modes using 25 distinct formulas.
• We applied ��! to a close-sourced software project and

four open-sourced projects, and comprehensively evalu-
ated ��!’s bug localization effectiveness when it adopted
various triggering modes and calculation formulas.

• We made two interesting observations in our exploration.
First, among the five modes, ��!2 did not outperform the

others although its runtime cost was the highest. Second,
��!1 worked equally well when using certain formulas.

At https://github.com/idf-icst/idfl-package, we open-sourced
our code and data.

II. BACKGROUND

This section introduces SBFL (Section II-A) and describes
Clover [8]—a tool used for execution profiling (Section II-B).
A. Spectrum-Based Fault Localization (SBFL)

SBFL identifies and ranks potential buggy locations when
a program % fails the execution of its test suite) [2]. To use
a typical SBFL approach, developers usually take three steps.

1) Given a buggy program % and its test suite) , developers
instrument either the source code or compiled code (e.g.,
Java byte code) to monitor which program element (e.g.,
Java class, method, or statement) is covered by the
execution of which test case.

2) Developers execute % with) , so that the instrumented
code can dynamically gather and log the execution
coverage of each passed/failed test. We use = 5 and =?
to denote the total number of failed and passed tests by
%. For each program element 4, we use 4 5 and 4? to
represent the number of failed/passed tests executing 4.

3) Based on the logged data, an SBFL formula is used
to compute the suspiciousness score of each program
element, and to rank all elements in the descending order
of those scores.

Although existing SBFL techniques rank elements using dis-
tinct formulas, all of them require users to execute all test

cases in) before suggesting any bug location. For this paper,
we intended to identify the best timing of triggering SBFL,
no matter what formula is used. Therefore, to ensure the
representativeness of our observations, we experimented with
25 popularly used SBFL formulas [12]. As shown in Table I,
these formulas calculate suspiciousness scores based on some
or all of the following variables: = 5 , =? , 4 5 , and 4? .
B. Clover

We used Clover [8]—an open-source code profiling tool—to
gather coverage data. Code coverage is the percentage of code
that is covered by test execution. Code coverage measure-
ment reflects which program elements are executed through
a test run, and which elements are not [13]. Such coverage
information can help fault localization because if a test fails,
the failure run probably covers some buggy code. To collect
the coverage information, Clover injects profiling logic to Java
source code and compiles the code with normal compilers to
produce instrumented .class files. When instrumented code
is executed, the profiling data (e.g., executed statements) is
saved to Clover’s database.

III. STUDY APPROACH

We built ��! to have three components. As shown in Fig. 1,
the first component is Clover [8], which is configured to in-
strument all Java statements and to record per-test statement
coverage, i.e., which statement(s) are covered by a given test.

Test
cases

Faulty
program IFL

Clover Coverage
Converter

Rank
Calculator

Ranked
suspicious
statements

Fig. 1: Overview of ��!

Coverage Converter controls the frequency at which per-
test statement coverage is converted to per-statement test
coverage, i.e., which tests cover a particular statement. This
conversion is necessary because all SBFL formulas require for
the element-level coverage measurement (i.e., 4 5 and/or 4?).
Fig. 2 illustrates the conversion process with a simple example.
As shown in the figure, Clover stores per-test coverage data
in a JSON file such that for any executed test (e.g., t1), we
can easily retrieve the statements (e.g., s1) covered by that
execution. ��! reorganizes the data in a different JSON file
such that given any statement (e.g., s1), we can obtain the
number of passed or failed tests covering the statement.

Test Covered
Statements

Test
Outcome

t1 s1, s2, … P
t2 s1, s3, … F

Statements # of Passed
(P) Tests

of Failed
(F) Tests

s1 1 1
s2 1 0

s3 0 1
… … …

Fig. 2: ��! converts per-test statement coverage to per-
statement test coverage

Rank Calculator is invoked by Coverage Converter after
each round of data conversion. This component applies an

SBFL formula to the collected per-statement coverage data, in
order to identify and rank suspicious locations. ��! can apply
SBFL in the following five distinct ways:

a) First-Failure Triggering (��!1): ��!1 triggers
SBFL after the first failure, because developers rarely need
fault localization before seeing any failure. A potential limi-
tation of ��!1 is that it may have insufficient execution data.

b) Multi-Failure Triggering (��! 5): ��! 5 reranks bug
locations after every test failure. Different from ��!1, ��! 5
calculates ranking multiple times if a bug causes multiple test
cases to fail. As more failures occur, we can observe how
��! 5 ranks locations differently.

c) Failure-Pass Triggering (��!>): ��!> triggers
SBFL after the first failure and a few (e.g., 10) extra passed
tests. By waiting for additional passed tests to finish their
execution, ��!> gathers more coverage data than ��!1.

d) Frequency-Based Triggering (��!?): ��!? triggers
SBFL at a user-specified interval (e.g., every 2 minutes). With
such periodic updates, we can observe how ranking is adjusted
as more coverage data is available. One possible limitation
is that when few failures happen, ��!? may waste time to
unnecessarily rerank locations.

e) Complete Execution-Based Triggering (��!2):
��!2 ranks locations after all test cases are executed.
��!2 corresponds to the existing triggering mode of all
SBFL approaches. It serves as a baseline for us to decide
how partial coverage information helps with fault localization.

Among the five modes mentioned above, ��!1, ��! 5 ,
��!>, and ��!? essentially apply SBFL to different subsets
of the complete execution data. By experimenting with these
variant approaches, we intended to explore their separate trade-
offs between diagnosis effectiveness and runtime overhead.
Note that in our study, all tests were executed sequentially in
a fixed order. The execution ordering was decided by the test
executor (i.e., maven-clover plugin). No matter what triggering
mode or which SBFL formula is in use, the execution ordering
remains the same. This naturally fixed execution ordering
ensures that we always observe deterministic results.

This study investigates the following two research questions:
RQ1 How sensitive is ��! to different triggering modes?
RQ2 How sensitive is ��! to the leveraged SBFL formulas?

IV. EXPERIMENTS

This section first introduces our data sets (Section IV-A)
and evaluation metrics (Section IV-B). Then it presents the
effectiveness comparison between different triggering modes
(Section IV-C). Finally, it explains our exploration of ��!’s
sensitivity to the used SBFL formulas (Section IV-D).
A. Data Sets

For evaluation, we used the bug data from a closed-source
project in industry and four open-source projects.

