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Abstract—Developers change software programs for various
purposes (e.g., bug fixes, feature additions, and code refactorings),
but the intents of code changes are often not recorded or are
poorly documented. To automatically infer the change intent
of each program commit (i.e., a set of code changes), existing
work classifies commits based on commit messages and/or the
sheer counts of edited files, lines, or abstract syntax tree (AST)
nodes. However, none of these tools reason about the syntactic
or semantic dependencies between co-applied changes, neither
do they adopt any deep learning method. To better characterize
program commits, in this paper, we present CClassifier—a new
approach that classifies commits by (1) using advanced static
program analysis to comprehend relationship between co-applied
edits, (2) representing edits and their relationship via graphs,
and (3) applying convolutional neural networks (CNN) to classify
those graphs.

Compared with prior work, CClassifier extracts a richer set
of features from program changes; it is the first to classify
program commits using CNN. For evaluation, we prepared a
benchmark that contains 7,414 code changes from 5 open-source
Java projects. On this benchmark, we empirically compared
CClassifier and the state-of-the-art approach with five-fold cross
validation. On average, when predicting bug-fixing commits
within the same projects, CClassifier improved the prediction ac-
curacy from 70% to 72%. More importantly, prior work seldom
identifies feature-addition commits; CClassifier can successfully
identify such commits in a lot more scenarios. Our evaluation
shows that CClassifier outperforms prior work due to its usage
of advanced program analysis and CNN.

Index Terms—Program commit, classification, deep learning

I. INTRODUCTION

During software maintenance, developers commit a variety
of code changes to fix bugs, add new features, or improve code
implementation. Understanding the change intents of these
program commits can facilitate developers to review other
developers’ code changes, and to prioritize and better process
pull requests; it can also enable researchers to effectively study
program data. However, manually reading code and inferring
the change intents can be challenging and time-consuming.
Although some projects (e.g., Apache Mahout [1]) adopt issue
tracking systems (e.g., Jira [2]) to explictly describe change
intents, they do not record such information for all commits.
Furthermore, many popular projects (e.g., Linux) even do
not use issue trackers. Even though developers sometimes
describe change intents in commit messages, there are still

many commits whose low-quality commit messages mention
nothing about the change intents.

To automatically infer change intents from commits, re-
searchers built machine learning-based approaches [3]–[6]. For
example, Hindle et al. [3] extracted coarse-grained features
from changes such as authors and file types, and Tian et
al. [4] extracted fine-grained features like the number of added
loops; they all trained models with the extracted features using
traditional algorithms (e.g., decision tree and SVM). Jiang et
al. [5] and Loyola et al. [6] extracted added or deleted tokens
from code diff files to translate code changes into commit
messages via neural machine translation. However, these tools
have two limitations. First, they use commit messages to
train classifiers; when commit messages are missing or poorly
specified, the trained classifiers can work badly. Second, these
tools treat co-applied edits as independent ones although in
reality, these edits are usually related [7]. When overlooking
the interconnections between co-applied edits, existing tools
can misclassify commits.

Intuitively, to fulfill distinct maintenance tasks, developers
usually apply different sets of changes and those changes
are connected in specific ways. For instance, to add new
functionalities, developers often define new entities (e.g., fields
and methods) and revise existing entities to access the new
ones; for bug fixing, developers often change existing entities
to update the program logic; and for refactoring, developers
may apply semantic-preserving changes to existing code (e.g.,
renaming) or even define new entities as needed. These
insights inspired us to develop CClassifier—an automatic
approach that classifies commits based on co-applied edits and
any relationship between them. Our research overcomes three
technical challenges:

1) How should we characterize program commits?
To characterize each program commit and to relate co-
applied edits with each other as much as possible, CClas-
sifier conducts static program analysis to recognize (1)
the syntactic dependencies (i.e., referencer-referencee
relations) between edited entities, (2) the control and
data dependencies between edited statements, and (3)
refactored entities (e.g., renamed methods).

2) How can we represent characterizations uniformly?
As some characteristics involve single entities while



others involve multiple entities, novel representations are
needed to uniformly encode distinct characteristics into
formats processable by machine learning. CClassifier
creates a graph for each commit by treating changed
entities as nodes and representing the syntactic depen-
dencies between entities as edges; it encodes the other
characteristics as attributes of nodes or edges.

