
How Do Developers Follow Security-Relevant Best
Practices When Using NPM Packages?
Md Mahir Asef Kabir* Ying Wang† Danfeng(Daphne) Yao* Na Meng*

Department of Computer Science* Software College†

Virginia Tech* Northeastern University†

Blacksburg, USA* Shenyang, China†

{mdmahirasefk,danfeng,nm8247}.edu* wangying@swc.neu.edu.cn†

Abstract—Node.js has become popular among developers,
partially because of its large software ecosystem of NPM (Node
Package Manager) packages. When building JavaScript (JS)
applications on top of NPM packages, developers can reuse the
provided functionalities to improve programmer productivity.
However, many NPM packages have been recently found vulner-
able or malicious. Such packages can introduce vulnerabilities
into their client JS applications, and realize software supply
chain attacks. To reduce the impact of potentially malicious
NPM packages in Node.js software ecosystem, experts suggested
best practices to developers when they maintain package depen-
dencies. These best practices include using specific commands
and/or tools to (a) conduct security audit for dependencies
and remove vulnerable dependencies, (b) remove unused and
duplicated dependencies, and (c) fixate the version information
of library/package dependencies.

We were curious how developers followed and will follow those
best practices. For this paper, we did a large-scale empirical
study on 841 popularly used open-source JS applications. By
analyzing their configuration files (e.g., package.json and
package-lock.json), we revealed that only 32% of the
applications lock the version numbers of package dependencies.
The commands/tools reported (i) vulnerable, (ii) unused, and (iii)
duplicated dependencies separately in 55%, 90%, and 83% of
applications, which fact implies that developers often ignored the
best practices we examined. We did a user study with developers
to acquire their opinions on the suggested best practices and got
interesting feedback. Our research will enlighten future research
on the management of NPM package dependencies.

Index Terms—Empirical, NPM packages, best practices

I. INTRODUCTION

Node.js is an open-source, cross-platform, JavaScript (JS)
runtime environment that executes JS code outside of a web
browser [1]. NPM (Node Package Manager) is the default
package manager of Node.js. NPM consists of a command-
line client, also called npm, and an online database of public
and private packages called the npm registry. The npm reg-
istry hosts more than one million NPM packages, and thus
provides the largest ecosystem of open-source libraries in the
world [1]. Due to the widespread use of Node.js, more and
more developers download NPM packages into their local
software environments and develop JS applications on top of
that. Developers publish and reuse NPM packages to increase
programmer productivity and improve software quality.

This work was supported by US NSF Grants (NSF-1845446, NSF-
1929701), US ONR Grant N00014-22-1-2057, and National Natural Science
Foundation of China (Grant Nos. 62141210, 61902056).

Security experts recently found malicious or vulnerable
NPM packages that can enable software supply chain at-
tacks—the attacks that hackers achieve by manipulating code
or exploiting vulnerabilities in third-party software libraries, to
compromise the client applications that use those libraries [2].
For instance, In March 2021, security experts identified a
vulnerability in the NPM package netmask, which could
expose private networks and lead to a variety of attacks
such as malware delivery [3]. As netmask is highly pop-
ular, the vulnerability can affect more than 278,000 client
projects once it is exploited. The usage of NPM packages
can expose client applications to security risks. Therefore, to
reduce risks, domain experts usually recommend application
developers to follow best practices when maintaining package
dependencies [4]–[8]. After extensively searching online with
keywords “npm best practices”, we found the following three
best practices (BPs) most popularly suggested:

BP1: Scan vulnerabilities in library dependencies using
command “npm audit” and remove vulnerabilities with
“npm audit fix” [4]–[11], because eliminating the usage of
vulnerable packages can reduce the malicious module attack
surface. The command “npm audit” submits to npm registry
a description of dependencies in a JS application, and asks
for a report of known vulnerabilities in those packages. If any
vulnerability is found, the impact and appropriate remediation
will be calculated. If the argument fix is also provided,
i.e., “npm audit fix”, then remediation will be automatically
applied to the dependency tree.

BP2: Scan and/or remove unused and duplicated pack-
ages using “depcheck” and “npm dedupe” [4], [5], [7],
because these dependencies can unnecessarily grow the at-
tack surface and add clutter to software implementation.
“Depcheck” [12] is a tool to analyze the dependencies in
a project, and to identify any unused direct or indirect
(libraries direct dependencies depend on) NPM dependency.
“Npm dedupe” [13] is a command to reduce duplication in a
dependency tree. It searches the tree for any package (regard-
less of the version numbers) that is depended on by multiple
packages, and tries to simplify the overall structure by moving
packages up the tree and merging redundant dependencies.

