
Automatic Prediction of Developers’ Resolutions for
Software Merge Conflicts

Waad Aldndnia, Na Menga, Francisco Servantb,∗

aVirginia Polytechnic Institute and State University, Blacksburg VA 24060, USA
bUnivesity of Malaga, Malaga 29071, Spain

Abstract

In collaborative software development, developers simultaneously work in paral-

lel on different branches that they merge periodically. When edits from different

branches textually overlap, conflicts may occur. Manually resolving conflicts can

be tedious and error-prone. Researchers proposed tool support for conflict res-

olution, but these tools barely consider developers’ preferences. Conflicts can

be resolved by: keeping the local version only KL, keeping the remote version

only (KR), or manually editing them (ME). Recent studies show that developers

resolved the majority of textual conflicts by KL or KR. Thus, we created a ma-

chine learning-based approach RPredictor to predict developers’ resolution

strategy (KL, KR, or ME) given a merge conflict.

We did large-scale experiments on the historical resolution of 74,861 conflicts.

Our experiments show that RPredictor achieved 63% F-score for within-

project prediction and 46% F-score for cross-project prediction. Compared

with other classifiers, RPredictor provides the highest effectiveness when us-

ing a random forest (RF) classifier. Finally, we proposed a variant technique

RPredictorv, which enables developers to customize its prediction conserva-

tiveness. For a highly conservative setting, RPredictorv achieved 34% effort

saving while minimizing the risk of producing incorrect prediction labels.

Keywords: Software merge, textual conflicts, conflict resolution, prediction

∗Corresponding author
Email addresses: waada@vt.edu (Waad Aldndni), nm8247@vt.edu (Na Meng),

fservant@vt.edu (Francisco Servant)

Preprint submitted to Elsevier June 19, 2024

1. Introduction

In collaborative software development, programmers often create separate

branches to perform distinct maintenance tasks (e.g., add new features, fix

bugs, or refactor code) in parallel. When developers merge edits from different

branches, separate edits that were simultaneously applied to the same line of5

code can conflict with each other.

1.1. Background

Manual resolution of such conflicts is usually challenging and time-consuming.

A prior study [49] shows that 56% of developers deferred resolving a merge con-

flict due to various reasons (e.g., the complexity, large size, or big number of10

locations of conflicting code). In the period of time between conflicts occur and

they get resolved, conflicts can grow and become more difficult to resolve [49].

Vale et al. [68] identified factors that make conflicts hard to solve, including the

number of conflicting lines of code, the number of conflicting chunks, the number

of lines of code changed, and the number of files changed. By conducting surveys15

with developers, Costa et al. [21] showed that the developer performing a merge

might not fully understand the changed code or the rationale behind the change,

or may not have the expertise to determine the impact of the change. Nelson et

al. [49] interviewed 10 software developers, and revealed that developers need

better tools to facilitate the understanding and resolution of merge conflicts. All20

these studies motivated us to explore new ways of automatic conflict resolution.

Master branch

New-feature branch

”git merge
new-feature”

Local version

Remote version

A merged version
with conflicts

reported

Figure 1: Developers use textual merge (e.g., git-merge) to merge branches and reveal conflicts

As illustrated in Figure 1, developers typically adopt text-based tools (e.g.,

git-merge [1]) to tentatively merge the latest version of their own branch (i.e.,

2

local version (L)) with the latest version of a specified branch (i.e., remote

version (R)), and to detect textual conflicts in this process. Because such25

tools treat programs as plain text, they can merge the code in ways that

are syntactically or semantically incorrect, due to code mismatches between

branches [19, 50, 64]. To improve over textual merge, researchers proposed

tools that analyze the syntactic structures of programs, to better detect and

resolve conflicts [13, 12, 71, 65]. For instance, JDime [12] matches Java code30

based on abstract syntax trees (ASTs). It conducts tree-based merge instead of

text-based merge for each matching node pair, to better align code and integrate

as many edits as possible between branches.

Specifically, Yuzuki et al. [69] examined 779 Java merge conflicts, and found

that developers resolved 99% of conflicting methods by keeping only one of the35

conflicting versions. Similarly, Ghiotto et al. [27] inspected 616 textual conflicts;

they observed that developers resolved 56% of cases by keeping only the L or R

version. As the studies were done by different researchers on distinct datasets

and the adopted granularity (method vs. line) varies, the reported percentages

are different.40

…
<version>1.8.1</version>
…

…
<version>1.9.7</version>
…

…
<version>1.9.3</version>
…

…
<<<<<<< HEAD

<version>1.9.7</version>
=======

<version>1.9.3</version>
>>>>>>>

…

Base

Local version Remote version

Conflicting
Chunk

…
<version>1.9.7</version>
…

Resolved version (the same as local)

“git merge …”

Figure 2: Versions related to a merge conflict

Figure 2 shows an exemplar conflict manually resolved by developers. For

this example, L and R simultaneously updated the version number of a library

3

dependency in distinct ways. As a result, the text-based merge (e.g., git-

merge) reveals a conflicting chunk, which uses the format “<<<<<<< HEAD

... ======= ... >>>>>>>” to mark the conflicting edits between versions.45

To resolve the conflict, developers simply picked the edit from one version (i.e.,

L) instead of trying to combine the branch edits somehow.

1.2. Motivation

Generally speaking, developers resolve conflicts via three main strategies:

choosing the local version while discarding the remote one (KL), choosing the50

remote version while discarding local (KR), or modifying edits from either or

both branches for edit integration (ME). Inspired by the two studies mentioned

above, we wanted to create a novel approach that resolves merge conflicts by

considering developers’ preferences. As our new approach predicts the resolu-

tion strategy for any given conflict, we expect it to help developers in two ways.55

First, when it correctly predicts the KL or KR strategy, the approach can auto-

matically apply the strategy and resolve the conflict. This will save developers

time and manual effort, which would have been spent on understanding and

resolving that conflict. The effort savings provided by this automatic prediction

are potentially very high, since past evidence shows that the majority of con-60

flicts get resolved by KL and KR [69, 27]. Second, when our approach predicts

the ME strategy, it reminds developers to carefully inspect the local and remote

branches, in order to cautiously handle the given conflict.

1.3. Our Research

To explore the feasibility of creating a predictor for conflict-resolution strate-65

gies, we first did an empirical study to characterize the conflicts in software

version history that get resolved with different strategies. We gathered 15,758

conflicts from 100 open-source software repositories, and studied 12 features to

characterize each conflict from different perspectives. Our statistical analysis

shows a strong correlation between the resolution decisions of developers and70

4

Resolution
Strategy

(KL/KR/ME)
Local
Version

Remote
Version

Software
Repository

Local
Version
Remote
Version

Software
Repository

Features

(1) Size of chunk
(2) Size of local version
(3) Size of remote version
(4) File type
(5) # of conflicting chunks
(6) # of conflicting files
(7) # of commits before local version
(8) # of commits before remote version
(9) Data difference between local and remote
(10) # of commits by the owner of local version
(11) # of commits by the owner of remote version
(12) # of commits by the resolver of conflict

Random
Forest

Phase I :Training

Feature Extraction (see above) Classifier
Phase II :Testing

Resolution
Strategy
Resolved
version
(for KL or KR)

Feature Extraction

Training
Data

Testing
Data

Figure 3: RPredictor has two phases: training and testing

all features, indicating a strong potential for successfully building a resolution

predictor.

Leveraging the 12 features revealed by our study, we designed and imple-

mented an approach—RPredictor—to automatically predict resolution strate-

gies. As shown in Figure 3, RPredictor has two phases: training and testing.75

In Phase I, RPredictor extracts features for each conflict in a set of merge

conflicts that were already resolved in the past, and trains a three-class random

forest (RF) classifier. In Phase II, RPredictor takes in any new conflict to-

gether with the software repository holding that conflict, extracts features, and

applies the trained classifier to recommend a strategy. When the strategy is KL80

or KR, RPredictor also outputs the resolved version.

To evaluateRPredictor, we conducted large-scale experiments with 74,861

conflicts extracted from the version history of 482 open-source projects. We ap-

plied RPredictor to perform both within-project and cross-project prediction

tasks. For the within-project setting, in each repository, we used the oldest 90%85

of resolved conflicts to train RPredictor and the remaining 10% of resolved

conflicts for testing. RPredictor predicted resolutions with 63% F-score. For

5

the cross-project setting, we performed 10-fold cross validation. Namely, we di-

vided the 482 software repositories evenly into 10 folds. In each experiment, we

leveraged the conflict data in nine folds for training and used the conflict data90

from the remaining fold for testing. We repeated the experiment 10 times, with

each experiment using a different fold for testing. RPredictor recommended

resolutions with 46% F-score.

We also evaluated the sensitivity of RPredictor to different amounts or

ages of training data, and to different machine learning (ML) algorithms. We95

found that as more training data is provided, RPredictor’s effectiveness either

increases or stabilizes; nevertheless, it does not change consistently with the age

of training data. Compared with other ML algorithms, random forest leads to

the best effectiveness of RPredictor. Finally, we designed a customizable vari-

ant, RPredictorv, which allows developers to customize how conservatively100

they want RPredictorv to make its predictions, i.e., how inclined it should be

to predict the ME resolution, to reduce the ratio of incorrectly predicted KL or

KR. For a highly conservative setting (94% C-score), RPredictorv achieved

34% effort savings; making RPredictorv less conservative but keeping its con-

servativeness score (C-score) over 80%, we got RPredictorv to achieve up to105

64% effort savings. We made the following contributions in this paper:

• A novel empirical study of 12 characteristics of 15,758 conflicts, to under-

stand their correlation with resolutions KL, KR, or ME.

• A novel tool RPredictor, that leverages machine learning (ML) to pre-

dict the resolution strategy for a given conflict.110

• A comprehensive evaluation to assess the prediction effectiveness of RPre-

dictor, with 74,861 conflicts from 482 Java open-source repositories.

• An evaluation of RPredictor’s sensitivity to different configurations re-

lated to ML, including (1) the ratio of training and testing data, (2) the

balanced or unbalanced data distribution among resolution strategies, (3)115

the age of training data, and (4) the choice of learning algorithms.

6

• A customizable variantRPredictorv, which enables developers to choose

more or less conservative results at the trade-off of lower or higher effort

savings, respectively.

2. Dataset Construction120

Ghiotto et al. [27] recently conducted an empirical study on merge conflicts,

and created a dataset of conflicts from 2,731 GitHub repositories. To study

developers’ preferences on conflict resolution and to explore new approaches of

resolution prediction, we decided to create our datasets based on their data

because of its comprehensiveness and representativeness.125

To create the dataset, Ghiotto et al. first used the GitHub API to select

1,997,541 projects. Then they collected information about each project such as

the last update date, the size of its development team, and the code size. Next,

they selected all Java projects that have at least one commit during January

2015 and March 2016. A project is considered a Java project if the percentage130

of source code written in Java is greater than that of code written in any of the

other languages. Finally, they discarded the projects that were forks of other

projects in the dataset or had no conflict reported by git-merge in Java files for

any merge commits. This led to 2,731 projects with 175,805 conflicting chunks.

For our study, we downloaded Ghitto’s dataset and refined it by taking two135

steps. First, we removed the projects whose developers resolved conflicts by tak-

ing only one or two major strategies e.g., jsoup [7] and platform frameworks base [4]).

Namely, if a project (1) has at least 50% of conflicts resolved via a single strategy

(KL, KR, or ME) or (2) never uses a certain strategy (e.g., KL), we remove the

project. In this way, we ensured that each of the remaining repositories had a140

relatively balanced distribution of conflicts among KL, KR, and ME. After this

step, 609 projects remained in our dataset (e.g., XCoLab [5] and jgralab [6]).