3) How can we classify program commits based on code
changes and their relationship?
Since traditional machine learning algorithms are not
good at classifying graphs, CClassifier uses convolu-
tional neural networks (CNN) to classify graphs. In
particular, CClassifier identifies a set of important nodes
in each graph, normalizes the vector representations for
graphs [8], and feeds those vectors to CNN.

For evaluation, we constructed a data set with the 7,414
program commits from 5 Apache projects, whose commit cat-
egories were manually labeled by developers. To compare with
prior work, we reimplemented the state-of-the-art approach by
Levin et al. [9] as our baseline based on the paper description.
This baseline classifies commits based on commit messages
and code changes. CClassifier outperformed the baseline by
classifying changes more accurately, although it did not need
any commit message. Compared with prior work, CClassifier
is unique in its characterization and representation of commits.
• Characterization. CClassifier is the first to characterize

commits by conducting static inter-procedural program
analysis on edited Java files. Compared with prior work
that characterizes program changes based on token se-
quences or abstract syntax trees (ASTs), our characteri-
zation is deeper. It models the syntactic dependencies be-
tween co-edited entities, the semantic relevance between
co-edited statements, and code refactoring operations.

• Representation. CClassifier is the first to introduce
graphic representations into the prediction of change in-
tents. Compared with prior work that represents changes
with vectors of tokens or ASTs, we believe that graphs
are more suitable because they have been widely used
in static program analysis to visualize code syntax and
semantics [10], [11]. Our application of CNN to the
graphical representations has never been explored before.

At https://figshare.com/s/2c04d6bde90e761b11a3, we open-
sourced our program and data.

II. RELATED WORK

The related work of our research includes change cat-
egorization, automatic change comprehension, and program
representation for deep learning.

Change Categorization. Tools were built to classify com-
mits [3], [4], [9], [12], [13]. For instance, Mockus et al. [12]
and Levin et al. [9] separately developed approaches to identify
three possible reasons for software changes: adaptive, correc-
tive, and perfective. In particular, Mockus and Votta extracted
keywords from commit messages and defined classification
rules to categorize changes [12]. Existing tools adopt commit

messages to classify commits, so they can work poorly when
the messages are missing or misleading.

Automatic Change Comprehension. Researchers have
proposed approaches to automatically comprehend program
changes [5], [14]–[17]. For instance, Jackson and Ladd de-
tected differences between two program versions, and con-
ducted control/data dependencies analysis to summarize se-
mantic impacts of applied changes [14]. DeltaDoc leverages
symbolic execution and code summarization to describe (1)
the runtime conditions necessary for control flows to reach
any changed statement, and (2) the effect of changes on pro-
gram behaviors [15]. We were inspired by these approaches,
although none of them classifies commits.

Program Representation for Deep Learning. Researchers
explored various ways to represent programs or code changes
for deep learning [18]–[21]. For example, Peng et al. parsed
an AST for each Java file; they defined a deep neural network
to learn the vector representation for each AST node such that
the embedding of a parent node is computable based on the
embeddings of all children [18]. Gated Graph Neural Networks
(GGNN) model programs as graphs [22]. In each graph, a node
represents an AST node, while an edge represents either (1)
the parent-child relationship, (2) sequential ordering between
children of the same parent, or (3) the def-def, def-use, or
use-use relationship of variables. However, no existing work
represents commits with graphs, or models the relationship
between co-applied edits with edges or attributes.

III. CCLASSIFIER

There are three components in CClassifier. Given a com-
mit, the first component extracts edited program entities and
identifies their relationship. The second component models all
extracted information as a graph; and the third component
classifies commits based on those graphs. The following
subsections explain each component with more details.

A. Extracting Changes and Their Relations

Given a commit, CClassifier first uses ChangeDistiller [23]
to detect changed program entities and statement-level
changes, and then conducts static program analysis to identify
any syntactic or semantic relation between co-applied edits.

1) Syntactic Program Differencing: For a commit C,
CClassifier first retrieves the old and new versions of any
edited Java files by C. For each pair of changed files (fo, fn),
CClassifier uses ChangeDistiller to create an AST for each
version; ChangeDistiller then compares the ASTs to generate
an edit script consisting of node insertion(s), deletion(s),
update(s), and move(s). We leveraged ChangeDistiller to re-
veal changes at two levels: entity-level and statement-level.
Namely, with minor extension, ChangedDistiller can report
eight types of entity-level edits: changed method (CM), added
method (AM), deleted method (DM), changed field (CF),
added field (AF), deleted field (DF), added class (AC), and
deleted class (DC).