BP3: Enforce the lock file package-lock.json to pin
library dependency versions [5], [6], [8], [10], so that
developers can obtain deterministic installations of packages

across different environments. Package.json is a JSON file
that exists at the root of a JS/Node project. It holds meta-
data relevant to the project and it is used for managing
the project’s dependencies, scripts, version, etc. [14]. When
developers specify version ranges for package dependencies in
package.json (e.g., “˜5.2.0” means the value range “≥5.2.0
&<5.3.0”), npm has the freedom to decide which version to
download within those ranges. Such freedom can introduce
nondeterministic package downloads as well as installations
across different environments [6], and pull in vulnerable or
malicious package versions. For deterministic installations, JS
developers are recommended to automatically generate lock
files package-lock.json that explicitly document the exact
version info, and commit lock files to software repositories.

With these best practices suggested for years, we were
curious about the following research questions:
• RQ1: How well did developers follow best practices?
• RQ2: How well can existing tools address developers’

violations of best practices?
• RQ3: In the scenarios when developers do not follow

best practices, what are the reasons?
To answer these questions, we conducted a large-scale empir-
ical study on 841 popularly used open-source JS applications.
After cloning the repositories on GitHub, we studied each
application by taking three steps. First, to identify developers’
violations of any of the best practices mentioned above, we
analyzed the configuration file(s) (e.g., package-lock.json)
and JS code by applying our own scripts, existing npm com-
mands, and related tools. Second, for the detected violations,
we applied existing tools to address issues and to explore the
feasibility for developers to follow best practices. Third, we
sampled 60 detected violations and filed pull requests (PR) to
examine developers’ willingness to follow the best practices.

Our study revealed interesting phenomena. Only 32% of the
studied applications specify the exact versions of all library de-
pendencies, most of which started using package-lock.json

file in 2017–2018 to lock dependencies. Most applications
(e.g., 65%) violate the best practice of fixating dependency
versions, as they allow distinct versions of libraries to flexibly
match the version-range specification. The scripts, commands,
and/or tools we used reported vulnerable, unused, and dupli-
cated dependencies separately in 460, 755, and 698 applica-
tions. These numbers imply that most developers did not make
every effort to follow the suggested best practices. Although
there is sufficient tool support to generate package-lock.json

files, we do not have enough tools to remove unneeded and
vulnerable packages. Developers expressed two major reasons
to explain their decision-making. First, developers did not see
the necessity of following best practices. Second, developers
found the outputs of recommended tools to be wrong.

Our scripts and datasets are available at
https://figshare.com/s/c7e6647a6d5b4cc8a2d7

II. METHODOLOGY

To understand how developers follow the best practices con-
cerning dependency security, we first created a large dataset of

JS applications, and took three steps to investigate our research
questions mentioned in Section I.

Dataset Creation: We identified subject programs by
referring to the top 1,000 most depended-upon packages [15].
We started with this initial set of JS applications for two
reasons. First, each of the applications has a package published
at npm registry. It means that the applications are likely to have
package.json files to be checked for our investigation, and
npm commands are probably executable with them. Second,
the most depended-upon packages are definitely popularly
used JS applications. Analyzing these subject applications can
enhance the representativeness of our empirical results. In
the list of 1,000 JS applications, we successfully located the
GitHub repositories for 980 applications, and 919 of them
have package.json in the most recent versions. By removing
duplicated repositories, we got a dataset of 841 repositories.

Step 1: Investigating how well developers followed best
practices (RQ1): For best practice (a), we applied “npm
audit” (i.e., npm-audit) to check whether any project depends
on known vulnerable NPM package(s). For best practice (b),
we applied “depcheck” and “npm ls --all” to separately
reveal unused and duplicated dependencies. In particular, “npm
ls --all” prints a dependency tree for each JS application.
We wrote a script to scan every tree, and to decide whether
any package occurs multiple times in a tree; if so, the
package is duplicated. For best practice (c), we scanned the
projects downloaded from GitHub for (1) the version spec of
library dependencies in package.json, and (2) the existence of
package-lock.json. If a project has no lock file and specifies
version ranges for some dependencies, we consider it to violate
the best practice.

Step 2: Investigating how well existing tools can address
developers’ violations to best practices (RQ2): For any ap-
plication that violates best practice (a) by using vulnerable
packages, we applied “npm audit fix” to tentatively address
those issues. Afterwards, we reapplied “npm audit” to check
whether all vulnerable packages were successfully replaced.

Concerning best practice (b), if an application has unused
packages reported, we did not try to address the issues because
there is no tool to perform that task. If an application has du-
plicated dependencies reported, we first applied “npm dedupe”
to remove all duplicates. We then reapplied “npm ls --all”
to list the dependency tree and find remaining duplicates.

