
Methods and Benchmark for Detecting
Cryptographic API Misuses in Python

Miles Frantz, Ya Xiao, Tanmoy Sarkar Pias, Na Meng, Danfeng (Daphne) Yao
Virginia Tech

{frantzme, yax99, tanmoysarkar, nm8247, danfeng}@vt.edu

Abstract—Extensive research has been conducted to explore
cryptographic API misuse in Java. However, despite the tremen-
dous popularity of the Python language, uncovering similar issues
has not been fully explored. The current static code analysis tools
for Python are unable to scan the increasing complexity of the
source code. This limitation decreases the analysis depth, result-
ing in more undetected cryptographic misuses. In this research,
we propose Cryptolation, a Static Code Analysis (SCA) tool that
provides security guarantees for complex Python cryptographic
code. Most existing analysis tools for Python solely focus on
specific Frameworks such as Django or Flask. However, using
a SCA approach, Cryptolation focuses on the language and not
any framework. Cryptolation performs an inter-procedural data-
flow analysis to handle many Python language features through
variable inference (statically predicting what the variable value is)
and SCA. Cryptolation covers 59 Python cryptographic modules
and can identify 18 potential cryptographic misuses that involve
complex language features. In this paper, we also provide a
comprehensive analysis and a state-of-the-art benchmark for
understanding the Python cryptographic Application Program
Interface (API) misuses and their detection. Our state-of-the-art
benchmark PyCryptoBench includes 1,836 Python cryptographic
test cases that covers both 18 cryptographic rules and five
language features. PyCryptoBench also provides a framework
for evaluating and comparing different cryptographic scanners
for Python. To evaluate the performance of our proposed cryp-
tographic Python scanner, we evaluated Cryptolation against
three other state-of-the-art tools: Bandit, Semgrep, and Dlint. We
evaluated these four tools using our benchmark PyCryptoBench
and manual evaluation of (four Top-Ranked and 939 Un-Ranked)
real-world projects. Our results reveal that, overall, Cryptolation
achieved the highest precision throughout our testing; and the
highest accuracy on our benchmark. Cryptolation had 100%
precision on PyCryptoBench, and the highest precision on the
real-world projects.

Index Terms—static code analysis, cryptographic API misuses,
Python, benchmark

I. INTRODUCTION

Many studies show cryptographic API misuses result in
security vulnerabilities [1], [2], [3], [4]. Similar studies showed
that many developers often downgrade or reduce security by
using cryptographic modules inappropriately. Developers may
accidentally do this due to an API blindspot or a misunder-
standing of the proper usage of an API [5]. For instance, Brun
et al. [6] conducted a user study on API blindspots through
programming puzzles and discovered Python developers were
less likely to complete a puzzle with blindspots of API.
Zhang et al. [7] conducted an empirical study on the effects
of Stack Overflow responses on API misuse and discovered
cryptographic API to be determined insecure at an average of

around 42%. These studies show developers may not use the
cryptographic API correctly or securely due to the complexity
of the API.

This problem ultimately motivates a line of research to
detect potential cryptographic API misuses [8], [9], [10], [11].
Since most of the attention is paid to Java or C applications us-
ing cryptographic libraries (e.g., JCA, JSSE, GNUTLS, etc.),
Python cryptographic APIs have not been fully investigated.
This has only recently been acknowledged since most analysis
tools depend on the static type declaration system [12]. Python
did not have this by design and only obtained optional type
“hints” from Python 3.5+ [13]. These type hints cannot be
definitively relied upon since a recent JetBrains Survey [14]
shows that 29% of Python developers do not use type hints.

Our paper aims to find out the security practices of Python
cryptographic modules and provide a static analyzer to detect
them. We focus on the challenges derived from the complexity
and flexibility of the Python programming language that makes
static analysis imprecise. We encountered several different
language features and were able to identify the potential cryp-
tographic misuses using our specification successfully. This
specification may include the usage of a vulnerable method or
identifying whether a variable is set to a vulnerable value.
We also create a benchmark PyCryptoBench1, comprised
of vulnerable and non-vulnerable test cases using different
language feature evaluation. We focus on 59 Python crypto-
graphic modules, including PyCrypto [15], PyJWT [16], that
are popular in Python [17]. We create and map 18 security
misuse patterns to the fully qualified API that violate it. The
vulnerable usage includes using hard-coded or inappropriate
values as the arguments of some methods.

Detecting cryptographic API misuse with SCA and Data-
Flow Analysis has been previously reported in many stud-
ies [8], [11], [9]. However, as a dynamic programming lan-
guage, Python SCA tools face unique challenges in precisely
identifying the program properties. These challenges include
but are certainly not limited to:

1) Understanding and identifying that a variable may con-
tain a method, an import, or a value.

2) Setting the attributes of a Python object during run time.
3) Aliasing methods, variables, lambda functions, classes,

and imports.
4) The global and local scopes of importing modules.

1The GitHub link for the PyCryptoBench will be provided upon acceptance.

5) Python allows its method calls to be determined at run
time.

To our knowledge, we are the first work focusing on static
analysis-based detection for Python cryptographic code and
its capability for complex test cases with different Python
language features. Our contributions include:

1) We investigated 59 Python cryptographic modules and
the effects different language features had on the preci-
sion of SCA tools.

2) We present Cryptolation, an Interprocedural SCA tool
that can detect cryptographic API misuses despite com-
plex language features of Python; supported by a SCA
supported by variable inference. The variable inference
values are statically predicted values of the variable
being examined supported by constant propagation. This
allows Cryptolation to have increased precision and
remain a SCA tool.

3) We provide a comprehensive cryptographic API misuse
benchmark PyCryptoBench that covers a non-exhaustive
list of five language features in Python. PyCryptoBench
is a comprehensive benchmark composed of 1,836 files
evaluating different cryptographic misuses to evaluate
the precision of each static code analysis tool. Py-
CryptoBench comprises 1,530 basic test cases and 1,634
advanced test cases.

4) We conducted an experimental evaluation to demonstrate
the capability of our tool Cryptolation and state-of-the-
art (SOA) SCA tools Bandit, Dlint, and Semgrep in
terms of capturing the complex patterns in our bench-
mark. These results were manually reviewed by two of
the authors and prove Cryptolation achieves the highest
precision and improvement in recall.

5) We validate Cryptolation’s effectiveness of having 100%
precision by evaluating with PyCryptoBench and Real-
World Projects. The Real-World Projects include one
Open-Source Top-Ranked project and 939 Un-Ranked
Python Projects we’ve chosen from GitHub. The Top-
Ranked project is composed of Scrapy; while the
Un-Ranked Projects are comprised of Open-Sourced
Projects from GitHub with the associated topics “pay-
ments” or “cryptography”.

Our paper is organized as follows. Within Section II, we
describe the threat model Cryptolation was created to handle.
In Section III, we review the design techniques and analysis
used within Cryptolation. Within IV, we go over the bench-
marks we introduce for cryptographic tool evaluation. Within
V, we go over the results and the methodology of the results.

II. THREAT MODEL AND DETECTION CHALLENGES

In this section, we will cover the different misuse pat-
terns Cryptolation currently supports and Python-specific chal-
lenges. Each misuse pattern incorporates different language
features, allowing for the simplification of misuse patterns.

A. Misuse Patterns And Samples
We identified and created misuse patterns that encompass 18

different potential cryptographic API misuses. Each potential
cryptographic API misuse type requires specific slicing and
variable verification. We extrapolate these tasks to potentially
misused modules. These misuse patterns are shown in Table I.
We chose these misuse patterns since they represent differ-
ent types of attack and attack surfaces. Identifying potential
standard library misuses or taint analysis using methods such
as “os.system” or “eval” is not cryptographic misuse and
therefore is beyond the scope of this work. Researchers and
developers can extend the current misuse patterns by including
cryptographic patterns in their specifications.

1) Use a Wildcard to Avoid Verification: HyperText Trans-
fer Protocol (HTTP) creates requests for applications to ac-
cess web pages. HTTP itself has no security and can be
continuously monitored by hackers [18]. HyperText Transfer
Protocol Secure (HTTPS) use Secure Socket Layers (SSL)
certificates to provide confidentiality to the website pages and
are therefore recommended. Several modules allow developers
to accept any certificate using a wildcard “*”. The usage of a
wildcard is synonymous with accepting any input.

2) Creating a Custom String to avoid Verification of Cer-
tificates: Developers use SSL to secure their connections and
create HTTPS connections. This is similar to the misuse pat-
terns II-A1 by preventing developers from removing certificate
verification. By default, the Certificate Authority (CA) that is
used to validate certificates is provided by the host machine.
Developers can overwrite CA for certain modules [19]. This is
highly discouraged, as this may be used to disable verification.

3) Use an unverified context to avoid HTTPS Verification:
Like the previous misuse pattern, developers can avoid verifi-
cation by changing the default verification behavior. By using
the SSL library, developers may create an unverified context,
therefore, disabling the SSL verification. This is discouraged,
and developers are recommended to use the default SSL
context.

4) Using HTTP instead of HTTPS: Developers can interact
with APIs or web services by using HTTP or HTTPS requests.
As explained by the Wildcard Misuse Pattern, HTTP is inse-
cure and does not provide confidentiality. HTTPS provides
confidentiality through SSL and is therefore recommended.

5) Using Insecure Random Number Generation: Develop-
ers must include cryptographically secure Pseudo Random
Number Generator (PRNG) when using encryption methods
to ensure integrity. If the developer uses an insecure key, an
attacker may obtain the key and break into the encryption.
Random numbers in such a security context must be crypto-
graphically strong and secure. The Python Library provides a
standard library “Random” that creates random values, but is
cryptographically insecure [20]. As of Python 3.6, the standard
library includes “Secrets” that is recommended for use, as it
is cryptographically secure [21].

6) Using a static and insecure Salt: Certain cryptographic
algorithms used for Password Based Encryption (PBE) require
the use of a secure and random salt value. If the salt is

TABLE I
THE CRYPTOGRAPHIC POTENTIAL CRYPTOGRAPHIC API MISUSE, ATTACK TYPE, AND CRYPTOGRAPHIC PROPERTY PER POTENTIAL CRYPTOGRAPHIC

API MISUSE. THE SEVERITY LEVELS ARE INDICIATED AS H/M/L FOR HIGH, MEDIUM, AND LOW RISK. THE CRYPTOGRAPHIC PROPERTIES C/I/A STAND
FOR CONFIDENTIALITY, INTEGRITY, AND AUTHENTICITY RESPECTIVELY. THE ATTACK TYPES SSL/TLS MITM AND CPA STAND FOR SSL/TLS

MAN-IN-THE-MIDDLE AND CIPHERTEXT ATTACK RESPECTIVELY. THE REQUIRED ANALYSIS METHODS PER RULE ARE LISTED WITH ↑ REFERRING TO
FORWARD SLICING AND ↓ REFERRING TO BACKWARD SLICING. WE MARK THIS WITH AN ASTERISK TO EMPHASIZE THAT THE ANALYSIS REQUIRED IS
SPECIFIC TO THE CRYPTOGRAPHIC RULE. EACH CRYPTOGRAPHIC RULE MAY REQUIRE ADDITIONAL ANALYSIS BASED ON THE LANGUAGE FEATURES.