Additionally, inside each edited method, ChangeDistiller
also detects finer-grained statement-level changes. Because (1)



class Example {
+ int newField;

void methodA() {
...

+   newField = foo();
...

}
}

(a)

CM
Example.methodA()

AF
Example.newField

Field Access

(b)
Fig. 1: A program commit and its CDG

there are 15 kinds of Java statements (e.g., if- and while-
statements) and (2) ChangeDistiller can generate 4 possible
edit operations for each statement: Insert, Delete, Update, and
Move, in total, ChangeDistiller can report 60 (i.e., 15∗4) types
of statement-level operations (e.g., insert an if-statement).

2) Static Program Analysis: Based on the detected entity-
level changes and statement-level changes, CClassifier applies
static program analysis to connect edits based on four types
of information: syntactic dependencies, control dependencies,
data dependencies, and refactoring operations.

(i) Extraction of Syntactic Dependencies. An entity E1 is
syntactically dependent on another entity E2 if the compila-
tion of E1 depends on that of E2 [24]. There are four types of
syntactic dependencies: (i) Contained by, (ii) Overridding, (iii)
Method Invocation, and (iv) Field Access. CClassifier extracts
syntactic dependencies because they help explain why certain
entities are co-changed. To extract syntactic dependencies,
CClassifier adopts a tool InterPart [25], which takes in the old
and new versions of every changed Java file and applies inter-
procedural Class Hierarchy Analysis (CHA) to each version.

With the analysis results by InterPart, CClassifier creates
a change dependency graph (CDG) for each commit. A
CDG has nodes to represent changed entities, and edges to
represent dependencies. For instance, Fig. 1(a) shows that a
commit adds a new field and changes a method to access the
field. CClassifier generates a CDG (see Fig. 1(b)), where a
“Field Access” link starts from a CM and ends at an AF to
visualize the dependence relation. If co-changed entities have
no syntactic relevance with each other, our CDG will contain
a set of nodes without any edge.

(ii) Extraction of Control & Data Dependencies. Both con-
trol and data dependencies reflect semantic relevance between
statements. A statement S1 (e.g., return-statement) is control
dependent on another statement S2 (e.g., if-statement), if
whether or not S1 is executed depends on the execution result
of S2 [26]. A statement S1 is data dependent on another
statement S2, if S1 uses a variable whose value is defined by
S2 [27]. We capture the direct control and data dependencies
between edited statements in each method, because such
dependencies reflect how control or data flows may be affected
by edits. For instance, when an if-statement is added to an
existing method, new control dependencies may be introduced
and the program semantics is modified. Here, we use a static
analysis framework WALA [28] to conduct intra-procedural
control and data dependency analysis.

(iii) Identification of Refactoring Operations. Refactoring

applies a series of behavior-preserving transformations to an
existing codebase in order to improve the software design [29].
A refactoring operation may edit one or more program entities.
CClassifier detects refactoring operations with a state-of-the-
art tool: RefactoringMiner [30]. The tool detects 17 types of
refactorings. 5 of the 17 types mainly edit single entities. For
example, Extract Variable is a refactoring to define a variable
that holds the evaluation result of an expression. 12 of the 17
refactoring types mainly edit multiple entities. For example,
Move Operation is a refactoring that moves a method from
one class to another class. The detected refactoring operations
help CClassifier interpret why some entities were co-changed
in certain ways.

B. Graph Modeling

To represent all extracted change data in a uniform way,
CClassifier converts CDGs to vectors. This design choice is
meaningful for two reasons. First, CDGs overview changed
entities, and all statement-level edit operations can be mapped
to corresponding changed entities. Second, CDGs demonstrate
the structural connections between changed entities, while the
entity-level semantic relationship is often established upon
such structural relations. For instance, if a field f is not
accessed by a method m(), it is unlikely that the data/control
dependencies or refactorings in m() will have any relevance
to f . Specifically, in our graph modeling, we use a 75-attribute
vector to characterize each node and a 72-attribute vector to
characterize each edge in CDG.