Concerning best practice (c), as package-lock.json

is automatically generated whenever npm modifies either
pacakge.json or the dependency tree, we did not further
explore how well this feature works; it seems that the default
mechanism works well to generate lock files. Developers only
need to always commit their lock files to software repositories,
in order to ensure consistent build results.

Step 3: Investigating what developers think of their best
practice violations (RQ3): We sampled 20 violations for
each best practice, ensured the violations to be from distinct
projects, and filed pull requests (PRs) to interact with different
developers. In each PR, we described the recommended best
practice, the security implication of that best practice, any vi-

0
20
40
60
80

100
120
140

[1, 3
]

[4, 6
]

[7, 9
]

[10, 1
2]

[13, 1
5]

[16, 1
8]

[19, 2
1]

[22, 2
4]

[25, 2
7]

[28, 3
0]

[31, 3
3]

[34, 3
6]

[37, ∞
) # of

vulnerable
dependencies

of applications

Fig. 1: The distribution of 460 JS applications based on their
numbers of reported vulnerable dependencies

0
100
200
300
400
500
600
700
800

of unused
dependencies

Cumulative # of applications

20 21 22 23 24 25 26 27

Fig. 2: The CDF of 755 JS applications based on the unused
dependencies reported

olation we found in the codebase, and our suggested solution.
We asked developers for their thoughts on those suggestions
and their reasons for violating best practices.

III. EXPERIMENT RESULTS

This section presents and explains our results for each RQ.
A. Developers’ Compliance with Best Practices

By running “npm audit” with the latest software versions
of 841 repositories, we found the command to report vulnera-
bilities in 460 (55%) programs, no vulnerability in 152 (18%)
projects; it failed to execute in the remaining 229 ones.

Among the 229 cases where errors were reported, the com-
mand cannot identify any appropriately generated lock files,
nor can we reproduce lock files for a variety of reasons (e.g.,
no access to private packages or unsupported URL types). The
command runs smoothly with 612 projects, among which there
are more applications with reported vulnerabilities than those
without (460 vs. 152). For the 460 vulnerable applications,
Fig. 1 shows their distribution based on the counts of detected
vulnerable dependencies. Generally speaking, as the number of
vulnerable dependencies increases, the number of applications
decreases. As shown in the figure, most programs (i.e., 238)
have 6 or fewer vulnerable dependencies; 222 programs have
at least 7 vulnerable dependencies. All numbers mentioned
above imply that according to “npm audit”, vulnerable de-
pendencies popularly exist in JS applications. It seems that
developers paid little attention to vulnerable dependencies, or
did little to intentionally reduce those vulnerabilities.

Finding 1: Most developers did not seem to follow best
practice (a), as “npm audit” reported lots of vulnerabilities.

0
100
200
300
400
500
600
700

of duplicated
dependencies

Cumulative # of applications

20 21 22 23 24 25 26 27 28 29 210 211

Fig. 3: The CDF of 698 applications based on the duplicated
dependencies reported

Unused dependencies were reported in the latest versions
of 755 programs. Fig. 2 shows the cumulative distribution
function (CDF) of 755 programs based on the number of
unused dependencies reported. In the figure, we use a log
scale for the x-axis, as the number of unused dependencies
varies a lot across applications. Each application has 1–127
unused dependencies reported. For each label 2n on the x-
axis, the y-value counts the applications that have at least 1,
and at most 2n unused dependencies. According to the figure,
715 programs have [20, 25] or 1–32 unused dependencies.
The median count of unused dependencies per project is 6,
while the mean value is 10. These numbers imply that many
programs have one or multiple unused dependencies reported.

Finding 2: 755 out of 841 have unused dependencies
reported by “depcheck” in their latest versions.

Duplicated dependencies were reported in the most recent
versions of 698 programs. Fig. 3 shows the CDF of 698
programs based on the duplicated dependencies reported.
According to Fig. 3, the majority of programs have 17-512
duplicates in their separate dependency trees. The median
count of duplicated dependencies is 129, and the mean is 192.

Finding 3: 698 out of the 841 projects have duplicated de-
pendencies reported. Most projects seem to have alarmingly
large numbers of duplicates reported (i.e., 17–512).

In terms of lock files, we observed 269 programs to have
package-lock.json files in version history. There are 21
programs that have no dependency on any NPM package, so
they do not need any lock file to fixate any library dependency.
Another three programs specify the exact version numbers of
all package dependencies in package.json files, so they do not
need any lock file either. Namely, in only 35% (293/841) of the
studied cases, we have no difficulty reproducing the original
software environment where developers build and execute their
programs. The other 548 programs have no lock file in GitHub
repositories, although they all have library dependencies.

