Generating Efficient Solvers from Constraint Models

Shu Lin Na Meng Wenxin Li
Peking University Virginia Tech Peking University
China China
fzlinshu@pku.edu.cn nm8247@cs.vt.edu Iwx@pku.edu.cn

ABSTRACT

Combinatorial problems (CPs) arise in many areas, and people use
constraint solvers to automatically solve these problems. However,
the state-of-the-art constraint solvers (e.g., Gecode and Chuffed)
have overly complicated software architectures; they compute so-
lutions inefficiently. This paper presents a novel and model-driven
approach—SoGEN—to synthesize efficient problem-specific solvers
from constraint models. Namely, when users model a CP with
our domain-specific language PDL (short for Problem Description
Language), SOGEN automatically analyzes various properties of the
problem (e.g., search space, value boundaries, function monotonic-
ity, and overlapping subproblems), synthesizes an efficient solver
algorithm based on those properties, and generates a C program as
the problem solver. SOGEN is unique because it can create solvers
that resolve constraints via dynamic programming (DP) search.
For evaluation, we compared the solvers generated by SOGEN
with two state-of-the-art constraint solvers: Gecode and Chuffed.
SoGEN’s solvers resolved constraints more efficiently; they achieved
up to 6,058x speedup over Gecode and up to 31,300x speedup over
Chuffed. Additionally, we experimented with both SOGEN and the
state-of-the-art solver generator—Dominion. We found SOGEN to
generate solvers faster and the produced solvers are more efficient.

CCS CONCEPTS

» Theory of computation — Theory and algorithms for ap-
plication domains; » Software and its engineering — Domain
specific languages; Automatic programming,.

KEYWORDS

Combinatorial problems (CP), constraint solvers, static analysis of
problem properties, automated DP optimization

ACM Reference Format:

Shu Lin, Na Meng, and Wenxin Li. 2021. Generating Efficient Solvers from
Constraint Models. In Proceedings of the 29th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE ’21), August 23-28, 2021, Athens, Greece. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3468264.3468566

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE °21, August 23-28, 2021, Athens, Greece

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8562-6/21/08...$15.00
https://doi.org/10.1145/3468264.3468566

1 INTRODUCTION

Combinatorial problems (CPs) [20] popularly exist in a variety
of domains. Typical CPs include:

(1) Register Allocation [21]: How can we assign a large number
of variables to a few registers?

(2) Winner Determination in Combinatorial Auction [27]: Given
a set of bids in an auction, what is the allocation of items to
bidders that maximizes the auctioneer’s revenue?

Each CP involves finding a grouping, ordering, or assignment of a
discrete and finite set of objects that satisfies given conditions. Con-
straint solving provides a means of solving CPs automatically. When
using an existing constraint solver (e.g., Gecode [28], Chuffed [7],
or Minion [12]) to solve a problem, users go through two stages.
First, users adopt a domain-specific language (e.g., MiniZinc [24])
to model the problem as (1) a set of decision variables and (2) a
set of constraints on those variables. Here, a decision variable
represents a choice that must be made to solve the problem. Second,
a constraint solver is used to search for a solution to the model, i.e.,
value assignment to variables such that all constraints are satisfied.

A major limitation of existing generic solvers is the scalability
issue. Namely, current solvers cannot quickly solve certain CPs
even if the problem size is moderate (i.e., the problem has a decent
number of variables and each variable has a reasonable value range).
For instance, based on our experience, although Gecode can find the
shortest path between two nodes in a given graph, it cannot solve
this problem within a reasonable amount of time (e.g., 3 hours)
when the graph has 100 or more nodes. One reason to explain
such deficiency is the inefficient backtracking search algorithm
popularly used by solvers. As problem size increases, the search
space can grow exponentially and the naive search can become
very slow and ineffective. Some researchers recently explored to
use SAT/SMT solvers to solve CP constraints [5, 34, 37]. However,
SAT/SMT solvers only handle SAT/SMT problems—a subset of CPs.
They cannot solve CPs when objective functions are complex (e.g.,
composed of nonlinear functions).

Additionally, existing constraint solvers are usually provided as
toolkits or software libraries [6, 29]. To mitigate the scalability issue
mentioned above, users are supported to configure and tune the op-
timization options offered by solvers via programming or machine
learning [13, 15, 35, 36]. However, constraint toolkits have become
overly complex in an effort to support more functionalities [26];
such complexity negatively impacts the efficiency and scalability
of solvers in two ways:

(1) Configuring or tuning existing solvers for large and realistic
problems requires users of a great deal of expertise, and
demands lots of fine-tuning effort by humans or machines.

https://doi.org/10.1145/3468264.3468566
https://doi.org/10.1145/3468264.3468566

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

(2) The complex software architecture of these toolkits can intro-
duce high overheads into the constraint solving procedure,
compromising any performance gain due to optimizations.

In this paper, we introduce a novel approach—SoGEeN (short for
Solver Generator)—that generates efficient solvers from CP models
to better address the scalability issue. There are two components
in SOGEN: a constraint modeling language PDL and a generation
engine. To solve a CP with SOGEN, users need to first use PDL
(short for Problem Description Language) to model the problem
from two or three aspects: (1) input parameters and their domains
(i.e., value ranges), (2) decision variables and their relations with
inputs, and (3) (optionally) an objective function for optimization.
When the PDL model M is sent to the generation engine, the engine
analyzes M to identify i) the minimum value range of each variable,
ii) any value dependency between variables, and iii) the indepen-
dent variables with minimum search space. Such model analysis
facilitates the engine to characterize four problem properties:

Propl the search space that can be used to decide the search
strategy of any synthesized algorithm,

Prop2 value ranges of subfunction(s) to decide how to optimize
synthesized algorithms via feasibility-based branch pruning,

Prop3 the monotonicity of objective function to determine how
to prune branches based on the objective function in CP, and

Prop4 overlapping subproblems that help decide whether a search
algorithm can be optimized via dynamic programming (DP).

By analyzing and using the above-mentioned properties, the engine
generates an efficient problem solver implemented in C.

We did two experiments to evaluate SOGEN. The first experiment
compared nine solvers generated by SOGEN with two state-of-the-
art solvers: Gecode and Chuffed. By applying alternative solvers
to 45 constraint-solving tasks and setting time limit to 30 minutes,
we observed SOGEN’s solvers to find solutions for 43 tasks; while
Gecode and Chuffed separately handled 40 and 37 tasks. More
importantly, based on the property characteristics of individual
problems, SOGEN optimized six solver algorithms: three algorithms
automatically optimized via branch pruning and another three op-
timized by DP. SOGEN’s solvers achieved up to 6,058x speedup
over Gecode and up to 31,300x speedup over Chuffed. The sec-
ond experiment compares SOGEN with another solver generator
Dominion [1, 2]. In all 15 experimented cases, SOGEN’s solvers
worked more efficiently than the solvers created by Dominion. One
of SOGEN’s solvers achieved up to 593x speedup.

In summary, this paper makes the following contributions:

e We developed SOGEN—an approach that statically analyzes
CPs and synthesizes solvers accordingly. Different from prior
work, SOGEN does not require users to configure any param-
eter; it can create problem-specific DP search algorithms.

e Our novel analysis on CPs statically extracts and charac-
terizes four problem properties. Based on these properties
of any given CP, SOGEN shrinks the search space, gener-
ates a solver algorithm, and opportunistically optimizes the
algorithm with branch pruning and dynamic programming.

e We evaluated SOGEN by comparing it with another solver
generator—Dominion, and by comparing the problem-specific
solvers it generated with Gecode and Chuffed. No prior work
conducted such a comprehensive evaluation as we did.

Shu Lin, Na Meng, and Wenxin Li

int main() {
best_result = NONOPTIMAL_VALUE;
for (v1 in range)
for (v2 in range)
for (...) {
if (violateConstraint(...)) continue;
if (findBetterSolution(...))
update(best_result, vi, v2,...);

3

Listing 1: An algorithm skeleton for iteration-based search

int main() { best_result = NONOPTIMAL_VALUE; rec(1); }
void rec(int i) {
if (i > # of controlling variables) {
if (violateConstraint(...)) continue;
if (findBetterSolution(...))
update(best_result, v1, v2,...);
return;
)
for (vi in range_i) rec(i+1);

3

Listing 2: An algorithm skeleton for recursion-based search

In the following sections, we will introduce the background knowl-
edge of our research (Section 2), present a running example (Sec-
tion 3), and describe the two components of SOGEN: PDL (Section 4)
and the engine (Section 5). Our PDL Manual, program, and data are
available at https://github.com/fzlinshu/SoGen.

2 BACKGROUND AND TERMINOLOGY

This section introduces CPs (Section 2.1) and two typical search
strategies (Section 2.2) involved in constraint solving.

2.1 Combinatorial Problems (CP)

A typical CP searches for one solution in a finite data space. For-
mally, a problem is CP if given

e a set of parameter variables A = {a1,---,ap} and their
domains (i.e., value ranges),
e a set of decision variables V = {vy,---, vy} and their do-
mains, and
e a set of constraints on those variables in A and V: R =
{ri(AV), - r (AV)}
we are supposed to find a value assignment for {vy,---, vy} such
that all constraints R are satisfied.