WE HAVE ALSO MINIFIED THE CODE SNIPPETS TO REPRESENT EACH POTENTIAL CRYPTOGRAPHIC API MISUSE TYPE. THE CODE SNIPPETS HAVE
ABBREVIATED SECTIONS MARKED WITH AN ELLIPSE AND DO NOT INCLUDE IMPORTS DUE TO SIZE RESTRICTIONS. SEVERAL OF THESE RULES WERE

INSPIRED BY CRYPTOLATION [11], AND WE HAVE MARKED THEM WITH A **.

potential cryptographic API misuse Attack Type Property Severity Slicing * Snippet
1 Wildcard Verifiers Accept Hosts

SSL/TLS
MitM

C/I/A H ↑ & ↓ argument.request(...,verify=False)
2 String Trusting All Certificates C/I/A H** ↑ os.environment["CURL_CA_BUNDLE"]=""
3 Unverified HTTPS Context C/I/A H** ↑ ... = ssl._create_unverified_context
4 Use of HTTP C/I/A H** ↑ urllib.request.Request("http://...")
5 Cryptographically Insecure PRNGs Predictability C M** None random.randint(0, 100)
6 Static Salts CPA C M** ↑ & ↓ pbkdf2_hmac(...,b"NotLong")
7 ECB Mode in Symmetric Ciphers C M** ↑ Cipher(..., modes.ECB())
8 Fewer than 1,000 Iterations for Salt

Brute Force

C L** ↑ & ↓ pbkdf2_hmac(..., 100)
9 Insecure block ciphers C L** ↑ DES.new(...,DES.MODE_OFB,...)
10 Insecure asymmetric ciphers C/A L** ↑ & ↓ dsa.*private_key(key_size=1_024)
11 Insecure cryptographic hash I H** ↑ MD5.new().update(...)
12 Not Verifying a JSON Web Token SSL/TLS

MitM

I/A H ↑ & ↓ jwt.decode(...,verify=False)
13 Using an insecure TLS Version C H ↑ & ↓ ssl.wrap_socket(ssl.PROTOCOL_SSLv2)
14 Using an Insecure Protocol C/I/A H ↑ & ↓ ldap.initialize().simple_bind("","")
15 Insecure XML Deserialization

Deserialization C
M None xml.dom.minidom.parse(...)

16 Insecure YAML Deserialization M None yaml.dump_all(...)
17 Insecure Pickle Deserialization H None pickle.loads(...)
18 Securing Regex From ReDos Brute Force I M None re.search(r"", line, re.M re.I)

not secure and has a random value, attackers may break the
encryption through dictionary attacks. It is recommended to
use a secure and random value.

7) Using an Insecure Mode: While developers may choose
different algorithms for their encryption, they may choose the
Electronic Codebook (ECB) mode. This mode is insecure as it
breaks integrity and may leak information. It is recommended
to use different modes such as Cipher Block Chaining (CBC).

8) Using less than 1,000 Iterations: Developers using PBE
must include an iteration value. When developers use less than
1,000 iterations, their algorithm is cryptographically insecure.
If developers use such a low iteration number, they increase
the potential of a brute-force attack. Since the beginning of
2022, the official Python team [22] recommended that the
value should be at least 1,000.

9) Using an Insecure Block Cipher: When developers use
block ciphers, they use symmetric cryptography. Symmetric
cryptography uses the same password for encryption and
decryption. Using insecure block ciphers leaves the developer
open to brute-force attacks. Ciphers such as Data Encryption
Standard (DES) are considered insecure. It is recommended
that developers use the secure symmetric cipher Advanced
Encryption Standard (AES).

10) Using an Insecure Asymmetric Cipher: For developers
using asymmetric ciphers, they need to use both public and
private keys. The public key is used for encrypting certain
contents while the private key is used for decrypting the con-
tents, providing confidentiality and integrity. The asymmetric
Rivest-Shamir-Adleman (RSA) cipher is considered secure
when using a key size of 2,048 bits or greater [23]. It is
recommended that developers use at least 2,048 bits.

11) Using an insecure Hash: Developers can use cryp-
tographic hashes to verify the integrity of messages, files,
or contents. These cryptographic hashes provide integrity by
creating a specific value or message digest from a given input.
A cryptographic hash is considered broken if two forms of
content can create the same message digest, breaking the
integrity. Broken cryptographic hashes include Secure Hash
Algorithm (SHA)1, MD4, MD5, and MD2. Developers are
recommended to use SHA256 and SHA512.

12) Not verifying the Json Web Token (JWT): Developers
may use JWT to secure connections they make to remote
servers JWT. Although JWT is more compact compared to
other forms of authentication, they are verified by default. It
is recommended that developers use the default behavior of
the method and not override the signature verification. Cryp-
tolation will detect when the default behavior is overridden to
bypass verification.

13) Using a deprecated or invalid Transport Layer Security
(TLS) Version: Python developers may specify the TLS or
SSL version they use when connecting to different systems.
Certain versions of TLS and SSL are deprecated and are con-
sidered insecure [24]. When developers use insecure versions,
they risk potential Man in the Middle (MiTM) attacks. It is
recommended that developers use the latest versions available.

14) Using an insecure protocol: When connecting to cer-
tain systems or computers, developers can use the Lightweight
Directory Access Protocol (LDAP) protocol. Developers may
connect using LDAP without providing credentials, which
allows unauthenticated connections. To ensure a confidential
connection, it is recommended to provide credentials.

15) Using an insecure Extensible Markup Language (XML)
Deserialization: Developers who use XML objects should use
secure methods to protect against Server-Side Request Forgery
(SSRF) attacks. SSRF attacks will allow attackers to read the
configuration information about the server. It is recommended
for developers to disable network access and resolve remote
entities.

16) Using an insecure YAML Ain’t Markup Language
(YAML) Deserialization: YAML modules may be exploited
in a similar way to the XML Deserialization Misuse pattern.
Unsafe usage of YAML grants attackers access to Remote
Code Execution (RCE) by simple deserialization. Each YAML
module has a safe deserialization method that is recommended.

17) Using an insecure Pickle Deserialization: Machine
Learning developers commonly use the Pickle format to trans-
fer information about their model. Despite high usage, the
format is inherently insecure [25] since it supports RCE. There
is no safe way to use the Pickle format, but it is recommended
to sign the files for integrity.

18) Not properly escaping regular expressions (regex):
Developers who use regex should escape the input they pass
in to avoid Denial of Service (DoS). If they do not escape
regular expressions, the input passed can cause the computer
to calculate the expression continuously. It is recommended
to escape the input to better sanitize the input passed in the
regular expression engine.

B. Detection Challenges Introduced by Python

We chose several language features in addition to examining
cryptographic API misuses specifically since these patterns
have been used in other similar cryptographic misuse studies
[26]. To our knowledge, there has been no research on
Python language features used within cryptographic usage or
its effects on SCA techniques. These language features should
not be considered fully conclusive, but representative patterns
that can directly create false positive (FP).
Global

1 from yaml import dump
2 x = dump
3 def starting_method():
4 global x
5 x(data, stream=None)

Listing 1. This is a sample program where the developer explicitly accesses a
global variable. The global variable x stores the unsafe and insecure method
dump and can be dynamically used. This itself is assigned Rule 16. Using
the keyword global, the developer directly accesses this variable.

Developers may use variables at global scope in a program,
making programming more simple, yet making SCA more
difficult. Shown in Code Listing 1 a developer attempts to
dump data from a certain YAML data. In line 2 the developer
sets a global variable to an unsafe method and uses this method
in line 5. Although SCA pattern matching tools can easily
identify usage, they would not be able to track the propagation
of global variables. The “global” declaration at line 4 allows
developers to update the variable, and the SCA tools need to
track the data-flow analysis.
Inter-Procedural

1 import pickle as pkl, os
2 class Klass(object):
3 def __init__(self, arg):
4 self.arg = arg
5 def __reduce__(self):
6 return self.arg.system,(’echo "Hello"’,)
7 pkl.loads(pkl.dumps(Klass(os)))

Listing 2. This code listing shows a custom and malicious Pickle class. Once
the class is unmarshalled, it will automatically run the command “echo Hello
World”. This code execution is inherently within the Pickle structure and
cannot be disabled.

SCA may need to slice through methods to trace variable
propagation to identify cryptographic misuse. In the code
listing 2 is a developer using the Pickle format to create
a class and load that same class. This format is commonly
used for Machine Learning (ML) applications but is naturally
insecure. The Pickle format serialized the whole object, wrote
it into bytes, and loaded it without any need for translation.
The format allows developers to use hidden methods such
as on line 5 to hook into and run custom code samples for
deserialization. This overwriting ability creates an opportunity
for RCE and cannot be patched or defended against.

The program flow starts at line 7 with the developer
serializing and then deserializing the object at line 7. The
PickleKlass sample is serialized without problems, but when
the object is deserialized, the “magic method” reduce at
line 6 will automatically be executed. When the method is
called, it currently simply executes an “echo Hello World” on
the command line. SCA tools need to go through the methods
to identify the program that was executed, and the vulnerable
method called.

Double Inter-Procedural

1 from Crypto.Hash import MD5
2 def call_method():
3 def starting_method(argument):
4 print(argument().update(b’Hello’).hexdigest())
5 return starting_method
6 call_method()(MD5.new)

Listing 3. Within this code sample is a method returning another method that
creates the hash of a string. By taking the hash Algorithm as an argument, it
creates a complex data flow graph that needs to be accounted for.

SCA needs to slice through multiple methods to iden-
tify potential cryptographic API misuses in more complicated
and realistic programs successfully. This double-nested Inter-
Procedural example is shown inside the program Code List-
ing 3. The first call of the method at line 2 returns the
starting method method from line 3. The “MD5.new” is
passed into the second method and used dynamically at line 4.
In contrast, pattern matching SCA may be able to identify the
MD5 hash signature but not the usage of the code. This would
potentially increase the FP if the MD5 were partially passed
in as an input but not called.

Path-Sensitive

1 import os, sys, jwt
2 if True:
3 if str(input("Accept Path?")).lower() == "yes":
4 jwt.decode("",options={"verify_signature":False}

)
5 else:
6 print("Didn’t accept path")

Listing 4. This is a developer decoding a JWT through two conditional
statements. The first conditional can be statically determined, while the second
conditional depends on user input and cannot be statically determined. A SCA
will need to handle the conditions in a path-insensitive manner to identify the
potential cryptographic API misuse in Line 4.

SCA tools must decide how to deal with conditionals
and paths to avoid path explosion. This happens when code
analysis tools try to evaluate too many paths or conditions
within the code flow. Shown in Code Listing 4 is the structure
of the Path-Insensitive code files. There is a simple conditional
on line 2 that always evaluates True, and an input-based
conditional at line 3. Common SCA tools can easily bypass the
first conditional, but the second depends on the user’s input. At
line 4 the developer decodes some JWT without verification,
which is a cryptographic misuse and is not recommended.