Since 2017 when NPM 5 was released, package-lock.json
has been automatically generated for any npm operation that
modifies the node_modules tree or package.json. The lock file
describes the exact tree that was generated in the developers’
environment, so that subsequent installs can generate identical
trees regardless of intermediate dependency updates [16].

It is unknown how soon developers adopted the best practice

0
20
40
60
80

100
120

2017 2018 2019 2020 2021

of projects

Year

Fig. 4: The distribution of 268 projects based on the year when
lock files were initially introduced to repositories

0
20
40
60
80

100
120
140
160
180

[1, 3
]

[4, 6
]

[7, 9
]

[10, 1
2]

[13, 1
5]

[16, 1
8]

[19, 2
1]

[22, 2
4]

[25, 2
7]

[28, 3
0]

[31, 3
3]

[34, 3
6]

[37, ∞
) # of

vulnerable
dependencies

of applications

Fig. 5: The distribution of 405 fixed applications based on
their numbers of vulnerable dependencies

of committing lock files to version history, so we mined the
version history of 841 projects. We found that 822 of the
projects were created in or before 2017. Among these projects,
268 projects have lock files in their latest versions. We further
located the commits that initially introduced lock files into the
268 repositories. As shown in Fig. 4, 104 programs added lock
files to repositories in 2017; this number slightly went down
to 91 in 2018, and dropped significantly to 39 in 2019; in
2021, only 8 programs added lock files. The figure implies that
the developers who care about deterministic installs typically
committed lock files to repositories as early as possible. If
some developers did not introduce lock files into repositories
earlier, they may also be reluctant to add those files later.

Finding 4: 548 projects have no lock file under version
control. Among the 268 projects we further studied, 195
projects added package-lock.json files in 2017 or 2018.

To sum up, our results show that most developers did
not follow best practices (a)–(c). Although a good number
of programs (i.e., 269) have lock files added to GitHub
repositories, we have not seen the best practice widely spread
among projects over years.

B. Current Tools to Remove Violations of Best Practices

For the 460 applications with vulnerable dependencies re-
ported in the latest software versions, we applied “npm audit

fix” to address issues, and to replace vulnerable versions with
the secure ones as npm suggests. Unfortunately, we found only
55 applications to have the issues fully resolved; 164 applica-
tions have issues partially removed; and 241 applications have
issues remain. In other words, 405 (i.e., 164 + 241) programs
still have vulnerable dependencies. Fig. 5 shows the distribu-
tion of 405 fixed programs based on the counts of vulnerable
dependencies. By comparing Fig. 5 with Fig. 1, we saw that

0
100
200
300
400
500
600
700

of duplicated
dependencies

Cumulative # of applications

20 21 22 23 24 25 26 27 28 29 210 211

Fig. 6: The distribution of 688 revised applications based on
their counts of duplicated dependencies reported

the fixed programs have a lot fewer vulnerable dependencies.
264 fixed programs have 1–6 vulnerable dependencies, and no
fixed program has a count beyond 33.

Our observations imply that “npm audit fix” can reduce
vulnerable dependencies for some applications; however, it
still cannot remove all vulnerable dependencies for most
programs. One possible reason can explain such deficiency:
the secure alternatives of some vulnerable versions do not
satisfy the version-range spec in package.json. For instance,
package hapi has versions 6.1.0 and earlier known to be
vulnerable to a rosetta-flash attack, which can be used by
attackers to send data across domains and to break the browser
same-origin-policy [17]. To remedy any program depending on
the vulnerable versions, npm needs to replace those versions
with versions ≥6.1.1. However, if a program specifies “1.x”
for hapi in package.json, npm-audit does not replace the
vulnerable version because the secure alternative 6.1.1 or
later does not satisfy that version spec. More advanced tools
or fixing strategies are still needed to eliminate vulnerable
dependencies in a larger portion of JS applications.

Finding 5: The command “npm audit fix” removed all
vulnerable dependencies in only 55 programs, but kept
vulnerable dependencies as they were in 241 programs.

For the 698 applications with duplicated dependencies re-
ported in the latest version, we applied “npm dedupe” (i.e.,
npm-dedupe) to eliminate duplicates. Unfortunately, we found
only 10 applications to have duplicates fully removed; 467 ap-
plications have duplicates partially removed; 113 applications
have duplicates unchanged; 118 applications have duplicates
increased. Namely, 688 of the 698 applications still have
duplicates reported. The median count of duplicates is 119,
and the mean value is 179. Fig. 6 shows the distribution of
688 applications based on the counts of reported duplicates.
When comparing Fig. 6 with Fig. 3, we found the figures to
be almost the same.