Second, we removed the projects whose codebases were no longer available on

GitHub, and our final corpus became 582 projects. Table 1 shows some char-

acteristics of the 582 software repositories. As shown in the table, each project145

7

involves at least 2 developers and at most 426 developers, with the mean value

25 and standard deviation 43. Each repository has at least 24 commits, and at

most 190,851 commits. In each repository, there are 2–22,020 merging scenarios,

while the number of conflicting chunks varies in 5–5,114. All these numbers im-

ply that the software projects are not toy examples; many of them are large or150

complex projects involving many developers and having long version histories.

Table 1: Characteristics of the 582 software repositories included by our dataset

Min Max Mean Standard Deviation

Number of Developers 2 426 25 43

Number of Commits 24 190,851 2,820 9,022

Number of Merges 2 22,020 323 1,045

Number of Chunks 5 5,114 156 368

58

366

139

19
0

50

100

150

200

250

300

350

400

(1, 10] (10, 100] (100, 1,000] (1,000, 10,000]

N
um

be
r o

f P
ro

je
ct

s

Number of Chunks
Figure 4: Distribution of conflicting chunks among the 582 projects

Moreover, we analyzed the distribution of conflicting chunks among projects.

As shown in Figure 4, 58 out of the 582 projects have 2–10 conflicting chunks in

version history; 366 projects have 11–100 chunks; 139 have 101–1,000 chunks;

and 19 projects have over 1,000 chunks. Such a distribution implies that some155

projects contribute a lot more chunks than the others, and may bias our exper-

iment results. However, in total the dataset includes 90,619 conflicting chunks,

while the largest number of conflicting chunks contained by any single project

is 5,114. It means that there is no project dominating the whole dataset, so the

impact of any potential bias is limited.160

As shown in Table 2, after refining the original dataset of Ghitto et al., we

obtained 582 software repositories. Among the 90,619 conflicts contained by

8

these repositories, there are 32,065, 24,423, 34,131 conflicts separately resolved

via KL, KR, and ME.

We randomly sampled 100 repositories in the 582 repositories, to conduct165

a characterization study of conflicts (see Section 3). This sample set includes

15,758 conflicts, among which 5,519 conflicts were resolved via KL, 4,357 con-

flicts were resolved via KR, and 5,882 conflicts were resolved via ME. Based

on the characterization study, we created RPredictor, and evaluated the tool

using all data from the remaining 482 repositories. By making observations on170

a subset of data and assessing new approaches on the remaining data, we can

examine whether the insights gained from some data are generalizable to other

unseen data.

Table 2: The datasets used in our research

of Repositories
of Conflicts resolved by

KL KR ME Total

Data used in our

characterization study
100 5,519 4,357 5,882 15,758

Data used in the tool

evaluation
482 26,546 20,066 28,249 74,861

Total 582 32,065 24,423 34,131 90,619

3. Our Characterization Study

We characterized all resolved conflicts in the randomly sampled 100 reposi-175

tories by defining and measuring 12 features. We defined these features based

on the insights we learnt from prior studies [27, 49, 16, 68], concerning factors

that may impact developers’ decisions on conflict resolution. We organized the

features into four categories: (C1) content of the merge conflict, (C2) the sce-

nario in which the conflict happened, (C3) software evolution that led to the180

conflict, and (C4) experience of the developer(s) involved in the conflict. We

describe them in more detail below.

C1. Conflict Content: We hypothesize that developers often observe the

conflict content when they try to resolve a conflict [27, 49, 16, 68]. We defined

four features to characterize the content of a conflicting chunk:185

9

F1. Size of Chunk counts the lines of code (LOC) contained by any given

conflicting chunk.

F2. Size of Local Version counts the LOC between “<<<<<<< HEAD” and

“=======”. Namely, for each conflicting chunk, it counts the unique code

coming from the local version.190

F3. Size of Remote Version counts the LOC between “====” and “>>>>>>>”.

Namely, for each chunk, it counts the unique code derived from remote.

F4. File Type reflects the type of the file containing the conflicting chunk.

Different resolutions may be popular in different types of files.

Notice that F1 > F2 + F3, because a conflicting chunk consists of (1) the unique195

code from L and R and (2) some common code (e.g., program context) shared

between versions. We believe that when developers resolve merge conflicts, the

surrounding context is important for them to decide (i) which branch edits fit

better and (ii) how to integrate branch edits into the context. Thus, both the

conflicting edits and surrounding context can influence developers’ resolution200

strategies, and we included F1–F3 into our study.

C2. Merging Scenarios: The complexity of a merging scenario (i.e., the

scenario where git-merge is applied to merge two branch versions) could make

developers defer their responses to conflicts [27, 49, 16, 68]. We defined two

features to capture the complexity:205

F5. Number of Conflicting Chunks counts the conflicting chunks reported

by git-merge for a merging scenario .

F6. Number of Conflicting Files counts the number of conflicting files in

a merging scenario.

C3. Evolution of Changes: It is possible that for a given conflict, how210

local and remote versions separately evolved can influence developers’ resolution

strategies [49, 16]. We hypothesize that branches with longer history are less

likely to be discarded,

10

and defined the following three features accordingly:

F7. Number of Commits before Local counts the commits or versions215

standing between the base and local versions, on the branch where the

local version resides.

F8. Number of Commits before Remote counts the commits or versions

standing between the base and remote versions, on the branch where the

remote version resides.220

F9. Date Difference between Local and Remote counts the time interval

(i.e., days) between the check-in dates of local and remote. We hypoth-

esized that an increasing number of days between the check-in dates of

local and remote versions can make a conflict harder to solve, and thus

may influence developers’ decisions for its resolution.225

C4. Developer Experience: The experience of developers can considerably

impact how they understand and resolve conflicts [49, 16, 68]. We hypothesize

that the number of historical commits checked in by a developer can reflect

his/her experience with the software project. We extracted the user IDs of

developers, and defined the following three features:230

F10. Number of Commits by The Owner of Local: If a developer

checked in the local commit for the current merging scenario, we consider

that developer as the owner of local. While multiple developers might

contribute changes to the local branch, we assign the ownership of local

version to the last committer. This is because committers often review all235

existing code (including other developers’ edits) and their modifications

before committing changes. This feature counts the commits checked in

by the owner of local, before that developer committed the local version.

F11. Number of Commits by The Owner of Remote: If a developer

checked in the remote commit for the current merging scenario, we con-240

sider that developer as the owner of remote. When multiple developers

11

contribute changes to the remote branch, we assign the ownership of re-

mote version to the last committer. This is because the last committer

typically reviews all existing code and his/her own changes before checking

in the commit.245

This feature counts the commits checked in by the owner of remote, before

that developer committed the remote version.

F12. Number of Commits by The Resolver of Conflict: If a developer

checked in the merging commit with conflict resolution for the current

merging scenario, we consider that developer as the resolver of conflict.250

We believe that the resolution strategies vary with resolvers. In reality,

to predict developers’ resolution strategy for a given conflict, it is hard

to know beforehand who will resolve the conflict. However, it is still use-

ful to explore the prediction power of this feature, because the potential

predictors-to-build can take in manually entered resolver’s user ID to pre-255

dict the resolution strategy for a specified conflict. This feature counts the

commits checked in by the developer who resolved a given conflict, before

that conflict resolution.

To study whether these 12 features impact developers’ resolution strategies, we

applied statistical analysis to compare the values of these features for conflicts260

separately resolved by KL, KR, and ME. As mentioned in Section 2, in this

study, we used in total 15,758 conflicts from 100 randomly sampled repositories.

3.1. Statistical Analysis via H Test

Among the 12 features mentioned above, there are 11 features (except F4)

that have numeric values. For each of these features Fi (i ∈ [1, 12], i ̸= 4), we265

measured its value for each conflict. We separated merge conflicts into three

groups, according to the resolution strategies applied to them. We use CL to

refer to the conflicts resolved by KL, use CR to refer to the conflicts resolved

by KR, and use CM for those resolved by ME.

12

To study whether any of these features can be used to predict developers’270

resolution strategies, we applied the Kruskal-Wallis H test [46, 43, 8]; it is a

statistical test to decide if three or more groups of samples come from the same

distribution on a variable of interest (e.g., chunk size or number of conflicts). H

test is a non-parametric test, as it does not assume a normal data distribution

(none of our studied features follow a normal distribution). For each group275

of samples, H test sorts data into ascending order, assigns ranks to the sorted

data points, and thus converts the given values into their ranks. Namely, in the

conversion process, the smallest value gets a rank of 1, the next smallest gets a

rank of 2, and so on. Among the given three or more sample groups, H test is

applied to validate the following hypotheses:280

• H0: The mean ranks of different groups are the same.

• H1: The mean ranks of different groups are not the same.

Table 3: The statistical analysis results for F1–F3 and F5–F12

Fi

Mean Ranks
P-value

CL CR CM

F1. Size of Chunk 25 26 72 0.000046

F2. Size of Local Version 11 13 35 0.000093

F3. Size of Remote Version 14 12 37 0.000129

F5. Number of Conflicting Chunks 55 61 29 0.000000

F6. Number of Conflicting Files 24 28 16 0.000000

F7. Number of Commits before Local 62 62 43 0.000000

F8. Number of Commits before Remote 91 138 96 0.000000

F9. Date Difference between Local and Remote 5 5 4 0.000055

F10. Number of Commits by The Owner of Local 655 558 603 0.000051

F11. Number of Commits by The Owner of Remote 530 530 548 0.002683

F12. Number of Commits by The Resolver of Conflict 621 540 584 0.010751

Table 3 presents the H test results for all features except F4. For any fea-

ture Fi, a p-value lower than 0.05 implies that the groups (i.e., CL, CR, and

CM) are from significantly different data distributions, which means that the285

corresponding feature could help predict developers’ resolution strategies. As

shown in the table, all of the 11 features have p-values lower than 0.05; thus,

we decided to use these features to train a resolution predictor in Section 4.

13

Finding 1: The H test shows that all 11 numeric features (F1–F3 and F5–

F12) of conflicting chunks can help predict developers’ resolution strategies.

3.2. Statistical Analysis via Chi-Square Test290

F4 is different from the other features, because it is a categorical variable

to characterize file types for conflicts, while the other features are numeric vari-

ables to count numbers related to a given conflict. To study whether file types

help predict developers’ resolution strategies, we decided to use the chi-square

test [54]—a statistical test applicable to sets of categorical data, to evaluate how295

possibly any observed difference between the sets happened by chance. Specif-

ically, in our study, after extracting all file-type information for conflicts, we

clustered the file types into two big categories: source-code files and non-code

files. We then counted the frequency of each category for each resolution strat-

egy to obtain a contingency table (see Table 4). Source-code files include files300

written in any programming language, such as Java and Python; non-code files

include all other kinds of files, such as configuration files and documentation.

Table 4: Data distribution of conflicts between the two file categories

File Category
of Files in Each Group

Total
CL CR CM

Source-Code File 3,930 3,375 4,565 11,870

Non-Code File 1,591 983 1,319 3,893

Notice that we decided not to use file types as they are to create the contin-

gency table for two reasons. First, we observed 96 file types in the 100 studied

Java projects. Among those types, Java is the biggest one and covers thousands305

of conflicts, while many rare file types only cover one or two conflicts. Such an

extreme unbalanced conflict distribution among file types can make our statis-

tical analysis useless or even misleading. To ensure the relatively balanced data

distribution across categories, we decided to create the 2 big categories out of 96

file types. Second, if we used the file types as they are, our statistical analysis310

results may be limited to the 96 file types we studied, but not generalize well

to larger datasets that have a lot more file types. Clustering raw file types into

two big categories helps ensure the generalizability of our study results, because

14

the two big categories remain the same no matter how many more concrete file

types are included by larger datasets.315

We defined the following hypotheses for our chi-square test:

• H0: No association exists between file categories and resolution strategies.

• H1: There is association between file categories and resolution strategies.

Our statistical analysis results have chi-square = 77.5874, and p = 0.0000. The

results imply that file categories are related to developers’ resolution strategies,320

so we can exploit F4 to train a resolution predictor (Section 4).

Finding 2: The Chi-square test shows that the file categories of conflicting

chunks (F4) can help predict developers’ resolution strategies.