Field-Insensitive

1 import ssl
2 class BaseRunner(object):
3 def __init__(self, argument):
4 self.argument = argument
5 obj = BaseRunner(ssl.PROTOCOL_SSLv2)
6 ssl.wrap_socket(ssl_version=obj.argument)

Listing 5. Within this code listing is a developer using a custom class to
store variables and then uses it to specify the SSL version. This showcases
a typical field-sensitive code flow, where the data is passed through the class
and then through the method. The SCA needs to follow the data flow from
object creation to object use. The Python library only provides an AST parser
but does not provide a native data flow graph construction.

Utilizing data-flow graphs is required for SCA if they deter-
mine potential cryptographic API misuses based on the flow of
the program. To showcase our field-insensitive examples is the
Code Listing 5. SCA tools need to first identify the vulnerable
SSL protocol used at line 5 and know the variable it is being
assigned to. At the cryptographic potential cryptographic API
misuse in line 6, the SCA needs to slice backward to identify
the constant-propagation-based value of the variable. Pattern
matching SCA may identify the signature of an invalid Secure
Shell Protocol (SSH) version but not verify the usage. This
approach may cause many FPs.

III. DESIGN, TECHNIQUES, ANALYSIS

In this section, we go over our design and implementation
for Cryptolation. For our analysis, we cover Python projects
in an intra-file inter-procedural approach.

A. Design

Our detection streamlines the analysis by only analyzing
what is necessary. Different from other SCA tools, we identify
the imports that we have misuse patterns for and only scan for

those. We call this an import-driven approach. Shown in the
Algorithm 1 is how Cryptolation examines each repository.
The misuse patterns that are initially used include the default
misuse patterns and any misuse patterns the developer passed
in. We then retrieve the misuse patterns based on the imports
from the file at line 10. This involves looking for the shortest
matching signature between two strings, which includes more
analysis but reduces the amount of false negative (FN). Using
an import-driven approach increases performance and does not
sacrifice accuracy or precision. Only after we slice through the
import usage do we verify if there is a cryptographic misuse.

SCA tools may find and raise alerts if imports were included
in the file but not used. This approach does not account
for unused or dead code in the program. These potentially
vulnerable imports are unused and do not pose an immediate
threat. For each module, we find usages of the imports as
shown in the Algorithm 4. We start by using forward slicing
to identify the usage of the method signature. Then we will
continue to slice backward if the misuse patterns depend on
the value of a certain variable.

B. Techniques

Within this section, we describe the composition-based
static analysis that Cryptolation uses. We use a combination
of forward and backward static program slicing [27], and
alias analysis [28]. Our analysis can be broken down into
several steps about the specific misuse patterns and the module
being examined. Each misuse pattern is composed of different
modules and each module specification may require a different
analysis. The different slicing techniques generally required
per misuse patterns can be seen in Table I. Cryptolation uses
def-use data-flow analysis [29] to identify variables assigned
into the fields from class objects. Def-use data-flow analysis
identifies variables assigned to a field from a class object
instead of being instantiated from within the class. Instead
of identifying the fields from within the class SCA tools need
to track newly instantiated fields during execution. Our anal-
ysis includes tracking the variable value propagation through
internal methods of the class.

Program slicing, as stated by Weiser [30] uses a Slicing
Criteria C = (ν, p), where ν is a variable and p is a statement
(e.g., a method call interacting with ν) within the program P to
identify their influences or points of influence throughout the
program. The slicing criteria are crucial to SCA as the criteria
retrieve the set of program statements that may have influenced
or been influenced by the variable ν or the statement ρ. Each
slice we create through our SCA is executable, meaning each
slice can be run separately and independently of the overall
program P . For security program analysis, each statement ρ
uses fully qualified module signatures. This operation enables
the SCA tool to efficiently identify and slice through crypto-
graphic code regions.

Our analysis comprises the following steps: i) Import Alias
Analysis, ii) Forward Program Slicing, iii) Backward Program
Slicing, iv) and Inter-Procedural Analysis. Cryptolation first
passes the file and any user-defined misuse patterns files into

the import alias analysis resulting in the pertinent misuse
patterns to be used for slicing criteria. These slicing criteria
are then passed into the forward program slicing identifying
and returning their usages and any dependent statements.
Next, the slicing criteria are also passed into the backward
program slicing to identify the statements that affect the
specified variables. This helps determine the potential variable
inferences. Finally, if there is any method during the program
slicing, we use SCA slicing to extend our program slicing to
become intra-procedural slicing. Each step of our analysis is
misuse pattern dependent and is used as needed.

Cryptolation scans Python projects by scanning each Python
file on its own and creating an individualized AST. We chose
to create each AST using the popular library Astroid [31],
which allowed us to focus on the depth of our analysis.
Astroid statically interprets the Python code and determines
the values for variables and methods as well. Shown in the
Code Listing 7 within the Appendix is an example taken
directly from Astroids website2 showcasing their inference
ability. Their value inference ability uses constant propagation
to determine the values statically. Astroid takes program loops
as a single iteration to avoid the well-known path explosion
problem[Astroid While Loop, Astroid For Loop]. Due to this,
Astroid supports path-sensitivity; which enables us to support
it as well. Astroid leverages constant propagation and def-use
chains to determine the potential variable values for backward
slicing. We leverage and extend Astroids inference capability
directly to support intra-procedural analysis.

Using the inference ability of Astroid allows us to go
further with our data-flow analysis and increase the overall
precision of Cryptolation. The inference ability we leverage
allows us to statically predict what the value of the variable is
without executing the code. We indicate whether the potential
cryptographic misuse evaluation was made using inference and
the variable inferences that led to the identification. We also
include the preceding variables and the inferred values to de-
tect potential cryptographic misuse. The inference ability can
also handle conditional statements, making it path-insensitive
and increasing our precision. This analysis lets us examine
assignments or static assignments within the program and infer
the values of the variables used within our cryptographic APIs.
Astroid also provides the ability to manipulate the AST and
run inferences upon it as normal3. An example of this is shown
in the Code Listing 6 located in the appendix.

We create new copies of the leaf AST to handle the
different language features Python provides (as described in
Section II). These new AST copies extend our data flow graph
by providing the inferred value of each variable. Since we
create and modify a copy of the function prepare url, the
original source code is not changed. We create copies of sub
ASTs to ensure the changes will not persist within the original
AST of the source code. Injecting the inference of a variable
into an AST simply creates a new assignment node at the

2The website can be found at the following URL (URL)
3Astroid provides the ability to modify the in-memory AST. This does not

overwrite or alter the source code in the file.

top of the AST before the rest of the method call. Shown in
the Code Listing 6 is an example method that creates a URL
when the prefix is provided. At line 5 the method is called
with a “http://” prefix, resulting in an insecure URL at line 6.
We bypass Intraprocedural limitations by taking the argument
from line 5 and creating the new assignment node within the
method at line 2. Utilizing the modified AST we can decrease
our FN and increase our precision by analyzing the data-flow
graph with the propagated assignment. Creating this modified
AST allows us to slice through the base AST and continue
slicing through the extended ASTs.

C. Analysis

1) Import Alias Analysis: Aliasing variables, statements,
and imports require SCA tools to incorporate alias analysis
to track. The AST module provided by the standard library
will identify modules and their aliases in an intra-procedural
manner. The variable propagation is created independent of
control flow and must be handled by the SCA tool. We handle
Import Aliasingto identify the imports stated by the project.
Finally, we determine the imports that have misuse patterns
associated with them due to our import-driven design.

2) Forward Program Slicing: Several of our misuse pat-
terns require us to identify statements that are influenced by
our slicing criteria. We identify these statements by using
forward program slices, which retrieve the statements from the
program P that is affected by the variable ν or the statement
p. An example would be from misuse patterns 14 II-A14 in
which the developer initializes an LDAP connection and then
uses a simple bind. Since the simple bind is affected by the
LDAP initialization, we identify these related instructions.

3) Backward Program Slicing: We leverage the inference
capabilities of Astroid for our backward analysis. Their
constant-propagation-based algorithm takes each conditional
path as a separate potential variable since it’s path-sensitive.
For each loop, it uses a single iteration approach to avoid
path explosion, where there may be potentially infinite code
flows. their algorithm is not just limited to variable values
but also aliased imports and aliased methods. In this manner,
we determine a potential variable value despite the dynamic
features of python. An important feature of Astroid’s algorithm
is limiting the number of inferences made per variable, which
directly feeds our intra-procedural analysis; which we let the
developers specify. If developers do not specify we use the
order of variable inferences provided by Astroid.

4) Intra-Procedural Analysis: As shown in Algorithm 3,
this process happens for every argument passed in and every
function call. For each set of arguments and their inferred
values, we determine the full set of combinations needed
to represent each potential AST. While accommodating the
language features examined earlier, this algorithm increases
the overhead for the worst-case scenario4. Creating each AST
poses a problem similar to the path explosion problem, and

4The worst-case scenario being an extremely complex Python file as ranked
by Mccabe Cyclomatic Complexity (CC) (MCC) and the language features
used.

https://github.com/PyCQA/astroid/blob/3331d624eba4441ee1979d36b2c8277e576b27f4/astroid/nodes/node_classes.py#L4291
https://github.com/PyCQA/astroid/blob/3331d624eba4441ee1979d36b2c8277e576b27f4/astroid/nodes/node_classes.py#L2610
https://pylint.pycqa.org/projects/astroid/en/latest/inference.html

Algorithm 1 The program workflow of Cryptolation.
Input FilePath . Path to directory or file.
Input Pattern File . User defined patterns .
Output Results

1: filesLen← length(FilePath)
2: for fileNum← 1 to filesLen do . Loop each file.
3: file : PythonFile← files[fileNum]
4:
5: . Get the imports from our rules and the file
6: fileImports : imports← getImports(files)
7: ruleImports← getImports(Base

⋃
UserF ile)

8:
9: . Find the union of imports.

10: rule← fileImports
⋃
ruleImports

11:
12: ruleLen← length(rules) . Each rule.
13: for ruleNum← 1 to ruleLen do
14: rule← patterns[ruleNum]
15:
16: . Determine slices that contain the rule imports.
17: slice← AnalyzeProgram(file, rule)
18:
19: . Determines if the slice breaks the rule.
20: broken← verifyPattern(rule, slice)
21:
22: if broken then . Append the slice to the results.
23: results← results + slice
24: end if
25: end for
26: end for

we refer to it as a depth explosion problem. To mitigate
the potential risks of the depth-explosion problem, we let
the user limit the number of ASTs created. From our real-
world evaluation, we tracked timeouts to indicate if there were
any problems. While Cryptolation had four timeouts that may
indicate a depth explosion, it is at the average number of
timeouts per project through the overall evaluation.

The growing number of ASTs may also introduce inaccu-
racy. The inaccuracy is caused by subsequent ASTs that are
created from variable inferences. If a potential cryptographic
API misuse is discovered through our Inter-Procedural Anal-
ysis, we include the specific program slices leading to the po-
tential cryptographic API misuse . This analysis mitigates the
increasing inaccuracy by requiring the developer to manually
review the program slices.