Bug Data in The Closed-Source Software We chose the
closed-source software because (1) there are a lot of test cases
(i.e., 1,295) written by developers for quality assurance, (2) the
code size is large (35,091 LOC), and (3) it is from software

TABLE II: The number of failed tests triggered by different
injected or real bugs in closed-source software

of Failed Tests # of Injected Bugs # of Real Bugs

1 16 6
2 6 3
4 1 4
9 3 0

12 1 0
15 1 0

industry and may have different program features from open-
source projects. We constructed 2 bug sets, including a set of
28 injected bugs and a set of 13 real bugs. All these bugs are
single and semantic faults, each of which fails at least one
test case. As shown in Table II, there are 16 injected bugs
and 6 real bugs that fail single tests. Each of the remaining
bugs fail at least two tests. These bugs are related to either
unchecked exceptions (e.g., NullPointerException), erro-
neous computation logic, invalid date/time format, wrongly
used variable/data/function, or faulty if-conditions.

To inject the 28 bugs, we first consulted with developers
concerning what are the frequent bugs and usual bug lo-
cations in their programs. Based on developers’ inputs, we
then manually crafted buggy programs by either substituting
operators (e.g., “&&” replaced with “| |”), changing constant
values (e.g., “0” replaced by “1”), modifying function calls
(e.g., “Math.min()” replaced with “Math.max()”), or swapping
function arguments of the same data type. We did not use
mutation testing to generate buggy programs for two reasons.
First, the generated mutants may be very different from real
bugs [14]. Second, the effectiveness of mutation operations can
vary with the subject programs. Due to our discussion with the
owner developers, we have more domain knowledge about the
recurring bugs in the subject program. Therefore, our manually
injected bugs are more likely to reflect real bugs. In the future,
we would also like to use mutation testing to generate buggy
mutants and explore our research questions accordingly.

We identified 13 real bugs by searching for single-line fixes
in the software version history. Specifically, if a commit has a
single-line change and contains keywords like “bug” or “fix”
in the commit message, we checked out the program snapshot
before that commit as a buggy program. These real bugs
are mainly about incorrectly used variable names, division
by zero, incorrect calculation formulas, unhandled exceptions,
and incorrect condition checks for variables’ lower bounds.

Bug Data in The Open-Source Software Defects4J [10]
is a third-party database of real faults, which include (1) the
real bugs from open-source projects and (2) corresponding
test suites to demonstrate buggy program behaviors. Due
to the time limit, we randomly picked four Java projects
from Defects4J: jfreechart, commons-lang, commons-math,
and mockito. By removing deprecated and malformed bug
data from Defects4J, we included 57 single-fault bugs into our
evaluation. In Table III, LOC Executed shows the code size
ranges among buggy program versions that are covered by test
execution; # of Tests shows the number of tests executed for
each buggy program; Index of The 1st Failed Test presents
the index of initial test failure among the tests. Each bug

TABLE III: The 57 real bugs from 4 open-source projects that
were included in our evaluation

Project Name # of
Bugs

Lines of Code
(LOC) Executed # of Tests Index of The

1st Failed Test

jfreechart 10 25–7,057 1–428 1–248
commons-lang 14 189–2,817 7–198 1–149
commons-math 25 68–7,036 3–1,513 1–599
mockito 8 931–4,252 25–1,111 9–273

corresponds to a single buggy line of code.
B. Effectiveness Metrics

There are three widely used metrics to measure the effec-
tiveness of fault localization approaches [15], [3].

Recall at Top N (Top-N) measures the percentage of buggy
entities included in the top N (N = 1, 5, . . .) ranked locations.
For instance, suppose that there is only one actually buggy
entity 41 and it is ranked at the third place. Then the Top-1
recall rate is 0/1=0%, because 41 is not ranked as top one. The
Top-5 recall rate is 1/1=100%, because 41 is covered by the
top five places. Intuitively, the higher Top-N recall, the better.

Mean Average Precision (MAP) calculates the mean of
average precision values among a set of fault localization tasks.
The higher value, the better. The Average Precision (AP) of
one task is defined as:

�% =

"∑
:=1

%(:) ∗ ?>B(:)
number of positive instances

× 100% (1)

Suppose that given a fault localization task, " statements are
retrieved and only one of them is positive (i.e., buggy). Then in
the formula, the number of positive instances is equal to 1. :
varies from 1 to " . For each value of : , %(:) is the percentage
of positive instances among the top : instances, and ?>B(:)
is a binary indicator of whether or not the : Cℎ statement is
positive. Namely, ?>B(:) = 1 if the : Cℎ statement is positive,
otherwise ?>B(:) = 0 . For example, if four statements are
retrieved, and the 3A3 and 4Cℎ are positive, then AP is (13 +
2
4)/2 ∗ 100% = 42%.

Mean Reciprocal Rank (MRR) measures precision in
a different way. Given a set of fault localization tasks, it
calculates the mean of reciprocal rank values for all tasks.
The higher value, the better. The Reciprocal Rank (RR) of
a single task is defined as:

'' =
1

A0=:14BC
× 100% (2)

where A0=:14BC is the rank of the first actual bug located. For
example, for a given task, if four statements are retrieved, and
the 3A3 and 4Cℎ are buggy, then RR is 1

3 ∗ 100% = 33%.
Given a task, if there is only one actual bug location, then

�% = ''. Similarly, given a set of tasks, if each task has only
one actual bug location as the ground truth, "�% = "''.
In our data sets, because there is only one known single-line
bug to locate in each task, we only reported MAP values.
C. Comparison between Triggering Modes

To compare the fault localization effectiveness of different
triggering modes, we used the Ample formula [9] as the

TABLE IV: Comparison between ��!1 and ��!2 in terms of
effectiveness and runtime overhead on the closed-source data

Mode Top-1 (%) Top-5 (%) MAP (%) Time Cost (second)
I R I R I R I R

� �!1 64 62 86 92 73 76 135 105
� �!2 57 31 89 69 70 50 663 655

TABLE V: Comparison between ��!1 and ��!2 on the open-
source bug data

Mode Top-1 (%) Top-5 (%) MAP (%) Portion of Tests
Executed (%)

� �!1 14 32 22 47
� �!2 12 26 19 100

default ranking formula in ��!. This is because our another
experiment on (see Section IV-D) shows that Ample generally
achieved good trade-off among Top-1, Top-5, and MAP values.