4. Approach

Our characterization study (see Section 3) shows the feasibility of training

a machine-learning model to predict developers’ resolution strategies for con-325

flicts. Therefore, we designed and implemented a new approach RPredictor.

As shown in Figure 3, RPredictor has two phases: training and testing.

Phase I analyzes the conflicts already resolved by developers to train a three-

class classifier. Phase II takes a merge conflict from a software repository, and

leverages the trained classifier to predict whether developers will resolve it via330

KL, KR, or ME. If KL or KR is predicted, in addition to outputting the res-

olution strategy, RPredictor also outputs the resolved version to automate

conflict resolution and thus improve programmer productivity. In both phases,

RPredictor extracts 12 features for each conflict. For implementation, we

used scikit-learn [55]—a Python machine-learning library to train and test a335

classifier. The scikit-learn library features various classification, regression, and

clustering algorithms. By invoking APIs provided by the library, RPredictor

uses random forest (RF) to train its three-class classifier.

Because 11 of the 12 features are numeric variables (i.e., F1-F3 and F5-

F12), we provided their numeric values as inputs to RPredictor. One feature340

15

(F4) is categorical, with two category labels as “source code file” and “non-code

file”. To provide numeric values to RPredictor for F4, we applied one-hot

encoding [29] for category-to-vector conversion. Namely, we used the vector [1,

0] to represent the first category, and used [0, 1] to represent the second.

5. Evaluation345

We conducted a variety of experiments to investigate the following seven

research questions (RQs):

• RQ1: How effectively can RPredictor predict developers’ resolutions

in the within-project setting?

• RQ2: How effectively can RPredictor predict developers’ resolutions350

in the cross-project setting?

• RQ3: How effectively can RPredictor predict developers’ resolutions

given projects with unbalanced distributions of resolution strategies?

• RQ4: How sensitive is RPredictor to the amount of training data?

• RQ5: How sensitive is RPredictor to the age of training data?355

• RQ6: How sensitive is RPredictor to the adopted machine-learning

algorithm?

• RQ7: How sensitive is RPredictorv to different prediction thresholds?

This section will first introduce our evaluation metrics (Section 5.1), and then

present our experiments as well as the results for each research question (Sec-360

tions 5.2–5.8).

5.1. Evaluation Metrics

In our experiments, we executed our studied techniques to obtain a pre-

diction for each one of the merge conflicts in our studied dataset. As ground

truth for each conflict, we observed the resolution strategy employed by the365

16

developer that resolved it in our dataset. We then assessed the effectiveness of

a technique by comparing its prediction to the ground truth for each conflict,

applying multiple metrics. To facilitate discussion, in this section, we index the

three conflict resolution strategies and refer to them as Si(i ∈ [1, 3]). Namely, S1

refers to KL (keep the local version); S2 refers to KR (keep the remote version);370

S3 refers to ME (resolution with manual edits). We defined and calculated the

following metrics to evaluate effectiveness:

Precision (Pi) measures, among all the conflicts labeled with Si by a tech-

nique, what ratio of them were actually resolved by Si.

Pi =
of conflicts correctly labeled as ”Si”

Total # of conflicts labeled as “Si”
(1)

Recall (Ri) measures, among all conflicts that were resolved by Si, what375

ratio of them were labeled by a technique as Si.

Ri =
of conflicts correctly labeled as “Si”

Total # of conflicts that were resolved via Si
(2)

Both precision and recall vary within [0%, 100%]. The higher, the better.

F-score (Fi) is the harmonic mean of precision and recall. It provides a

way to measure a model’s accuracy based on precision and recall. F also varies

within [0%, 100%]. The higher value we get, the better.380

Fi =
2× P ×R

P +R
(3)

Aggregated (Overall) metrics (P, R, F): With the above effectiveness

metrics computed for each resolution strategy, we further evaluated the over-

all effectiveness of a technique by computing the weighted average among all

strategies. Formally, if we use Γ to represent P or R, and use ni to represent

the number of testing samples in Si, then the overall effectiveness in terms of385

precision and recall can be computed as

Γoverall =

∑3
i=1 Γi ∗ ni∑3

i=1 ni

(4)

Finally, the overall F is computed with:

Foverall =
2× Poverall ×Roverall

Poverall +Roverall
(5)

17

Conservativeness Score (C) or C-score: We defined this metric because

different prediction mistakes have different consequences. If a conflict resolved

by KL or KR is incorrectly predicted as ME, the technique makes a conservative390

mistake: it misses the opportunity of saving developers’ manual effort, but does

not mislead developers to blindly take resolution suggestions. However, if a con-

flict resolved by ME is incorrectly predicted as KL or KR, the technique makes

a more serious mistake: it automatically resolves the conflict using a different

strategy than what the developer would have preferred, and thus produces an395

incorrectly merged version. We created a C metric to measure the ratio of pre-

dictions that are conservative, i.e., that do not cause any incorrect automatic

resolution. Conservative predictions include (1) correct predictions, and (2) any

conflict resolved via KL or KR but labeled as ME. C scores range within [0%,

100%]; the higher, the better.400

C =
of conflicts conservatively labeled

All predictions
(6)

5.2. RQ1: Effectiveness of Within-Project Prediction

For each software project in our dataset, we leveraged 90% of the oldest

resolved conflicts to train RPredictor, and then used the remaining 10% of

resolved conflicts to test RPredictor. We intentionally used older data for

training and newer data for testing. This is because such a setting can mimic the405

real-world scenarios, where RPredictor can only refer to a project’s history

data to suggest resolutions for future conflicts of that project.

5.2.1. Baseline

No prior work predicts developers’ resolution preferences, so we could not

compare RPredictor with any existing tool. However, we were still interested410

in how RPredictor compares with a weighted random predictor. Thus, we

created a baseline technique.

We assumed that baseline somehow knows the ratios of conflicts separately

resolved via KL, KR, or ME, and randomly predicts a label each time based on

those ratios. As shown in Table 5, in the test set, there are 2,936, 1,979, and415

18

Table 5: The prediction counts for RPredictor and Baseline in the within-project setting

Ground # of conflicts RPredictor Baseline

Truth Training Testing KL KR ME KL KR ME

KL 23,610 2,936 1,815 318 803 1,002 977 957

KR 18,087 1,979 343 931 705 678 649 652

ME 25,472 2,777 361 356 2,060 984 892 901

Total 67,169 7,692 2,519 1,605 3,568 2,664 2,518 2,510

Table 6: Effectiveness measurements for within-project prediction

of conflicts RPredictor Baseline

Training Testing P R F C P R F C

KL 23,610 2,936 72% 62% 67% - 37% 34% 35% -

KR 18,087 1,979 58% 47% 52% - 25% 32% 28% -

ME 25,472 2,777 58% 74% 65% - 35% 32% 34% -

Overall 67,169 7,692 63% 62% 63% 82% 34% 33% 33% 54%

2,777 conflicts separately resolved via KL, KR, and ME. Therefore, given a con-

flict, baseline predicts KL with a 38% probability (i.e., 2936/(2936+1979+2777)),

and predicts KR and ME with 26% and 36% probabilities, respectively. Notice

that the baseline technique is stronger than a näıve random classifier that pre-

dicts all resolutions with equal possibilities (i.e., 33%). In reality, it is also hard420

for any classifier to foresee the conflict distribution among all strategies. We

made such a strong assumption to ensure that baseline is nontrivial, and to

check whether RPredictor outperforms it.

5.2.2. Comparison with Baseline

Table 5 counts the predictions of both RPredictor and baseline for in-425

dividual resolution strategies. According to the table, RPredictor correctly

labeled 1,815, 931, and 2,060 conflicts with KL, KR, ME, respectively. Mean-

while, baseline correctly labeled only 1,002, 649, and 901 conflicts with KL,

KR, ME, respectively. These observations mean that RPredictor predicts

resolutions with much higher accuracies than baseline.430

With the numbers reported in Table 5, we further measured effectiveness for

both techniques using the metrics described in Section 5.1. As shown in Table 6,

RPredictor outperformed baseline for all metrics. For instance, for conflicts

resolved by KR, RPredictor achieved 58% precision, 47% recall, and 52%

19

F-score; meanwhile, baseline only obtained 25% precision, 32% recall, and 28%435

F-score. RPredictor showed an overall effectiveness of 63% precision, 62%

recall, 63% F-score, and 82% C-score; in contrast, baseline provided an overall

effectiveness of 34% precision, 33% recall, 33% F-score, and 54% C-score. Both

techniques worked more effectively to predict KL and ME, than to predict KR.

This may be because there are fewer conflicts in the training set that were440

actually resolved by KR.

Finding 3: For within-project prediction, RPredictor’s overall effectiveness

measurements include 63% precision, 62% recall, 63% F-score, and 82% C-

score. It outperformed baseline.

5.3. RQ2: Effectiveness of Cross-Project Prediction

In this experiment, we evaluated the real-world scenarios where a given

project has little version history for RPredictor to leverage. In such sce-445

narios, RPredictor can train a classifier with the conflict data from other

repositories, and use that classifier to predict resolutions for the given project.

We conducted 10-fold cross validation to evaluate RPredictor’s effectiveness.

Namely, we divided the 482 software projects randomly into 10 groups roughly

evenly. For each group Gi(i ∈ [1, 10]), we ran an experiment by using the con-450

flict data in the remaining nine groups for training, and adopting the data in

Gi for testing. We calculated the effectiveness measurements for each of the 10

runs, and then computed the aggregated metrics of P, R, F, C among all runs.

5.3.1. Baseline

Similar to what we did for RQ1 (Section 5.2.1), we also created a weighted455

random classifier for cross-project prediction. In each of the 10 experiments

mentioned above, baseline did not involve any training. Instead, it randomly

assigned labels to conflicts based on the conflict distribution among three strate-

gies in the test set. By empirically comparing RPredictor with baseline, we

explored how RPredictor improves over weighted random prediction.460

20

Table 7: Effectiveness measurements for cross-project prediction

Experiment Id RPredictor Baseline

(Testing Fold #) P R F C P R F C

1 46% 46% 46% 77% 34% 34% 34% 59%

2 49% 51% 50% 81% 35% 35% 35% 56%

3 47% 47% 47% 79% 33% 34% 33% 58%

4 50% 50% 50% 75% 34% 35% 34% 57%

5 41% 41% 41% 64% 38% 35% 36% 60%

6 42% 44% 43% 75% 34% 33% 34% 55%

7 44% 47% 46% 78% 36% 34% 35% 53%

8 47% 49% 48% 79% 36% 35% 36% 55%

9 50% 50% 50% 77% 34% 34% 34% 57%

10 44% 48% 46% 76% 34% 32% 33% 52%

Overall (All folds) 46% 47% 46% 76% 34% 34% 34% 57%

5.3.2. Comparison with Baseline

As shown in Table 7, RPredictor outperformed baseline for all metrics

in all 10 experiments. By aggregating our measurements for all folds, we got

the overall effectiveness of RPredictor as 46% precision, 47% recall, 46% F-

score, and 76% C-score. Meanwhile, the overall effectiveness of baseline is 34%465

precision, 34% recall, 34% F-score, and 57% C-score. Due to the space limit, we

do not present tools’ effectiveness measurements for each resolution strategy.

However, when we checked the detailed results for each strategy, we noticed

that both tools predicted ME more accurately than predicting the other two

strategies. In particular, RPredictor always predicted ME more accurately470

than baseline; in 8 out of 10 experiments, RPredictor suggested KL more

accurately than baseline; in 9 out of 10 experiments, baseline suggested KR

more accurately than RPredictor.

Finding 4: In cross-project prediction, RPredictor achieved 41%–50% pre-

cision, 41%–51% recall, 41–50% F-score, and 64%–81% C-score. It outper-

formed baseline for all studied folds.