Combinatorial optimization problems (COPs) are a subset
of CPs because in addition to the A, V, and R mentioned above,
each COP also defines an objective function f(A, V). To solve a
COP, we need to find the optimal value assignment for V' such that
(1) all constraints are satisfied and (2) the value of the objective
function is optimal.

2.2 Two Typical Search Strategies

Generally speaking, a CP can be solved when a search algorithm
enumerates all data points in a space either iteratively or recursively.
Thus, there are two alternative ways to implement a constraint
solver: iteration-based search and recursion-based search.

As shown in Listing 1, iteration-based search adopts one or more
variables and their domains to control the number of loop iterations.
In each iteration, the algorithm checks whether the current value as-
signment of variables (1) satisfies all constraints and (2) (optionally)
leads to a better value of the objective function; if so, the algorithm
updates its record to track a better solution. The algorithm returns

https://github.com/fzlinshu/SoGen

Generating Efficient Solvers from Constraint Models

|]

—W
V=L*W*H
Figure 1: A cuboid with the volume V

#input
V of int in [1,10%5];
#required
L of int in [1,?];
W of int in [1,?];
H of int in [1,7];
V=1Lx%Wx* H;
#objective
minimize (2 * (L * W+ L *x H+ W % H));

Listing 3: The PDL model for the cuboid problem

one (optimal) solution after all iterations. Similarly, recursion-based
search uses at least one variable and related domain(s) to control
the number of recursive function calls (see Listing 2). In each re-
cursive function call, the algorithm checks whether all variables
have values assigned. If so, the algorithm checks if the value assign-
ment (1) satisfies all constraints and (2) (optionally) gets a better
objective function value. We use controlling variables to refer to
the variables that control loop iterations or recursive function calls.
The domains of these controlling variables define the search space.

When developing SOGEN to synthesize efficient CP solvers, we
tried to tackle two challenges:

C1. Given a CP, how can our approach decide which search
strategy to adopt?

C2. Once a search strategy is selected, how does our approach
decide which of the following two optimizations to apply:
pruning and DP?

SoGEN overcame both challenges by automatically characterizing
properties for any given CP and making decisions accordingly.

3 A RUNNING EXAMPLE

This section overviews our approach with an exemplar COP.

3.1 Problem Statement

Given an integer V (< 10°), find a cuboid with the smallest surface
area such that: (1) the volume is V and (2) the lengths of all edges
(e.g., L, W, and H in Figure 1) are integers.

3.2 Constraint Modeling with PDL

Suppose that a user Alex wants to build an automatic solver for the
problem. By analyzing the problem, Alex can identify

e one input parameter v,

o three positive integer variables whose values will be com-

puted: L, w, and H, and

e an objective function to minimize the surface area.
With PDL, Alex can create a constraint model for the problem.
As shown in Listing 3, the model includes three segments: #input,
#required, and #objective. The #input segment defines the input pa-
rameter v and its domain [1, 10°5]. The #required segment declares
decision variables (i.e., L, W, and H), their domain [1, ?] (ie., any
positive integer), and their value constraint with the input: v = L %
w x H. The #objective segment defines the objective function.

ESEC/FSE "21, August 23-28, 2021, Athens, Greece

3.3 Algorithm Synthesis

Given the constraint model in PDL, the SOGEN engine automatically
synthesizes a solver algorithm by taking four steps: bound tighten-
ing, independent variable set selection, algorithm generation, and
algorithm optimization.

Bound Tightening. To characterize the problem property Prop1,
SOGEN iteratively tightens variable domains with an off-the-shelf
technique FBBT [3]. Intuitively, in the first iteration, by converting
the given formula to L = V /(W x H), FBBT refines the domain of L
as D] = DN ([1,10°]/([1,+00) X [1,+00))) = [1,+00] N (0,10°] =
[1,10°]. In the second iteration, FBBT similarly refines the domain
of W by using L’s updated domain. This process continues until
the domain of each variable is fixed as [1, 10°].

Independent Variable Set Selection. Given a set of variables,
not every variable should be used as a controlling variable in the
synthesized search algorithm. This is because when variables have
mathematical relations with each other, the values of some variables
can uniquely determine the values of other variables. To further
refine Prop1 and to focus search on only feasible or promising value
assignments, we defined three terms:

DEFINITION 1. Value Dependencies: Given formulas or equa-
tions, e.g., rj (A, V), if the value of certain variable v; is uniquely
determined by the value assignment of other variables, we say that v;
has value dependencies on others.

DEFINITION 2. Independent Variable Set: This is a subset of V.
The values of variables in this subset can uniquely determine the
values of other variables in V.

DEFINITION 3. Dependent Variable Set: This is the complemen-
tary set of an independent variable set in V. All variables in this
subset have value dependencies on the independent variables.

In this example, L, w, and H are interdependent. Namely, given the
value assignment of any two variables, the third variable is com-
putable. Therefore, (L, w) can be considered as an independent
variable set. This step chooses the independent variable set with

Algorithm 1: The optimized iteration-based solver al-
gorithm created by SOGEN for the cuboid problem

Input: V /* input parameter V */
Output: best_result, L, W, H /* the values of (1) objective function and
(2) variables */
1.1 best_result «— MAX_VALUE;
/* 1. enumerate values of controlling variables */
12 foreach L € [1,100000] do
13 if V. mod L # 0 then
14 L continue;
15 foreach W € [1,100000] do
/* 2. check constraints on variable values */
1.6 if V/L mod W then
17 t continue;
/* 3. calculate values of dependent variables */
18 H < V/L/W;
/* 4. calculate the value of objective function */
1.9 result « 2% (L*W+LxH+ W % H);
/* 5. update record if a better solution is found */
1.10 if result > best_result then
111 | continue;
1.12 best_result «— result;
1.13 L record(L, W, H);

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

minimum domains as the controlling variables in an algorithm-to-
design. In this way, SOGEN refines its characterization for Prop1.

Algorithm Generation. This step relies on Prop1 characteris-
tics to synthesize a basic search algorithm. If there are only a few
controlling variables and no variable is of any composite data type
(e.g., set), this step creates an iteration-based search algorithm; oth-
erwise, it synthesizes a recursion-based algorithm in order to make
the generated code more compact and readable. For this example,
since there are only two primitive-typed variables (i.e., L and W),
an iteration-based algorithm with the two-level nested loop struc-
ture can solve the problem. In particular, inside the inner loop, the
constraint-related if-condition is: (V == L * W * H).

Algorithm Optimization. This step characterizes and uses prop-
erties Prop2—Prop4 to opportunistically optimize the basic algo-
rithm. Specifically, SOGEN tentatively decomposes each constrain-
t/objective function into smaller subfunctions. Among all valid so-
lutions (e.g., the value assignments that can satisfy all constraints),
if the potential values of any constraint subfunction are bounded
by the tightened variable domains, Prop2 is characterized accord-
ingly. If the objective function monotonically increases or decreases,
Prop3 is consider satisfied. If (1) Prop2 is characterized, (2) Prop3
is satisfied, and (3) the search space of a potential DP algorithm
(estimated by Prop2) is much smaller than that of the basic algo-
rithm, Prop4 is considered satisfied. SOGEN applies branch pruning
if Prop2 tightens the value ranges of subfunctions or Prop3 holds.
SoGEN applies DP if Prop4 holds.

In our example, the constraint formula (v == L = W » H) can be
decomposed to two subfunctions: v/L and v/L/w. Among all valid
solutions, the potential values of these subfunctions are actually
bounded by variable domains (e.g., because v/L==w«H, values of v/L
should be positive integers). Thus, SOGEN characterizes Prop2 and
applies branch pruning, to avoid enumerating invalid solutions.
The synthesized algorithm by SOGEN is illustrated in Algorithm 1.

3.4 Code Generation

Based on the synthesized algorithm, SOGEN produces a constraint
solver implemented in C. The solver program implements not only
the algorithm, but also two utility functions: _input()—to read val-
ues of input parameters from console, and _output()—to write the
optimal value of objective function and variable values to console.
With a solver generated for the cuboid problem, Alex can enter any
v value to instantiate the COP. Then the solver responds with the
minimum surface area and related values of L, w, and H.

4 PDL

PDL is a constraint modeling language for users to describe CPs.
As illustrated in Listing 3, a PDL model consists of three segments:
#input, #required, and #objective.

Input Segment (#input) declares all input parameters and their
domains. These inputs will be declared as formal arguments by
a generated program. This segment can have zero or more input
parameter declaration. A parameter can be declared with any prim-
itive type (e.g., int) or composite type (e.g., list).

Required Segment (#required) declares decision variables, their
domains, and their relations with inputs (i.e., data constraints). A
required segment has zero or more statement. A statement can be a
variable declaration, expression statement, or forall-enumeration.

Shu Lin, Na Meng, and Wenxin Li

Table 1: Built-in operators and functions in PDL

Category Symbols
Relational Operators =, !=, > <, >=, <=,
Logical Operators and, or, not, xor
Arithmetic Operators +, -, *, /, mod

Exponent Operators

Aggregation Functions min, max, summation, product

Each expression statement has an expression to describe data con-
straints as mathematical formulas. The forall-enumeration is a
higher-order function, which applies a given function to all ele-
ments in a composite data structure.