IV. PYCRYPTOBENCH BENCHMARK

In this section, we go over the benchmarks we evaluate
the tools on. We also cover the methods of creating our own
curated benchmark PyCryptoBench, and the breakdown of the
different test cases. For the real-world test cases, we explain
our methodology and rationale for the projects we chose to
include in our evaluation.

We created a Python benchmark called PyCryptoBench to
determine the effectiveness of our tool against five crypto-
graphic API misuses. Our benchmark consists of 1,836 test
file. Each test file may include one language feature, one
potential cryptographic API misuse, and one Test Case Type.
There are 1,530 test files that use the following language fea-
tures: Unenforced Variable Type Definitions, Import Aliasing,
Complex Data Type Usage, and Named Variable Placement.
Each language feature category consists of 1,530 test files,
with 306 test files that do not have language feature . Then, our
benchmark consists of different cryptographic API misuses,
language features , and finally into three different Test Case
Types: Benign test cases, Vulnerable test cases, and then Non-
Usage test cases. We limited the program patterns of inter-
procedural test cases to single and double inter-procedural test
cases since more enhanced test cases would yield the same
results. We break the benchmark down first into two major
groups, the group using a module and the group without a
module. This is similar and was inspired by [26] where the
benchmark was broken down by the complexity of the test
cases.

A. Vulnerable Test Case Type

We created Vulnerable with one cryptographic API misuse
each with one Module import. If the test case included a
language feature, the cryptographic API misuse would be in-
corporated into the language feature. Each file has a minimum
number of Lines of Code (LoC) to reduce the time it takes
each tool to scan it. There was an overall maximum of 10 LoC
for all the test cases.

B. Benign Test Case Type

Each test case Benign file only contains a language feature
usage and does not contain any cryptographic API misuse.
These test cases focus simply on whether the tools can parse
each language feature without creating false alerts. Overall,
the tools did not have problems scanning these files, as they
did not have cryptographic API misuse and no Module import.
SCA Tools that solely searched for the source code “Module
import” should be able to correctly identify these files as
Benign.

C. Non-Usage Test Case Type

The Non-Usage test cases were created with one Module
imported but not used. We used this to indicate whether the
tools could identify the difference between dead or unused
code and a potential potential cryptographic API misuse. These
files also include a minimum number of LoC to reduce the
scan time of each file.

V. EVALUATION

Within this section, we cover the evaluation. First, we will
start with the methodology that we use to determine the
different benchmarks and how we reduce the bias of the
results. Following this, we will cover the benchmark at the
top right and the unranked projects in that order.

A. Methodology

We chose Bandit, Semgrep, and Dlint since they are Python
framework-agnostic and utilizes SCA. We used the following
tools and their associated versions, Bandit 1.7.0, Semgrep
0.75.0, and Dlint 0.12.0. We used a single Jupyter Notebook
that operates the installation, scanning, and aggregation for
every project being scanned using each tool. Each program
automatically maps its respective misuse pattern values from
its respective tools to the equivalent Cryptolation misuse
patterns value.

Our evaluation addresses the following concerns.
• Do the tools handle language features in the benchmark?
• How do tools compare when scanning the real-world

project?

B. Benchmark Results

TABLE II
THIS IS THE BREAKDOWN OF TRUE POSITIVE (TP),FN, PRECISION,

RECALL, AND ACCURACY SCORE PER TOOL ON THE PYCRYPTOBENCH.
PYCRYPTOBENCH CONSISTS OF 1,836 TEST CASES; TEST CASES WITH

ONE POTENTIAL CRYPTOGRAPHIC API MISUSE AND TEST CASES
WITHOUT ANY POTENTIAL CRYPTOGRAPHIC API MISUSES. WE ONLY
CREATED VULNERABLE TEST CASES TO FOCUS ON THE PRECISION OF

EACH TOOL AND TO PENALIZE TOOLS FOR INCORRECT ALERTS.

Tool TP FP TN FN Pre. Recall. Acc.
Bandit 54 92 1,548 142 37% 28% 87%

Cryptolation 120 0 1,609 107 100% 53% 94%
Dlint 80 420 1,224 112 16% 42% 71%

Semgrep 122 384 1,224 106 24% 54% 73%

Cryptolation has outperformed the other tools in the bench-
marks with an overall Precision of 100% and 0 FP as shown
in Table II. The SCA tool Semgrep was the closest in
performance to the other tools. We intentionally created the
benchmark to use different Python language features that are
difficult for SCA to scan. While Semgrep had the highest
number of TP alerts, it also had the second-highest number
of FP alerts. Most of the tools consistently had 100% of true
negative (TN) alerts. While Semgrep had the highest FN alerts,
this may be alleviated by consistently updating the engine5.
Between the time of evaluation and writing, Semgrep has
increased several versions.

We created PyCryptoBench independent of Cryptolation,
with the intent of stress-testing SCA tools. Each advanced
test case used one language feature to create a difficult-to-
scan but easy-to-read Python script. We modeled the com-
plexity of the test cases from the language features we listed,
from a previous well-known Java SCA benchmark [26], and
weaknesses discussed in SCA tools [11], [6], [32], [33], [12].
Our Cryptolation algorithm, which was created to handle more
difficult-to-scan Python scripts, has the highest Accuracy at
94%. Bandit, which has the second-highest Accuracy, achieved
87%. Our algorithm shows significant growth toward handling
complex Python source code. Every issue we discover with
Cryptolation is used to progress research into adapting to

5We used version 0.75.0 of the rules, that we have archived.

these difficulties. Specifically, with Cryptolation, we discov-
ered Field-Sensitive and Interprocedural language features are
the two lowest categories. These two categories had an overall
average Recall of 32.43% and 10.53% respectively. Our algo-
rithm focuses on variable assignment through function depth.
However, the breadth of the variable assignments and improper
refinement before using the library Astroid is why Cryptolation
suffers in these two language features. To improve Recall
with these language features, we will update the algorithm
to make refinements and remove unnecessary information for
those conditions.

We also broke down the evaluation by language feature as
shown in Table III. Cryptolation succeeds in having the highest
precision and accuracy scores throughout, corresponding to the
overall results. Despite Cryptolation having the highest overall
recall, Semgrep had the highest recall for the Global lan-
guage feature and Dlint had the highest recall for the Double-
Interprocedural categories. Cryptolation has a lower recall in
these categories due to its focus on precision. The Global and
Double-Interprocedural test categories were the most complex
language features to identify for Cryptolation. The precision
per category was consistently 100% for Cryptolation.

C. Top-Ranked GitHub Projects

We chose four Top-Ranked Python projects specified by
their maturity and percent of Python files. We had a ratio
of 90% Python files measured by GitHub and chose four Top-
Ranked project. These projects are; Ansible, Django, IntelOwl,
and Scrapy. We manually reviewed all of these alerts due to
the low number of projects.

Due to the maturity of these projects, we did not encounter
as many alerts as compared with the Un-Ranked Projects.
This is shown in Table IV. Dlint has the highest preci-
sion for the Top-Ranked Project, with a 5% difference with
Cryptolation. This is due to the regex Cryptolation uses for
pseudo-random number generator identification. The pseudo-
random number generator has been an important and contested
topic of conversation with code analysis tools and one of
which we will adequately address. Despite this Cryptolation
has a 14% Precision difference from Bandit. From scanning
the projects, Bandit raised eight FP due to the identified
potential cryptographic API misuses not being used. Their
results revealed unused and not real potential cryptographic
API misuses. Cryptolation, Dlint, and Semgrep all raised TP
alerts, with Cryptolation and Dlint raising more TPs.

D. Un-Ranked GitHub Projects

We ranked GitHub projects by the most popular Python
projects with the tag “payments” or “cryptography”. We chose
those two tags since they are more likely to use cryptographic
imports. After crawling through the two different tags, we
retrieved 939 projects. Scanning the 939 projects resulted in
more than 20,000 alerts. Due to many alerts, we manually
reviewed a sample size of 50 alerts per scanned tool. We
reviewed these results by checking the sample size, automat-
ically retrieving the code snippets identified by line numbers,

 https://github.com/PyCQA/bandit
 https://r2c.dev/#semgrep
 https://github.com/Dlint-py/Dlint
 https://github.com/PyCQA/bandit
 https://r2c.dev/#semgrep
 https://github.com/Dlint-py/Dlint

TABLE III
IN THIS TABLE IS THE BREAKDOWN OF THE TP, FP, FN, PRECISION, RECALL, AND ACCURACY OF EACH TOOL SCANNING EACH LANGUAGE FEATURE.

THESE EVALUATIONS ONLY INCLUDE THE MANUALLY REVIEWED RESULTS AND THE NON-BIASED TEST FILES FROM THE BENCHMARK. CRYPTOLATION
HAS THE HIGHEST PRECISION AND ACCURACY PER CATEGORY. WHILE CRYPTOLATION HAS THE HIGHEST RECALL FOR MOST CATEGORIES, DLINT HAS

THE HIGHEST FOR THE FIELD-SENSITIVE AND DOUBLE-INTERPROCEDURAL CATEGORIES.

Language Feature Tool TP FP TN FN Precision Recall Accuracy

Double-Interprocedural

Bandit 12 16 258 20 42.86% 37.50% 88.24%
Cryptolation 31 0 268 7 100.00% 81.58% 97.71%

Dlint 16 70 204 16 18.60% 50.00% 71.90%
Semgrep 23 64 204 15 26.44% 60.53% 74.18%

Field-Sensitive

Bandit 7 17 258 24 29.17% 22.58% 86.60%
Cryptolation 12 0 269 25 100.00% 32.43% 91.83%

Dlint 14 70 204 18 16.67% 43.75% 71.24%
Semgrep 20 64 204 18 23.81% 52.63% 73.20%

Global

Bandit 5 16 258 27 23.81% 15.62% 85.95%
Cryptolation 24 0 268 14 100.00% 63.16% 95.42%

Dlint 9 70 204 23 11.39% 28.12% 69.61%
Semgrep 17 64 204 21 20.99% 44.74% 72.22%

Interprocedural

Bandit 2 17 258 29 10.53% 6.45% 84.97%
Cryptolation 4 0 268 34 100.00% 10.53% 88.89%

Dlint 10 70 204 22 12.50% 31.25% 69.93%
Semgrep 16 64 204 22 20.00% 42.11% 71.90%

Path-Sensitive

Bandit 15 13 258 20 53.57% 42.86% 89.22%
Cryptolation 24 0 268 14 100.00% 63.16% 95.42%

Dlint 16 70 204 16 18.60% 50.00% 71.90%
Semgrep 24 64 204 14 27.27% 63.16% 74.51%

TABLE IV
THIS IS THE BREAKDOWN OF TP,FP, AND PRECISION PER TOOL FOR THE
TOP-RANKED PROJECT. THIS IS THE TOTAL NUMBER OF ALERTS FROM

THE TOP-RANKED PROJECT.

Toolname TP FP Precision
Bandit 108 15 87.80%
Cryptolation 295 40 88.06%
Dlint 331 50 86.88%
Semgrep 130 40 76.47%

and programmatically identifying the specific libraries using
Mitosheet. These were then manually verified by two of the
authors.

TABLE V
HERE ARE THE TP, FP, AND PRECISION OF 50 RANDOMLY SAMPLED

ALERTS FROM THE UN-RANKED GITHUB PROJECT SET.