5.3.3. Comparison between Cross-Project and Within-Project Prediction475

We also compared RPredictor’s cross-project prediction results (see Ta-

ble 7) against its within-project prediction results (see Table 6). Generally

speaking, both experiments have very similar data-splitting methodologies: they

21

both use 90% of data (i.e., conflicts or projects) for training and use 10% of data

for testing. Nevertheless, RPredictor predicted resolutions more effectively480

in the within-project setting, for all metrics. This may be because it is easier to

predict the future resolution strategies of developers based on their resolution

decisions for old conflicts. In contrast, it may be relatively harder to predict

these developers’ resolution strategies based on the resolution decisions made by

other developers in other projects. We also noticed that baseline achieved very485

similar effectiveness for the within-project and the cross-project settings. This

is because the baseline technique does not have a training step. Its predictions

are purely based on the random guesses derived from distributions of resolution

strategies in test sets. No matter what data distribution we have for any test

set, the random guesses typically achieve 33-34% overall F-scores.490

Finding 5: RPredictor predicted resolutions more effectively in the within-

project setting than in the cross-project setting.

5.4. RQ3: Prediction Effectiveness on Unbalanced Data

As mentioned in Section 2, we used the conflict data of 100 repositories to

characterize conflicts, and adopted the conflict data of another 482 reposito-495

ries to train and test RPredictor. All these 582 repositories have balanced

distributions of different resolution strategies, which imply that developers did

not show strong personal biases towards certain strategies; instead, they might

decide upon resolutions solely based on branch edits, program context, and

software evolution. To further investigate how effectively RPredictor works500

given unbalanced data, we conducted another experiment. Specifically, among

the 2,122 (i.e., 2,731-609) repositories discarded in Section 2 due to the unbal-

anced distribution of different resolution strategies, we picked the most popular

100 repositories based on their star counts on GitHub, and experimented with

them for both within-project and cross-project prediction. To facilitate discus-505

sion, Figures 5 and 6 separately visualize the overall distributions of resolution

strategies in the 582 balanced repositories and 100 unbalanced ones. As shown

in Figure 6, the unbalanced data has the majority of conflicts (61%) resolved via

22

KL, and least conflicts (15%) resolved via ME. Meanwhile, the balanced data

has 35%, 27%, and 38% of conflicts separately resolved via KL, KR, and ME.510

KL, 35%

KR, 27%

ME, 38%

Figure 5: The resolution distributions

among 582 balanced repositories

KL
61%

KR
24%

ME
15%

Figure 6: The resolution distributions

among 100 unbalanced repositories

Table 8: RPredictor’s effectiveness of within-project prediction given unbalanced data

P R F C

KL 86% 91% 89% -

KR 79% 76% 77% -

ME 64% 53% 58% -

Overall 81% 69% 74% 86%

5.4.1. Effectiveness of Within-Project Prediction on Unbalanced Data

Similar to what we did for Section 5.2, in each of the 100 repositories with

unbalanced data, we used the oldest 90% of resolved conflicts to train RPredic-

tor and used the remaining conflicts for testing. Table 8 shows our experiment

results. By comparing this table against Table 6, we observed thatRPredictor515

worked much better when given unbalanced data for within-project prediction.

Among the 100 repositories, it achieved 81% precision, 69% recall, 74% F-score,

and 86% C-score; all the measurements are higher than those calculated for

the balanced dataset (i.e., 63%, 62%, 63%, 82%). In particular, RPredictor

obtained as high as 91% recall when predicting KL in the unbalanced dataset,520

probably because developers demonstrate very strong biases towards KL in that

dataset and thus make that strategy easier to predict.

Finding 6: For within-project prediction tasks, RPredictor predicted reso-

lutions more effectively in the unbalanced dataset than in the balanced dataset.

23

5.4.2. Effectiveness of Cross-Project Prediction on Unbalanced Data

As with what we did for Section 5.3, we randomly split the 100 repositories525

into 10 groups with each group having 10 repositories, and performed 10-fold

cross validation. As shown in Table 9, overall, RPredictor achieved 53%

precision, 43% recall, 47% F-score, and 49% C-score. Meanwhile, its overall

metrics in the balanced dataset include 46% precision, 47% recall, 46% F-score,

and 76% C-score (see Table 7). Given unbalanced data, RPredictor obtained530

roughly the same F-score but a much lower C-score than what it did given

balanced data; unbalanced data makes cross-project resolution prediction even

harder. Namely, if developers show extreme personal biases towards distinct

resolution strategies in different projects, it can be very challenging to correctly

predict the resolution strategies in one project based on strategies observed in535

other projects. Actually, among the 10 groups of our unbalanced dataset, there

are 4 groups with strong preferences towards KL (i.e., over 50% of conflicts were

resolved via KL) and 3 groups with strong biases towards KR. The classifiers

trained with such unbalanced data predict KL or KR most of the times but

seldom predict ME, although ME is a more conservative strategy than KL and540

KR. Consequently, such classifiers earn much lower conservativeness scores.

Table 9: RPredictor’s effectiveness of cross-project prediction given unbalanced data

Experiment Id
P R F C

(Testing Fold #)

1 41% 42% 41% 55%

2 63% 44% 52% 47%

3 42% 40% 41% 48%

4 52% 46% 49% 51%

5 44% 37% 41% 52%

6 52% 46% 49% 57%

7 34% 31% 33% 50%

8 38% 30% 33% 38%

9 47% 42% 44% 53%

10 51% 38% 43% 59%

Overall (All folds) 53% 43% 47% 49%

Finding 7: For cross-project prediction tasks, RPredictor predicted resolu-

tions less conservatively in the unbalanced dataset than in the balanced one.

24

Table 10: RPredictor’s effectiveness of within-project prediction, when different amounts of

training data are provided in different iterations

Iteration Id
Data Portions RPredictor

Training Testing P R F C

1 p10 p11 42% 45% 43% 66%

2 p9, p10 p11 51% 52% 51% 71%

3 p8–p10 p11 54% 55% 54% 72%

4 p7–p10 p11 52% 52% 52% 72%

5 p6–p10 p11 54% 54% 54% 75%

6 p5–p10 p11 55% 56% 56% 75%

7 p4–p10 p11 56% 56% 56% 76%

8 p3–p10 p11 56% 56% 56% 75%

9 p2–p10 p11 56% 56% 56% 75%

10 p1–p10 p11 56% 56% 56% 76%

5.5. RQ4: Sensitivity to The Amount of Training Data

In our experiment settings, by default, we typically used 90% of overall

data for training and 10% of data for testing. However, it is unknown how the545

amount of training data can influence RPredictor’s effectiveness. Therefore,

we performed another experiment of within-project prediction, by tuning the

amount of training data in use. Specifically, in the balanced dataset (i.e., 482

repositories), we split the conflict data of each repository into 11 portions evenly

(each portion having the same number of conflicting chunks): p1, p2, ..., p11.550

Here, p1 represents the oldest data portion in history and p11 is the newest one.

We trained and tested RPredictor 10 times, with each of the iterations using

p11 as the testing data but using a distinct set of portions for training. As shown

in Table 10, the 1st iteration adopts p10 for training; the 2nd iteration exploits

both p9 and p10 to trainRPredictor; the 10th iteration uses 10 portions p1–p10555

in training.

RPredictor’s effectiveness increases or roughly remains the same when

the amount of training data grows. Specifically when only p10 was provided,

RPredictor obtained 42% precision, 45% recall, 43% F-score, and 66% C-

score. During the first three iterations, as the training data increased from560

one portion to three portions, all measurements increased steadily. Meanwhile,

during the last six iterations, while the training data increased from five to ten

25

portions, RPredictor’s effectiveness stabilized without much change. One

possible reason to explain the observed increase is that when training data is

insufficient, providing more data enables RPredictor to better characterize565

diverse conflicting scenarios and thus better predict resolutions. However, once

the training data is sufficient, offering more data does not necessarily improve

RPredictor’s effectiveness. Consequently, all measurements stabilize. Based

on this experiment, we decided for our other experiments (except for RQ4 and

RQ5), by default, we used 90% of data for training and 10% of data for testing,570

in order to train RPredictor with sufficient data and to observe the best

effectiveness measurements achievable by RPredictor.

Finding 8: RPredictor’s effectiveness improves or stabilizes when more

training data is provided.

5.6. RQ5: Sensitivity to The Age of Training Data

When looking at Table 10, one may be tempted to wonder whether the age575

of training data also influences RPredictor’s effectiveness. Actually, between

different iterations shown in Table 10, both the (1) age and (2) amount of train-

ing data are different. To explore the influence of each factor, we conducted

an additional experiment with the 11 data portions mentioned in Section 5.5

(each portion having the same number of conflicting chunks). In this exper-580

iment, we repetitively trained RPredictor with a distinct data portion but

always tested it with p11. As shown in Table 11, the 1st iteration uses p10—

the youngest portion within [p1, p10]—as the training data; the 2nd iteration

uses p9; the 10th iteration uses the oldest data p10. Because the training data

in each iteration has roughly equal numbers of data points, the comparison of585

effectiveness measurements across iterations reflects the impact of data age.

According to Table 11, as the training data gets older, the effectiveness mea-

surements either increase or decrease, without presenting a consistent change

trend. For instance, in the 1st iteration, RPredictor obtained 43% precision,

44% recall, 43% F-score, and 66% C-score. In the 9th iteration, RPredictor590

achieved a slightly lower precision (42%), the same recall (44%), the same F-

26

Table 11: RPredictor’s effectiveness of within-project prediction, when differently aged data

is provided for training

Iteration Id
Data Portions RPredictor

Training Testing P R F C

1 p10 p11 43% 44% 43% 66%

2 p9 p11 48% 49% 49% 69%

3 p8 p11 45% 48% 46% 68%

4 p7 p11 42% 43% 43% 74%

5 p6 p11 45% 47% 46% 81%

6 p5 p11 34% 38% 36% 70%

7 p4 p11 37% 41% 39% 69%

8 p3 p11 44% 43% 44% 80%

9 p2 p11 42% 44% 43% 83%

10 p1 p11 39% 42% 41% 63%

score (43%), but the highest C-score (83%). However, in the 10th iteration, it

acquired the lowest measurements: 39% precision, 42% recall, 41% F-score, and

63% C-score. The phenomena imply that data age does not have a consistently

positive or negative impact on prediction results. The prediction effectiveness595

increased probably because the training data became more similar to the test-

ing data, and decreased probably due to the less similarity between training

and test data. Therefore, both the consistent effectiveness improvements and

stabilized measurements we observed in Table 10 are mainly contributed by the

increase of training data, instead of data aging.600

Finding 9: RPredictor’s effectiveness does not consistently change with

the age of training data.

5.7. RQ6: Sensitivity to The Adopted Machine-Learning Algorithm

When designing RPredictor, we did not know what machine-learning

(ML) algorithm was more suitable. Thus, we experimented with four ML al-605

gorithms in both the within-project and cross-project settings, to observe how

RPredictor’s effectiveness varies with the adopted algorithm. We studied

Adaboost, decision tree (DT), näıve bayes (NB), and random forest (RF). As

mentioned in Section 5.2, for the within-project setting, we used 90% of the

oldest resolved conflicts in each project’s version history for training, and 10%610

27

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Adaboost DT NB RF

P R F C

Within-project

ML
algorithm

Measurements

Figure 7: RPredictor using different ML algorithms for within-project prediction

0%
10%
20%
30%
40%
50%
60%
70%
80%

Adaboost DT NB RF

P R F C

Cross-project

Measurements

ML
algorithm

Figure 8: RPredictor using different ML algorithms for cross-project prediction

of conflicts (the most recent ones) for testing. For the cross-project setting, we

used 10-fold cross validation (as in Section 5.3). In all of our experiments, we

leveraged the ML implementation provided by scikit-learn [55], and used the

default parameter settings for all adopted ML algorithms.