PDL supports common data types, including primary types (i.e.,
int, real, char, and bool), and composite types (i.e., array, set, and
struct). PDL supports various expression formats, such as

a parenthesized expression,

an atomic expression (e.g., a variable A),

a unary expression (e.g., not A),

a binary expression (e.g., A+B),

an aggregate result of forall-enumeration (e.g., summation

[A[il: forall i in [1, 1011),

e a quantifier function to check whether there exist certain
value(s) to meet certain conditions (e.g., exists a (a in [T,
101)), and

e a conditional expression (e.g., if a (b=1) else (b=0)).

PDL also defines built-in operators and functions (see Table 1).

Objective Segment (#objective) declares zero or one objective
function. If no objective function is defined, the resulting program
stops search after finding a solution; otherwise, it searches for an
optimum that acquires the best objective value among all solutions.

PDL has a similar type system to C and shares type inference
rules. However, PDL supports fewer data types, including int, real,
char, bool, array, set, and struct. To learn more about PDL, please
refer to our PDL Manual on GitHub.

5 THE SOGEN ENGINE

As shown in Figure 2, there are five major steps in SOGEN’s gen-
eration engine. Steps 1-4 automate algorithm synthesis, and Step
5 automates algorithm implementation. Sections 5.1-5.5 explain
each step in detail.

5.1 Bound Tightening

Given a PDL model, SOGEN tokenizes the model and conducts
both syntax and semantic analysis to build an identifier table
(i.e., a table to record parameters, variables, and their domains),
constraint formulas, and any objective function. Specifically, we
built a PDL compiler frontend with JavaCC [17] and Java Tree
Builder (JTB) [14]. JavaCC is a scanner and parser generator for
LL(k) grammars. It takes in the token patterns defined with regular
expressions to generate a lexical analyzer (i.e., scanner); it also
generates a parser from the given syntax grammar defined in EBNF.
We used the generated scanner and parser to create a parsing tree for
any given PDL model. Additionally, we used JTB to implement a tree
visitor for semantic analysis. With the visitor, SOGEN traverses each
parsing tree to extract all constraints and any objective formula,
and to create an identifier table.

Generating Efficient Solvers from Constraint Models

ESEC/FSE "21, August 23-28, 2021, Athens, Greece

| Algorithm

I Algorithm Synthesis
PDL model

Problem solver

‘[1. Bound 2. Independent 3. Algorithm

Generation

Tightening Variable Selection

5. Code
Generation

' Implementation
4. Algorithm
Optimization

—

Figure 2: The SOGEN engine takes five steps to generate a solver from the given PDL model

Table 2: Identifier table for the cuboid problem

Identifier ~Parameter/Variable Type & Range
\Y% Parameter int in [1,10°]
L Variable int in [1,10°]
w Variable int in [1,10°]
H Variable int in [1,10°]

#required

A of int in [1, 51;
of int in [1, 10];
of int in [1, 500];
of int in [1, 250000];
A x B * 2;
B A 2% C* 2;

[CNeN-NoN-}

Listing 4: An exemplar #required segment

Similar to the symbol table produced by a traditional compiler,
our identifier table records both the names and types of parameters
and variables. However, different from symbol tables, identifier
tables also record (1) whether an identifier is a parameter or variable,
and (2) the value range of an identifier (see an exemplar identifier
table in Table 2). These value ranges are computed with an off-
the-shelf range reduction technique FBBT [3]. Intuitively, given
a € [0,0],b € [0,1],¢ € [0,1],a = b + ¢, FBBT first converts
the formula to b = a — ¢, and then refines the domain for b as
D; =Dy N ([0,0] - [0,1]) = [0,1] N [-1,0] = [0, 0]. By reducing
the specified value ranges of variables using FBBT, SOGEN intends
to shrink the search space and characterize Propl.

5.2 Independent Variable Selection

This step identifies controlling variables—variables used to con-
trol the number of iterations or recursions in search algorithms.
Specifically, according to the identifier table and related constraint
formulas, SOGEN reveals dependencies between variables, and rec-
ognizes all alternative sets of independent variables. It selects the
minimum set with minimum value ranges as controlling variables
for two purposes. First, controlling variables define the search space
of the algorithm-to-design. The fewer controlling variables there
are and the smaller value ranges they have, the smaller search
space needs to be explored. Second, SOGEN relies on these vari-
ables to choose the search strategy (i.e., either iteration-based or
recursion-based).

Value Dependency Identification. We explain this process with
a concrete example. Listing 4 shows an exemplar #required section,
which declares four variables (i.e., A, B, C, and D) and defines two
constraints. According to the first constraint, C has value depen-
dencies on A and B, because C can be computed based on the values
of those variables. Formally, we represent this dependency as:

C<AAB 1)
Similarly, we can identify another dependency relationship by con-
verting the formula to A = C/B%:

A<BAC @)
However, B is not dependent on A or C. This is because given values
of A and C, we cannot determine a single value for B based on the

converted formula B = +4/C/A. According to the second constraint,
we can similarly identify the following value dependency:

D<BAC 3)

Variable Subset Enumeration. With all dependencies identi-
fied, SOGEN sorts all variables in an ascending order of their value
ranges. It then enumerates all possible variable subsets in a depth-
first manner to find the minimum independent variable set with
the minimum search space. For the example in Listing 4, the sorted
list is [A, B, C, D]. Thus, the enumeration procedure first includes
A into a candidate set 7. As A alone cannot uniquely determine
the value of any other variable, the procedure continues to include
B into the set, obtaining J; = {A, B}. Based on Relations (1) and (3),
the procedure concludes that all remaining variables are dependent
on I3, so 17 is an independent variable set. The search space defined
by I; is the Cartesian production of all included variables’ value
ranges, whose size is s; = range(A) x range(B).

In the next round of subset exploration, the procedure tenta-
tively includes B into a new candidate set 1. Since no variable
solely depends on B, we can further add C into 7, to build another
independent variable set. Correspondingly, the search space size is
s = range(B) xrange(C). Since s; > s1, we consider 7 to be better
than 7. Our search continues until every subset is enumerated.
We use the variables in the optimal independent variable set as
controlling variables, which characterize Prop1.

5.3 Automatic Algorithm Generation

This step relies on Prop1 to decide whether an iterative or recursive
algorithm should be created.

Generation of Iteration-Based Algorithms. If Propl corre-
sponds to a few controlling variables (e.g., < 10) and all variables
have primitive types (e.g., bool), SOGEN creates an iterative algo-
rithm based on the skeleton shown in Listing 1. This is because
compared with recursion-based algorithms, iteration-based algo-
rithms have higher efficiency. Please refer to Algorithm 1 for an
exemplar iterative algorithm produced by SoGEN.

Generation of Recursion-Based Algorithms. If Prop1 corre-
sponds to a large number of controlling variables (e.g., >10) or
any of the variable has a composite data type (e.g., list), SOGEN
chooses to create a recursive algorithm based on the skeleton in
Listing 2. SOGEN’s decision making is based on four rationales.
First, any composite data type can be treated as a set of indepen-
dent controlling variables. Second, when there are many controlling
variables, recursion-based algorithms are more compact and read-
able. Compactness ensures software reusability and maintainability.
Readability facilitates experts to further optimize generated solvers
as needed. Third, recursion-based algorithms can effectively solve
CPs that have more controlling variables. Iteration is limited by the
maximum depth of nested loops (e.g., 127 for C), while the recursion
depth can be much larger (e.g., some thousands). Fourth, the extra
runtime overhead of recursive function calls over loop iterations is
negligible, compared with the overall solving time.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Natural Language

There are N items.
There is a knapsack of capacity C.

The i” item (i € N) has value V; and weight W;.

Put a set of items S C N in the knapsack, such that the sum of weights is at

most C.

The sum of values should be maximal.

Shu Lin, Na Meng, and Wenxin Li
PDL Model

#input

N of int in [1,100];

C of int in [1,1000];

W of (int in [1,10001)[1~N];

V of (int in [1,10001)[1~N];
#required

sel of (int in [1,N1){};

summation [W[i] : forall i (i in sel)] <= C;
#objective

maximize summation [V[i] : forall i (i in sel)];

Figure 3: The description of the 0/1 knapsack problem in natural language vs. in PDL

Algorithm 2: The main() function in the recursion-
based algorithm for the 0/1 knapsack problem

Input: N,C, W,V /* input parameters */
Output: best_result, _sel/* the values of (1) objective function and (2)
variable */

2.1 best_result « 0;
2.2 wsum < 0, vsum < 0; /* two local variables used to accumulate the
weights and values of selected items */

2.3 rec(l, wsum, vsum, N,C, W, V);

W

Algorithm 3: The rec(...) function invoked by the
main() function mentioned in Algorithm 2

Input: step, wsum, vsum, N, C, W, V/x step implies which controlling

variable has values enumerated */
Output: 0
/* 1. check whether all controlling variables have values assigned
already */
3.1 if step > N then
/* 2. check constraints */
3.2 if wsum > C then
3.3 L continue;
/% 3. update record if a better solution is found */
3.4 if vsum < best_result then
35 | continue;
3.6 best_result «— vsum;
3.7 record(_sel);
3.8 return;

/* 4. explore all possible values for the controlling variable _sel[step]

*/

3.9 foreach _sel[step] € [0,1] do

/* 5. evaluate the objective function based on the variable values
assigned so far */

3.10 rec(step + 1, wsum + W [step] = _sel[step], vsum + V [step] = _sel[step],

N,C,W,V);

Figure 3 shows the natural-language description and PDL model
of another exemplar CP: the 0/1 knapsack problem. In the constraint
model, the only decision variable sel is a set that holds the indexes
of items put into a knapsack. To generate a solver algorithm for this
problem, SOGEN first converts sel to an N-length boolean array _sel,
where _sel[i] indicates whether the number i is in the set. Next,
SoGEN creates a recursion-based algorithm based on inputs, _sel,
the constraint, and the objective (see Algorithms 2 and 3).