(i) Node Embedding (Vector Representation for Node). As
shown in Fig. 2, the first eight one-hot attributes reflect the
entity-level change types. Each attribute corresponds to one
change type (e.g., CM), and is set to “1” if the node has
the type. Since each node has only one change type, there
is only one “1” among the values of these attributes. The
subsequent five attributes show whether any of the five single-
entity refactorings is applied. If a refactoring is applied, the
corresponding attribute is set to “1” (“0” otherwise).

Next, two attributes are based on the data dependency
analysis for each edited method. Specifically, one attribute
counts the number of variable definitions involved in edited
statements (“defCounter” for short), while the other counts
the number of variable uses touched by edits (“useCounter”
for short). In our implementation, CClassifier applies data
dependency analysis to both the old and new versions of
each edited method, and counts how many variable defini-
tions/uses are covered by edits in respective versions. For
instance, when statement a=1 is deleted and statement b=2

is inserted, CClassifier increments defCounter by 2. The last
60 attributes correspond to statement-level edit operations
reported by ChangeDistiller. Given the edit script generated
by ChangeDistiller for any edited method, CClassifier clusters
operations based on their types, and counts the number of
operations for each type.

(ii) Edge Embedding (Vector Representation for Edge). As
shown in Fig. 3, the first four attributes reflect the edge types.
For example, if an edge has the type “Overriding”, the 2nd



One-hot 
node type (8)

Refactoring 
type (5)

# of edited 
def/use(2)

# of edits per statement-
level operation type (60)

CM? AM? DM? CF? AF? DF? AC? DC?

R1? R5? R15? R16? R17?

Fig. 2: A node is denoted as a 75-attribute numeric vector

Edge type (4) Dependency (56)Refactoring type (12)

Contained by? Overriding? Method Invocation? Field Access?

R2? R3? R4? R6? R7? R8? R9? R10? R11? R12? R13? R14?

Fig. 3: An edge is denoted as a 72-attribute numeric vector

attribute is set to “1”; otherwise, the attribute is set to “0”.
The subsequent 12 attributes reflect whether any of the 12
multi-entity refactorings is applied.

The last 56 attributes show the control and data dependency
analysis results for individual edited methods. The dependen-
cies exist either between two edited methods or between an
edited method and an edited field. For instance, as shown in
Fig. 4, two methods are co-changed, and m2() is modified
to invoke m1(). According to the control dependency result
for m2(), there is an edited statement (i.e., return;) control
dependent on the invocation of m1(). Thus, we set the attribute
cdep(m2, m1, m2→m1) to “1”. Generally speaking, the tuple
“cdep(A,B,A → B)” means that entity A is control depen-
dent on entity B when A invokes B. Since A (or B) can be
either AM, CM, or DM, there are seven possible combinations
between the change types of both methods:
{CM CM, CM AM, CM DM, AM CM, AM AM, DM CM,

DM DM}.
Therefore, we have seven attributes defined for the seven
scenarios, with each attribute implying whether or not the cor-
responding relation exists. Symmetrically, we have additional
seven attributes defined for the tuple format “cdep(B,A,A→
B)”, seven attributes for “ddep(A,B,A → B)” (data depen-
dency), and seven attributes for “ddep(B,A,A→ B)”.

Similarly, when the control dependencies occur between an
edited method and an edited field, we can have the tuple format
“cdep(E,F,E → F )”, meaning that method E is control
dependent on field F when E accesses F . There are also seven
possible combinations between the change types of entities:
{CM CF, CM AF, CM DF, AM CF, AM AF, DM CF,

class Example2 {
boolean m1() {

// modification
}
void m2() {

+  if (m1()) {
+     return;

}
…

}
}

(a)

CM
Example2.m2()

CM
Example2.m1()

Method Invocation
cdep(m2, m1, m2->m1)

(b)
Fig. 4: A CM is control dependent on another CM

DM DF}.
Symmetrically, we define other seven attributes in the
tuple format “cdep(F,E,E → F )”, seven attributes
for “ddep(E,F, E → F )”, and seven attributes for
“ddep(F,E,E → F )”.

To sum up, 28 attributes are defined to characterize the po-
tential control/data dependencies between two edited methods,
and 28 attributes are used to capture the potential dependencies
between one edited method and one edited field. For the
example shown in Fig. 4, all the 28 attributes about method-
field relations are set to “0”, because the example illustrates
method-method relations.