As shown in Figures 7 and 8, RPredictor achieved the highest effective-615

ness when using RF. For within-project prediction, RF obtained 63% precision,

62% recall, 63% F-score, and 82% C-score. DT had lower effectiveness than

RF, but better than the other two alternatives; it obtained 60% precision, 60%

recall, 60% F-score, and 77% C-score. NB was the least effective and got 47%

precision, 46% recall, 47% F-score, and 61% C-score. For cross-project predic-620

tion, RF obtained 46% precision, 47% recall, 46% F-score, and 76% C-score.

Adaboost performed worse than RF; it got 41% precision, 43% recall, 42% F-

score, and 71% C-score. NB achieved the most interesting results. Among the

four algorithms studied, NB acquired the lowest precision (32%), lowest recall

(37%), and lowest F-score (34%); nevertheless, it acquired the highest C-score625

28

(79%). This is mainly because NB predicted a lot more ME resolutions than

the other algorithms. Comparing the effectiveness of distinct algorithms in both

within-project and cross-project settings, we decided to use RF as the default

ML algorithm in RPredictor because RF often outperformed the others.

Finding 10: Among the four experimented machine learning algorithms, RF

generally outperformed the others when being used in RPredictor.
630

5.8. RQ7: Sensitivity to Threshold Setting

In the experiments mentioned above, the highest C-score RPredictor

achieved is 82%. It means that 82% of the resolution strategies recommended

by RPredictor are conservative; in other words, they correctly predict the

developers’ preference, or ask developers to resolve the conflict manually. How-635

ever, some developers may prefer RPredictor to provide lower C-scores (i.e.,

to predict more KL or KR labels) in order to save more effort, even if the predic-

tions are more risky or less precise. Such preferences are meaningful for projects

with very good test suites, in which developers can trust automated testing to

reliably decide the correctness of any program version whose conflicts were auto-640

matically resolved. Other developers may prefer RPredictor to achieve higher

C-scores (i.e., to predict ME more often) in order to avoid prediction errors,

even though the predictions save less effort. Such preferences are important for

projects with very limited test suites, in which developers cannot blindly trust

automated testing to always validate the correctness of programs.645

To give developers more control over RPredictor’s predictions, we created

a configurable variant of RPredictor—RPredictorv, which offers a param-

eter thM so that developers can fine-tune automatic prediction based on their

relative tolerance for incorrect KL or KR predictions.

5.8.1. A Threshold-Based Variant Approach: RPredictorv650

Figure 9 shows our approach for RPredictor’s customizable variant. Simi-

lar to RPredictor, this variant also trains a classifier to predict the resolution

strategy for any given merge conflict. However, this variant now allows its users

29

Resolved conflicts
+ software

repositories

RPREDICTORvPhase I: Training

Phase II: Testing

Classifier

pKL

pKR

pME

…

if (pME >= thM)
predict ME

else if (pKL >= pKR)
predict KL

else predict KR

Resolution
Strategy

Resolved
version (for

KL or KR)

New conflicts to
resolve + their

repositories

Figure 9: RPredictorv—our customizable variant of RPredictor, which uses a threshold

thM to fine-tune the prediction results

to increase (or decrease) its prediction preference for ME. Given a merge conflict

and its related software repository, a classifier generates three predicted likeli-655

hoods: pKL, pKR, and pME . These likelihoods indicate how likely the predictor

believes that the conflict should be resolved via KL, KR, or ME. All likelihoods

vary within [0, 1]; pKL + pKR + pME = 1. The original approach RPredictor

returns its prediction based on the highest likelihood among pKL, pKR, and

pME . In contrast, the customizable variant RPredictorv first compares pME660

with the user-configured threshold thM . As shown in Figure 9, if pME ≥ thM ,

then RPredictorv predicts ME; otherwise, it predicts one of the other two

strategies, the one with the higher likelihood (KL or KR).

In this way, developers can modify thM to tune RPredictorv’s conser-

vativeness. When thM = 0, it predicts all conflicts conservatively as ME. In665

this scenario, developers would not get any incorrect KL or KR predictions,

but they would not benefit from RPredictorv automatically acting on the

KL or KR predictions (i.e., it would not save effort). On the other extreme,

when thM = 1.0, all conflicts are predicted to resolve via either KL or KR. In

this scenario, RPredictorv would save developers high effort (it would au-670

tomatically resolve all conflicts by KL or KR), but some of those KL or KR

resolutions would not be what the developers preferred (they would be incor-

rect predictions). With other values of thM , developers can decide their own

personal middle-ground between these two extreme points.

30

5.8.2. Experiment with RPredictorv675

To study the trade-offs between F-score, C-score, and the potential effort-

saving by automatic resolution that developers could obtain withRPredictorv,

in this experiment we tuned thM from 0.1 to 1, with 0.1 increments. For each

threshold setting, we applied RPredictorv to perform both within-project and

cross-project prediction. For this section, we defined another metric to measure680

the potential effort-saving by automatic resolution:

Effort-saving (E) Score or E-score measures among all predictions, for

how many of them RPredictorv outputs KL or KR and automatically resolves

the conflict. The score is within [0%, 100%].

E =
of conflicts automatically resolved via KL or KR

All predictions
(7)

Figure 10 shows RPredictorv’s performance for within-project prediction.685

As thM increased, C-score consistently decreased and E-score increased. F-score

was stable when thM ∈ (0, 0.7]; it decreased as thM increased from 0.7 to 1.

For the most conservative threshold (thM = 0.1), RPredictorv labeled many

conflicts with ME; it only labeled them KL or KR when the predicted likelihoods

were very high (RPredictorv was quite sure about those predictions). In this690

scenario, RPredictorv achieved a C-score of 94%, E-score of 34%, and F-score

of 68%. This shows that RPredictorv can achieve as much as 34% effort

savings (E-score) by also very rarely predicting KL or KR incorrectly (with

very high C-score). For the most liberal threshold (thM = 1.0), RPredictorv

labeled no conflict with ME. Instead, it only produced KL and KR labels to695

automate all resolutions. In such scenarios, RPredictorv incorrectly labeled

many conflicts as KL or KR, applying a strategy that was not preferred by the

developers. Consequently, the achieved C-score was 50%, E-score was 100%, and

F-score was 38%. This option would save all the effort of conflict resolution, but

it would likely require additional mechanisms to detect incorrectly applied KL700

or KR resolutions, e.g., using a very strong test suite that is either manually

crafted or automatically generated (e.g., via good fuzzy testing techniques).

31

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F C E

thM

Measurements

Figure 10: RPredictorv ’s effectiveness measurements for within-project prediction

We believe that other intermediate thresholds would be more popular. Be-

tween thM = 0.1 and thM = 1.0, F-score was stable initially and then decreased.

As thM increased, RPredictorv achieved different trade-offs between precision705

and recall for each strategy. Figure 10 also shows that developers could achieve

increasing effort savings (E-score), at the cost of accepting increasing ratios of

incorrect KL or KR predictions (lower C-scores). However, it is also worth

noting that E-scores grew faster than C-scores fell, which means that multiple

intermediate thresholds may be attractive for different developers. For exam-710

ple, the thresholds in (0, 0.5] achieved up to 64% effort savings with C-scores

no lower than 80%.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F C E

thM

Measurements

Figure 11: RPredictorv ’s effectiveness measurements for cross-project prediction

Figure 11 shows RPredictorv’s performance for cross-project prediction.

As thM increased, C-score decreased first and then stabilized when 0.7 ≤ thM ≤

1; E-score increased first and then stabilized when 0.7 ≤ thM ≤ 1. F-score715

32

vibrated in the range [37%, 45%] when thM ≤ 0.9, and dropped afterwards. We

saw in RQ2 thatRPredictor’s predictions are less effective in the cross-project

setting than in the within-project setting. This is also reflected by Figures 10

and 11, since RPredictorv generally produced a worse trade-off between effort

savings and conservativeness. In cross-project prediction, the most conservative720

threshold (thM = 0.1) provided almost no effort saving, and if we wanted to keep

C-score over 80%, we could only achieve up to 26% effort savings (thM ≤ 0.3).

Finding 11: RPredictorv generally achieved better trade-offs between ef-

fort savings and conservativeness in the within-project setting than in the cross-

project setting. For within-project prediction, RPredictorv could save up to

63% of efforts by lowering the C-score while keeping it above 80%.

6. Threats to Validity725

Threats to External Validity. Our characterization study investigates 12 candi-

date features, which are defined either based on prior studies or our insights. It

is possible that there are other features (e.g., types of edits in branches) that are

potentially correlated with developers’ resolution strategies, and can be lever-

aged to better predict resolutions. In the future, we plan to define and explore730

more candidate features, so that our characterization study is more representa-

tive. By revealing and incorporating new features, we can also strengthen the

prediction capability of RPredictor. Our study and experiments are done

on Java projects, although the methodology is generally applicable to programs

written in any language. It is possible that the results of our study and evalua-735

tion do not generalize well to programs written in other languages. In the future,

we plan to conduct larger-scale experiments to include non-Java programs.

Threats to Construct Validity. When crawling the owner developers of commits

in software repositories, we assumed that there is one-to-one mapping rela-

tionship between developers and user IDs (i.e., email addresses). Namely, we740

assumed that each developer has only one user ID, which is not shared with any

33

other developer. However, in reality, it is possible that a developer leverages

multiple user IDs when checking in different commits (i.e., one-to-many), while

some developers share a single user ID when committing program changes (i.e.,

many-to-one). Such one-to-many and many-to-one relations between developers745

and user IDs can make our data analysis imprecise. However, we believe that

the corner cases of one-to-many and many-to-one mappings are rare, causing

little impact on our research findings.

7. Discussion750

In this section, we discuss various aspects of our approach to further clarify

its applicability.

7.1. The Benefit of RPredictor’s Recommendations for Developers

Given a merge conflict, RPredictor predicts the resolution strategy, and

even recommends a merged version if the predicted strategy is KL or KR.755

Readers may be tempted to underestimate the usefulness of RPredictor, be-

cause KL and KR seem much simpler to execute than ME. However, we argue

that conflict resolution involves not only resolution implementation, but also

decision-making; RPredictor helps considerably reduce the manual effort on

the decision-making process.760

Prior work [49] mentions that 56% of developers have deferred at least once

when responding to a merge conflict, which makes conflict resolution more com-

plex as time passes; the key challenges that developers have to overcome when

trying to resolve conflicts include (1) understanding the conflicting code, and

(2) getting enough metadata information about the conflict (e.g., who made the765

change, why, and when). RPredictor characterizes software conflicts from

12 distinct aspects, in order to automatically comprehend conflicts and retrieve

metadata information related to those conflicts. Therefore, when RPredictor

correctly predicts KL and KR, developers do not need to go through the painful

process of conflict comprehension and resolution.770

34

As multiple studies [64, 19, 53] show that the majority of conflicts are re-

solved via KL and KR, RPredictor ’s good precision of predicting KL/KR

can significantly save developers effort, effort that would have otherwise been

spent to manually analyze and resolve such conflicts.

7.2. The Impact of Mispredictions and Developers’ Trust in Automated Recom-775

mendations

If RPredictor predicts ME and requires developers to manually resolve

some conflicts, developers cannot save any manual effort, but it also does not

put any extra effort on those conflicts, either.

In the scenarios when RPredictor incorrectly predicts KL or KR, devel-780

opers may need to put extra effort to examine the tool-suggested strategies.

However, if the test cases in software projects (1) have sufficient coverage, (2)

do not conflict with each other across branches, and (3) reliably express the

intended behaviors of merged software, developers do not need to spend more

time reasoning about whether tool-generated resolutions work. Instead, they785

can rely on testing to validate automated resolutions.

Furthermore, developers may choose to manually double-check if they per-

sonally agree with RPredictor’s prediction before applying it, which can re-

duce its ratio of mispredictions. This mode of operation would imply a lower

effort reduction for developers, but it can still be more efficient than reviewing790

all the details of the merge conflict.

At the end of the day, we expect different developers to show different pref-

erences in terms of how liberally they want to directly apply RPredictor’s

recommendations. That is why we proposed a variant of RPredictor in Sec-

tion 5.8, that gives them flexibility to make RPredictor provide predictions795

that save higher effort producing more mispredictions, the opposite trade-off,

or other points in between.