5.4 Automatic Algorithm Optimization

SoGEN characterizes Prop2-Prop4, and optimizes any synthesized
algorithms based on those properties. This section first clarifies
notations (Section 5.4.1) and describes the property characterization
process (Section 5.4.2); next, it introduces SOGEN’s decision-making
to optimize algorithms based on properties (Section 5.4.3).

5.4.1 Notations. To simplify explanation, suppose that the PDL

model has m constraints. A solver algorithm has n controlling vari-

ables. At step i € [1,n] (i.e., the i*" loop structure or i*” recursion),

there are i variables with value assignment and (n — i) variables
without value assignment; we denote these two sets of variables
separately as A; = {v1,02,...,0;} and U; = {vj41, 042, . . ., 0n}. For
any COP, in the search procedure, we denote the suboptimal value
of objective function obtained so far (i.e., intermediate optimal
value) as best_result.

5.4.2 Property Characterization. To characterize Prop2 (value range
of subfunctions), SOGEN tentatively converts each constraint to sub-
functions P and Q matching the following formats:

P(A;) Cmp Q(Uy), 4)
where P and Q derive from the original constraint, and Cmp rep-
resents any comparison operator (e.g., =, <, and >) used in the

constraint. Suppose that the value ranges of A; and U; separately
define value ranges for P and Q functions as r; and ry. Given Cmp
and ry, SOGEN checks whether there is any value in rq that can never
satisfy the converted mathematic relationship; if so, SOGEN discards
those values and characterizes Prop2 to refine P’s value range. So-
GEN later uses such refined ranges to prune search branches (see
Section 5.4.3). For our running example, when V = L X W x H,
SoGEN can generate two converted formulas:

V/L=W xH)
V/L/W =H (6)
Because the potential value range of WX H in Formula (5) is positive
integers, SOGEN infers that V/L should be an integer. Similarly, as
the domain of H in Formula (6) is positive integers, SOGEN infers
V/L/W to be an integer. Prop2 captures all such derived value
constraints for P functions, e.g., {V mod L == 0,V /L mod W == 0}.
To characterize Prop3 (the monotonicity property of objective
function), SOGEN decides whether the objective function mono-
tonically increases (or decreases) with all n variables by checking
the coefficients of each variable. If the coefficients are all positive
(or negative) values, Prop3 holds and SoGEN later prunes search
branches accordingly (see Section 5.4.3). For the 0/1 knapsack prob-
lem in Figure 3, the objective function is:

N
Obj:ZV[j]XSel[j](whereV[j] > 0). @)

j=1
As the coefficients of sel[j] (i.e., V[j]) are all positive, Prop3 holds.
SoGEN checks Prop4 (overlapping subproblems) only if Prop2
bounds every constraint subfunction involving any controlling
variable and Prop3 holds; if Prop4 holds, SOGEN later converts the
synthesized algorithm to a dynamic programming (DP) algorithm
for optimization (see Section 5.4.3). Specifically, SOGEN relies on
Prop2 to estimate the search space S; of a potential DP algorithm;
it also uses the value range of controlling variables to estimate the
search space Sy of a brute-force search algorithm. If the size of Sy is

Generating Efficient Solvers from Constraint Models

Algorithm 4: The rec(...) function produced by So-
GEN when it applies branch pruning

Input: step, wsum, vsum, N, C, W, V/x step implies which controlling

variable has values enumerated */
Output: ()
/* check whether all controlling variables have values assigned already
*/
4.1 if step > N then
/* update related record if a better solution is found */
42 if osum < best_result then
4.3 L continue;
44 best_result «— vsum;
4.5 record(_sel);

4.6 return;

/* explore all possible values for the controlling variable _sel[step] */
4.7 foreach _sel[step] € [0,1] do
/% evaluate the objective function based on the variable values

assigned so far */
4.8 wsum’ «— wsum + W [step] = _sel[step];
4.9 vsum’ «— vsum + V [step] x _sel[step];
/% FBP: check constraint violation based on wsum’ */
4.10 if wsum’ > C then
4.11 L continue;
/* OBP: assess the potential upper bound value of objective function
based on the value sum so far */
4.12 if osum’ + 1000 = (N — step) < best_result then
4.13 L continue;
114 rec(step + 1, wsum’, vsum’, N,C, W, V);

much larger than that of S1 (i.e., |S2| >> |S1[), SOGEN concludes that
there are overlaps between subproblems of the objective function
and Prop4 holds. For the 0/1 knapsack problem, Prop3 is true,

(0= 3 Wil xsel[j] < C},

Prop2 =

j=1
1S1] = O(NXxO),
Sz = 2N

© means there exist positive constants c; and ¢z (c1 < ¢2) such that
1 X NXC <|S1] < ¢g X NXC. As |Sz| >> |S1], Prop4 holds.

5.4.3 Optimization Application. SOGEN is capable of applying two
types of algorithm optimizations: branch pruning and DP.

Branch pruning adds, restructures, or moves if-branches to
reduce the number of explicitly enumerated values. There are two
types of pruning SOGEN automates:

Feasibility-Based Pruning (FBP): Based on the value assignment
of some instead of all controlling variables, this optimization makes
early decisions on constraint violation. If any constraint is definitely
violated even if some involved variables have values unassigned,
the search tree is pruned.

Objective-Based Pruning (OBP): This optimization is applied to
COPs. Given the value assignment of some instead of all controlling
variables, OBP predicts the potential values of objective function
when all variables have values assigned. If the predicted values
are unpromising (e.g., worse than the intermediate best result), the
search tree is pruned.

Dynamic Programming (DP) breaks a given COP into simpler
subproblems. It first solves subproblems and caches optimal solu-
tions in a table for reuse. Then it solves the overall problem based
on optimal solutions to subproblems.

Decision-Making for Feasibility-Based Pruning (FBP). When
Propz2 is not empty, SOGEN replaces all if-condition checks on orig-
inal constraints with those on derived subfunctions in Prop2. When

ESEC/FSE "21, August 23-28, 2021, Athens, Greece

any subfunction only involves a subset of controlling variables,
SoGEN further moves the related if-condition from the innermost
loop (or recursion) to some outer loop (or recursion) such that un-
promising search subtrees are pruned as early as possible. Please
refer to Algorithm 4 for an exemplar FBP applied by SoGEN.

Decision-Making for Objective-Based Pruning (OBP). When
Prop3 holds, SOGEN inserts an if-condition check that compares
the partial evaluation result of objective function based on A;, the
intermediate optimum best_result, and U;. If no matter how vari-
ables in U; get values assigned, the existing partial evaluation result
is unpromising to lead to a better objective value than best_result,
then SOGEN uses the inserted check to prune branches. Algorithm 4
shows an exemplar OBP SOGEN applied.

Decision-Making for DP. When Prop4 holds, SOGEN restruc-
tures the synthesized recursion-based algorithm to have two parts:
(1) table creation and (2) table access. For table creation, SOGEN
initializes a table of (m + 1) dimensions. Among these dimensions,
the first one has values within [1, n] and corresponds to the n steps
of function recursion. The other m dimensions correspond to the
derived subfunctions in Prop2. Each table cell caches an optimal
subproblem solution. For table accesses, SOGEN defines two if-
structures in the algorithm. One structure checks whether a given
subproblem is already solved, and looks up the table if so. The other
structure puts the result of a newly solved subproblem to table if the
result is better than the value on record. Please refer to Algorithm 5
for the DP algorithm SoGEN generated for 0/1 knapsack problem.

Algorithm 5: The rec(. . .) function optimized by So-
GEN when it applies DP and branch pruning

Input: step, wsum, vsum, N, C, W, V/x step implies which controlling

variable has values enumerated */
Output: 0
/* reuse the result if the subproblem has been solved before */
5.1 if DP_sel[step][wsum] # null then
5.2 vsum < vsum + DP_sel[step][wsum];
5.3 step «— N+1;
54 | copy_sel[step..N] from the recorded subproblem solution;
55 if step > N then
5.6 result «— vsum;
5.7 if wsum > C then
5.8 L return —1;
5.9 if result > best_result then
5.10 best_result < result;
5.11 record(_sel);
5.12 return osum;
5.13 foreach _sel[step] € [0,1] do
5.14 wsum’ «— wsum + W [step] = _sel[step];
5.15 osum’ « vsum + V [step] = _sel[step];
5.16 if wsum’ > C then
5.17 t continue;
5.18 if osum’ + 1000 = (N — step) < best_result then
5.19 L continue;
5.20 tmp — rec(step + 1, wsum’, vsum’, N,C, W, V) — vsum;
/* if the result is better than the recorded subproblem solution,
use it to update the record */
5.21 if tmp > DP_sel[step][wsum] then
5.22 L DP_sel[step][wsum] « tmp;
/* return the optimal value of objective function */

5.23 return osum + DP_sel[step][wsum];

The rationale of SOGEN’s decision-making for DP is as below. DP
can optimize search when a problem has two properties: optimal

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

substructures and overlapping subproblems [9]. Optimal sub-
structures mean that an optimal solution can be constructed with
the optimal solutions to its subproblems; this property corresponds
to Prop3. Overlapping subproblems indicate that a naive search
algorithm repetitively solves some subproblems; this property is
actually Prop4. As SOGEN checks Prop4 only if Prop2 is not empty
and Prop3 is true, it applies DP based on the fact that both Prop3 and
Prop4 are satisfied. In this way, SOGEN ensures that its generated
DP algorithms can improve solver efficiency.