Our observations imply that although npm-dedupe can
provide some help to reduce duplicates in certain circum-
stances, it does not always work effectively. Instead, it kept
duplicates unchanged or even increased duplicates in many
applications. We manually inspected the dependency trees of
some packages, but could not identify any characteristics to
explain the command’s ineffectiveness. The command may
have implementation issues.

TABLE I: Developers’ feedback on our PRs
Category Feedback # of PRs

Audit
Developers considered the vulnerabilities to be false
positives.

4

Developers accepted the suggested fix 3

Unused Developers believed the reports to be false positives. 4
Developers partially agreed, and would like to remove
some reported unused packages.

1

Developers did not worry about unused dependencies. 2

Duplicated
Developers explained the necessity to have duplicated
dependencies.

1

Developers agreed that duplicated dependencies should
be removed, but they did not trust npm-dedupe.

1

Developers assumed the package manager can reduce
duplication by default.

1

Developers did not worry about duplicated dependen-
cies.

1

Lock Developers did not see the need to pin dependency
versions.

4

Finding 6: Npm-dedupe removed all reported duplicates
in only 10 programs, partially removed duplicates in 467
programs, but kept or increased duplicates in 231 programs.

C. Reasons for Violations of Best Practices

After filing 60 pull requests (PRs) based on the detected
violations of best practices, we received 22 responses. As
summarized in Table I, only 4 out of 22 developers are
(partially) positive about our PRs; they either modified or will
modify projects accordingly.

1) Feedback for audit-related PRs: Among the seven PRs
related to npm-audit, two PRs received the same response
from distinct developers—a reference to article “npm audit:
Broken by Design” [18]. The article complained that “in many
situations, (npm-audit) leads to a 99%+ false positive rate,
creates an incredibly confusing first programming experience,
..., and at some point will lead to actually bad vulnerabilities
slipping in unnoticed.” As npm-audit offers no concrete secu-
rity exploit to demonstrate any successful attack, developers
wonder whether the exploits are only achievable when hackers
can access their machines. Consequently, developers lose
trust in vulnerability reports, because if hackers can control
developers’ machines, they can cause more severe problems
than just hacking a JS application.

Another two PRs are about either a vulnerable pack-
age listed in the “devDependencies” segment inside
package.json, or a vulnerable dependency of the test suite.
Developers believed the issues to be irrelevant, as the vul-
nerable dependencies will not get included into the released
software products. All the above-mentioned concerns on npm-
audit make sense to us. They imply that developers care about
security and vulnerable dependencies, but they are unsatisfied
with npm-audit and desperately need better tools. Three of our
PRs were accepted by developers. They responded with “Audit
fixes were applied, thanks” or “Working on this”.

Finding 7: Developers cared about security. However, some
developers felt npm-audit to be broken when reporting
vulnerabilities, as the tool has many false positives.

2) Feedback on PRs related to unused or duplicated depen-
dencies: Among the seven PRs related to unused dependen-
cies, four PRs were considered false positives. One developer

explained “The detection is wrong. For instance, check-dts is
used in package scripts ...” As shown in Listing 1, check-dts
is mentioned in the test script of the project’s package.json,
but “depcheck” incorrectly reported it unused. For a fifth PR,
the developer considered the report partially correct: some
used packages are wrongly diagnosed as unused. However, the
developer would like to remove the ones correctly reported.
For the remaining two PRs, developers believed that the
unused dependencies are irrelevant to core files and cause no
runtime issue, so they decided to change nothing. All devel-
opers’ responses are meaningful and valuable to us, as they
all indicate limitations of the recommended tool “depcheck”.

Listing 1: A package.json file that uses check-dts
...
"scripts": {
"test": "jest --coverage && eslint . bin/* && check-dts

&& size-limit"
} ...

Finding 8: Most developers considered the reported unused
dependencies as (1) false alarms or (2) unimportant issues.
One developer wanted to fix the correctly reported issues.

Four PRs are related to duplicated dependencies. For one
PR, developers clarified their intent of having duplicated de-
pendencies. Currently, npm-dedupe considers distinct versions
of the same package within a dependency tree to be duplicates.
However, developers preferred treating those multiple versions
as distinct dependencies to preserve the differences between
versions. For another PR, developers agreed that duplicated
dependencies should be removed, but they did not trust npm-
dedupe to automatically reorganize dependency trees. For a
third PR, developers believed that the duplicated dependencies
were introduced by the tree produced by “devDependencies”.
As those dependencies will not get included into the released
software, developers felt no obligation to remove the reported
duplicates. We agreed on all concerns mentioned above.