Toolname TP FP Precision
Bandit 44 6 88%
Cryptolation 50 0 100%
Dlint 50 0 100%
Semgrep 50 0 100%

Due to the number of projects, we did not manually review
the alerts. We randomly sampled 50 alerts per tool within the
Un-Ranked data set and manually verified this sample. These
results can be found in Table V with Cryptolation having 100%
precision along with Dlint and Semgrep. After setting these
values, we discovered the breakdown of results was similar
to that of the Top-Ranked project V-C. Cryptolation has a
relatively large number of alerts for cryptographic API misuse
rule 11 and 5, while Dlint has the highest number of alerts for
cryptographic API misuse rule 5. Most of the alerts were from
rule 11, as shown in the appendix chart 4. It should be noted
the majority of the alerts were focused on cryptographic API

misuse rules from 5 to 15. This could be due to the specificity
of rules or the relative usage of each rule. We included a
one day timeout for the tools to finish scanning their projects,
which all but Cryptolation failed a few projects.

These relative spikes of alerts indicate a high possibility of
FN by the other tools or FP by the individual tool. For future
work, we will manually review a larger sample of this data
set to identify the FN alerts. This included grouping the alerts
by broken misuse patterns and checking for keywords.

VI. DISCUSSION AND LIMITATIONS

Within this section, we will go over the discussion and
limitations of Cryptolation. This includes the scope of the
dynamic language features we chose, the precision and recall
that Cryptolation provides, and proper reporting of these alerts.

Include more language features We included five different
language features throughout our advanced test cases, but more
language features need to be examined. There has recently
been a similar project called PyScan [34] which identifies a
large number of language features used within Python. The
seed language features we targeted gave us many great insights
about certain project domains using Python. However, these
language features are not exhaustive.

Improving Precision and Recall We discussed and decided
against creating a super control flow graph that incorporates all
of the files in the project. While this approach would improve
the recall and accuracy by identifying potential cryptographic
API misuses across files6, we did not want to decrease per-
formance. We will also correct the pseudo-random number
generator and ensure Cryptolation correctly identifies their

6This attack scenario is when Python files are treated as libraries or
namespaces and are imported as such. Thus the functionality and data flow
of a method may cross over different files.

usage. Another way recall can be improved is to enhance how
we resolve the fully qualified APIs. Currently, we first attempt
to infer the class name of the object however, if that fails, we
fall back to using the import name as the prefix.

Further Analysis and Reporting We did not create any
GitHub issues for potential cryptographic misuses due to the
need for further analysis. There were more than 100,000 alerts
within the Un-Ranked Projects benchmark. We do not want
to create a huge number of FP GitHub issues. This would be
irresponsible and create distrust within the community.

We will continue to review these results and make issues
when all of the alerts have been thoroughly reviewed. This
work provides a benchmark to scan a large number of Un-
Ranked projects, however, the ground truth of these projects
are unknown. This imposes a limitation on calculating the
recall of the alerts, as it relies on the knowledge of the
ground truth. We explored 943 projects. Currently, confidently
determining the ground truth of such a large number of
projects can take years of effort and is out of the scope of this
paper. Future work to automate and facilitate the determination
of the ground truth for such Un-Ranked projects would have
a valuable impact in the evaluation and development of SCA
tools.

VII. RELATED WORK

Many of Python’s available static code analysis tools either
do not support advanced language-specific features or use sim-
pler analysis algorithms. An exceptional and useful program
is CryptoGuard7. CryptoGuard uses static code analysis to
scan Java and Android projects for potential cryptographic
misuses [11]. Similar to Cryptolation, CryptoGuard reduces
false positives to achieve precise results.

Code analysis tools that scan Python programs focus on
specific libraries or modules. For example, PyXhon is a Dy-
namic Code Analysis (DCA) program that identifies potential
Dynamically Linked Libraries (DLL) issues utilizing Function
Oriented Analysis [35]. Pyxhon uses the code execution to
identify potential DLL misuse, while Cryptolation statically
identifies potential cryptographic module issues.

Both Pythia [36] and DjangoChecker [37] focus on cryp-
tographic misuses within the popular Python web framework
Django. The tools both aim to identify Cross Site Scripting
(XSS) flaws within the Django code. DjangoChecker utilizes
taint tracking and a custom browser to sanitize the input
and identify malicious payloads. Pythia uses taint tracking
and a Universal Abstract Syntax Tree (UAST) between the
Django templates and the Python code to identify malicious
payloads and the attack space. Python code analysis tools may
also analyze the Python bytecode. Chen et al. [38] created
a modified version of CPython to write out more detailed
information8. The enriched Python bytecode is statically and
dynamically analyzed to identify the def-use data and control
dependencies. While this creates more information to enhance

7https://github.com/CryptoGuardOSS/cryptoguard
8This is done in a concept similar to adding debugging flags to a compiler.

the code analysis, this depends on the manipulation of the
interpreter.

Another similar approach can be related to the work done
by Xu et al. [33], where the authors utilize a different kind
of preprocessing to handle Python. They created an enhanced
Python Control Flow Graph that includes much of the meta
information. This meta information creates a tie between
the variable and whatever type the value is. Their work is
not designed to run intra-procedural analysis to identify ties
between different methods. Another way to create developer-
friendly security tools is to ensure the future and extensibility
of your tools. While they didn’t fully go over their analysis
and methods, they provided many different test cases. They
also enable developers to use different analyses such as data
flow control flow lexical semantics.

VIII. FUTURE WORK

Further Source Code Evaluation In the future, we will
include a bigger breadth of Python topics. The topics we
used were likely associated with Cryptographic module usage.
There are likely other topics that may indicate a strong need for
Cryptographic module usages, such as “system”, “repository”,
“revision”, “Internet of Things (IoT)”. We will also look into
the top-rated Python projects by GitHub, PyPiStats, and other
ranking sites.
Closed Source Comparison We deliberately chose only to
compare Cryptolation to other open-source programs. Open-
source programs allow us to look closely at their internal
algorithms and allowed us to script the scanning and their test
results. In the future, we will compare Cryptolation against
other tools, such as Synopsys and Snyk. Both tools are highly
rated and well known throughout the field and have been
recognized several times by Gartner Reports [39].
Performance Our approach may not potentially scale well
with increasingly more difficult Python programs. With un-
bounded limitations, our algorithm will use an increasingly
larger amount of memory and time. We could improve the
algorithm by allowing the developer to prioritize different
cryptographic rules.
Refinement Our algorithm currently supports enhanced analy-
sis by continuously using more memory. During our analysis,
we depend on the Astroid library for identifying the variable
inferences based on the context or variable state of the method
and the variables. One way we could decrease the amount of
FPs Cryptolation incurs from the Top-Ranked Project is to
filter out irrelevant, or un-influential variables; similar to the
work done by Parfait [40]. This type of reduction shown by
this refinement reduced the amount of FPs by an overall total
of 50%. Our reduction would not directly affect our analysis,
but indirectly by removing the number of variables Astroid
will need to take into account. This not only could improve
our FP but the amount of memory we use by lowering the
number of variables that are unimportant for our use.
General Framework Our algorithm in Cryptolation currently
targets potential cryptographic misuses. However, the constant-

https://www.djangoproject.com/
https://pypistats.org
https://community.synopsys.com/s/article/How-to-capture-and-analysis-python-script-by-Coverity
https://snyk.io/product/snyk-code/

propagation-powered intra-procedural analysis could be ex-
tended to other uses, such as policies, code regulations, code
smells, and taint analysis. We may generalize the algorithm to
allow more tailored solutions that require our procedures.

IX. CONCLUSION

We created Cryptolation to examine and discover potential
cryptographic misuse for source code using complex language
features. Our benchmark PyCryptoBench provides 1,836 files
that cover complex language features, FP test cases, and
various Cryptographic modules. We only reported the results
of all of the tools for comparison after removing files that
certain tools would not cover. We also compared all of the
tools against 1,017 different projects and manually reviewed
a random sampling of the results. Cryptolation provides im-
proved precision on complex modules compared to the state-
of-the-art tools when scanning the real-world source code and
our benchmark.

ACKNOWLEDGMENT

This work has been supported by the National Science
Foundation under Grant No. CNS-1929701.

REFERENCES

[1] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,
“You Get Where You’re Looking for: The Impact of Information Sources
on Code Security,” in 2016 IEEE Symposium on Security and Privacy
(SP), 2016, pp. 289–305.

[2] N. Meng, S. Nagy, D. D. Yao, W. Zhuang, and G. A. Argoty,
“Secure Coding Practices in Java: Challenges and Vulnerabilities,”
in Proceedings of the 40th International Conference on Software
Engineering, ser. ICSE ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 372–383. [Online]. Available:
https://doi.org/10.1145/3180155.3180201

[3] M. Chen, F. Fischer, N. Meng, X. Wang, and J. Grossklags, “How Re-
liable is the Crowdsourced Knowledge of Security Implementation?” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), 2019, pp. 536–547.

[4] D. Votipka, K. R. Fulton, J. Parker, M. Hou, M. L. Mazurek,
and M. Hicks, “Understanding security mistakes developers make:
Qualitative analysis from Build It, Break It, Fix It,” in 29th USENIX
Security Symposium (USENIX Security 20). USENIX Association,
Aug. 2020, pp. 109–126. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity20/presentation/votipka-understanding

[5] D. S. Oliveira, T. Lin, M. S. Rahman, R. Akefirad, D. Ellis, E. Perez,
R. Bobhate, L. A. DeLong, J. Cappos, Y. Brun, and N. C. Ebner, “API
Blindspots: Why Experienced Developers Write Vulnerable Code,” in
Proceedings of the Fourteenth USENIX Conference on Usable Privacy
and Security, ser. SOUPS ’18. USA: USENIX Association, 2018, p.
315–328.

[6] Y. Brun, T. Lin, J. E. Somerville, E. M. Myers, and N. C. Ebner,
“Blindspots in Python and Java APIs Result in Vulnerable Code,”
ACM Trans. Softw. Eng. Methodol., nov 2022, just Accepted. [Online].
Available: https://doi.org/10.1145/3571850

[7] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim, “”Are
Code Examples on an Online Q&A Forum Reliable? A Study of API
Misuse on Stack Overflow”,” in Proceedings of the 40th International
Conference on Software Engineering, ser. ICSE ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 886–896.
[Online]. Available: https://doi.org/10.1145/3180155.3180260

[8] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An
Empirical Study of Cryptographic Misuse in Android Applications,”
in ”Proceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications Security”, ser. CCS ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 73–84. [Online].
Available: https://doi.org/10.1145/2508859.2516693

[9] B. He, V. Rastogi, Y. Cao, Y. Chen, V. Venkatakrishnan, R. Yang, and
Z. Zhang, “Vetting SSL Usage in Applications with SSLINT,” in 2015
IEEE Symposium on Security and Privacy, 2015, pp. 519–534.

[10] S. Krüger, S. Nadi, M. Reif, K. Ali, M. Mezini, E. Bodden, F. Göpfert,
F. Günther, C. Weinert, D. Demmler, and R. Kamath, “CogniCrypt:
Supporting developers in using cryptography,” in 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2017, pp. 931–936.