5.5 Code Generation

To generate code for each synthesized algorithm, SOGEN has six
predefined code templates:

e _input(...) reads parameters from the console.

® _output(...) prints the optimal value of objective function
and related variable values.

® _update(...) compares a new solution result with
best_result, and updates recorded values if result is better.

e _find(...) implements the recursive function for recursion-
based search algorithms.

® _solve(...) enumerates values of controlling variables, checks
constraint formulas, evaluates the objective function, and
updates records. It calls _find(...) (optional) and _update(...).

e main() integrates all functions into a program.

We designed SOGEN to implement algorithms in C because the
language is simple and efficient. However, our methodology is not
limited to C and can be implemented to generate code in other
languages as well.

6 EVALUATION

To assess the usefulness of SOGEN, we conducted two experiments
and explored two research questions (RQs):

e RQ1: How do the solvers generated by SOGEN compare with
state-of-the-art CP solvers?

e RQ2: How does SOGEN compare with the state-of-the-art
solver generator?

6.1 Empirical Comparison with CP Solvers

This section first introduces our dataset and experiment settings,
and then discusses our results.

6.1.1 Dataset. We created a dataset based on nine classical and
representative CPs from undergraduate programming courses and
CSPLib [10]—a program library for constraints. The problems are
different in terms of constraints, objective functions, variables, sizes
of the search spaces, and possible solver optimization techniques.
Therefore, the included problems are diverse; they represent a much
larger set of CPs. As shown in Table 3, depending on the problem,
the complexity of a naive backtracking algorithm can be O(N©),
O(CN), or O(N'). Here N is a parameter mentioned in the original
problem description. Complexity reflects the space size of each
backtracking search. As the search space grows with N, we defined
five constraint-solving tasks/instances for each problem by setting
N to distinct values:

(1) If the complexity is polynomial (i.e., O(NY)), we set N to
103, 104, 10°, 10°, and 107 because current solvers usually solve the
problems efficiently.

Shu Lin, Na Meng, and Wenxin Li

Gecode Architecture

Variables &

Branchers

)

Constraints Solution
Mode_l Variable Modules Gecode
Processing Kernel
S
0068*0/7
op Search Engines

Figure 4: The architecture of Gecode

(2) If the complexity is exponential (i.e., O(CN)), we set N to
smaller numbers: 50, 100, 150, 200, and 250. This is because when
N is too large, existing solvers do not respond in a timely manner.

(3) If the complexity is factorial (i.e., O(N!)), we set N to even
smaller numbers: 5, 10, 15, 20, and 25. This is because current solvers
can only solve these problems when N is small. P7 is an outlier.
Although the theoretical complexity is O(N!), P7 is a constraint
satisfaction problem that only requires for one feasible solution.
Therefore, P7 can be effectively solved by current solvers in practice;
and we set N to 50, 100, 150, 200, and 250.

With the above-mentioned method, we created 45 tasks.

6.1.2 Experiment Settings. We compared the solvers generated
by SoGEN with generic solvers Gecode [28] and Chuffed [7], by
applying them to our dataset. We did not experiment with any SMT
solver, because SMT solvers only handle SMT problems—a subset of
CPs, which are decision problems for logical formulas with respect
to combinations of background theories expressed in first-order
logic with equality. The state-of-the-art SMT solver—Z3 [4, 23]—
cannot solve CPs when objective functions are non-linear.

Gecode and Chuffed are two state-of-the-art generic constraint
solvers widely used by people to solve CPs. Both Gecode and
Chuffed have complex architectures. Chuffed adapts techniques
from SAT solving, such as conflict clause learning, to speed up
constraint solving [31]. As shown in Figure 4, Gecode has multiple
components. In particular, the Search Engines component supports
alternative search strategies, while Propagators and Branchers offer
a variety of configurable optimizations [29]. To solve CPs with these
solvers, we used MiniZinc [24], a high-level and solver-independent
constraint modeling language, to describe each CP task by specify-
ing input parameters, a set of decision variables, constraint formulas,
and (optionally) the objective function. Then we used a standard
third-party tool mzn2fzn [33] to convert MiniZinc models to FlatZ-
inc models, as FlatZinc [32] is a low-level and solver-dependent
modeling language acceptable by Gecode and Chuffed.

Solvers by SOGEN were generated from PDL models. We used
PDL to describe the nine problems in Table 3 and used SOGEN to
generate nine solvers accordingly. Among these solvers, SOGEN
optimized three solvers via branch pruning (i.e., solvers for P4, P7,
and P8); it optimized another three solvers via both pruning and DP
(i.e., solvers for P5, P6, and P9). In our experiment, we applied each
solver to the five constraint-solving tasks mentioned in Table 3.

Procedure. We conducted the experiment on a computer that
has an Intel Core 15-7300HQ 2.5GHz CPU and 8G RAM. We applied
three solvers to each task: one solver generated by SOGEN, Gecode,
and Chuffed. For fair comparison, We used the default settings of all
experimented tools, and modeled the problems with PDL/MiniZinc
in semantically equivalent ways. To ensure the representativeness
of our results, we applied each solver to every task three times.
We recorded solvers’ runtime and memory costs, and averaged the

Generating Efficient Solvers from Constraint Models

ESEC/FSE "21, August 23-28, 2021, Athens, Greece

Table 3: The nine problems and related constraint-solving tasks used in the first experiment

Id Problem Summary Co‘fl- Constraint-Solving Tasks
plexity

P1 Greatest Common Divisor: Find the greatest common divisor of given N positive integers. O(N) N=10%10% 10° 10°, 107
Cake Baking: There are two types of cakes. Given (1) both the ingredients and profit of each cake and (2) the total amounts

P2 of ingredients available, suppose that at most N cakes of each type can be made. How many cakes of each type should a O(N?%) N=10%10% 10° 10°, 107
baker make to maximize the profit?

P3 1Cuboiat' Problem: Given V and N, find a cuboid \'vith the smallest surface area such that (1) the volume is V" and (2) the O(N?) N = 10%, 10%, 105, 105, 107
engths of all edges are integers and not exceeding N.

P4 Map Coloring: Color the N nodes of a graph with four colors so that no two adjacent nodes have the same color. 0(4N) N =50, 100, 150, 200, 250

P5 0/1 Knapsack Problem: See Figure 3 0(2N) N =50, 100, 150, 200, 250

P6 Teamwork: Given the} cooperatifm va%u'e and working value of ealch candidfite, sel'ect a subset among N candidates such that o@2V) N = 50, 100, 150, 200, 250
(1) the total cooperation value is positive and (2) the total working value is maximum.

P7 N Queens: Put N queens on an N X N chess board so that no queen can attack others. O(N!) N =50, 100, 150, 200, 250

P8 Traveling Salesman Problem: Find the shortest Hamiltonian cycle in a graph of N nodes. O(N!) N =5, 10, 15, 20, 25

P9 Shortest Path: Find the shortest path from Node 1 to Node N in a given graph. O(N!) N =5, 10, 15, 20, 25

Table 4: The time and memory costs of each solver on 45 constraint-solving tasks

‘ Time Cost (Second) Memory Cost (MB)
Id | SoGEN Gecode Chuffed | SoOGEN Gecode Chuffed
P1 [0.19, 0.30, 0.38, 0.41, 4.09] [0.66, 1.15, 2.00, 10.51, 96.50] [0.90, 2.54, 2.79, 20.54, 325.89] 3-12 16-136 20-139
P2 [0.02, 0.03, 0.03, 0.05, 0.24] [0.63, 0.63, 0.65, 0.81, 1.31] [0.61, 0.67, 0.68, 3.25, 147.80] 3 13 13
P3 [0.02, 0.02, 0.04, 0.05, 0.36] [0.61, 0.60, 0.82, 1.24, 5.72] [1.49, 7.56, 48.05, >1800, >1800] 3 13-21 N/A
P4 [0.10, 4.23, 47.52, >1800, >1800] [0.66, 1.14, 6.88, 395.32, >1800] [0.59, 0.79, 3.25, 247.52, >1800] N/A N/A N/A
P5 [0.03, 0.06, 0.11, 0.32, 0.56] [4.35, 363.49, >1800, >1800, >1800] [2.95, 191.22, 1523.72, >1800, >1800] - N/A N/A

P6 0.02, 0.03, 0.06, 0.11, 0.28] 0.73, 3.24, 60.53, 134.24, 863.72]

0.70, 1.92, 5.83, 14.98, 71.29] 15-21 16-22

P7 0.02, 0.02, 0.14, 0.36, 0.55] 0.67, 0.74, 3.99, 6.07, 45.41]

P8 0.02, 0.07, 9.23, 56.24, 842.73] 0.64, 0.74, 24.87, 532.91, >1800]

0.60, 3.56, 72.13, >1800, >1800] N/A N/A

P9 0.02, 0.02, 0.03, 0.04, 0.06] 0.78, 0.95, 4.52, 65.36, 242.91]

5
4
0.72, 0.75, 1.86, 2.08, 23.50] 3 13-17 13-19
8
4

0.79, 1.59, 82.67, 1252.01, >1800] 13-220 N/A

“N/A” means that the memory cost cannot be calculated because some constraint-solving processes were interrupted due

values among all three runs. Due to the time limit, if a solver did
not respond within 30 minutes, we terminated the execution.