For a fourth PR, developers believed that by default, npm

could reduce duplicates when installing dependencies, so they
did not see the need to specially invoke “npm dedupe”. Based
on our experience, nevertheless, the default npm installer often
does not reduce duplicates effectively. Specially invoking “npm
dedupe” helps remove more duplicates.

Finding 9: Most developers did not worry about duplicated
dependencies. Meanwhile, some developers expressed (1)
the necessity of keeping multiple versions of the same
package, and (2) their concern on depcheck’s reliability.

3) Feedback for lock-related PRs: For all four PRs, devel-
opers considered it unnecessary to lock dependency versions.
A developer mentioned “... packages should not have lockfiles.
Consumers should always have a lockfile in their application,
which fully addresses all the concerns described ...”. This
explanation seems contradictory to us. When a package P
depends on other packages, the package itself is a consumer of
packages and should have a package-lock.json file included
into its software repository. Unfortunately, the developers we
contacted did not consider their own projects to be consumers

of other packages. Another developer believes it OK to omit
lock files, as all packages on which his/her project depends
will always follow semantic versioning. However, this belief
does not always hold as people observed incorrect semantic
versions to cause issues when lock files are missing [19], [20].

Finding 10: Developers did not bother to use lock files,
mainly because they did not care about reproducible builds
or did not fully understand the locking mechanism.

IV. OUR RECOMMENDATIONS

Our work presented significant gaps between the recom-
mended best practices of NPM dependency maintenance and
developers’ actual practices, as well as between the expected
tool support and existing tools’ capabilities. Such gaps may
result in serious software vulnerabilities and cause various
issues to end users. Below are our recommendations:

a) For Developers: Generate lock files to fixate the
package dependencies for any released version of their JS
projects, and put those files under version control. Without
lock files, the npm client may install dependencies into the
node_modules directory nondeterministically. This means that
due to the installation order and time of dependencies, the
structure of a node_module directory can be different from
one person to another. These differences can cause hard-to-
reproduce bugs that take a long time to fix [20], [21].

b) For Tool Builders: Improve existing tools or create
new tools to better meet developers’ needs. Concerning se-
curity audit, developers consider npm-audit to generate too
many false positives, as the tool does not provide any evidence
to show how each reported vulnerability can be actually
leveraged by hackers. Concerning the detection of unused or
duplicated dependencies, developers also reported false alarms
produced by existing tools. Our experiment results show that
there is insufficient tool support to help developers properly
address their violations of best practices. We still need more
advanced tools that conduct sophisticated program analysis, to
generate customized project-specific attacks, to improve detec-
tors’ accuracy, and to generate high-quality fixing suggestions.

c) For Researchers: Cautiously use existing npm com-
mands and tools when conducting empirical studies and report-
ing experiment results; invent and adopt better tools to improve
the rigor of empirical findings. We noticed that some recent
studies were conducted based on the usage of depcheck [22],
[23] and npm-audit [24], [25]. However, depcheck can falsely
report unused dependencies [26] (see Section III-C2). Npm-
audit reports vulnerabilities based on the existence of vul-
nerable package dependencies, instead of based on the finer-
granularity code analysis or enabled security exploits. Devel-
opers did not seriously treat the reported vulnerabilities most
of the time, as reflected by our experimental measurements
(Section III-A) and user study (Section III-C3). Therefore,
researchers need to be very careful when summarizing the
security of NPM ecosystem by using npm-audit.

V. THREATS TO VALIDITY

a) Threats to External Validity: All observations we
made are limited to the selected JS projects, and the selected

developers who responded to our PRs. The observations may
not generalize to unchosen projects or developers who did not
receive or reply our PRs. In the future, we plan to include
more projects and involve more developers into our empirical
study, so that our findings are more representative.

b) Threats to Internal Validity: Some tools like yarn [27]
and snyk [28] can serve as alternatives to the commands/tools
suggested in the best practices. We did not experiment with
these additional tools due to their limited availability and less
popularity. However, most of our observations are likely to
preserve even if we used the alternatives. For instance, similar
to npm-audit, snyk-test also reveals vulnerable dependencies
based on a predefined vulnerability database. It does not
customize security attacks for any JS project, so it is unlikely
to better satisfy developers. As with npm, yarn can also
generate lock files to fixate versions of package dependencies.
Nevertheless, if developers do not see the need to pin depen-
dency versions, yarn cannot better help developers, either.