In future work, we will also explore how to use explainable machine learn-

ing approaches to increase the trust of RPredictor’s recommendations for

35

developers, trying different approaches for explaining why RPredictor is rec-800

ommending a particular strategy.

7.3. Applicability of RPredictor on Less-Balanced Projects

We evaluated RPredictor in a dataset of projects that resolved merge

conflicts in a relatively balanced way, i.e., all decisions were taken with relatively

similar frequencies. We did this intentionally to evaluate RPredictor in the805

kinds of projects for which we estimate they would benefit from it most: those

projects which do not have a very clear typical way to resolve conflicts, i.e.,

those in which no choice is strongly overrepresented.

However, we believe that RPredictor could also benefit projects in which

KL or KR is the typical choice to resolve merge conflicts, i.e., in which that810

strategy is chosen the majority of the time. In such cases, developers would also

benefit from RPredictor, because it will capture this bias in its training and it

will in fact predict resolution strategies with higher accuracy. We performed an

experiment showing RPredictor’s higher accuracy in an unbalanced dataset

in Section 5.4 (RQ3).815

The only case of projects that would not benefit as much from RPredictor

are those which choose ME to resolve their merge conflicts the majority of

the time — since RPredictor’s recommendations are most beneficial when

it predicts KL or KR. However, such situations are less common — past work

[69, 27] showed that KL and KR are the most popular strategies to resolve820

merge conflicts.

7.4. What If A Project Has Little Training Data Available?

When using RPredictor, users do not have to train RPredictor on a

large dataset of software repositories. Instead, for the within-project setting,

they can use all conflicts extracted from one project’s version history for clas-825

sifier training, and leverage that trained classifier to predict resolutions for any

new conflicts in the same project. For the cross-project setting, users can sim-

ply use the trained classifier open-sourced on our project website [3], instead

36

of training any classifier from scratch. In order to help users decide whether

RPredictor should perform within- or cross- project prediction for their cir-830

cumstances, we actually ranked the 482 experimented repositories in descending

order of the number of conflicting chunks they contain in version history. From

that ranked list, we sampled the 1st project (the one with the most conflicts),

the 482th project (the one with fewest conflicts), and 9 projects standing be-

tween at roughly 10%-interval of ranks. Table 12 shows all the sampled 11835

projects, the total number of conflicts contained by each project, the number of

conflicts used for training (i.e., 90% of the total), and the F-scores achieved by

RPredictor for within-project prediction.

Table 12: RPredictor’s F-scores for 11 sampled projects for within-project prediction

Rank Total # of conflicts # of conflicts used for training F-score

1st 5,114 4,603 92%

48th 405 365 58%

96th 150 135 45%

144th 85 77 37%

192th 62 56 27%

240th 44 40 27%

288th 30 27 17%

336th 24 22 22%

384th 17 15 0%

432th 11 10 0%

482th 11 10 0%

According to this table, as training data decreases, F-score generally de-

creases or stabilizes; this trend coincides with our observation in Section 5.5.840

The phenomenon implies that if a user’s software repository has a few resolved

conflicts (e.g., less than 135), she/he can consider using cross-project predic-

tion as the conflicts in version history seem insufficient to train a good within-

project predictor. Otherwise, if the user’s software repository has sufficient

resolved conflicts (e.g., hundreds or even thousands of conflicts), she/he can845

apply RPredictor to do within-project prediction for better accuracy.

37

8. Related Work

Our research is related to empirical studies on merge conflicts, awareness-

raising tools, and automated software merge.

8.1. Empirical Studies on Merge Conflicts850

Several studies were conducted to characterize the relationship between

merge conflicts and other aspects of software maintenance [25, 9, 42, 45, 52].

For instance, Estler et al. [25] surveyed 105 student developers, and found that

the lack of awareness (i.e., knowing “who’s changing what”) occurs more fre-

quently than merge conflicts. Leßenich et al. [42] surveyed 41 developers and855

identified 7 potential indicators (e.g., number of changed files in both branches)

for merge conflicts. With further investigation of the indicators, the researchers

found that none can predict the conflict frequency. Similarly, Owhadi-Kareshk

et al. defined nine features (e.g., number of added and deleted lines in a branch)

to characterize merging scenarios; they trained a machine-learning model that860

predicts conflicts with 57%–68% accuracy [52].

Similar to these studies, our study also characterizes merge conflicts. How-

ever, it is different in two aspects. First, our study explores how different fea-

tures characterize developers’ strategies of conflict resolution. Second, our study

motivates our research to automatically predict resolution strategies, while ex-865

isting studies motivate research to automatically predict conflict occurrence.

Some other studies characterize the root causes and/or resolutions of textual

conflicts [69, 50, 27, 15, 53]. Specifically, Yuzuki et al. inspected hundreds of

textual conflicts [69]. They observed that conflicting updates caused 44% of

conflicts to the same line of code, and developers resolved 99% of conflicts by870

taking either the left- or right- version of code. Brindescu et al. [15] manually

inspected 606 textual conflicts. They characterized merge conflicts in terms of

the AST diff size, LOC diff size, and the number of authors. They identified

three resolution strategies: SELECT ONE (i.e., keep edits from one branch),

INTERLEAVE (i.e., keep edits from both sides), and ADAPTED (i.e., change875

existing edits and/or add new edits). Pan et al. [53] explored the merge conflicts

38

in Microsoft Edge; they classified those conflicts based on file types, conflict lo-

cations, conflict sizes, and conflict-resolution patterns. Driven by their empirical

study, the researchers further investigated to use program synthesis for conflict

resolution. The prototype of their resolution tool only tries to concatenate edits880

from both branch versions, incapable of suggesting KL or KR resolutions.

These studies inspired us to define and study candidate features that may

help predict developers’ resolution strategies for conflicts. However, none of

these studies conduct statistical analysis between any recognized features and

developers’ resolutions; our study performed that analysis.885

8.2. Awareness-Raising Tools

Tools [56, 63, 14, 17, 28, 18, 40, 37, 44] were created to monitor and com-

pare programmers’ development activities, in order to improve team activity

awareness. For instance, CASI [63] and Palant́ır [56] inform a developer of the

artifacts changed by other developers, calculate the severity of those changes,890

and visualize the information. Cassandra [37] is a conflict minimization tech-

nique. It observes the super-sub and caller-callee dependencies between program

entities. By treating those dependencies as constraints on file-editing tasks,

Cassandra identifies tasks that will conflict when performed in parallel. It then

appropriately schedules tasks to recommend conflict-free development paths.895

Crystal [17, 18] and WeCode [28] proactively detect collaboration conflicts via

speculative analysis. They eagerly merge the program changes applied to differ-

ent software branches, even before those changes are all pushed to the master

repository in the distributed version control system (DVCS). They leverage tex-

tual merge, automatic build, and automatic testing in sequence to reveal the900

potential conflicts between branches.

The tools mentioned above can proactively detect and report merge conflicts.

However, they do not characterize developers’ resolution preferences, neither do

they automatically recommend any resolution strategy.

39

8.3. Automated Software Merge905

Tools were proposed to detect or resolve merge conflicts [47, 13, 12, 41, 51,

19, 71, 66, 65, 2, 67, 70, 24]. Mens et al. [47] published a survey on software

merging techniques. FSTMerge [13, 19, 2] parses code for ASTs, and matches

nodes between L and R purely based on the class or method signatures; it then

integrates the edits inside each pair of matched method nodes via textual merge.910

IntelliMerge [65] improves FSTMerge’s effectiveness by detecting and resolving

refactoring-related conflicts. Similar to FSTMerge, JDime [12, 41] also matches

Java methods and classes based on syntax trees. However, JDime merges edits

inside matched methods by matching and manipulating ASTs. AutoMerge [71]

improves over JDime. When branch edits are incompatible with each other,915

AutoMerge attempts to resolve conflicts by proposing alternative strategies to

merge L and R, with each strategy integrating the edits between branches in

distinct ways. SafeMerge [66] checks if a merging scenario introduced new se-

mantics. RPredictor complements all these techniques, as it models and

predicts developers’ resolution preferences.920

MergeHelper [51] records the chronological sequence of edit operations made

by programmers on the Eclipse Java editor. Given two branch versions—L and

R—that conflict with each other, MergeHelper explores the recorded edit se-

quences before both versions, to locate the most recent snapshot that appears

in the evolution history and is consistent with L and R. In other words, Merge-925

Helper rolls back edits applied by both branches, until finding an intermediate

version that occurs just before the first conflict was introduced. It provides

detailed edit information to help developers understand how conflicts got intro-

duced, but does not suggest resolution strategies as RPredictor does.

DeepMerge [24], MergeBERT [67], and GMerge [70] automatically resolve930

conflicts using deep-learning methods. However, DeepMerge only focuses on

conflicts with less than 30 lines [67]; it is not applicable to more complicated

conflicts. Given a textual conflict, both DeepMerge and MergeBERT are de-

signed to integrate partial edits from L and R for resolution, instead of proposing

KL or KR. GMerge does not focus on textual conflicts; instead, it deals with935

40

a different type of merge conflicts where conflicting edits can be co-applied to

the merged version but trigger semantic errors. RPredictor complements the

learning-based approaches mentioned above. That is, RPredictor can pre-

dict conflicts that get resolved by KL or KR (the majority, according to the

literature), and when Rpredictor predicts ME, it can be complemented with an940

alternative method (like DeepMerge or MergeBERT) to automate a resolution

based on the combination of lines.

9. Conclusion

Software merge is complex and time-consuming. People defined the term

“Integration Hell” to refer to the challenges of addressing merge conflicts. Al-945

though many tools were proposed to detect and even resolve merge conflicts,

little tool support is available to automatically resolve conflicts by observing

and mimicking developers’ resolution strategies. Consequently, existing tools

mainly pinpoint issues of merge conflicts, rarely providing solutions to those

issues. In this paper, we conducted the first characterization study to explore950

any statistical correlation between 12 features of merge conflicts and developers’

resolution strategies. Our study shows for the first time that all of the explored

features can help predict developers’ resolution strategies.

Motivated by our study, we also designed and implemented a novel approach—

RPredictor—to predict developers’ resolution strategy, given a merge con-955

flict and its related software repository. Our comprehensive evaluation of the

tool with a large-scale dataset containing 74,861 resolved conflicts showed that

RPredictor effectively predicted resolutions. By training prediction models

with the random forest (RF) algorithm, RPredictor could achieve 63% pre-

cision, 62% recall, 63% F-score, and 82% C-score for within-project prediction;960

it also got 46% precision, 47% recall, 46% F-score, and 76% C-score for cross-

project prediction. Our sensitivity analysis shows that compared with other

machine-learning (ML) algorithms, RF achieved the best results when being

used in RPredictor; RPredictor is sensitive to both the amount and age of

41

training data; as more training data is provided, RPredictor’s effectiveness965

increases or stabilizes. Developers can also customize RPredictorv’s thM

threshold to more or less often predict M resolutions, making it save less or

more effort.

In the future, we will explore more features and more ML algorithms, to

further improve the representativeness of our characterization study and to970

strengthen the capability of RPredictor. For example, we will explore addi-

tional prediction features related to, e.g., code-change history [58, 59, 57, 61, 62],

testing activity, e.g., [39, 26, 38], decision-making metadata, e.g., [48, 11, 10],

developer expertise, e.g., [60, 20], build failure prediction e.g., [32, 34, 33, 31,

35, 36], security issue prediction e.g., [22, 30] or cross-language issues, e.g., [23].975

10. Research Artifact

We made available the research artifact for our paper [3].

Acknowledgement

We thank all reviewers for their valuable feedback. This work was partially

funded by NSF CCF-1845446, NSF CCF-2046403, Virginia Tech’s hiring pack-980

age 117716, Universidad Rey Juan Carlos under the International Distinguished

Researcher award C01INVESDIST, and by Saudi Arabian Cultural Mission

(SACM). This work also served as foundation for award PID2022-142964OA-I00

by the Spanish Agencia Estatal de Investigación.