6.1.3 Results. Table 4 presents our results. Due to the space limit,
each row shows results for five tasks related to the same problem.
Among the five tasks, since the time costs of solvers change more
significantly than memory costs, for each solver, this table shows
all measured values of time costs and value ranges of memory costs.
According to the table, all solvers have relatively low memory
costs but their time costs vary a lot. It implies that CPU instead of
memory is the performance bottleneck. This is expected because
constraint-solving is computationally intensive; all solvers focus
their efforts on the enumeration of variable values and the evalua-
tion of constraint formulas as well as objective functions. Compared
with Gecode and Chuffed, SOGEN’s solvers successfully handled
more tasks and often used less time and memory. Specifically, the
solvers by SOGEN fulfilled 43 tasks and triggered timeouts for only
P4. Meanwhile, Gecode handled 40 tasks and obtained timeouts
when solving P4, P5, and P8; Chuffed handled only 37 tasks and
acquired timeouts when dealing with P3, P4, P5, P8, and P9.
Among the 35 tasks commonly solved by distinct solvers, on
average, SOGEN’s solvers achieved 401x speedup over Gecode and
1,167x speedup over Chuffed; their average memory costs are 20%
of Gecode’s and 19% of Chuffed’s. In particular, compared with
Gecode, SOGEN’s P5 solver achieved the highest speedup—6,058x
when N = 100. In comparison with Chuffed, SOGEN’s P9 solver ob-
tained the highest speedup—31,300x when N = 20. Two reasons can
explain the better performance of SOGEN’s solvers. First, SOGEN’s
solvers are small C code; they have no software infrastructure to
consume additional resources. Second, SOGEN’s property charac-
terization enables it to minimize the search space, select the best
search strategy, and apply optimizations as needed. By minimizing

o

o timeout.

search space, SOGEN could select the the most efficient search strat-
egy and avoid fruitless value enumeration; thus, it outperformed
Gecode and Chuffed when solving P1-P3 tasks even though no
optimization was applied. When solving P5-P9, SOGEN’s solvers
worked better because they optimized search based on properties.
When solving P4, the efficiency comparison is Chuf fed > Gecode
> SOGEN. As mentioned earlier, each CP corresponds to multiple
solving tasks (i.e., problem instances). For P4, a solving task is deter-
mined by an N value (i.e., 4) and a map, while the map concretizes
constraints between specific controlling variables (i.e., adjacent
nodes have distinct colors). Such constraints are specific to indi-
vidual tasks; they are not statically inferable from the PDL model
of P4. They are not leveraged by SOGEN for optimization either,
as SOGEN applies problem-specific optimizations based on static
analysis of problem properties. Meanwhile, Gecode and Chuffed
apply task-specific optimizations (e.g., variable reordering) based
on dynamic analysis of the solving procedure for individual tasks.

Finding 1: SoGEN’s solvers worked better than Gecode and
Chuffed by handling more tasks given limited time. SOGEN’s solvers
accelerated the solving process by up to 3—4 orders of magnitude.

6.2 Empirical Comparison with Dominion

Dominion [2] is the state-of-the-art solver generator; it is based
on the generic solver Minion [12]. Given a problem described in
Dominion Input Language (DIL), Dominion takes four steps: (1)
it selects potentially relevant components (e.g., optimizers and
search strategies) from Minion’s component library; (2) it randomly
creates a solver to include some selected components; (3) it mutates
the solver by adding/removing one component at a time, tests
each mutant with constraint-solving tasks, and adjusts mutation

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

Shu Lin, Na Meng, and Wenxin Li

Table 5: The solver generation time by SOGEN and Dominion (second)

Solver Generation by Dominion

Id | Solver Generation by SOGEN }

1 2 3 4 5 6 7 8 9 10 [Sum
Q1 <0.001 | 3.42 4.92 2.13 3.42 8.35 6.46 8.76 7.13 2.42 2.56 49.57
Q2 <0.001 | 9.42 13.24 893 2563 11.72 33.87 6.85 5.56 19.46 14.92 | 149.60
Q3 <0.001 | 3.56 1172 19.63 2945 11.81 14.62 17.93 15.82 22.8 27.21 | 174.55

Table 6: The constraint-solving time for each task (T1-T15) by SOGEN’s solvers and Dominion’s fastest solvers (second)

‘ T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15
Solvers by SOGEN ‘ 0.02 0.02 0.14 0.36 0.55 0.02 0.04 0.16 2.90 26,51 16.42 47.78 134.21 784.64 1061.12
The Best Solvers by Dominion [032 053 080 329 3293 1.03 1842 9492 119232 >1800 70.83 452.98 1642.93 >1800 >1800

accordingly until finding a best solver; (4) it repeats (2) and (3) for
10 times and creates 10 solvers.

6.2.1 Dataset. To understand how SOGEN compares with Domin-
ion, we did a comparative experiment by applying both tools to the
same dataset. Due to the difficulty of DIL usage, we were unable
to use DIL to describe all nine problems mentioned in the dataset
shown in Section 6.1.1. Therefore, we created a second dataset by
referring to the problems mentioned in the Dominion paper [2].
Among the six problems discussed in that paper, we managed to
express three problems in DIL. As a result, our new dataset includes
15 constraint-solving tasks related to 3 CPs:

® Q1. N Queens: See P7 in Table 3.

e Q2. Golomb: A Golomb ruler is defined as a set of N integers
0=a; <az <...< ap suchthatthe N(N—1)/2 differences
(ie, aj —a;,1 < i < j < N) are distinct. Find a ruler with
the minimum length.

e Q3. Non-Monochromatic Rectangles: Color N X N grids with a
fixed number of colors (i.e., C), such that there is no rectangle
with all four corners to have the same color.

The complexities of Q2 and Q3 are separately O(N*N) [11] and
o(cN z), higher than those mentioned in Table 3. Thus, we set N
to very small numbers when defining tasks: 8, 9, 10, 11, and 12.

6.2.2 Experiment Settings. We compared SOGEN with Dominion in
two aspects: (1) the speed of solver generation and (2) the efficiency
of generated solvers.

Procedure. We modeled each CP with both PDL and DIL in
semantically equivalent ways, and fed those models separately
to SOGEN and Dominion using the default settings. For each CP,
SOGEN generated a single solver while Dominion created 10 solvers.
By applying each solver to every task three times, we recorded the
solvers’ costs and averaged the values among three runs.

6.2.3 Results. As shown in Table 5, SOGEN generated solvers more
efficiently than Dominion. Specifically, SOGEN produced a single
solver for each CP and the generation time is negligible (i.e., < 0.001
second). Meanwhile, Dominion generated 10 solvers for each CP.
The generation time varies from 2.13 to 33.87 seconds, with the
average as 12.46 seconds per solver. The overall solver generation
time by Dominion for each CP is 49.57-174.55 seconds; as the 10
solvers created for each CP were optimized differently, some solvers
resolved constraints faster than the others.

To compare the quality of generated solvers, we applied SOGEN’s
solvers and Dominion’s fastest solvers to the 15 tasks in our dataset.
Namely, each task was resolved by two separate solvers, and we
recorded the incurred time/memory costs. As shown in Table 6,
SoGEN’s solvers fulfilled all 15 tasks, while Dominion’s solvers only

resolved 12 tasks. Among these 12 tasks, SOGEN’s solvers worked
more efficiently and obtained 4x-593x speedup over Dominion’s
solvers. We also compared the memory costs. Among the 12 tasks
successfully resolved by both types of solvers, SOGEN’s solvers used
only 19%-60% of the memory space used by Dominion’s.

Three reasons can explain SOGEN’s higher effectiveness and ef-
ficiency. First, SOGEN synthesized solver programs from scratch
instead of tailoring existing solver architectures; so its solvers in-
curred no runtime overhead for complex software infrastructures or
poorly configured optimizations. Second, SOGEN generates efficient
solvers based on rigorous static reasoning of problem properties,
while Dominion explores and validates each solver based on random
search and dynamic solver execution. Third, SOGEN can synthesize
DP search algorithms and Dominion cannot do that. Therefore, our
approach is more rigorous and efficient.

Finding 2: SOGEN outperformed Dominion by generating solvers
with lower runtime overheads; its solvers also resolved more con-
straints by using less time and memory.