VI. RELATED WORK

Various research was conducted to help improve developers’
secure coding practices [29]–[35]. The research most related to
our paper includes the empirical studies to characterize NPM
packages and their dependencies [19], [36]–[42]. Specifically,
Wittern et al. analyzed the NPM ecosystem and found that
package dependencies increased over time, although many
projects depend on a core set of packages. Cogo et al. ex-
plored why developers downgraded package dependencies;
they revealed reasons like (1) defects in a specific version of
a provider, (2) unexpected feature changes in a provider, (3)
incompatibilities, and (4) prevention of issues introduced by
future releases [42]. Decan et al. [39] and Zerouali et al. [40]
studied how soon developers updated their dependencies after
the new package releases became available. Both groups
reported that a lot of dependency information was updated
weeks or months later than the introduction of new releases.

Compared with prior work, our study is different in terms
of the research scope and study method. We summarized the
best practices widely suggested by NPM-related tutorials, and
examined how and why developers violated those rules.

VII. CONCLUSION

This study assesses how developers follow security-related
practices when using NPM packages. We analyzed 841 JS
repositories, and observed interesting phenomena. Developers
are often recommended to use certain commands/tools to (1)
scan for and remove vulnerable dependencies, (2) remove
unused and duplicated packages, and (3) add lock files to
software version control. However, in reality, even though tools
can report violations of the above-mentioned best practices,
current tools seldom fix those violations and developers rarely
treat tool outputs seriously. In the future, we will better define
best practices, and build tools to (i) better reveal violations
of best practices as well as (ii) synthesize attacks that exploit
vulnerable dependencies.

ACKNOWLEDGMENT

We thank anonymous reviewers for their valuable feedback.

REFERENCES

[1] “Exploring the JavaScript Ecosystem: Popular Tools,
Frameworks, and Libraries,” https://mirzaleka.medium.com/
exploring-javascript-ecosystem-popular-tools-frameworks-libraries-
7901703ec88f, 2020.

[2] “Software supply chain attacks – everything you
need to know,” https://portswigger.net/daily-swig/
software-supply-chain-attacks-everything-you-need-to-know, 2021.

[3] “Vulnerability in ’netmask’ npm Package Affects
280,000 Projects,” https://www.securityweek.com/
vulnerability-netmask-npm-package-affects-280000-projects, 2021.

[4] “Controlling the Node.js security risk of
npm dependencies,” https://blog.risingstack.com/
controlling-node-js-security-risk-npm-dependencies/\#
3areotherdevelopersusingthispackage, 2016.

[5] “npm package best practices,” https://co-pilot.dev/npm-package, 2021.
[6] “10 npm Security Best Practices,” https://snyk.io/blog/

ten-npm-security-best-practices/, 2019.
[7] “NPM Tips and Tricks,” https://blog.bitsrc.io/

npm-tips-and-tricks-24c5e9defea6, 2020.
[8] “Npm Security Best Practices,” https://bytesafe.dev/posts/

npm-security-best-practices/\#no9-deterministic-results, 2021.
[9] “We’re under attack! 23+ Node.js security best

practices,” https://medium.com/@nodepractices/
were-under-attack-23-node-js-security-best-practices-e33c146cb87d,
2018.

[10] “Top 10 Npm Security Best Practices,” https://dev.to/danielp/
top-10-npm-security-best-practices-2lp9, 2021.

[11] “NPM security best practices – SoluteLabs,” https://www.solutelabs.
com/blog/npm-security-best-practices, 2020.

[12] “depcheck,” https://www.npmjs.com/package/depcheck, 2021.
[13] “npm-dedupe,” https://docs.npmjs.com/cli/v7/commands/npm-dedupe,

2021.
[14] “Understanding the package.json file,” https://blog.ezekielekunola.com/

understanding-the-package.json-file, 2020.
[15] “npm rank,” https://gist.github.com/anvaka/8e8fa57c7ee1350e3491,

2020.
[16] “package-lock.json,” https://docs.npmjs.com/cli/v7/configuring-npm/

package-lock-json, 2021.
[17] “Rosetta-Flash JSONP Vulnerability,” https://www.npmjs.com/

advisories/12, 2021.
[18] “npm audit: Broken by Design,” https://overreacted.io/

npm-audit-broken-by-design/, 2021.
[19] P. Goswami, S. Gupta, Z. Li, N. Meng, and D. Yao, “Investigating

the reproducibility of npm packages,” in 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2020,
pp. 677–681.

[20] “Semantic Versioning Sucks! Long Live Semantic Versioning,” https:
//developer.okta.com/blog/2019/12/16/semantic-versioning, 2019.

[21] “Should I commit the yarn.lock file and what is
it for?” https://stackoverflow.com/questions/39990017/
should-i-commit-the-yarn-lock-file-and-what-is-it-for, 2016.

[22] A. Javan Jafari, D. E. Costa, R. Abdalkareem, E. Shihab, and N. Tsan-
talis, “Dependency smells in javascript projects,” IEEE Transactions on
Software Engineering, pp. 1–1, 2021.