1) Effectiveness of ��!1 and ��!2: Table IV presents
results by ��!1 and ��!2 on the 41 bugs from closed-
source software, where the highest value of each effectiveness
measurement is bolded. Because each of these two modes
triggers SBFL only once during the whole execution of any
program, the table has only one row to report the average
effectiveness measurements for each mode. As shown in the
table, ��!1 outperformed ��!2 by executing fewer tests and
locating bugs more effectively. Specifically with the injected
bugs, ��!1 spent on average 135 seconds and acquired 64%
Top-1, 86% Top-5, and 73% MAP values; however, ��!2
spent on average 663 seconds and obtained 57% Top-1, 89%
Top-5, and 70% MAP values. Additionally, with the real bugs,
��!1 spent 105 seconds and got 62% Top-1, 92% Top-5,
as well as 76% MAP values; ��!2 spent 655 seconds but
acquired 31% Top-1, 69% Top-5, and 50% MAP values.

Table V shows results by ��!1 and ��!2 on the 57 bugs
from open-sourced projects. Portion of Tests Executed (%)
presents the average percentage of tests executed by each
mode. Unsurprisingly, ��!2 executes 100% of tests because
it triggers SBFL only after all test execution. Similar to what
we observed in Table V, ��!1 outperformed ��!2 by locating
bugs more effectively and executing a lot fewer tests.

Finding 1: Compared with ��!2 , ��!1 located bugs
with much lower runtime overhead but a better trade-
off between MAP, Top-1, and Top-5 values. It means that
triggering SBFL right after the initial test failure can
improve fault localization.

2) Effectiveness of ��! 5 : In our closed-source data set,
there are six injected bugs and four real bugs that fail at least
four test cases. To evaluate the effectiveness of ��! 5 , we
triggered SBFL after 1–4 failed tests and reported the average

TABLE VI: ��! 5 ’s effectiveness when ��! 5 reranked loca-
tions after 1–4 test failures for the closed-source software

of Failed Top-1 (%) Top-5 (%) MAP (%) Time Cost (second)
Tests I R I R I R I R

1 50 50 100 100 67 71 151 106
2 50 25 100 100 64 54 153 108
3 50 25 100 100 64 54 154 110
4 50 25 100 100 67 54 155 113

TABLE VII: ��! 5 ’s effectiveness when ��! 5 reranked lo-
cations after 1–2 test failures for the open-source software

of Failed
Tests Top-1 (%) Top-5 (%) MAP (%) Portion of Tests

Executed (%)
1 25 25 26 26
2 25 25 25 58

measurements among these multi-failure bugs in Table VI.
Hypothetically, as the number of failed tests increases, more
execution information is collected and SBFL may work better.
However, Table VI shows that the effectiveness measurements
often do not increase with the number of failed tests. In
particular, as injected bugs triggered more failures, both Top-
1 and Top-5 values remained the same while MAP first
decreased and then increased. Among the real bugs, as the
number of failed tests increased, both Top-1 and MAP values
decreased while the Top-5 value remained. Between the first
and fourth failures, on average, the runtime overhead of ��! 5
increased from 151 seconds to 155 seconds for injected bugs,
and increased from 106 seconds to 113 seconds for real bugs.

To validate the generality of our observation, we redid the
experiment with ��! 5 by using the other 24 SBFL formulas.
As some formulas produced exactly the same results (e.g.,
Hamann and Sokal), due to the space limit, in Fig. 3, we show
��! 5 ’s effectiveness measurements for three representative
formulas: Hamann, Tarantula, and Zoltar. Please refer to our
project website for the results by all formulas. According to
Fig. 3, ��! 5 ’s measurements did not increase with the number
of failed tests. With Hamann, all measured values dropped
down significantly at the second test failure. With Tarantula
and Zoltar, the measured values were almost unchanged for
injected bugs but dropped considerably for real bugs. One pos-
sible reason is that although the occurrence of more failed tests
can strengthen the suspiciousness signals of bug locations, the
existence of a lot more passed tests can weaken those signals
and even harm ��! 5 ’s effectiveness in some cases.

Among the 57 studied bugs for open-source projects, there
are 8 bugs that fail at least 2 tests. We triggered SBFL after 1–2
failed tests and present the average measurements among these
multi-failure bugs in Table VII. Similar to what we observed
in Table VI, ��! 5 ’s effectiveness decreased slightly as the
number of test failures increased.

Finding 2: Compared with ��!1, ��! 5 incurred more
runtime overhead by profiling more execution and ranking
locations multiple times. However, ��! 5 does not work
better when more tests fail, due to the extreme imbalance
between passed and failed tests.

3) Effectiveness of ��!>: Tables VIII and IX present our
evaluation results for ��!>, which triggers SBFL after the
initial test failure together with 1-10 additional passed tests.
As shown in Table VIII, when more passed tests were executed
after the initial failure, the runtime overhead increased as
expected (i.e., from 135 seconds to 141 seconds for injected
bugs, and from 106 seconds to 112 seconds for real bugs). Hy-
pothetically, as more execution data is available, ��!> should
localize bugs more effectively. However, different from our
expectation, all effectiveness measurements decreased except

0

20

40

60

80

100

1 2 3 4

Zoltar

0

20

40

60

80

100

1 2 3 4

Tarantula

0

20

40

60

80

100

1 2 3 4

Hamann

of
failed
tests

Percentage (%)

of
failed
tests

Percentage (%)

of
failed
tests

Percentage (%)

Top-1 Top-5 MAP

(a) Injected bugs

0

20

40

60

80

100

1 2 3 4

Zoltar

0

20

40

60

80

100

1 2 3 4

Tarantula

0

20

40

60

80

100

1 2 3 4

Hamann

of
failed
tests

Percentage (%)

of
failed
tests

Percentage (%)

of
failed
tests

Percentage (%)

(b) Real bugs

Fig. 3: ��! 5 ’s effectiveness when different formulas were used (on the closed-source data)

TABLE VIII: ��!>’s effectiveness when 1–10 more passed tests
were also included for the closed-source software

of Additional Top-1 (%) Top-5 (%) MAP (%) Time Cost (second)
Passed Tests I R I R I R I R

1 64 46 86 92 73 69 135 106
2 64 46 89 92 73 66 136 107
3 64 38 89 92 73 61 137 107
4 61 38 89 92 72 59 137 108
5 61 38 89 85 72 59 138 108
6 61 38 89 77 72 59 139 109
7 61 38 89 77 71 58 139 110
8 57 38 89 77 69 58 140 110
9 57 38 89 77 69 58 141 111
10 57 38 89 77 69 54 141 112