7 DISCUSSION

PDL vs. Existing Domain-Specific Languages. PDL is similar to
existing constraint modeling languages (e.g., MiniZinc [24] and
DIL [1]), as it also supports users to describe inputs, decision vari-
ables, constraints, and (optionally) the optimization objective. How-
ever, we chose to define PDL instead of reusing existing languages,
because we need users to also specify the domains of all inputs
and decision variables. Such domain information is mandatory by
SoGEN, since SOGEN relies on the info to reason about problem
properties, and to use those properties for algorithm synthesis and
optimization. Meanwhile, the domain information is optional in
other languages; it is used by existing constraint solvers only for in-
put validation. None of existing solvers characterizes Prop1-Prop4
or synthesizes DP search algorithms as SOGEN does.

The Novelty of SOGEN. As a solver generator, SOGEN takes in CP
models and outputs problem-specific optimized constraint solvers.
On the other hand, existing constraint solvers (e.g., Gecode and
Chuffed) take in CP models and output solutions to the described
constraint-solving tasks. SOGEN is unique in three aspects:

o It statically reasons about four problem properties: the search
space, value ranges of subfunctions, the monotonicity of
objective functions, and overlapping subproblems.

e Based on problem properties, SOGEN automates the decision-
making process to adopt two optimization strategies: branch
pruning and dynamic programming.

Generating Efficient Solvers from Constraint Models

o It automatically designs and implements dynamic program-
ming algorithms.

SoGEN’s good performance is due to the novel approach design of
unique property reasoning, and problem-specific C solver genera-
tion. We did not propose any new optimization technique. Instead,
SOGEN characterizes CPs from different angles, and automatically
applies existing optimization techniques as needed to achieve high
problem-solving efficiency. Due to the space and time limit, we did
not measure the impact of different optimization strategies. We will
analyze that in the future.

The Correctness of CP Models. We carefully did constraint
modeling for all experimented CPs using MiniZinc (for Gecode
and Chuffed), PDL (for SOGEN), and DIL (for Dominion), in order
to define correct models. As Gecode and Chuffed take in FlatZinc
instead of MiniZinc directly, we used a standard third-party tool
mzn2fzn [33] to translate models from MiniZinc to FlatZinc, and
to ensure the translation correctness. As all experimented tools
support declarative programming, we modeled every problem with
different languages in semantically equivalent ways, and open-
sourced all models at GitHub. We observed correct results by all
solvers, which indicate the correctness of problem specifications.

8 THREATS TO VALIDITY

Threats to External Validity. All the findings and observations men-
tioned in this paper are based on our evaluation datasets. We believe
our results to generalize well to unexplored CPs for two reasons.
First, the experimented CPs are from undergraduate programming
courses and CSPLib, so they are popularly used and representative.
Second, the two optimization techniques automated are pruning
and DP, which have been widely applied for search optimization.
Thus, SOGEN is likely to considerably accelerate the solving process
for unexplored CPs. In the future, we plan to experiment with more
CPs so as to explore the generalizability of our observations.

Threats to Construct Validity Although we had no difficulty writ-
ing models with MiniZinc and PDL, DIL seems quite different from
other modeling languages and its documentation is not quite help-
ful. Consequently, we created a dataset by reading the Dominion
paper [2] and modeling three CPs mentioned there with our best
effort. Because (1) neither source code nor data of the Dominion
paper is publicly available and (2) Dominion works nondeterminis-
tically, we do not guarantee that the solvers used in our evaluation
are the best solvers that Dominion can generate.

9 RELATED WORK

The related work of this research includes optimizers of constraint
solving and solver generators.

Optimizers of Constraint Solving. To overcome the scalability
issue of constraint solving, researchers proposed a variety of meth-
ods to optimize the solving process [8, 16, 18, 25, 30]. For instance,
caching [30] memoizes search states to prevent the same state from
being recomputed. Subproblem dominance [8] reasons about the
dominance relationship between states to reduce unnecessary state
exploration. Lazy Clause Generation (LCG) [25] analyzes failures
at backtracking points and derives new constraints (i.e., nogoods)
to reduce the search space. Given a MiniZinc model, DPSolver [18]
analyzes the model and checks whether the described problem has

ESEC/FSE "21, August 23-28, 2021, Athens, Greece

two properties: (1) optimal substructures and (2) overlapping sub-
problems. If so, DPSolver refactors the MiniZinc model such that
Gecode solves the problem in a DP manner.

SoGEN is similar to existing optimizers by automating both prop-
erty characterization for CPs and decision-making for optimizations.
However, SOGEN focuses on a unique set of properties and conducts
novel property reasoning. Instead of adding optimizers to existing
solvers, SOGEN creates solvers from CP models to eliminate the
high overheads incurred by complex software architectures and to
synthesize efficient solvers that perform DP search.

Solver Generators. Generic constraint solvers are usually pro-
vided as configurable “toolbox” systems. By manually configuring
the system-provided search strategies and optimizers, users can
tailor a generic solver for any CP. Because manual configuration
is challenging and time-consuming for users, prior work [2, 13, 15,
22, 35, 36] proposed solver generators to automate configuration
tuning. For example, given a problem specification and several train-
ing instances (i.e., constraint-solving tasks), MULTI-TAC adopts
the backtracking schema to search for an optimized configuration
among candidates, and evaluates each configuration based on those
instances. Some approaches [13, 15, 35, 36] exploit machine learning
to tune the parameters or select the solvers in an algorithm portfolio
(i.e., alternative algorithms usable to solve the same problem).

Although existing techniques customize generic solvers for given
problems to accelerate constraint solving, they cannot fully bypass
the extra runtime or memory overheads introduced by the complex
infrastructure of toolbox systems. Meanwhile, the time-consuming
tuning procedure can be ineffective and inaccurate, making the gen-
erated solvers inefficient. In comparison, SOGEN synthesizes solver
algorithms from scratch, produces efficient and correct solvers in
C, and thus incurs no infrastructure-related costs.

10 CONCLUSION

Existing constraint solvers cannot efficiently solve CPs. This paper
presents SOGEN—a novel approach of generating efficient solvers
to alleviate the scalability issue of existing solvers. Different from
the state-of-the-art solver generator, SOGEN analyzes constraint
models written in PDL to (1) identify controlling variables and
minimize their value ranges, (2) compute value boundaries for
any subfunction of constraint formulas, (3) check whether a given
objective function is monotonic, and (4) decide whether an objective
function has overlapping subproblems. With its novel and static
property characterization, SOGEN synthesizes optimized solvers
that significantly outperformed existing ones in most scenarios. We
recently also applied SOGEN to the context of CS education: we
provided our PDL and tool as a scaffolding technique that intends
to help students program for COPs, and observed very impressive
results [19]. In the future, we will evaluate SOGEN with more CPs
and improve it to characterize more properties.

ACKNOWLEDGMENTS

This work was supported by Science and Technology Innovation
2030 No. 2018AAA0100901 of China, Baidu Foundation

No. 2020BD003 of Peking University, and National Science Founda-
tion No. 1845446 of USA. We thank reviewers and Dr. Yingfei Xiong
for their valuable feedback. We also thank Mr. Qinjian Zhang for
providing experiment environment.

ESEC/FSE *21, August 23-28, 2021, Athens, Greece

REFERENCES

(1]

[13

[14]
[15]

[16]

[17

(18]

[19]

Dharini Balasubramaniam, Lakshitha De, Chris Jefferson, Lars Kotthoff, Ian
Miguel, and Peter Nightingale. 2011. Dominion: An Architecture-Driven Ap-
proach to Generating Efficient Constraint Solvers. Proceedings - 9th Working
IEEE/IFIP Conference on Software Architecture, WICSA 2011 (06 2011). https:
//doi.org/10.1109/WICSA.2011.37

Dharini Balasubramaniam, Christopher Jefferson, Lars Kotthoff, Ian Miguel,
and Peter Nightingale. 2012. An automated approach to generating efficient
constraint solvers. In 2012 34th International Conference on Software Engineering
(ICSE). 661-671. https://doi.org/10.1109/ICSE.2012.6227151

Pietro Belotti, Sonia Cafieri, Jon Lee, and Leo Liberti. 2010. Feasibility-based
bounds tightening via fixed points. In International Conference on Combinatorial
Optimization and Applications. Springer, 65-76. https://doi.org/10.1007/978-3-
642-17458-2_7

Nikolaj Bjerner, Leonardo de Moura, Lev Nachmanson, and Christoph Win-
tersteiger. 2021. Programming Z3. http://theory.stanford.edu/~nikolaj/
programmingz3.html.

Miquel Bofill, Josep Suy, and Mateu Villaret. 2010. A System for Solving Constraint
Satisfaction Problems with SMT. In Theory and Applications of Satisfiability Testing
— SAT 2010, Ofer Strichman and Stefan Szeider (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 300-305. https://doi.org/10.1007/978-3-642-14186-7_25
Choco 2020. Choco-solver. https://choco-solver.org/.

Geoffrey Chu, Maria Garcia De La Banda, and Peter J. Stuckey. 2010. Au-
tomatically Exploiting Subproblem Equivalence in Constraint Programming.
In Proceedings of the 7th international conference on Integration of Al and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems.
https://doi.org/10.1007/978-3-642-13520-0_10

Geoffrey Chu, Maria Garcia De La Banda, and Peter J. Stuckey. 2012. Exploiting
subproblem dominance in constraint programming. Constraints 17, 1 (2012), 1-38.
https://doi.org/10.1007/s10601-011-9112-9

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms, third edition. MIT Press.