In our implementation, we used the data structures defined
in a python library NetworkX [31] to store graphs. Specifically,
each graph is saved as a hash map of nodes Mn together with
a hash map of edges Me. Mn uses a unique ID allocated
for each node as the key, and the corresponding 75-attribute
vector as value. Since every directed edge has a source node
and a sink node, Me uses the unique IDs of both source and
sink nodes of each edge as key, and uses the corresponding
72-attribute edge vector as value.

C. Classification with CNN

A convolutional neural network (CNN) is a class of
deep neural networks, mostly applied to analyze visual im-
agery [32]. The general architecture of a CNN usually has
three components: (1) a convolutional layer to scan input
images for patterns and produce a feature map, (2) a pooling
layer (optional) to reduce the feature map dimensionality for
computational efficiency, and (3) a fully connected network to
output an N -dimensional vector for an N -class classification
problem. CNN is used for many applications, including image
classification [33], facial recognition [34], and object detec-
tion [35]. To classify program commits, we cannot naı̈vely
apply a basic CNN to our graphs for two reasons:

• Varying graph sizes. CNN takes images with fixed sizes,
while CDGs have a variety of sizes.

• Embeddings for nodes and edges. CNN is good at
classifying images based on arrays. However, our graph
representation contains hash maps for nodes and edges;
such representation cannot be easily converted to arrays.

To overcome both challenges, we reused a state-of-the-art
approach—Patchy-San [8]—to convert graphs to inputs ac-
ceptable by CNN. This section will first introduce Patchy-San
and then present our CNN built for graph classification.

1. Node 
sequence 
selection

Input graph 
(with embeddings

of nodes and edges)
Normalized 
embeddings for
selected nodes

Normalized 
embeddings for
selected edges

2. 
Neighborhood 

assembly

3. Graph 
normalizationPatchy-San

Fig. 5: There are three steps in Patchy-San to normalize input
graphs to vectors acceptable by CNN
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Fig. 6: Overview of CClassifier’s CNN structure

1) Our Usage of Patchy-San [8]: As shown in Fig. 5,
Patchy-San contains three steps that normalize input graphs
to vectors accepted by CNN. Given an input graph G that
is represented with a hash map of node embeddings and a
nested hash map of edge embeddings, Step 1 selects the most
important w nodes based on the betweenness centrality [36]
metric, which is calculated as:

g(v) =
∑

s 6=v 6=t

σst(v)

σst
. (1)

In the formula, σst is the total number of shortest paths from
node s to node t, and σst(v) is the number of those paths that
go through v. Intuitively, the more shortest paths go through a
given node v, the higher g(v) value we obtain, and the more
central or important v is.

Step 1 picks a fixed number of nodes with the highest
values. This is because when graphs have varying sizes, we
always need to create a fixed size of uniform representation
for them such that CNN is applicable. By default, Patchy-
San sets w = 18. We reuse this default setting because in
our experiment data, 88% of graphs have at most 18 nodes.
We use zero paddings if a graph has fewer nodes, and pick
the most important ones when a graph has more nodes. In
this way, we ensure the normalized representation to cover all
nodes for most graphs.

To reflect the surrounding context of each selected node v,
Step 2 assembles a local neighborhood N for v. Specifically,
starting from v, this step conducts breadth-first search, ex-
plores reachable nodes with increasing distances from v, and
adds nodes into the set N until (1) k nodes are included, or
(2) there is no more neighbor to add. By default, k = 10.

To normalize the representation for selected nodes and their
neighborhoods, Step 3 ranks the neighbors of each selected
node v in the ascending order of their distances to v, and
appends dummy nodes if there are insufficient neighbors.
Additionally, for each neighbor node nn ∈ N , this step
identifies at most k edges starting from nn and ending at any
neighbor np ∈ N , and ranks these edges based on the ranking
of their ending nodes. Intuitively, such normalization captures
the subgraphs composed by neighbors of w nodes and their
edges. Finally, this step outputs (1) (w∗k)-length node vectors
with each node represented with a 75-attribute vector, and (2)
(w ∗ k ∗ k)-length edge vectors with each edge represented as
a 72-attribute vector.