[23] M. A. R. Chowdhury, R. Abdalkareem, E. Shihab, and B. Adams, “On
the untriviality of trivial packages: An empirical study of npm javascript
packages,” IEEE Transactions on Software Engineering, pp. 1–1, 2021.

[24] J. Hejderup, “In dependencies we trust: How vulnerable are depen-
dencies in software modules?” Master’s thesis, Delft University of
Technology, 05 2015.

[25] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel, “Smallworld
with high risks: A study of security threats in the npm ecosystem,” in
Proceedings of the 28th USENIX Conference on Security Symposium,
ser. SEC’19. USA: USENIX Association, 2019, pp. 995–1010.

[26] “Incorrect unused dependencies,” https://github.com/depcheck/
depcheck/issues/440, 2019.

[27] “Yarn - Package Manager,” https://yarnpkg.com, 2021.
[28] “Snyk,” https://snyk.io/, 2021.
[29] N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. A. Argoty, “Secure

coding practices in java: Challenges and vulnerabilities,” in ICSE, 2018.

[30] M. Chen, F. Fischer, N. Meng, X. Wang, and J. Grossklags, “How
reliable is the crowdsourced knowledge of security implementation?” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), May 2019, pp. 536–547.

[31] S. Rahaman, Y. Xiao, S. Afrose, F. Shaon, K. Tian, M. Frantz,
M. Kantarcioglu, and D. D. Yao, “Cryptoguard: High precision
detection of cryptographic vulnerabilities in massive-sized java
projects,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’19. New York,
NY, USA: Association for Computing Machinery, 2019, pp. 2455–2472.
[Online]. Available: https://doi.org/10.1145/3319535.3345659

[32] M. Islam, S. Rahaman, N. Meng, B. Hassanshahi, P. Krishnan, and
D. D. Yao, “Coding practices and recommendations of spring security
for enterprise applications,” in 2020 IEEE Secure Development (SecDev),
2020, pp. 49–57.

[33] Y. Zhang, M. M. A. Kabir, Y. Xiao, D. D. Yao, and N. Meng, “Automatic
detection of java cryptographic api misuses: Are we there yet,” IEEE
Transactions on Software Engineering, pp. 1–1, 2022.

[34] D. Yao, S. Rahaman, Y. Xiao, S. Afrose, M. Frantz, K. Tian, N. Meng,
C. Cifuentes, Y. Zhao, N. Allen, N. Keynes, B. Miller, E. Heymann,
M. Kantarcioglu, and F. Shaon, “Being the developers’ friend: Our
experience developing a high-precision tool for secure coding,” IEEE
Security & Privacy, no. 01, pp. 2–11, 2022.

[35] Y. Zhang, Y. Xiao, M. M. A. Kabir, D. Yao, and N. Meng, “Example-
based vulnerability detection and repair in java code,” in 2022
IEEE/ACM 30th International Conference on Program Comprehension
(ICPC), 2022, pp. 190–201.

[36] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics of
the javascript package ecosystem,” in 2016 IEEE/ACM 13th Working
Conference on Mining Software Repositories (MSR). IEEE, 2016, pp.
351–361.

[37] A. Trockman, S. Zhou, C. Kastner, and B. Vasilescu, “Adding sparkle
to social coding: An empirical study of repository badges in the
npm ecosystem,” in 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE), 2018, pp. 511–522.

[38] A. Decan, T. Mens, and E. Constantinou, “On the impact of security
vulnerabilities in the npm package dependency network,” in 2018
IEEE/ACM 15th International Conference on Mining Software Reposi-
tories (MSR), May 2018, pp. 181–191.

[39] A. Decan, T. Mens, and E. Constantinou, “On the evolution of technical
lag in the npm package dependency network,” in 2018 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME),
Sep. 2018, pp. 404–414.

[40] A. Zerouali, E. Constantinou, T. Mens, G. Robles, and J. González-
Barahona, “An empirical analysis of technical lag in npm package
dependencies,” in New Opportunities for Software Reuse, R. Capilla,
B. Gallina, and C. Cetina, Eds. Cham: Springer International Publish-
ing, 2018, pp. 95–110.

[41] A. Zerouali, T. Mens, G. Robles, and J. M. Gonzalez-Barahona, “On the
diversity of software package popularity metrics: An empirical study of
npm,” in 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER), Feb 2019, pp. 589–593.

[42] F. R. Cogo, G. A. Oliva, and A. E. Hassan, “An empirical study of
dependency downgrades in the npm ecosystem,” IEEE Transactions on
Software Engineering, pp. 1–1, 2019.