TABLE IX: ��!>’s effectiveness when 1–10 more passed
tests were included for 39 bugs in open-source projects

of Additional
Passed Tests

Top-1
(%)

Top-5
(%)

MAP
(%)

Portion of Tests
Executed (%)

1 15 28 22 37
2 15 28 22 38
3 15 28 22 40
4 15 28 22 41
5 15 26 21 42
6 15 26 21 44
7 15 26 21 45
8 15 26 21 46
9 15 26 21 48
10 15 26 21 49

for the Top-5 of injected bugs.
One possible reason to explain the unexpected trend is the

leveraged Ample formula: �<?;4 = | 4 5

4 5 += 5
− 4?
4?+=? |. After

the initial test failure, there are two types of locations that are
likely to be highly ranked:

• Type-I (fail-dominant) statements that are covered by
the failed test but rarely covered by any passed test (e.g.,
1
2 =

4 5

4 5 += 5
>>

4?
4?+=?),

• Type-II (pass-dominant) statements that are covered by
many passed tests but not covered by the failed test (e.g.,
4?

4?+=? >>
4 5

4 5 += 5
= 0).

For better bug localization, we desire to see more Type-I
but fewer Type-II statements included in top ranks. However,
as one or more passed tests are provided after the initial
failure, it is likely that fewer fail-dominant statements but more
pass-dominant statements are highly ranked, compromising
the effectiveness of ��!>. Notice that in all the experiments
shown in Table VIII, ��!> achieved better trade-offs than
��!2 , which fact also evidences that the execution profile
of more passed tests usually does not help improve fault
localization effectiveness.

For generality, we also configured ��!> to use all of
the remaining 24 ranking formulae (besides Ample). Due to
the space limit, here we only visualize ��!>’s effectiveness
with three representative SBFL formulas: Hamann, Tarantula,
and Zoltar. Fig. 4 (a) and Fig. 4 (b) separately present the
measurements based on injected bugs and real bugs. As more
extra passed tests are added, all metric values related to
Hamann go down. For Tarantula and Zoltar, although the Top-
5 values increase in some scenarios (i.e., for injected bugs),
both Top-1 and MAP values decrease. With different formulas
explored, we observed a typical trend: the effectiveness of
��!> does not increase with the number of extra passed tests.

Among the 57 bugs from open-source projects, there are
39 bugs whose initial test failures are followed by at least 10
passed tests. Thus, we evaluated the effectiveness of ��!>
with these bugs and presented results in Table IX. Similar to
what we observed in Table VIII, the extra passed tests do not
help improve ��!>’s effectiveness.

Finding 3: Compared with ��!1, ��!> is more likely to
raise the ranking of non-buggy locations and lower the
ranking of buggy ones, due to its usage of the extra data
for passed tests after the initial test failure.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Zoltar

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Tarantula

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Hamann

of extra
passed
tests

Percentage (%) Percentage (%)

of extra
passed
tests

Percentage (%)

of extra
passed
tests

Top-1 Top-5 MAP

(a) Injected bugs

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10

Tarantula

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10

Zoltar

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Hamann

of extra
passed
tests

Percentage (%) Percentage (%)

of extra
passed
tests

Percentage (%)

of extra
passed
tests

(b) Real bugs

Fig. 4: ��!>’s effectiveness when different formulas were used based on the closed-source data

0

20

40

60

80

100

120 240 360 480 600 720
0

20

40

60

80

100

120 240 360 480 600 720

Top-1 Top-5 MAP

Timestamp
(second)

Percentage (%)

Timestamp
(second)

Percentage (%)

(a) Injected Bugs (b) Real Bugs
Fig. 5: ��!?’s effectiveness when SBFL is triggered every two minutes for the closed-source project

4) Effectiveness of ��!?: Fig. 5 illustrates ��!?’s effec-
tiveness when the ranking of suspicious locations was updated
every 2 minutes (i.e., 120 seconds). As shown in the figure,
most measured values increase between the 120Cℎ and 240Cℎ
seconds and decrease or remain the same afterwards. The only
outlier is Top-1 for real bugs, whose value decreases in the
range [120, 240] and then remains the same.

Three possible reasons can explain the relative poor results
at the 120Cℎ second. First, insufficient failure data was gathered
during the first 120 seconds. We found that 15 injected bugs
and 3 real bugs did not fail any test in that period. Due to the
lack of failed tests, ��!? could not effectively locate bugs for
its initial trial. Second, all faulty programs obtained the initial
test failures before the 240Cℎ second. The related data of failed
tests boosted most measurements for ��!? . As a result, ��!?
acquired the peak measurement values for injected bugs, i.e.,
57% Top-1, 89% Top-5, and 70% MAP; it obtained the highest
Top-5 and MAP values for real bugs (i.e., 77% and 53%).
Third, after the 240Cℎ second, even though more execution
data was available, most faulty versions caused no more failed
test. The extremely unbalanced increase between passed and
failed tests brought no improvement for ��!?’s effectiveness.

By comparing ��!?’s peak performance against that of

��!1, we found that ��!1 worked better even though ��!?
profiled more data and ranked locations repetitively. Similar
to what we observed for ��! 5 , the extra execution data and
reranking effort did not enable ��!? to outperform ��!1.
Additionally, ��!? seems to outperform ��!2 at certain time
points (e.g., 240Cℎ second) before the completion of whole-
suite execution. We did not explore how ��!? works if
the ranking is updated at a different frequency (e.g., every
one minute). However, since different programs and distinct
bugs may produce test failures at different time points, it is
almost impossible to conclude what is the best frequency to
trigger SBFL for ��!? and at which triggering point ��!?
is likely to work best. ��!? works less flexibly than ��!1
mainly because it blindly triggers SBFL periodically without
considering the execution status of tests.

Finding 4: Similar to ��! 5 and ��!>, ��!? worked
worse than ��!1 even if it leveraged more execution data
and dynamically computed ranking more often.