[11] S. Rahaman, Y. Xiao, S. Afrose, F. Shaon, K. Tian, M. Frantz,
M. Kantarcioglu, and D. D. Yao, “CryptoGuard: High Precision
Detection of Cryptographic Vulnerabilities in Massive-Sized Java
Projects,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 2455–2472.
[Online]. Available: https://doi.org/10.1145/3319535.3345659

[12] H. Gulabovska and Z. Porkoláb, “Survey on Static Analysis Tools of
Python Programs.” in SQAMIA, 2019.

[13] “PEP 484 – Type Hints,” Jan 2022, [Online; accessed 4. Jan. 2022].
[Online]. Available: https://www.python.org/dev/peps/pep-0484

[14] “JetBrains: Developer Tools for Professionals and Teams,” Jan
2022, [Online; accessed 4. Jan. 2022]. [Online]. Available: https:
//www.jetbrains.com/lp/python-developers-survey-2020

[15] “PyCrypto - The Python Cryptography Toolkit,”
https://www.dlitz.net/software/pycrypto/pythondevelopersurvey.

[16] “Welcome to PyJWT,” https://pyjwt.readthedocs.io/en/stable/.
[17] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek, and

C. Stransky, “Comparing the Usability of Cryptographic APIs,” in 2017
IEEE Symposium on Security and Privacy (SP), 2017, pp. 154–171.

[18] C. A. Barton, G. A. Clarke, and S. Crowe, “Transferring data via a
secure network connection,” Aug. 15 2006, uS Patent 7,093,121.

[19] “Advanced Usage — Requests 2.26.0 documentation,” Sep 2021,
[Online; accessed 1. Feb. 2022]. [Online]. Available: https://docs.
python-requests.org/en/master/user/advanced

[20] “random — Generate pseudo-random numbers — Python 3.10.2
documentation,” Feb 2022, [Online; accessed 1. Feb. 2022]. [Online].
Available: https://docs.python.org/3/library/random.html

[21] “secrets — Generate secure random numbers for managing secrets —
Python 3.10.2 documentation,” Feb 2022, [Online; accessed 1. Feb.
2022]. [Online]. Available: https://docs.python.org/3/library/secrets.html

[22] “hashlib — Secure hashes and message digests — Python 3.10.2
documentation,” Feb 2022, [Online; accessed 1. Feb. 2022]. [Online].
Available: https://docs.python.org/3/library/hashlib.html

[23] E. Barker, L. Chen, A. Roginsky, A. Vassilev, R. Davis, and S. Si-
mon, “Recommendation for Pair-Wise Key-Establishment Using Integer
Factorization Cryptography,” National Institute of Standards and Tech-
nology, Tech. Rep., 2018.

[24] “ssl — TLS/SSL wrapper for socket objects — Python 3.10.2
documentation,” Feb 2022, [Online; accessed 1. Feb. 2022]. [Online].
Available: https://docs.python.org/3/library/ssl.html

[25] “pickle — Python object serialization — Python 3.10.2 documentation,”
Feb 2022, [Online; accessed 1. Feb. 2022]. [Online]. Available:
https://docs.python.org/3/library/pickle.html

[26] S. Afrose, Y. Xiao, S. Rahaman, B. P. Miller, and D. Yao, “Evaluation
of Static Vulnerability Detection Tools With Java Cryptographic API
Benchmarks,” IEEE Transactions on Software Engineering, vol. 49,
no. 2, pp. 485–497, 2023.

[27] R. P. Lippmann and R. K. Cunningham, “Improving intrusion
detection performance using keyword selection and neural networks,”
Computer Networks, vol. 34, no. 4, pp. 597–603, 2000, recent
Advances in Intrusion Detection Systems. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1389128600001407

[28] S. Debray, R. Muth, and M. Weippert, “Alias Analysis of Executable
Code,” in Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL ’98. New York,
NY, USA: Association for Computing Machinery, 1998, p. 12–24.
[Online]. Available: https://doi.org/10.1145/268946.268948

[29] H. Y. Yang, E. Tempero, and H. Melton, “An Empirical Study into Use
of Dependency Injection in Java,” in 19th Australian Conference on
Software Engineering (aswec 2008), 2008, pp. 239–247.

[30] M. D. ”WEISER, “PROGRAM SLICES: FORMAL,
PSYCHOLOGICAL, AND PRACTICAL INVESTIGATIONS
OF AN AUTOMATIC PROGRAM ABSTRACTION METHOD,”
Ph.D. dissertation, 1979, copyright - Database copyright ProQuest
LLC; ProQuest does not claim copyright in the individual

https://doi.org/10.1145/3180155.3180201
https://www.usenix.org/conference/usenixsecurity20/presentation/votipka-understanding
https://www.usenix.org/conference/usenixsecurity20/presentation/votipka-understanding
https://doi.org/10.1145/3571850
https://doi.org/10.1145/3180155.3180260
https://doi.org/10.1145/2508859.2516693
https://doi.org/10.1145/3319535.3345659
https://www.python.org/dev/peps/pep-0484
https://www.jetbrains.com/lp/python-developers-survey-2020
https://www.jetbrains.com/lp/python-developers-survey-2020
https://docs.python-requests.org/en/master/user/advanced
https://docs.python-requests.org/en/master/user/advanced
https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/secrets.html
https://docs.python.org/3/library/hashlib.html
https://docs.python.org/3/library/ssl.html
https://docs.python.org/3/library/pickle.html
https://www.sciencedirect.com/science/article/pii/S1389128600001407
https://www.sciencedirect.com/science/article/pii/S1389128600001407
https://doi.org/10.1145/268946.268948

underlying works; Last updated - 2023-02-23. [Online]. Available:
http://login.ezproxy.lib.vt.edu/login?url=https://www.proquest.com/
dissertations-theses/program-slices-formal-psychological-practical/
docview/302949655/se-2

[31] PyCQA, “GitHub - PyCQA/astroid: A common base representation of
python source code for pylint and other projects.” [Online]. Available:
https://github.com/PyCQA/astroid

[32] D. Nikolić, D. Stefanović, D. Dakić, S. Sladojević, and S. Ristić, “Anal-
ysis of the Tools for Static Code Analysis,” in 2021 20th International
Symposium INFOTEH-JAHORINA (INFOTEH), 2021, pp. 1–6.

[33] Z. Xu, J. Qian, L. Chen, Z. Chen, and B. Xu, “Static Slicing for Python
First-Class Objects,” in 2013 13th International Conference on Quality
Software, 2013, pp. 117–124.

[34] Y. Peng, Y. Zhang, and M. Hu, “An Empirical Study for Common
Language Features Used in Python Projects,” in 2021 IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER), 2021, pp. 24–35.

[35] M. Sun, D. Gu, J. Li, and B. Li, “PyXhon: Dynamic detection of se-
curity vulnerabilities in Python extensions,” in 2012 IEEE International
Conference on Information Science and Technology, 2012, pp. 461–466.

[36] L. Giannopoulos, E. Degkleri, P. Tsanakas, and D. Mitropoulos, “Pythia:
Identifying Dangerous Data-Flows in Django-Based Applications,” in
Proceedings of the 12th European Workshop on Systems Security,
ser. EuroSec ’19. New York, NY, USA: Association for Computing
Machinery, 2019. [Online]. Available: https://doi.org/10.1145/3301417.
3312497

[37] A. Steinhauser and P. Tůma, “DjangoChecker: Applying extended taint
tracking and server side parsing for detection of context-sensitive
XSS flaws,” Software: Practice and Experience, vol. 49, no. 1, pp.
130–148, 2019. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/spe.2649

[38] Z. Chen, L. Chen, Y. Zhou, Z. Xu, W. C. Chu, and B. Xu, “Dynamic
Slicing of Python Programs,” in 2014 IEEE 38th Annual Computer
Software and Applications Conference, 2014, pp. 219–228.

[39] “Gartner 2022 Magic Quadrant for Application Security Testing
| Micro Focus,” Sep. 2022, [Online; accessed 6. Sep. 2022].
[Online]. Available: https://www.microfocus.com/en-us/assets/cyberres/
magic-quadrant-for-application-security-testing

[40] Y. Xiao, Y. Zhao, N. Allen, N. Keynes, D. D. Yao, and C. Cifuentes,
“Industrial Experience of Finding Cryptographic Vulnerabilities in
Large-Scale Codebases,” Digital Threats, vol. 4, no. 1, mar 2023.
[Online]. Available: https://doi.org/10.1145/3507682

http://login.ezproxy.lib.vt.edu/login?url=https://www.proquest.com/dissertations-theses/program-slices-formal-psychological-practical/docview/302949655/se-2
http://login.ezproxy.lib.vt.edu/login?url=https://www.proquest.com/dissertations-theses/program-slices-formal-psychological-practical/docview/302949655/se-2
http://login.ezproxy.lib.vt.edu/login?url=https://www.proquest.com/dissertations-theses/program-slices-formal-psychological-practical/docview/302949655/se-2
https://github.com/PyCQA/astroid
https://doi.org/10.1145/3301417.3312497
https://doi.org/10.1145/3301417.3312497
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2649
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2649
https://www.microfocus.com/en-us/assets/cyberres/magic-quadrant-for-application-security-testing
https://www.microfocus.com/en-us/assets/cyberres/magic-quadrant-for-application-security-testing
https://doi.org/10.1145/3507682

APPENDIX A
FORMULAS USED

We use the following formula to measure the Precision of
our results.

Precision =
TP

TP + FP
(1)

We used the following formula to measure the Recall for
our results.

Recall =
TP

TP + FN
(2)

We used the following formula to measure the Accuracy of
our results.

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

APPENDIX B
RULE MAPPING

Within this section, we go over the specification we used
to map different rule numbers between the tools. Each SCA
tool had its rule specification. We provide this to ensure the
results are reproducible.

A. Bandit misuse patterns mapping

Listed right below in table VI is the translation table we
used to convert Bandit alerts to Cryptolation alerts. We aligned
these rules based on the rule message and the modules each
tool identifies. This should be adjusted whenever each tool is
updated.

TABLE VI
SHOWN HERE IS THE MAPPING OF RULES FROM BANDIT TO

CRYPTOLATION. WE ONLY MAPPED THE RELEVANT CRYPTOGRAPHIC
RULES.

Bandit ID Cryptolation ID
B303 11
B304 10
B305 10
B309 4
B310 4
B311 5
B312 14
B321 14
B323 3
B324 11
B401 14
B402 14
B412 4
B413 11
B501 3
B502 13
B503 1
B504 13
B505 1
B507 3

B. Dlint misuse patterns mapping

Listed right below in table VII is the translation table we
used to convert Dlint alerts to Cryptolation alerts. We aligned
these rules based on the rule message and the modules each
tool identifies. This should be adjusted whenever each tool is
updated.

TABLE VII
SHOWN HERE IS THE MAPPING OF RULES FROM DLINT TO

CRYPTOLATION. WE ONLY MAPPED THE RELEVANT CRYPTOGRAPHIC
RULES.