2) The Structure of Our CNN: Fig. 6 shows how our CNN
takes normalized input vectors to classify graphs. Specifically,
two separate convolutional layers are used to independently
take in the normalized embeddings for nodes and edges, as the
two types of embeddings have totally different formats. Each
convolutional layer outputs 16 w×1 feature maps. The two sets
of maps are then concatenated to obtain 32 w×1 maps. Next,
flattening combines all maps into a single-dimensional vector
to create a unified representation for both nodes and edges.
Afterwards, the vector is sent to a fully connected network,
whose output layer contains three nodes corresponding to three
categories. CClassifier categorizes commits by reporting the
one whose probability is the highest.

We implemented our CNN based on TensorFlow [37].
CClassifier takes a supervised learning approach to apply
CNN for commit classification, so there are two phases in
CClassifier: training and testing. Phase I trains a CNN model
based on labeled commits, while Phase II exploits the trained
model to predict the category for any given program commit.
Notice that we chose Patchy-San CNN over other graph neural
networks (e.g., GGNN [22]) mainly because the other neural
networks cannot take edges with attributes as inputs.

IV. EXPERIMENTAL EVALUATION

In this section, we introduce the data set for evaluation,
and then present the comparison between CClassifier and a
baseline technique. Finally, we discuss how the parameter
setting in CNN influences CClassifier’s effectiveness.

A. Apache Code Change Data

Our data includes commits from five open-source Apache
projects: ActiveMQ [38], Aries [39], CarbonData [40], Cas-
sandra [41], and Mahout [1]. We included the commit data
of these five projects for three reasons. First, they are well-
maintained and from different application domains. Second,
the quality of commit messages is quite good, which can
facilitate the baseline technique [9] to work well. Third, many
commit messages refer to issue IDs, whose corresponding
reports in the issue tracking system have category labels man-
ually defined by developers. When constructing the dataset,
we removed some commits from each project if (1) they
correspond to duplicated issues, (2) they are not related to
any issue, or (3) they cannot be processed by InterPart or
RefactoringMiner due to technical issues. As shown in Table I,
our data set has 7,414 labeled commits, including 3,902 bug



TABLE I: Labeled program commits of five projects

Project Bug Fix Functionality
Addition Other Total

ActiveMQ 1,003 156 520 1,679
Aries 459 272 368 1,099
CarbonData 170 22 162 354
Cassandra 1,905 329 1,223 3,457
Mahout 365 89 371 825
Sum 3,902 868 2,644 7,414

fixes, 868 functionality additions, and 2,644 commits of other
types (e.g., refactoring).

Due to the time limit, we did not further expand our dataset
by collecting more labeled commits. Actually, this dataset is
already larger than those used by prior work [3], [4], [9], [42].
We also contacted the authors of prior work to reuse their
datasets, but were unable to obtain the data.

B. Experiment Settings

Levin et al.’s approach (we use “Baseline” for short) [9] uses
traditional classification algorithms (e.g., J48), and extracts 68
features from commit messages and code changes. In partic-
ular, 48 features are based on the output by ChangeDistiller;
they correspond to the change types applied to different pro-
gram elements (e.g., methods, parameters, and return types),
with each feature counting the frequency of one type. Another
20 features correspond to a predefined list of 20 keywords,
with each feature counting the frequency of one keyword in
any commit message.

We chose Levin et al.’s approach as the baseline, because it
is the state-of-the-art commit classification technique that clas-
sifies commits into three categories. Since the implementation
of Levin et al. is not publicly available1, we carefully rebuilt
the tool based on the paper description. In that paper, the
category “adaptive” is about new feature introduction; “cor-
rective” corresponds to bug fixes; and “perfective” refers to
system improvements. Thus, we naturally map these category
labels generated by Baseline to our classes: “Bug Fixes (BF)”,
“Functionality Addition (FA)”, and “Other(O)”.

There are two settings in our comparative experiment:
within-project and cross-project. For the within-project set-
ting, we evenly split the commit data of each project into five
portions and conducted five-fold cross validation [43]. Namely,
we ran each tool five times. Each run used four portions of
data for training and the remaining one portion for testing.
Afterwards, we calculated the average precision, recall, and
F-score values among all runs for each project. For the cross-
project setting, we also ran both tools five times. Each run
used the data of four different projects for training and the
data of a fifth project for testing.