References985

[1] 2021. git merge - Integrating changes from another branch. https://www.

git-tower.com/learn/git/commands/git-merge.

[2] 2021. jFSTMerge. https://github.com/guilhermejccavalcanti/

jFSTMerge.

42

https://www.git-tower.com/learn/git/commands/git-merge
https://www.git-tower.com/learn/git/commands/git-merge
https://www.git-tower.com/learn/git/commands/git-merge
https://github.com/guilhermejccavalcanti/jFSTMerge
https://github.com/guilhermejccavalcanti/jFSTMerge
https://github.com/guilhermejccavalcanti/jFSTMerge

[3] 2022. Research Artifact for Paper: Automatic Prediction of Develop-990

ers’ Resolutions for Software Merge Conflicts. https://figshare.com/

s/3b28e1917a7a05588891.

[4] 2023. aosp-mirror / platform frameworks base. https://github.com/

aosp-mirror/platform_frameworks_base.

[5] 2023. CCI-MIT/XCoLab. https://github.com/CCI-MIT/XCoLab.995

[6] 2023. jgralab/jgralab. https://github.com/jgralab/jgralab.

[7] 2023. jhy/jsoup. https://github.com/jhy/jsoup.

[8] 2023. Kruskal-Wallis Test. https://www.statisticssolutions.com/

kruskal-wallis-test/.

[9] I. Ahmed, C. Brindescu, U. A. Mannan, C. Jensen, and A. Sarma. 2017.1000

An Empirical Examination of the Relationship between Code Smells and

Merge Conflicts. In 2017 ACM/IEEE International Symposium on Em-

pirical Software Engineering and Measurement (ESEM). 58–67. https:

//doi.org/10.1109/ESEM.2017.12

[10] Khadijah Al Safwan, Mohammed Elarnaoty, and Francisco Servant. 2022.1005

Developers’ Need for the Rationale of Code Commits: An In-breadth and

In-depth Study. Journal of Systems and Software (2022).

[11] Khadijah Al Safwan and Francisco Servant. 2019. Decomposing the Ra-

tionale of Code Commits: The Software Developer’s Perspective. In Joint

Meeting on European Software Engineering Conference and Symposium on1010

the Foundations of Software Engineering.

[12] Sven Apel, Olaf Lessenich, and Christian Lengauer. 2012. Structured Merge

with Auto-tuning: Balancing Precision and Performance. In Proceedings

of the 27th IEEE/ACM International Conference on Automated Software

Engineering (Essen, Germany) (ASE 2012). ACM, New York, NY, USA,1015

120–129. https://doi.org/10.1145/2351676.2351694

43

https://figshare.com/s/3b28e1917a7a05588891
https://figshare.com/s/3b28e1917a7a05588891
https://figshare.com/s/3b28e1917a7a05588891
https://github.com/aosp-mirror/platform_frameworks_base
https://github.com/aosp-mirror/platform_frameworks_base
https://github.com/aosp-mirror/platform_frameworks_base
https://github.com/CCI-MIT/XCoLab
https://github.com/jgralab/jgralab
https://github.com/jhy/jsoup
https://www.statisticssolutions.com/kruskal-wallis-test/
https://www.statisticssolutions.com/kruskal-wallis-test/
https://www.statisticssolutions.com/kruskal-wallis-test/
https://doi.org/10.1109/ESEM.2017.12
https://doi.org/10.1109/ESEM.2017.12
https://doi.org/10.1109/ESEM.2017.12
https://doi.org/10.1145/2351676.2351694

[13] Sven Apel, Jorg Liebig, Benjamin Brandl, Christian Lengauer, and Chris-

tian Kastner. 2011. Semistructured Merge: Rethinking Merge in Revision

Control Systems. In Proceedings of the 19th ACM SIGSOFT Symposium

and the 13th European Conference on Foundations of Software Engineering1020

(Szeged, Hungary) (ESEC/FSE ’11). ACM, New York, NY, USA, 190–200.

https://doi.org/10.1145/2025113.2025141

[14] Jacob T. Biehl, Mary Czerwinski, Mary Czerwinski, Greg Smith, and

George G. Robertson. 2007. FASTDash: A Visual Dashboard for Fos-

tering Awareness in Software Teams. In Proceedings of the SIGCHI Con-1025

ference on Human Factors in Computing Systems (San Jose, Califor-

nia, USA) (CHI ’07). ACM, New York, NY, USA, 1313–1322. https:

//doi.org/10.1145/1240624.1240823

[15] Caius Brindescu, Iftekhar Ahmed, Carlos Jensen, and Anita Sarma. 2020.

An empirical investigation into merge conflicts and their effect on software1030

quality. Empirical Software Engineering 25, 1 (2020), 562–590. https:

//doi.org/10.1007/s10664-019-09735-4

[16] Caius Brindescu, Yenifer Ramirez, Anita Sarma, and Carlos Jensen. 2020.

Lifting the Curtain on Merge Conflict Resolution: A Sensemaking Perspec-

tive. In 2020 IEEE International Conference on Software Maintenance and1035

Evolution (ICSME). 534–545. https://doi.org/10.1109/ICSME46990.

2020.00057

[17] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. 2011.

Proactive Detection of Collaboration Conflicts. In Proceedings of the 19th

ACM SIGSOFT Symposium and the 13th European Conference on Founda-1040

tions of Software Engineering (Szeged, Hungary) (ESEC/FSE ’11). ACM,

New York, NY, USA, 168–178. https://doi.org/10.1145/2025113.

2025139

[18] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. 2013. Early Detection of

Collaboration Conflicts and Risks. IEEE Transactions on Software Engi-1045

44

https://doi.org/10.1145/2025113.2025141
https://doi.org/10.1145/1240624.1240823
https://doi.org/10.1145/1240624.1240823
https://doi.org/10.1145/1240624.1240823
https://doi.org/10.1007/s10664-019-09735-4
https://doi.org/10.1007/s10664-019-09735-4
https://doi.org/10.1007/s10664-019-09735-4
https://doi.org/10.1109/ICSME46990.2020.00057
https://doi.org/10.1109/ICSME46990.2020.00057
https://doi.org/10.1109/ICSME46990.2020.00057
https://doi.org/10.1145/2025113.2025139
https://doi.org/10.1145/2025113.2025139
https://doi.org/10.1145/2025113.2025139

neering 39, 10 (Oct 2013), 1358–1375. https://doi.org/10.1109/TSE.

2013.28

[19] Guilherme Cavalcanti, Paulo Borba, and Paola Accioly. 2017. Evaluat-

ing and Improving Semistructured Merge. Proc. ACM Program. Lang. 1,

OOPSLA, Article 59 (Oct. 2017), 27 pages. https://doi.org/10.1145/1050

3133883

[20] Lykes Claytor and Francisco Servant. 2018. Understanding and Leveraging

Developer Inexpertise. In International Conference on Software Engineer-

ing: Companion Proceeedings.

[21] Catarina Costa, José J. C. Figueiredo, Gleiph Ghiotto, and Leonardo1055

Gresta Paulino Murta. 2014. Characterizing the Problem of Developers’

Assignment for Merging Branches. International Journal of Software En-

gineering and Knowledge Engineering 24 (2014), 1489–1508.

[22] James C Davis, Christy A Coghlan, Francisco Servant, and Dongyoon Lee.

2018. The Impact of Regular Expression Denial of Service (ReDoS) in1060

Practice: an Empirical Study at the Ecosystem Scale. In The ACM Joint

European Software Engineering Conference and Symposium on the Foun-

dations of Software Engineering (ESEC/FSE).

[23] James C. Davis, Louis G. Michael IV, Christy A. Coghlan, Francisco Ser-

vant, and Dongyoon Lee. 2019. Why Aren’t Regular Expressions a Lingua1065

Franca? An Empirical Study on the Re-Use and Portability of Regular Ex-

pressions. In Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering.

[24] Elizabeth Dinella, Todd Mytkowicz, Alexey Svyatkovskiy, Christian Bird,

Mayur Naik, and Shuvendu Lahiri. 2023. DeepMerge: Learning to Merge1070

Programs. IEEE Transactions on Software Engineering 49, 4 (2023), 1599–

1614. https://doi.org/10.1109/TSE.2022.3183955

45

https://doi.org/10.1109/TSE.2013.28
https://doi.org/10.1109/TSE.2013.28
https://doi.org/10.1109/TSE.2013.28
https://doi.org/10.1145/3133883
https://doi.org/10.1145/3133883
https://doi.org/10.1145/3133883
https://doi.org/10.1109/TSE.2022.3183955

[25] H Christian Estler, Martin Nordio, Carlo A Furia, and Bertrand Meyer.

2014. Awareness and merge conflicts in distributed software development.

In 2014 IEEE 9th International Conference on Global Software Engineer-1075

ing. IEEE, 26–35.

[26] Aakash Gautam, Saket Vishwasrao, and Francisco Servant. 2017. An Em-

pirical Study of Activity, Popularity, Size, Testing, and Stability in Contin-

uous Integration. In International Conference on Mining Software Reposi-

tories.1080

[27] Gleiph Ghiotto, Leonardo Murta, Márcio Barros, and André van der Hoek.

2018. On the Nature of Merge Conflicts: a Study of 2,731 Open Source Java

Projects Hosted by GitHub. IEEE Transactions on Software Engineering

(2018), 1–1. https://doi.org/10.1109/TSE.2018.2871083

[28] M. L. Guimarães and A. R. Silva. 2012. Improving early detection of soft-1085

ware merge conflicts. In 2012 34th International Conference on Software

Engineering (ICSE). 342–352. https://doi.org/10.1109/ICSE.2012.

6227180

[29] David Harris and Sarah Harris. 2007. Digital Design and Computer Archi-

tecture. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.1090

[30] Sk Adnan Hassan, Zainab Aamir, Dongyoon Lee, James C. Davis, and

Francisco Servant. 2023. Improving Developers’ Understanding of Regex

Denial of Service Tools through Anti-Patterns and Fix Strategies. In 2023

IEEE Symposium on Security and Privacy (SP). 1238–1255. https://

doi.org/10.1109/SP46215.2023.101794421095

[31] Xianhao Jin. 2021. Reducing Cost in Continuous Integration with a Collec-

tion of Build Selection Approaches. In Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering.

46

https://doi.org/10.1109/TSE.2018.2871083
https://doi.org/10.1109/ICSE.2012.6227180
https://doi.org/10.1109/ICSE.2012.6227180
https://doi.org/10.1109/ICSE.2012.6227180
https://doi.org/10.1109/SP46215.2023.10179442
https://doi.org/10.1109/SP46215.2023.10179442
https://doi.org/10.1109/SP46215.2023.10179442

[32] Xianhao Jin and Francisco Servant. 2020. A Cost-efficient Approach to1100

Building in Continuous Integration. In International Conference on Soft-

ware Engineering.

[33] Xianhao Jin and Francisco Servant. 2021. CIBench: A Dataset and Collec-

tion of Techniques for Build and Test Selection and Prioritization in Con-

tinuous Integration. In International Conference on Software Engineering:1105

Companion Proceedings.

[34] Xianhao Jin and Francisco Servant. 2021. What Helped, and What Did

Not? An Evaluation of the Strategies to Improve Continuous Integration.

In International Conference on Software Engineering.

[35] Xianhao Jin and Francisco Servant. 2022. Which Builds are Really Safe to1110

Skip? Maximizing Failure Observation for Build Selection in Continuous

Integration. Journal of Systems and Software (2022).