Dlint ID Cryptolation ID
DUO102 5
DUO103 17
DUO107 15
DUO109 16
DUO122 1
DUO123 1
DUO130 8
DUO131 14
DUO132 14
DUO133 9
DUO134 9
DUO138 18
DUO120 17
DUO135 15

C. Semgrep misuse patterns mapping

Listed below in table VIII is the translation table we used
to convert Semgrep alerts to Cryptolation alerts. We aligned
these rules based on the rule message and the modules each
tool identifies. This should be adjusted whenever each tool is
updated.

TABLE VIII
SHOWN HERE IS THE MAPPING OF RULES FROM SEMGREP TO

CRYPTOLATION. WE ONLY MAPPED THE RELEVANT CRYPTOGRAPHIC
RULES.

Semgrep ID Cryptolation ID
A1 20
A2 4
A3 13
A4 15
A5 21
A6 2

B303 11
B304 9
B305 7

APPENDIX C
INFERENCE CODE DESIGNS

Within this section, we provide more detailed algorithms
of our design for Cryptolation. These extremely high-level
algorithms simply describe how Cryptolation operates from
beginning to end.

Algorithm 2 showcases the program flow of Cryptolation
at the highest level. First, Cryptolation gets the user Python
file and all the modules rules to search for. The modules rules
include our pre-defined rules and any rules defined by the user.
Next, Cryptolation iterates through each import and iterates
over each usage of the modules that is found. The usage will
be added to the broken rules if the usage is not verified, and
the broken rules will be returned at the end of the function.

Algorithm 3 showcases how Cryptolation creates a function
filled in with variable inferences. First, Cryptolation creates a
copy of the method and iterates through each variable passed
into the function. Next, we obtain the variable instance at
the call site and gather the inferences through the use of

Algorithm 2 Cryptolation’s High Level Procedure
Input pyfile . The variable under investigation.
Input uport . The name of the function call.
Output mtd . The method with assignments.

1: procedure ANALYZE(pyfile, uport)
2: broken rules← []
3: len imp ← length(imports(pyfile, uport))
4: for port← 1 to len imp do
5: len forward ← len(forward(port, pyfile))
6: for usage ← 1 to len forward do
7: if !verify usage(usage) then
8: broken rules ← broken rules + usage
9: end if

10: end for
11: end for
12: return broken rules . Returns the Broken Rules.
13: end procedure

Algorithm 3 Cryptolation’s inter-procedural analysis.
Input νn . The variable under investigation.
Input p . The name or AST of the function call.
Output mtd . A copy of the method with additional

assignments.

1: procedure EXPAND(p, νn)
2: mtd : method← getMethodCall(p)
3: astCopy : method← createCopy(mtd)
4: . Duplication.
5:
6: lenV ar ← length(νn)

7: for varNum← 1 to lenV ar do . Loop through var.
8: var ← νn[varNum]
9: vName : Name← getArgName(p, var)

10:
11: varCall← getVarAtCall(var, p) . Get the var.
12: varCallInf ← getInferences(varCall) . infers.
13:
14: varCallInfLen← length(varCallInf)

15: for infNum← 1 to varCallInfLen do . infer.
16: . variable inference.
17: varInf ← varCallInf [infNum]
18:
19: . Insert assignment statement using infer.
20: result← inject(astCopy, p, vName, varInf)

21: end for
22: end for
23: return mtd . Returns the function with the assignments

for arguments.
24: end procedure

the Astroid library. For each variable inference, we create
an assignment statement within the function assigning the
inference value to the variable at the top of the function.
This mimics the behavior of the variable passed in within
the current value. Finally, Cryptolation will return the copy
of the method with the inferences inside the copy of the
function. Using this modular basis, we can continuously create
inference-supporting functions for each internal function. Due
to this, we allow the user to specify the depth or the depth of
the functions we will expand.

Algorithm 4 The program analysis of Cryptolation.
Input patterns . The Misuse Patterns.
Input file . The program file.
Output Results

1: procedure iterative expand(patterns, file)
2: pattern← patterns[patternNum]
3: slicing ← forward(file)
4:
5: if pattern depends on variable then
6: if InferVal depends on method call then
7: . Create ASTs with variable inferences injected.
8: subAsts← expand(astTree, inferV al)
9:

10: astsLen← length(subAsts)
11: for astNum← 1 to subAsts do . Loop

ASTs.
12: curAst← subAsts[astNum]
13:
14: . Determine the value inferences.
15: slicing ← slicing + backward(curAst)
16: end for
17: else . inferVal does not depend on the method

call.
18: inferred← infer(variable) . Get

inferences.
19:
20: inferLen← length(inferred)
21: for inferNum← 1 to inferLen do . Loop

infers.
22: inferV al← inferred[inferNum]
23:
24: . Append Results.
25: slicing ← slicing +

backward(inferV al)
26: end for
27: end if
28: else . Pattern does not depend on the variable.
29: slicing ← backward(inferV al) . Append

Results.
30: end if
31: return slicing . Returns the specified function slice

with a number of copies based on the inferences.
32: end procedure

Algorithm 4 showcases how Cryptolation can continuously
infer variable inferences, limited only by depth. First, Cryp-
tolation will obtain the pattern and the forward slices based
on the current state. If the current pattern or potential crypto-
graphic misuse does not depend on any variable, the function
will append the current slices. Otherwise, the function will
gather all of the ASTs supporting the number of inferences
we are allowed to look into if the inference value depends
on the method call. For each AST, the function will append
the inferred backward slicing state into the current slicing
capabilities. If the current pattern does not depend on the
method call, then the function will immediately add on the
backward slice that covers the specific inference value. Finally,
the backward slicing within each step is provided by the library
Astroid, and we then slice through the results. We nickname
this process of creating copies of the AST that expand upon
the variable inferences “context injection”.

1 >>> def prepare_url(prefix=None):
2 #prefix = "http://" >Injected into memory
3 internal_url = "url.com"
4 return prefix + internal_url #> http:// + url.com
5 >>> overhead = top_call("http://")
6 #> overhead = http://url.com

Listing 6. This is an example of how we use context injection to enhance
the AST. We extend our inference ability to create an instantiation of the
potential variable value within the AST. This allows us to follow the code-
flow in an inter-procedural manner. This is not a known code sample but is
representative of several scanned code samples.

Shown in C is a full example of how the context injection
process that fills the variable values to precisely identify po-
tential cryptographic API misuse. The function prepare url
simply takes a string prefix and returns the prefix combined
with the string “url.com”. Normally, SCA tools may not be
able to determine the return result of the function call at line 5.
Cryptolation uses the context injection process to insert the
prefix “http://” from the method call at line 5, into the function
at line 2. Since we create and modify a copy of the function
prepare url, the original source code is not changed. Finally,
Cryptolation determines that the variable overhead will likely
return the result “http://url.com” at line 6.

A. Extracting nodes via Astroid

1 >>> import astroid
2 >>> name_node = astroid.extract_node(’’’
3 a = 1
4 b = 2
5 c = a + b
6 c
7 ’’’)
8 >>> name_node
9 <Name.c l.5 at 0x7fc0fb6a1790>

10 >>> inferred = next(name_node.infer())
11 >>> inferred.value
12 3

Listing 7. An example inference taken directly from Astroid’s website. This
example shows how the astroid AST can generate variable inferences from
the specified node.

Shown in figure C-A is an example of how Astroid can
generate variable inferences for specific variables. Astroid
internally uses constant propagation to determine the potential
dependent values of a certain variable and attempt to determine
the certain result of the logic. Specifically, at line 5, the
variable c depends on the variables a and b, and will attempt
to determine the combination of their values. Simply looking
at it, we know the result would be three if the script were run.
Using the Astroid library, line 10 returns a list of variable
inferences for the specified value. The first and only inference
value available at line 11 returns a successful inference value
of 3. It is important to note variable inferencing may not be
successful, and Cryptolation will not look further into that
function or variable.

APPENDIX D
BENCHMARK INSIGHTS

Shown within this section is the breakdown of files mea-
sured from GitHub. In the breakdowns, we cover the sum and
average count of metrics for each category.

TABLE IX
WITHIN THIS TABLE, WE SHOW THE STATISTICS ABOUT ALL THE

PROJECTS WE ANALYZED FROM GITHUB. WE GROUPED THESE METRICS
BY COUNT, SUM, AND AVERAGE. THE COUNT SHOWS THE NUMBER OF
PROJECTS FOR TOP-RANKED AND UN-RANKED, THE SUM SHOWS THE

SUMMATION OF THE TYPES OF METRICS, AND THE AVERAGE SHOWS THE
AVERAGE OF EACH TYPE OF METRIC. THE TYPE OF METRICS INCLUDES

THE COUNT OF FILES, PROGRAM OR TOTAL NUMBER OF LINES, AND THE
CYCLOMATIC COMPLEXITY.

Stat. Type of Metric Un-Ranked Top-Ranked
Count # of Projects 936 4

Sum

of Files 62,0 60 4,757
of Program Lines 6,995,932 366,325
of Total Lines 13,397,498 701,0 18
of CC 317,715 19,850

Average

of Files Per Project 66.3 1,189.25
of Program Lines Per File 112.73 77.01
of Total Lines Per File 215.88 147.37
of CC Per File 5.12 4.17

Shown within the table IX, we summarize the Un-Ranked
and Top-Ranked Projects that were used within our evaluation.
We showcase the total and average Program Lines, Total Lines,
and Cyclomatic Complexity per project or file. The Cyclomatic
Complexity is included as a commonly used objective method
to approximate the difficulty of a source code file. We did not
explore the impact of the CC on each tool; however, future
work should continue this examination.

TABLE X
SHOWN WITHIN THIS TABLE IS THE NUMBER OF PROGRAM LOC, TOTAL

LOC, AND NUMBER OF FILES PER TOP-RANKED PROJECT. THE
TOP-RANKED PROJECTS ARE RANKED IN ASCENDING ORDER OF EACH

VALUE.

Top-Ranked Project Program LoC Total LoC Files
Django 210,167 383,558 2,724
Ansible 116,605 252,180 1,509
Scrapy 29,409 50,983 329
Intelowl 10,144 14,297 195

The number of files, program LoC, and total LoC for each
top-ranked project is shown in the table X. We calculate
the program LoC with a simple function by removing any
comments or empty lines from our count. It should be noted
that many of the Python files may be empty; since an empty
“ init .py” is used to denote a Python directory. The file
counts only include Python files with the extension “.py”, any
potential compiled Python files.

APPENDIX E
ADDITIONAL METRICS

Within this section, we include complimentary metrics and
charts, that could be beneficial for clarifying specific points for
the reader, but we were unable to include in the main body of
the paper.

We have included several venn diagrams that display the
shared alerts the tools raised while scanning the Un-Ranked
Projects.To identify the shared alerts, we used the unique
fully qualified path name of the python file that included
each alert as their identifier. Figure 1 shows all the alerts per
tool and their linkages to other tools, indicating the number
of alerts each tool has in common with the others. It is
important to note, as mentioned previously, since we do not
have access to the ground truth, these alerts were not reviewed
for correctness.

Fig. 1. Venn diagram indicating the number of shared and the number of
exclusive files of Un-Ranked Project alerts.