CSPLib 2020. CSPLib: A problem library for constraints. http://csplib.org/.
Apostolos Dimitromanolakis. 2002. Analysis Of The Golomb Ruler And The Sidon
Set Problems And Determination Of Large Near-Optimal Golomb Rulers. Technical
Report.

Ian Philip Gent, Christopher Jefferson, and Ian Miguel. 2006. MINION: A Fast,
Scalable, Constraint Solver. In ECAI 2006, 17th European Conference on Artifi-
cial Intelligence, August 29 - September 1, 2006, Riva del Garda, Italy, Including
Prestigious Applications of Intelligent Systems (PAIS 2006), Proceedings.

Carla P. Gomes and Bart Selman. 2001. Algorithm portfolios. Artificial Intelligence
126, 1-2 (2001), 43-62. hitps://doi.org/10.1016/50004-3702(00)00081-3

JTB 2020. Java Tree Builder. http://compilers.cs.ucla.edu/jtb/.

Ashiqur Khudabukhsh, Lin Xu, Holger Hoos, and Kevin Leyton-Brown. 2009.
SATenstein: Automatically Building Local Search SAT Solvers from Components.
IJCAI International Joint Conference on Artificial Intelligence 232, 517-524. https:
//doi.org/10.1016/j.artint.2015.11.002

Matthew Kitching and Fahiem Bacchus. 2007. Symmetric Component Caching.
In IJCAL 118-124

Viswanathan Kodaganallur. 2004. Incorporating language processing into Java
applications: a JavaCC tutorial. IEEE Software 21, 4 (July 2004), 70-77. https:
//doi.org/10.1109/MS.2004.16

Shu Lin, Na Meng, and Wenxin Li. 2019. Optimizing Constraint Solving via
Dynamic Programming. In Proceedings of the 28th International Joint Conference
on Artificial Intelligence (Macao, China) (IJCAI'19). AAAI Press, 1146-1154. https:
//doi.org/10.24963/ijcai.2019/160

Shu Lin, Na Meng, and Wenxin Li. 2021. PDL: Scaffolding Problem Solving
in Programming Courses. In Proceedings of the 2021 Conference on Innovation
& Technology in Computer Science Education. https://doi.org/10.1145/3430665.

[21

[22

~
&

[24

[25

[26]

[27

™
&,

[29

[30

[32

[33

&
=

[34

[35

(36]

[37

Shu Lin, Na Meng, and Wenxin Li

3456360

L4sz16 Lovasz. 2007. Combinatorial Problems and Exercises. AMS Chelsea Pub.,
Providence, RI.

Roberto Castafieda Lozano, Mats Carlsson, Gabriel Hjort Blindell, and Chris-
tian Schulte. 2016. Register Allocation and Instruction Scheduling in Uni-
son. In Proceedings of the 25th International Conference on Compiler Construc-
tion (Barcelona, Spain) (CC 2016). ACM, New York, NY, USA, 263-264. https:
//doi.org/10.1145/2892208.2892237

Steven Minton. 1996. Automatically Configuring Constraint Satisfaction Pro-
grams: A Case Study. Constraints 1, 1-2 (1996), 7-43. https://doi.org/10.1007/
BF00143877

Leonardo De Moura and Nikolaj Bjrner. 2008. Z3: an efficient SMT solver. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. https://doi.org/10.1007/978-3-540-78800-3_24

Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J.
Duck, and Guido Tack. 2007. MiniZinc: Towards a Standard CP Modelling
Language. In Proceedings of the 13th International Conference on Principles and

Practice I_o[f Constraint Programming (Providence, RI, USA) (CP’07). Springer-Verlag,
Berlin, Heidelberg, 529-543. https://doi.org/10.1007/978-3-540-74970-7_38

Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. 2009. Propagation via
lazy clause generation. Constraints 14, 3 (2009), 357-391. https://doi.org/10.1007/
510601-008-9064-x

Jean-Francois Puget. 2004. Constraint Programming Next Challenge: Simplicity
of Use. In Principles and Practice of Constraint Programming — CP 2004, Mark
Wallace (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 5-8. https://doi.
org/10.1007/978-3-540-30201-8_2

Tuomas Sandholm, Subhash Suri, Andrew Gilpin, and David Levine. 2002. Winner
Determination in Combinatorial Auction Generalizations. In Proceedings of the
First International Joint Conference on Autonomous Agents and Multiagent Systems:
Part 1 (Bologna, Italy) (AAMAS ’02). ACM, New York, NY, USA, 69-76. https:
//doi.org/10.1145/544741.544760

Christian Schulte, Mikael Z. Lagerkvist, and Guido Tack. 2006. Gecode: Generic
constraint development environment. In INFORMS Annual Meeting.

Christian Schulte, Guido Tack, and Mikael Z. Lagerkvist. 2019. Introduction.
In Modeling and Programming with Gecode, Christian Schulte, Guido Tack, and
Mikael Z. Lagerkvist (Eds.). Corresponds to Gecode 6.2.0.

Barbara M. Smith. 2005. Caching Search States in Permutation Problems. In
Principles and Practice of Constraint Programming - CP 2005, Peter van Beek (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 637-651. https://doi.org/10.1007/
11564751_47

Peter J. Stuckey, Kim Marriott, and Guido Tack. 2020. FlatZinc and Flattening.
https://www.minizinc.org/doc-2.5.2/en/flattening.html.

Peter J. Stuckey, Kim Marriott, and Guido Tack. 2020. The MiniZinc IDE. https:
//www.minizinc.org/doc-2.5.2/en/minizinc_ide html.

Peter J. Stuckey, Kim Marriott, and Guido Tack. 2021. Solving Technologies and
Solver Backends. https://www.minizinc.org/doc-2.4.3/en/solvers.html.

Charles Turner. 2014. Comparing SAT and SMT Encodings of All-Different and
Global Cardinality Constraints. Master’s thesis. University of York.

Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. 2010. Hydra: Automati-
cally Configuring Algorithms for Portfolio-Based Selection. In Proceedings of
the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta,
Georgia, USA, July 11-15, 2010.

Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. SATzilla:
Portfolio-based Algorithm Selection for SAT. Journal of Artificial Intelligence
Research 32, 1 (2011), 565-606.

Neng-Fa Zhou, Masato Tsuru, and Eitaku Nobuyama. 2012. A Comparison
of CP, IP, and SAT Solvers through a Common Interface. In 2012 IEEE 24th
International Conference on Tools with Artificial Intelligence, Vol. 1. 41-48. https:
//doi.org/10.1109/ICTAL2012.15

https://doi.org/10.1109/WICSA.2011.37
https://doi.org/10.1109/WICSA.2011.37
https://doi.org/10.1109/ICSE.2012.6227151
https://doi.org/10.1007/978-3-642-17458-2_7
https://doi.org/10.1007/978-3-642-17458-2_7
http://theory.stanford.edu/~nikolaj/programmingz3.html
http://theory.stanford.edu/~nikolaj/programmingz3.html
https://doi.org/10.1007/978-3-642-14186-7_25
https://choco-solver.org/
https://doi.org/10.1007/978-3-642-13520-0_10
https://doi.org/10.1007/s10601-011-9112-9
http://csplib.org/
https://doi.org/10.1016/S0004-3702(00)00081-3
http://compilers.cs.ucla.edu/jtb/
https://doi.org/10.1016/j.artint.2015.11.002
https://doi.org/10.1016/j.artint.2015.11.002
https://doi.org/10.1109/MS.2004.16
https://doi.org/10.1109/MS.2004.16
https://doi.org/10.24963/ijcai.2019/160
https://doi.org/10.24963/ijcai.2019/160
https://doi.org/10.1145/3430665.3456360
https://doi.org/10.1145/3430665.3456360
https://doi.org/10.1145/2892208.2892237
https://doi.org/10.1145/2892208.2892237
https://doi.org/10.1007/BF00143877
https://doi.org/10.1007/BF00143877
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/s10601-008-9064-x
https://doi.org/10.1007/s10601-008-9064-x
https://doi.org/10.1007/978-3-540-30201-8_2
https://doi.org/10.1007/978-3-540-30201-8_2
https://doi.org/10.1145/544741.544760
https://doi.org/10.1145/544741.544760
https://doi.org/10.1007/11564751_47
https://doi.org/10.1007/11564751_47
https://www.minizinc.org/doc-2.5.2/en/flattening.html
https://www.minizinc.org/doc-2.5.2/en/minizinc_ide.html
https://www.minizinc.org/doc-2.5.2/en/minizinc_ide.html
https://www.minizinc.org/doc-2.4.3/en/solvers.html
https://doi.org/10.1109/ICTAI.2012.15
https://doi.org/10.1109/ICTAI.2012.15

	Abstract
	1 Introduction
	2 Background and Terminology
	2.1 Combinatorial Problems (CP)
	2.2 Two Typical Search Strategies

	3 A Running Example
	3.1 Problem Statement
	3.2 Constraint Modeling with PDL
	3.3 Algorithm Synthesis
	3.4 Code Generation

	4 PDL
	5 The SoGen Engine
	5.1 Bound Tightening
	5.2 Independent Variable Selection
	5.3 Automatic Algorithm Generation
	5.4 Automatic Algorithm Optimization
	5.5 Code Generation

	6 Evaluation
	6.1 Empirical Comparison with CP Solvers
	6.2 Empirical Comparison with Dominion

	7 Discussion
	8 Threats to Validity
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