Among the five investigated variants, ��!1 worked best in
terms of efficiency and effectiveness. Although ��!1 triggered
SBFL only once right after the initial test failure, it localized
bugs with the best trade-off among Top-1, Top-5, and MAP
values. Both ��! 5 and ��!> worked less effectively than

TABLE X: The effectiveness of ��!1 and ��!2 when different formulas were applied to bugs of the closed-source software
Variants of � �!1 Top-1 (%) Top-5 (%) MAP (%) Variants of � �!2 Top-1 (%) Top-5 (%) MAP (%)

I R I R I R I R I R I R

� �!1-Ample 64 62 86 92 73 76 � �!2 -Ample 57 31 89 69 70 50
� �!1-Anderberg 64 62 86 85 73 74 � �!2 -Anderberg 57 38 86 69 68 53
� �!1-Dice 64 62 86 85 73 74 � �!2 -Dice 57 38 86 69 68 53
� �!1-Euclid 68 54 68 54 68 54 � �!2 -Euclid 68 69 68 69 68 69
� �!1-Goodman 64 62 86 85 73 74 � �!2 -Goodman 57 38 86 69 68 53
� �!1-Hamann 57 54 61 69 59 60 � �!2 -Hamann 39 31 43 38 41 36
� �!1-Hamming 68 54 68 54 68 54 � �!2 -Hamming 68 69 68 69 68 69
� �!1-Jaccard 64 62 86 85 73 74 � �!2 -Jaccard 57 38 86 69 68 53
� �!1-Kulczynski1 64 62 86 85 73 74 � �!2 -Kulczynski1 57 38 86 69 68 53
� �!1-Kulczynski2 0 0 0 0 0 0 � �!2 -Kulczynski2 0 0 0 0 0 0
� �!1-M1 57 54 61 69 59 60 � �!2 -M1 39 31 43 38 41 36
� �!1-M2 64 54 86 92 73 71 � �!2 -M2 57 31 89 69 70 49
� �!1-Ochiai 64 62 86 85 72 74 � �!2 -Ochiai 57 38 86 69 68 54
� �!1-Ochiai2 64 62 86 85 72 72 � �!2 -Ochiai2 57 38 86 62 68 53
� �!1-Overlap 0 0 0 0 0 0 � �!2 -Overlap 0 0 0 0 0 0
� �!1-RogersTanimoto 57 54 61 69 59 60 � �!2 -RogersTanimoto 39 31 43 38 41 36
� �!1-RussellRao 64 54 86 85 73 70 � �!2 -RussellRao 57 31 89 69 70 49
� �!1-SimpleMatching 57 54 61 69 59 60 � �!2 -SimpleMatching 39 31 43 38 41 36
� �!1-Sokal 57 54 61 69 59 60 � �!2 -Sokal 39 31 43 38 41 36
� �!1-SqrensenDice 64 62 86 85 73 74 � �!2 -SqrensenDice 57 38 86 69 68 53
� �!1-Tarantula 64 62 86 85 72 73 � �!2 -Tarantula 54 38 79 69 65 53
� �!1-Wong1 68 54 68 54 68 54 � �!2 -Wong1 68 69 68 69 68 69
� �!1-Wong2 61 54 68 69 64 62 � �!2 -Wong2 46 31 57 54 52 40
� �!1-Wong3 61 54 71 77 65 65 � �!2 -Wong3 50 31 68 62 59 45
� �!1-Zoltar 64 62 86 85 72 72 � �!2 -Zoltar 54 38 86 54 66 51

��!1 but better than ��!2 . The execution profile of additional
failed tests and/or passed tests usually does not help improve
bug localization, but can harm the effectiveness in most cases.
Finally, ��!? did out outperform ��!2 . By triggering SBFL
at a fixed fixed frequency, ��!? might invoke SBFL so early
that no test failure was available to help locate bugs, or invoke
SBFL so late that too many passed tests were already executed
and could weaken the signals raised by any test failure.

Finding 5: ��!1 generally worked better than other vari-
ants. Our comparison provides two insights. First, more
execution data might not necessarily lead to better fault
localization results. Second, the first failed test is often
more important than passed tests and any later failed test
for fault localization.

D. Sensitivity to SBFL Formulas

We ran ��! with all 25 alternative formulas listed in
Table I (1) to explore ��!’s sensitivity to the adopted formulas
and (2) to ensure the generalizability of our observation that
��!1 outperforms ��!2 (see Section IV-C). We decided to
experiment with 25 distinct formulas instead of using only a
few well-known formulas, in order to make our investigation
comprehensive and systematic.

Table X presents the results by ��!1 and ��!2 when they
used distinct formulas to locate bugs of the closed-source
software. According to the table, in the experiments with
��!1, Ample worked best by obtaining the highest values
for five out of the six measurements. Many formulas worked
similarly to each other. For instance, five formulas produced
identical results, including Anderberg, Dice, Goodman, Jac-
card, and Kulczynski1. Three formulas obtained the same
highest Top-1 value for injected bugs (i.e., 68%), including
Euclid, Hamming, and Wong1. The former group of five
formulas mentioned above outperformed the latter group by

achieving a better trade-off among metrics. Kulczynski2 and
Overlap produced pure zero values.

In the experiments with ��!2 , Euclid, Hamann, and Wong1
worked best by achieving better trade-offs among metrics than
the other formulas. Each of these three formulas obtained the
highest values for four out of the six metrics. Once again,
Anderberg, Dice, Goodman, Jaccard, and Kulczynski1 pro-
duced identical results, although this group of formulas worked
less effectively than the three-formula group mentioned above.
Our experiments imply that ��! is sensitive to the used
formula, as the measurement difference between the most and
least effective formulas (e.g., Ample vs. Overlap, or Euclid
vs. Kulczynski2) was huge.

In Table X, if we compare ��!1 with ��!2 for each
formula, we observe that ��!1 outperformed ��!2 in the
majority of scenarios. For instance, when Anderberg was used,
��!1 acquired 64% Top-1, 86% Top-5, and 73% MAP for
injected bugs; it obtained 62% Top-1, 85% Top-5, and 74%
MAP for real bugs. On the other hand, when ��!2 used the
same formula, it achieved 57% Top-1, 86% Top-5, and 68%
MAP for injected bugs; it acquired 38% Top-1, 69% Top-5,
and 53% MAP for real bugs.
��!2 only outperformed ��!1 when one of the following

three formulas was used: Euclid, Hamming, and Wong1.
Specifically, when Hamming was in use, both ��!2 and ��!1
achieved 68% for all metrics on the injected bug set; on the
real bug set, ��!2 acquired 69% for all metrics while ��!1
obtained 54%. Finally, when Kulczynski2 and Overlap were
in use, both ��!1 and ��!2 worked equally poorly, probably
because these two formulas are not effective to locate bugs.