We further broke down the sampled Un-Ranked alertsre-
viewed in Figure 1 using the fully qualified path names. The
venn diagram of this new break-down, shown in Figure 2,
consists of 50 alerts per tool that were randomly sampled for
review, adding up to 200 alerts in total. The total values per
tool do not add up to 200 in this diagram, since the same file
can include multiple alerts.

Fig. 2. Venn diagram indicating the number of shared and the number of
exclusive files of our sample of peer-reviewed Un-Ranked alerts.

Figure 3 shows our sample of peer-reviewed Un-Ranked
alerts from Figure 2, using the project names as the unique
identifier for alerts.

Fig. 3. Venn diagram indicating the number of shared and the number of
exclusive projects of our sample of peer-reviewed Un-Ranked alerts.

TABLE XI
SHOWN WITHIN THIS TABLE IS THE PERCENTAGE OF ALERTS RAISED BY

EACH TOOL PER RULE NUMBER.

Rule Number Bandit Cryptolation Dlint Semgrep
1 0.0% 0.13% 2.65% 0.16%
2 0.01% 0.0% 0.01% 0.08%
3 0.1% 0.0% 0.0% 0.0%
4 2.04% 0.28% 0.0% 0.01%
5 7.99% 3.3% 11.24% 0.0%
6 0.0% 0.0% 0.0% 0.0%
7 0.22% 0.07% 0.24% 0.22%
8 0.0% 0.0% 7.31% 0.0%
9 0.15% 0.8% 11.01% 0.37%
10 0.17% 0.5% 0.0% 0.0%
11 14.31% 1.89% 0.05% 6.86%
12 0.0% 0.0% 0.0% 0.0%
13 0.77% 0.0% 0.02% 2.46%
14 0.02% 0.0% 0.05% 0.0%
15 0.0% 5.91% 5.88% 6.53%
16 0.0% 0.0% 0.32% 0.0%
17 0.0% 0.11% 2.53% 0.0%
18 0.0% 0.02% 3.24% 0.0%

Within the table XI we show the rounded percents of alerts
per tool broken down by rule over the entire number of Un-
Ranked alerts. Many tools have 0 or less then 1% of alerts.
Bandit has the overall highest percent of alerts with Rule 11 at
14%. Please note, the majority of these alerts are not reviewed
for correctness. This chart only portrays the quantity of alerts
per tool.

TABLE XII
SHOWN WITHIN THIS TABLE ARE THE METRICS OF THE TOOLS ALERTS

PER THE BENCHMARK CATEGORY TYPES VULNERABLE AND
NON-USAGE. THE HIGHEST RANKING PRECISION, RECALL, AND

ACCURACY PER TOOL WITHIN EACH CATEGORY ARE INDICATED IN BOLD.

Type Tool TP FP FN Pre. Rec. Acc.

Vuln.

Bandit 54 32 142 62.79% 27.55% 23.68%
Crypto. 120 0 107 100% 52.86% 53.07%
Dlint 80 36 112 68.97% 41.67% 35.09%
Sem. 122 0 106 100% 53.51% 53.51%

Non-
Usage

Bandit 0 60 0 0.00% 0.00% 92.54%
Crypto. 0 0 0 0.00% 0.00% 100%
Dlint 0 384 0 0.00% 0.00% 52.24%
Sem. 0 384 0 0.00% 0.00% 52.24%

Within the table XII, we showcase the tools Precision,
Recall, and Accuracy per general test category type. The Pre-
cision and Recall for the Benchmark types Benign and Non-
Usage are zero due to there being no True Positive alerts. We
did not list the benign test cases since all of the tools had 100%
Accuracy recorded. While Cryptolation has the highest overall
Precision and Accuracy overall, Semgrep has the highest recall
for Vulnerable test cases by less then 1%.

TABLE XIII
SHOWN WITHIN THIS TABLE IS A FULL BREAKDOWN OF THE GROUPINGS
WITHIN PYCRYPTOBENCH. WE BREAK OUR TESTS DOWN BY GENERAL

CATEGORY, LANGUAGE FEATURE, AND RULE NUMBER. EACH GROUPING
OF TEST TYPES WILL ADD UP TO 1,836.

Test
Grouping Sub Grouping Number

of tests

Category
Non-Usage 804

Safe 804
Regular 228

Language
Feature

Global 306
Dbl. Inter-Procedural 306

Path-Sensitive 306
Inter-Procedural 306
Field-Sensitive 306

Rule Number

Rule 01 132
Rule 02 48
Rule 03 36
Rule 04 576
Rule 05 24
Rule 06 60
Rule 07 36
Rule 08 24
Rule 09 252
Rule 10 84
Rule 11 144
Rule 12 72
Rule 13 96
Rule 14 84
Rule 15 84
Rule 16 36
Rule 17 24
Rule 18 24

We breakdown the benchmark in all three categories in
table XIII. While each specific category adds up to 1,836, the
categories do not get added to each other for the total. Each
category will use the same set of 1,836 files and overlap with
one another.

Fig. 4. Shown within this picture is the Percent of alerts generated by tool that
were mapped to our rules. Rule 11, five, and 15 have the highest percentage
of alerts in ranking. Dlint appears to have a wide breadth of alerts, with the
most percentage across all of the rules. It should be noted we did not check
the majority of these alerts for validity.

TABLE XIV
SHOWN WITHIN THIS TABLE IS THE PRECISION, RECALL, AND

ACCURACY PER TOOL SCANNING PYCRYPTOBENCH BROKEN DOWN BY
RULE NUMBER.

Rule Tool Precision Recall Accuracy

1

Bandit 100.00% 4.17% 82.58%
Cryptolation 100.00% 33.33% 87.88%

Dlint 28.00% 29.17% 73.48%
Semgrep 37.93% 45.83% 76.52%

2

Bandit 0.00% 0.00% 75.00%
Cryptolation 100.00% 25.00% 81.25%

Dlint 0.00% 0.00% 75.00%
Semgrep 100.00% 83.33% 95.83%

3

Bandit 63.64% 87.50% 86.11%
Cryptolation 100.00% 75.00% 91.67%

Dlint 100.00% 91.67% 97.22%
Semgrep 100.00% 91.67% 97.22%

4

Bandit 80.00% 80.00% 99.31%
Cryptolation 100.00% 66.67% 99.31%

Dlint 0.00% 0.00% 90.62%
Semgrep 20.75% 91.67% 92.53%

5

Bandit 100.00% 66.67% 83.33%
Cryptolation 100.00% 83.33% 91.67%

Dlint 100.00% 83.33% 91.67%
Semgrep 0.00% 0.00% 50.00%

6

Bandit 0.00% 0.00% 80.00%
Cryptolation 100.00% 63.64% 93.33%

Dlint 0.00% 0.00% 60.00%
Semgrep 0.00% 0.00% 60.00%

7

Bandit 100.00% 66.67% 88.89%
Cryptolation 100.00% 75.00% 91.67%

Dlint 45.45% 83.33% 61.11%
Semgrep 45.45% 83.33% 61.11%

8

Bandit 0.00% 0.00% 50.00%
Cryptolation 100.00% 33.33% 66.67%

Dlint 0.00% 0.00% 50.00%
Semgrep 0.00% 0.00% 50.00%

9

Bandit 0.00% 0.00% 80.95%
Cryptolation 100.00% 100.00% 100.00%

Dlint 0.00% 0.00% 47.62%
Semgrep 9.09% 100.00% 52.38%

10

Bandit 100.00% 50.00% 92.86%
Cryptolation 100.00% 66.67% 95.24%

Dlint 0.00% 0.00% 42.86%
Semgrep 14.29% 50.00% 50.00%

11

Bandit 8.33% 100.00% 84.72%
Cryptolation 100.00% 41.67% 95.14%

Dlint 0.00% 0.00% 58.33%
Semgrep 9.43% 41.67% 61.81%

12

Bandit 0.00% 0.00% 83.33%
Cryptolation 100.00% 25.00% 87.50%

Dlint 0.00% 0.00% 83.33%
Semgrep 100.00% 83.33% 97.22%

13

Bandit 66.67% 100.00% 95.83%
Cryptolation 100.00% 33.33% 91.67%

Dlint 21.05% 66.67% 64.58%
Semgrep 28.57% 100.00% 68.75%

14

Bandit 0.00% 0.00% 71.43%
Cryptolation 0.00% 0.00% 85.71%

Dlint 0.00% 0.00% 50.00%
Semgrep 0.00% 0.00% 50.00%

15

Bandit 0.00% 0.00% 85.71%
Cryptolation 100.00% 66.67% 95.24%

Dlint 0.00% 0.00% 50.00%
Semgrep 28.57% 100.00% 64.29%

16

Bandit 0.00% 0.00% 66.67%
Cryptolation 0.00% 0.00% 66.67%

Dlint 66.67% 100.00% 83.33%
Semgrep 0.00% 0.00% 50.00%

17

Bandit 0.00% 0.00% 50.00%
Cryptolation 100.00% 100.00% 100.00%

Dlint 100.00% 100.00% 100.00%
Semgrep 100.00% 100.00% 100.00%

18

Bandit 0.00% 0.00% 50.00%
Cryptolation 0.00% 0.00% 50.00%

Dlint 0.00% 0.00% 50.00%
Semgrep 0.00% 0.00% 50.00%

Within the table XIV, we break down the Precision, Recall,
and Accuracy of each tool on each rule on the benchmark.
Throughout each rule, Cryptolation either has the highest
Precision or is tied with the highest Precision.

	Introduction
	Threat Model and Detection Challenges
	Misuse Patterns And Samples
	Use a Wildcard to Avoid Verification
	Creating a Custom String to avoid Verification of Certificates
	Use an unverified context to avoid https Verification
	Using http instead of https
	Using Insecure Random Number Generation
	Using a static and insecure Salt
	Using an Insecure Mode
	Using less than 1,000 Iterations
	Using an Insecure Block Cipher
	Using an Insecure Asymmetric Cipher
	Using an insecure Hash
	Not verifying the jwt
	Using a deprecated or invalid tls Version
	Using an insecure protocol
	Using an insecure xml Deserialization
	Using an insecure yaml Deserialization
	Using an insecure Pickle Deserialization
	Not properly escaping regular expressions (regex)

	Detection Challenges Introduced by Python

	Design, Techniques, Analysis
	Design
	Techniques
	Analysis
	Import Alias Analysis
	Forward Program Slicing
	Backward Program Slicing
	Intra-Procedural Analysis

	PyCryptoBench Benchmark
	Vulnerable Test Case Type
	Benign Test Case Type
	Non-Usage Test Case Type

	Evaluation
	Methodology
	Benchmark Results
	Top-Ranked GitHub Projects
	Un-Ranked GitHub Projects

	Discussion and Limitations
	Related Work
	Future Work
	Conclusion
	References
	Appendix A: Formulas Used
	Appendix B: Rule Mapping
	Bandit misuse patterns mapping
	Dlint misuse patterns mapping
	Semgrep misuse patterns mapping

	Appendix C: Inference Code Designs
	Extracting nodes via Astroid

	Appendix D: Benchmark Insights
	Appendix E: Additional Metrics