1) The Results of Within-Project Setting: Table II presents
the effectiveness comparison between CClassifier and Baseline
per commit category per project. For bug fixes, on average,
CClassifier acquired a higher F-score than Baseline (72%
vs. 70%). Among the five projects, CClassifier identified bug

1We emailed Levin et al. to ask for the original tool implementation and
their evaluation data set, but achieved no success.

fixes with higher F-scores in four projects (i.e., ActiveMQ,
Aries, Cassandra, and Mahout), while Baseline achieved a
higher F-score in CarbonData (74% vs. 71%).

For functionality additions (FA), CClassifier worked signif-
icantly better than Baseline in all projects. Especially, CClas-
sifier obtained 17% average F-score among all projects, while
Baseline could not identify any FA commit in four projects.
Even though Baseline labeled some commits in Aries as FA,
its F-score 24% is much lower than that of CClassifier (44%).
For the commits related to other purposes (O), CClassifier
outperformed Baseline by obtaining much higher F-scores
in three projects (i.e., ActiveMQ, Aries, and Cassandra),
while Baseline worked better in the other two projects (i.e.,
CarbonData and Mahout). On average, CClassifier achieved a
considerably higher F-score for O commits than Baseline (i.e.,
42% vs. 22%).

Finding 1: For the within-project setting, CClassifier
worked better than Baseline by classifying commits more
accurately in most scenarios. CClassifier predicated com-
mits of FA and O categories more effectively than Baseline,
although it only extracts features from code changes while
Baseline also extracts features from commit messages.

2) The Results of Cross-Project Setting: Similar to what
we observed for the within-project setting, we saw similar
comparison results in Table III for the cross-project setting.
Specifically for bug fixes, on average, CClassifier acquired
higher precision (60% vs. 56%), lower recall (87% vs. 94%),
and higher F-score (71% vs. 70%). For functionality additions,
CClassifier managed to identify such changes in two projects,
while Baseline could not detect such changes for any project.
The poor results by both tools imply that it is very challenging
to identify commits of functionality additions. For O commits,
CClassifier obtained lower precision (50% vs. 53%), higher
recall (33% vs. 18%), and higher F-score (38% vs. 26%).
CClassifier generally worked better than Baseline in most
classification scenarios.

Finding 2: For the cross-project setting, CClassifier out-
performed Baseline in more scenarios.

When comparing Table III with Table II, we observed that
both tools worked less effectively in the cross-project setting.
This is expected, because the program commits in different
projects can be quite different from each other, and the
developers of different projects may have distinct opinions on
commit classification. For instance, as shown in Fig. 7–Fig. 9,
all three commits similarly modify condition checks. The
commit from ActiveMQ (see Fig. 7) inserts an if-condition
check, and removes an else-branch while keeping the content
statement. On the other hand, a commit from Cassandra (see
Fig. 8) updates an if-condition, and removes an if-statement
while keeping part of the content. Another Cassandra commit
(see Fig. 9) updates an if-condition. However, developers
of ActiveMQ classified the former commit as “FA”, and
Cassandra developers classified the latter two commits as
“BF”. In the cross-project setting, CClassifier categorized all



TABLE II: Effectiveness (%) comparison between CClassifier and Baseline for the within-project setting

Test Project

CClassifier Baseline
Bug Fix Functionality Other Bug Fix Functionality Other

(BF) Addition (FA) (O) (BF) Addition (FA) (O)
P R F P R F P R F P R F P R F P R F

ActiveMQ 67 89 76 37 10 15 49 28 35 60 100 75 - 0 - 65 3 7
Aries 55 81 65 59 35 44 53 38 44 44 95 60 71 15 24 47 6 11
CarbonData 63 81 71 88 17 39 69 56 61 75 74 74 - 0 - 65 74 69
Cassandra 62 88 73 45 2 5 54 32 40 57 96 72 - 0 - 60 12 19
Mahout 61 80 69 49 16 24 64 53 58 63 67 65 - 0 - 59 70 64
Average 62 86 72 48 11 17 54 36 42 57 92 70 - 2 - 59 18 22

TABLE III: Effectiveness (%) comparison between CClassifier and Baseline for the cross-project setting

Test Project

CClassifier Baseline
Bug Fix Functionality Other Bug Fix Functionality Other

(BF) Addition (FA) (O) (BF) Addition (FA) (O)
P R F P R F P R F P R F P R F P R F