Additionally, we applied ��! to the 57 bugs by configuring
it to use 25 alternative formulas. Please find the detailed
results on our project website. According to this experiment,
both ��!1 and ��!2 are sensitive to the adopted formulas,

although some formulas led to exactly the same results. The 25
formulas can be actually divided into 7 groups based on their
result mappings. Two of these groups (i.e., eight formulas)
enabled ��!1 to outperform ��!2; three groups (i.e., five
formulas) enabled ��!1 to work equally well with ��!2 even
though ��!1 executed a lot fewer tests; and two groups (i.e.,
12 formulas) enabled ��!2 to achieve slightly higher MAP
values. There are a group of formulas (e.g., 11 formulas)
that produced better results than Ample. For instance, ��!1
acquired 16% Top-1, 42% Top-5, and 27% MAP when using
Ochiai, but obtained 14% Top-1, 32% Top-5, and 22% MAP
when using Ample. This observation corroborates Yoo et al.’s
finding [16] that there is no optimal formula that always
outperforms others.

Finding 6: Among the 25 investigated SBFL formulas,
��!1 worked equally well with or even outperformed ��!2
for the majority of formulas.

V. RELATED WORK

The related work of our research includes spectrum-based
fault localization (Section V-A), information retrieval-based
fault localization (Section V-B), empirical studies on fault
localization approaches (Section V-C), and test reduction,
prioritization, as well as generation (Section V-D).

A. Spectrum-Based Fault Localization (SBFL)

SBFL techniques identify bug locations using the execution
information of buggy code [17], [18], [19], [20], [9], [12].
For instance, given a buggy program and test cases, Taran-
tula instruments code to collect the execution coverage of
passed and failed tests, counts the number of passed/failed
tests covering each program element (i.e., class, method, or
statement), and computes suspiciousness scores [2]. Xuan et
al. used machine learning to train a model by combining 25
suspiciousness calculation formulae [12]. Although they did
not observe any single formula to work universally better than
the others, the trained model outperforms the state-of-the-art
formulae such as Tarantula, Ochiai, and Ample.

The SBFL approaches mentioned above only provide a
static ranked list after the execution of all tests. Some re-
searchers further improved SBFL approaches by taking in
developers’ feedback on the initial ranked list to dynamically
tune ranking accordingly [21], [22], [23]. In particular, Li
et al. leveraged SBFL to rank suspicious methods, and then
generated high-level queries to ask developers about the cor-
rectness of specific executions for the most suspicious meth-
ods [21]. If developers determine that a method’s execution is
correct, the approach labels the execution tree rooted at this
method invocation node as “correct” instead of “buggy”, and
performs suspiciousness recalculation accordingly.

This paper does not define any new SBFL formula. Instead,
we reused 25 existing SBFL formulas. We built a framework—
��!—to investigate diverse triggering modes of SBFL, and to
understand how each triggering mode balances the effective-
ness and efficiency of bug localization. Our exploration com-
pared ��!’s effectiveness given (1) different SBFL formulas

and (2) distinct triggering mechanisms for SBFL formulas. By
revealing bug locations early, ��!1 turned out to achieve the
best trade-off between effectiveness and efficiency.

B. Information Retrieval-Based Fault Localization (IBFL)

IBFL approaches locate bugs based on bug reports [15],
[3], [24], [25]. For example, BLUiR treats a bug report as a
document query and considers source code as documents [3].
Given a bug report, BLUiR searches for program entities
that are relevant to the report, and ranks those entities as
candidate bug locations. To better retrieve and rank documents,
BLUiR assigns more weights to bug report titles, and to any
class or method name referred to by a report. Learning-to-
rank integrates domain knowledge of bug history and API
specification to train a model for bug location prediction [24].

One limitation of IBFL tools is the implicit assumption that
a bug report has certain document relevance with the buggy
code. However, such assumption does not always hold. To
overcome the limitation, some researchers proposed hybrid
approaches that combine IBFL with other approaches [4],
[26]. For instance, Dao et al. combined IBFL with SBFL by
assigning different weights to the separately generated ranked
lists [4]. Zou et al. combined IBFL with another six kinds of
techniques: SBFL, mutation-based fault localization, dynamic
program slicing [27], stack trace analysis [28], predicate
switching [29], and history-based fault localization [30]. The
combination is achieved via machine learning so that the
results by distinct techniques are given appropriate weights.

Compared with the above-mentioned IR-based approaches,
��! does not rely on the existence of any bug report, neither
does it require for the execution of all test cases.

C. Empirical Studies on Fault Localization Techniques

Researchers empirically studied fault localization techniques
in various ways [31], [32], [7], [33], [34]. Specifically, Lucia
et al. [31] and Yoo et al. [32] compared different formulae
defined for SBFL approaches, and concluded that there was
no optimal formula that always worked better than others.
Kochhar et al. [33] and Dao et al. [4] independently manually
inspected bug reports whose bugs were either fully, partially, or
not localized by IBFL approaches. They found that the quality
of bug reports can substantially impact IBFL results. If bug
reports explicitly contain buggy file names, IBFL techniques
are more likely to identify the bugs. Additionally, Wang et
al. conducted user studies with developers to examine how
developers perceived the usefulness of IBFL tools [7]. The
study revealed that developers did not find such tools to be
quite useful and were unsatisfied by IBFL techniques.

In our evaluation, we constructed two data sets of bugs
and leveraged the known bug locations as ground truth. By
comparing the ranked list by any ��! variant against the
ground truth, we determined the approaches’ effectiveness. In
the future, we will also conduct a user study with developers
to learn about their opinions on ��!, and design better fault
localization approaches accordingly.

D. Test Reduction, Prioritization, or Generation

Some approaches were proposed to reduce, prioritize, or
generate test cases in order to facilitate fault localization [35],
[36], [16], [37]. For instance, Masri et al. introduced coin-
cidental correctness to describe the scenarios where buggy
statements are executed but the execution does not lead to
a test failure [37]. The researchers proposed a technique to
identify all coincidentally correct tests in a given test suite, and
to remove these tests in order to improve the effectiveness of
SBFL approaches. Yu et al. investigated how test-suite reduc-
tion strategies influence the effectiveness of fault localization
techniques [35]. When reducing the number of test cases that
cover the same statement, the researchers observed existing
SBFL techniques to usually work worse. Thus, they proposed
a new test-suite reduction strategy that reduces the number of
test cases covering the same statement set but causes negligible
impacts on fault localization.