ActiveMQ 67 85 75 - 0 - 44 33 37 62 96 75 - 0 - 52 14 22
Aries 53 79 64 - 0 - 40 45 42 44 93 59 - 0 - 44 15 23
CarbonData 57 80 67 - 0 - 61 43 50 54 98 69 - 0 - 80 22 35
Cassandra 61 92 73 21 0 1 54 25 34 60 92 73 - 0 - 51 22 30
Mahout 55 85 67 5 1 1 59 40 48 46 98 63 - 0 - 65 9 16
Average 60 87 71 - 0 - 50 33 38 56 94 70 - 0 - 53 18 26

		if	(!pivots.isEmpty())	{	
				…	
+		if	(message.size()	!=0)	
						return	(MessageReference[])messages.toArray(	
										new	MessageReference[messages.size()]);		
}		
-	else	{	
								return	new	MessageReference[]	{	
												(MessageReference)	messages.removeFirst()};	
-		}	

Fig. 7: A commit in ActiveMQ that was manually labeled as
“FA” but automatically classified as “BF” [44]

-		if	(arguments.length	<	2)		
+	if	(arguments.length	<=	2)			
		{	badUse("rebuild_index	requires	ks	and	cf	args");	}	
-		if	(arguments.length	>=	3)		
					probe.rebuildIndex(arguments[0],	arguments[1],	arguments[2].split(","));	
-	else	
-  probe.rebuildIndex(arguments[0],	arguments[1]);		

Fig. 8: A commit in Cassandra that was both manually and
automatically labeled as “BF” [45]

of these three commits as “BF”.
Finding 3: CClassifier and Baseline worked more ef-
fectively for within-project predictions than for cross-
project predictions, due to the divergence between different
projects and their developers.

C. Sensitivity to Parameters in CNN

Four parameters were tuned to configure CClassifier. For
graph normalization, there is a parameter k to decide the
number of neighbors we need to capture for each selected im-
portant node. For the convolutional layer, there is a parameter
nf to decide the number of neurons used to generate feature
maps. For the fully connected network, there is a parameter
nl to decide the number of hidden layers included before the
output layer, and another parameter nn to decide the number

- if (t.timestamp() < getMaxPurgeableTimestamp() 
- && t.data.isGcAble(controller.gcBefore))
+ if (t.data.isGcAble(controller.gcBefore) 

&& t.timestamp() < getMaxPurgeableTimestamp())
{ …

Fig. 9: Another commit in Cassandra that was both manually
and automatically labeled as “BF” [46]

of neurons in each hidden layer. We were curious how sensitive
CClassifier is to these parameters, so we conducted exper-
iments in the within-project setting, to investigate different
parameter values.

Due to the space limit, this paper does not present the
measured data of CClassifier’s effectiveness with different
parameter settings. Please visit our project website for more
details. In summary, CClassifier’s effectiveness is seldom
affected by the number of neighbors k or the number of
filters used nf . As the number of hidden layers nl increased,
CClassifier worked worse. As the number of hidden nodes nn
increased, CClassifier’s effectiveness increased first and then
became stable. Therefore, by default, we set k = 10, nf = 16,
nl = 1, and nn = 128.

V. CONCLUSION

This paper presents CClassifier, a learning-based approach
to classify commits purely based on program changes, without
requiring for any commit message. Different from prior work,
CClassifier is novel in three aspects. First, in addition to recog-
nizing program changes, CClassifier captures various syntactic
and semantic relationship between co-applied changes. By
simultaneously characterizing individual subsets of related
changes, CClassifier intends to model the overall modification
semantics for the whole program commit. Second, CClassifier
represents all changed entities and their relations as nodes,
edges, and attributes in a graph; no prior work extracts such



diverse information or encodes the data in such a uniform
way. Third, CClassifier adopts Patchy-San to convert graphs
to vectors processable by CNN; CClassifier is the first to
repurpose the technique for commit classification.

Our evaluation shows that CClassifier worked better than the
state-of-the-art learning-based approach, even though CClassi-
fier does not rely on developers to provide commit messages.
CClassifier outperformed the baseline technique by correctly
identifying the three types of commits in more scenarios. In
the future, we will further improve CClassifier’s classification
accuracy by exploring the usage of other CNN architectures
(e.g., residual neural networks and dense neural networks).
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