Yoo et al. proposed FLINT, an information-theoretic ap-
proach to prioritize statements and test cases [16]. In par-
ticular, statements are ordered by suspiciousness, while test
cases are ordered by the degree to which they reduce the
entropy inherent in fault localization. Artzi et al. developed
a test generation approach to maximize the effectiveness of
SBFL [36]. Specifically, they defined a similarity criterion,
which is used to measure how the execution characteristics of
two tests are similar to each other. The criterion is also used
to direct concolic execution to generate tests whose execution
characteristics are similar to those of a given failed test.

Our research shares the same motivation with all prior
work, which is to explore ways to improve fault localization.
However, we did not propose any new approach to selectively
reduce, prioritize, or generate test cases. Instead, we conducted
an empirical study to compare different SBFL triggering
modes, and revealed that triggering SBFL right after the initial
test failure is the most effective and efficient mode. Our
research complements prior work. It can be used together
with existing approaches of test reduction, prioritization, or
generation. In the future, we will also explore how distinct
triggering modes work with existing approaches to influence
the effectiveness of fault localization.

VI. THREATS TO VALIDITY

a) Threats to External Validity: Our experiments were
conducted based on two bug sets for a closed-source project
and one bug set from four open-sourced projects. The eval-
uation results may not generalize well to other bugs, other
software products of other companies, or other open-source
projects. Our observations also depend on the quality and
quantity of test cases. In the future, we will experiment with
more buggy programs of more software systems.

b) Threats to Construct Validity: Among the investigated
bugs, each bug can be fixed with a single-line change and
the corresponding faulty program version contains a single
known bug. In reality, nevertheless, there are complex buggy
programs that contain multiple faults in one version. To fix
a bug, developers may need to change multiple lines of code

in the same source file, and/or even modify configurations in
non-source files. Our data set shares some of these limitations
with prior work [2], [17], [38], [21]. In the future, we will
diversify our approach to generate injected bugs and use more
complicated real bugs to better propose and evaluate fault
localization techniques.

c) Threats to Internal Validity: Similar to prior fault
localization research [12], [21], [26], given a bug fix, we
treated the location where the fixing change was applied as
ground truth. However, in reality, the place where a bug is
fixed is not always the place where a bug is found. For
instance, when a program fails to retrieve any record from
a database, the bug location lies in the code querying the
database, while the bug fix may be the SQL file used to update
the database records. Treating patch locations to be equivalent
to bug locations can introduce bias to the evaluated results.

VII. CONCLUSION

This paper presents our exploration on the distinct triggering
modes of SBFL techniques. Although researchers extensively
investigated the area of (semi-)automatic fault localization,
one practical problem seems to be overlooked: Is it always
necessary for SBFL techniques to wait for all test cases to
finish their execution before diagnosing the root cause(s) of
failed tests? We explored this problem in this study.

Specifically, we built ��!, a framework that triggers SBFL
in five alternative modes: triggering SBFL right after the
initial failure (��!1), after every failed test (��! 5), after the
initial failure and several extra failed tests (��!>), at a fixed
frequency (��!?), or after the execution of all tests (��!2).
By comparing the Top-1, Top-5, and MAP values achieved
by different triggering modes when SBFL techniques were
applied to distinct datasets, we surprisingly found that ��!1
worked better or at least equally well with other variants in
most scenarios. Namely, triggering SBFL right after the initial
test failure turns out to be often more effective and/or more
efficient than triggering SBFL later.

Our empirical study indicates that it is not always necessary
to execute all test cases before using SBFL formulas to locate
bugs. ��!1 demonstrates the promising adoption of SBFL
for recognizing faults in large-scale systems, even though the
test execution of such systems can last forever. In the CI/CD
software practices nowadays, ��!1 is more likely to satisfy
developers’ need of diagnosing test failures earlier, faster, and
better. Our research will shed light on new research directions,
such as agile fault localization based on the stream data of
execution profiles, and periodic health check for software
systems that run continuously without interruption. We plan
to pursue these directions in the future.

ACKNOWLEDGMENT

We thank reviewers for their insightful comments, and thank
the Cvent management team for their support. We also thank
Hanwen Liu for his help on experiment data. This work was
partially supported by NSF CCF-1845446.

REFERENCES

[1] “Cambridge University Study States Software Bugs Cost Econ-
omy $312 Billion Per Year,” http://www.prweb.com/releases/2013/1/
prweb10298185.htm, 2013.

[2] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test
information to assist fault localization,” in Proceedings of the 24th
International Conference on Software Engineering, ser. ICSE ’02.
New York, NY, USA: ACM, 2002, pp. 467–477. [Online]. Available:
http://doi.acm.org/10.1145/581339.581397

[3] R. Saha, M. Lease, S. Khurshid, and D. Perry, “Improving bug local-
ization using structured information retrieval,” in Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th International Conference on,
Nov 2013, pp. 345–355.

[4] T. Dao, L. Zhang, and N. Meng, “How does execution information
help with information-retrieval based bug localization?” in Proceedings
of the 25th International Conference on Program Comprehension, ser.
ICPC ’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 241–250.
[Online]. Available: https://doi.org/10.1109/ICPC.2017.29

[5] H. Souza, D. Mutti, M. Chaim, and F. Kon, “Contextualizing spectrum-
based fault localization,” Information and Software Technology, vol. 94,
10 2017.

[6] F. Keller, L. Grunske, S. Heiden, A. Filieri, A. van Hoorn, and D. Lo,
“A critical evaluation of spectrum-based fault localization techniques on
a large-scale software system,” in 2017 IEEE International Conference
on Software Quality, Reliability and Security (QRS), July 2017, pp. 114–
125.

[7] Q. Wang, C. Parnin, and A. Orso, “Evaluating the usefulness of
ir-based fault localization techniques,” in Proceedings of the 2015
International Symposium on Software Testing and Analysis, ser. ISSTA
2015. New York, NY, USA: ACM, 2015, pp. 1–11. [Online].
Available: http://doi.acm.org/10.1145/2771783.2771797

[8] “Clover,” https://www.atlassian.com/software/clover, 2019.
[9] V. Dallmeier, C. Lindig, and A. Zeller, “Lightweight bug localization

with ample,” in Proceedings of the Sixth International Symposium on
Automated Analysis-driven Debugging, 2005.

[10] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of
existing faults to enable controlled testing studies for java programs,”
in Proceedings of the 2014 International Symposium on Software
Testing and Analysis, ser. ISSTA 2014. New York, NY, USA:
Association for Computing Machinery, 2014. [Online]. Available:
https://doi.org/10.1145/2610384.2628055

[11] “Defects4J,” http://fault-localization.cs.washington.edu, 2020.
[12] J. Xuan and M. Monperrus, “Learning to combine multiple ranking

metrics for fault localization,” in Software Maintenance and Evolution
(ICSME), 2014 IEEE International Conference on, Sept 2014, pp. 191–
200.

[13] “About Code Coverage,” https://confluence.atlassian.com/clover/
about-code-coverage-71599496.html, 2017.

[14] R. Gopinath, C. Jensen, and A. Groce, “Mutations: How close are they
to real faults?” in 2014 IEEE 25th International Symposium on Software
Reliability Engineering, Nov 2014, pp. 189–200.

[15] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed?
more accurate information retrieval-based bug localization based on
bug reports,” in Software Engineering (ICSE), 2012 34th International
Conference on, June 2012, pp. 14–24.

[16] S. Yoo, M. Harman, and D. Clark, “Fault localization prioritization:
Comparing information-theoretic and coverage-based approaches,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 22, 07 2013.

[17] J. A. Jones and M. J. Harrold, “Empirical evaluation of the
tarantula automatic fault-localization technique,” in Proceedings of
the 20th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’05. New York, NY, USA: ACM, 2005, pp. 273–
282. [Online]. Available: http://doi.acm.org/10.1145/1101908.1101949

[18] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for
spectra-based software diagnosis,” ACM Trans. Softw. Eng. Methodol.,
vol. 20, no. 3, pp. 11:1–11:32, Aug. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2000791.2000795

[19] S. Yoo, “Evolving human competitive spectra-based fault localisation
techniques,” in Proceedings of the 4th International Conference on
Search Based Software Engineering, ser. SSBSE’12. Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 244–258.

[20] R. Abreu, P. Zoeteweij, and A. van Gemund, “On the accuracy of
spectrum-based fault localization,” in Testing: Academic and Industrial
Conference Practice and Research Techniques - MUTATION, 2007.
TAICPART-MUTATION 2007, Sept 2007, pp. 89–98.

[21] X. Li, M. d’Amorim, and A. Orso, Iterative User-Driven Fault Local-
ization. Cham: Springer International Publishing, 2016, pp. 82–98.

[22] L. Gong, H. Zhang, L. Jiang, and D. Lo, “Interactive fault localization
leveraging simple user feedback,” in Proceedings of the 2012 IEEE
International Conference on Software Maintenance (ICSM), ser. ICSM
’12. Washington, DC, USA: IEEE Computer Society, 2012, pp. 67–76.
[Online]. Available: http://dx.doi.org/10.1109/ICSM.2012.6405255

[23] D. Hao, L. Zhang, H. Mei, and J. Sun, “Towards interactive fault
localization using test information,” in 2006 13th Asia Pacific Software
Engineering Conference (APSEC’06), Dec 2006, pp. 277–284.

[24] X. Ye, R. Bunescu, and C. Liu, “Learning to rank relevant files for
bug reports using domain knowledge,” in Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2014. New York, NY, USA: ACM, 2014,
pp. 689–699. [Online]. Available: http://doi.acm.org/10.1145/2635868.
2635874

[25] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Combining
deep learning with information retrieval to localize buggy files for bug
reports (n).” in ASE, M. B. Cohen, L. Grunske, and M. Whalen, Eds.
IEEE, 2015, pp. 476–481.

[26] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An empirical
study of fault localization families and their combinations,” IEEE
Transactions on Software Engineering, 2019.

[27] H. Agrawal, J. R. Horgan, S. London, and W. E. Wong, “Fault lo-
calization using execution slices and dataflow tests,” in Proceedings
of Sixth International Symposium on Software Reliability Engineering.
ISSRE’95, Oct 1995, pp. 143–151.

[28] C. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H. Mei, “Boosting
bug-report-oriented fault localization with segmentation and stack-trace
analysis,” in 2014 IEEE International Conference on Software Mainte-
nance and Evolution, Sep. 2014, pp. 181–190.

[29] X. Zhang, N. Gupta, and R. Gupta, “Locating faults through automated
predicate switching,” in Proceedings of the 28th International
Conference on Software Engineering, ser. ICSE ’06. New York,
NY, USA: ACM, 2006, pp. 272–281. [Online]. Available: http:
//doi.acm.org/10.1145/1134285.1134324

[30] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller, “Predict-
ing faults from cached history,” in 29th International Conference on
Software Engineering (ICSE’07), May 2007, pp. 489–498.

[31] Lucia, D. Lo, L. Jiang, and A. Budi, “Comprehensive evaluation of
association measures for fault localization,” in Software Maintenance
(ICSM), 2010 IEEE International Conference on, Sept 2010, pp. 1–10.

[32] S. Yoo, X. Xie, F.-C. Kuo, T. Y. Chen, and M. Harman, “No pot of
gold at the end of program spectrum rainbow: Greatest risk evaluation
formula does not exist,” University College London and Swinburn
University, Tech. Rep., 2014.

[33] P. S. Kochhar, Y. Tian, and D. Lo, “Potential biases in bug localization:
Do they matter?” in Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ser. ASE ’14. New
York, NY, USA: ACM, 2014, pp. 803–814. [Online]. Available:
http://doi.acm.org/10.1145/2642937.2642997

[34] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. 42, no. 8, pp. 707–740, Aug 2016.

[35] Y. Yu, J. Jones, and M. J. Harrold, “An empirical study of the effects
of test-suite reduction on fault localization,” in 2008 ACM/IEEE 30th
International Conference on Software Engineering, 2008, pp. 201–210.

[36] S. Artzi, J. Dolby, F. Tip, and M. Pistoia, “Directed test generation for
effective fault localization,” in Proceedings of the 19th International
Symposium on Software Testing and Analysis, ser. ISSTA ’10. New
York, NY, USA: Association for Computing Machinery, 2010, pp.
49–60. [Online]. Available: https://doi.org/10.1145/1831708.1831715

[37] W. Masri and R. Abou Assi, “Prevalence of coincidental correctness
and mitigation of its impact on fault localization,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 23, 02 2014.

[38] G. K. Baah, A. Podgurski, and M. J. Harrold, “The probabilistic
program dependence graph and its application to fault diagnosis,” IEEE
Transactions on Software Engineering, vol. 36, no. 4, pp. 528–545, July
2010.