[36] Xianhao Jin and Francisco Servant. 2023. HybridCISave: A Combined

Build and Test Selection Approach in Continuous Integration. ACM Trans-

actions on Software Engineering and Methodology 32, 4, Article 93 (may1115

2023), 39 pages. https://doi.org/10.1145/3576038

[37] B. K. Kasi and A. Sarma. 2013. Cassandra: Proactive conflict minimization

through optimized task scheduling. In 2013 35th International Conference

on Software Engineering (ICSE). 732–741. https://doi.org/10.1109/

ICSE.2013.66066191120

[38] Ayaan M Kazerouni, James C Davis, Arinjoy Basak, Clifford A Shaffer,

Francisco Servant, and Stephen H Edwards. 2021. Fast and Accurate In-

cremental Feedback for Students’ Software Tests using Selective Mutation

Analysis. Journal of Systems and Software (2021).

[39] Ayaan M. Kazerouni, Clifford A. Shaffer, Stephen H. Edwards, and Fran-1125

cisco Servant. 2019. Assessing Incremental Testing Practices and Their

Impact on Project Outcomes.

47

https://doi.org/10.1145/3576038
https://doi.org/10.1109/ICSE.2013.6606619
https://doi.org/10.1109/ICSE.2013.6606619
https://doi.org/10.1109/ICSE.2013.6606619

[40] Michele Lanza, Marco D’Ambros, Alberto Bacchelli, Lile Hattori, and

Francesco Rigotti. 2013. Manhattan: Supporting real-time visual team ac-

tivity awareness. In 2013 21st International Conference on Program Com-1130

prehension (ICPC). IEEE, 207–210.

[41] Olaf Leßenich, Sven Apel, and Christian Lengauer. 2015. Balancing Preci-

sion and Performance in Structured Merge. Automated Software Engg. 22, 3

(Sept. 2015), 367–397. https://doi.org/10.1007/s10515-014-0151-5

[42] Olaf Leßenich, Janet Siegmund, Sven Apel, Christian Kästner, and Claus1135

Hunsen. 2018. Indicators for merge conflicts in the wild: survey and em-

pirical study. Automated Software Engineering 25, 2 (2018), 279–313.

[43] Thomas W. MacFarland and Jan M. Yates. 2016. Kruskal–Wallis H-

Test for Oneway Analysis of Variance (ANOVA) by Ranks. Springer

International Publishing, Cham, 177–211. https://doi.org/10.1007/1140

978-3-319-30634-6_6

[44] Chandra Maddila, Nachiappan Nagappan, Christian Bird, Georgios

Gousios, and Arie van Deursen. 2021. ConE: A Concurrent Edit De-

tection Tool for Large Scale Software Development. arXiv preprint

arXiv:2101.06542 (2021).1145

[45] M. Mahmoudi, S. Nadi, and N. Tsantalis. 2019. Are Refactorings to

Blame? An Empirical Study of Refactorings in Merge Conflicts. In 2019

IEEE 26th International Conference on Software Analysis, Evolution and

Reengineering (SANER). 151–162. https://doi.org/10.1109/SANER.

2019.86680121150

[46] J.H. McDonald. 2014. Handbook of Biological Statistics (3rd ed.). Sparky

House Publishing, Baltimore, Maryland, 157–164.

[47] T. Mens. 2002. A state-of-the-art survey on software merging. IEEE

Transactions on Software Engineering 28, 5 (2002), 449–462. https:

//doi.org/10.1109/TSE.2002.10004491155

48

https://doi.org/10.1007/s10515-014-0151-5
https://doi.org/10.1007/978-3-319-30634-6_6
https://doi.org/10.1007/978-3-319-30634-6_6
https://doi.org/10.1007/978-3-319-30634-6_6
https://doi.org/10.1109/SANER.2019.8668012
https://doi.org/10.1109/SANER.2019.8668012
https://doi.org/10.1109/SANER.2019.8668012
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.1109/TSE.2002.1000449

[48] Louis G. Michael, James Donohue, James C. Davis, Dongyoon Lee, and

Francisco Servant. 2019. Regexes are Hard: Decision-Making, Difficulties,

and Risks in Programming Regular Expressions. In International Confer-

ence on Automated Software Engineering.

[49] Nicholas Nelson, Caius Brindescu, Shane McKee, Anita Sarma, and Danny1160

Dig. 2019. The life-cycle of merge conflicts: processes, barriers, and strate-

gies. Empirical Software Engineering (02 2019). https://doi.org/10.

1007/s10664-018-9674-x

[50] Hoai Le Nguyen and Claudia-Lavinia Ignat. 2018. An Analysis of Merge

Conflicts and Resolutions in Git-Based Open Source Projects. Com-1165

puter Supported Cooperative Work (CSCW) 27, 3 (01 Dec 2018), 741–765.

https://doi.org/10.1007/s10606-018-9323-3

[51] Yuichi Nishimura and Katsuhisa Maruyama. 2016. Supporting Merge

Conflict Resolution by Using Fine-Grained Code Change History. 2016

IEEE 23rd International Conference on Software Analysis, Evolution, and1170

Reengineering (SANER) 1 (2016), 661–664.

[52] Moein Owhadi-Kareshk, Sarah Nadi, and Julia Rubin. 2019. Predicting

Merge Conflicts in Collaborative Software Development. https://arxiv.

org/pdf/1907.06274.pdf.

[53] Rangeet Pan, Vu Le, Nachiappan Nagappan, Sumit Gulwani, Shuvendu1175

Lahiri, and Mike Kaufman. 2021. Can Program Synthesis Be Used to

Learn Merge Conflict Resolutions? An Empirical Analysis. In Proceedings

of the 43rd International Conference on Software Engineering (Madrid,

Spain) (ICSE ’21). IEEE Press, 785–796. https://doi.org/10.1109/

ICSE43902.2021.000771180

[54] Karl Pearson. 1900. X. On the criterion that a given system of deviations

from the probable in the case of a correlated system of variables is such

that it can be reasonably supposed to have arisen from random sampling.

49

https://doi.org/10.1007/s10664-018-9674-x
https://doi.org/10.1007/s10664-018-9674-x
https://doi.org/10.1007/s10664-018-9674-x
https://doi.org/10.1007/s10606-018-9323-3
https://arxiv.org/pdf/1907.06274.pdf
https://arxiv.org/pdf/1907.06274.pdf
https://arxiv.org/pdf/1907.06274.pdf
https://doi.org/10.1109/ICSE43902.2021.00077
https://doi.org/10.1109/ICSE43902.2021.00077
https://doi.org/10.1109/ICSE43902.2021.00077

The London, Edinburgh, and Dublin Philosophical Magazine and Journal

of Science 50, 302 (July 1900), 157–175. https://doi.org/10.1080/1185

14786440009463897

[55] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A.

Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011.

Scikit-learn: Machine Learning in Python. Journal of Machine Learning1190

Research 12 (2011), 2825–2830.

[56] Anita Sarma, David F Redmiles, and Andre Van Der Hoek. 2011. Palantir:

Early detection of development conflicts arising from parallel code changes.

IEEE Transactions on Software Engineering 38, 4 (2011), 889–908.

[57] Francisco Servant. 2013. Supporting Bug Investigation using History Anal-1195

ysis. In International Conference on Automated Software Engineering.

[58] Francisco Servant and James A Jones. 2011. History Slicing. In Interna-

tional Conference on Automated Software Engineering. IEEE.

[59] Francisco Servant and James A Jones. 2012. History Slicing: Assisting

Code-evolution Tasks. In International Symposium on the Foundations of1200

Software Engineering.

[60] Francisco Servant and James A Jones. 2012. WhoseFault: Automatic

Developer-to-Fault Assignment through Fault Localization. In Interna-

tional Conference on Software Engineering.

[61] Francisco Servant and James A Jones. 2013. Chronos: Visualizing Slices of1205

Source-code History. In Working Conference on Software Visualization.

[62] Francisco Servant and James A Jones. 2017. Fuzzy Fine-grained Code-

history Analysis. In International Conference on Software Engineering.

[63] Francisco Servant, James A Jones, and André Van Der Hoek. 2010. CASI:

preventing indirect conflicts through a live visualization. In Proceedings of1210

50

https://doi.org/10.1080/14786440009463897
https://doi.org/10.1080/14786440009463897
https://doi.org/10.1080/14786440009463897

the 2010 ICSE Workshop on Cooperative and Human Aspects of Software

Engineering. 39–46.

[64] Bowen Shen, Muhammad Ali Gulzar, Fei He, and Na Meng. 2022. A

Characterization Study of Merge Conflicts in Java Projects. ACM Trans.

Softw. Eng. Methodol. (jun 2022). https://doi.org/10.1145/35469441215

Just Accepted.

[65] Bo Shen, Wei Zhang, Haiyan Zhao, Guangtai Liang, Zhi Jin, and Qianxiang

Wang. 2019. IntelliMerge: A Refactoring-Aware Software Merging Tech-

nique. Proc. ACM Program. Lang. 3, OOPSLA, Article 170 (Oct. 2019),

28 pages. https://doi.org/10.1145/33605961220

[66] Marcelo Sousa, Isil Dillig, and Shuvendu Lahiri. 2018. Veri-

fied Three-Way Program Merge. In Object-Oriented Programming,

Systems, Languages & Applications Conference (OOPSLA 2018).

ACM. https://www.microsoft.com/en-us/research/publication/

verified-three-way-program-merge/1225

[67] Alexey Svyatkovskiy, Sarah Fakhoury, Negar Ghorbani, Todd Mytkow-

icz, Elizabeth Dinella, Christian Bird, Jinu Jang, Neel Sundaresan, and

Shuvendu K. Lahiri. 2022. Program Merge Conflict Resolution via Neu-

ral Transformers. In Proceedings of the 30th ACM Joint European Soft-

ware Engineering Conference and Symposium on the Foundations of Soft-1230

ware Engineering (Singapore, Singapore) (ESEC/FSE 2022). Associa-

tion for Computing Machinery, New York, NY, USA, 822–833. https:

//doi.org/10.1145/3540250.3549163

[68] Gustavo Vale, Claus Hunsen, Eduardo Figueiredo, and Sven Apel. 2021.

Challenges of Resolving Merge Conflicts: A Mining and Survey Study.1235

IEEE Transactions on Software Engineering (2021), 1–1. https://doi.

org/10.1109/TSE.2021.3130098

[69] R. Yuzuki, H. Hata, and K. Matsumoto. 2015. How we resolve conflict:

an empirical study of method-level conflict resolution. In 2015 IEEE 1st

51

https://doi.org/10.1145/3546944
https://doi.org/10.1145/3360596
https://www.microsoft.com/en-us/research/publication/verified-three-way-program-merge/
https://www.microsoft.com/en-us/research/publication/verified-three-way-program-merge/
https://www.microsoft.com/en-us/research/publication/verified-three-way-program-merge/
https://doi.org/10.1145/3540250.3549163
https://doi.org/10.1145/3540250.3549163
https://doi.org/10.1145/3540250.3549163
https://doi.org/10.1109/TSE.2021.3130098
https://doi.org/10.1109/TSE.2021.3130098
https://doi.org/10.1109/TSE.2021.3130098

International Workshop on Software Analytics (SWAN). 21–24. https:1240

//doi.org/10.1109/SWAN.2015.7070484

[70] Jialu Zhang, Todd Mytkowicz, Mike Kaufman, Ruzica Piskac, and Shu-

vendu K. Lahiri. 2022. Using Pre-Trained Language Models to Resolve

Textual and Semantic Merge Conflicts (Experience Paper). In Proceedings

of the 31st ACM SIGSOFT International Symposium on Software Testing1245

and Analysis (Virtual, South Korea) (ISSTA 2022). Association for Com-

puting Machinery, New York, NY, USA, 77–88. https://doi.org/10.

1145/3533767.3534396

[71] Fengmin Zhu and Fei He. 2018. Conflict Resolution for Structured Merge

via Version Space Algebra. Proc. ACM Program. Lang. 2, OOPSLA, Article1250

166 (Oct. 2018), 25 pages. https://doi.org/10.1145/3276536

52

https://doi.org/10.1109/SWAN.2015.7070484
https://doi.org/10.1109/SWAN.2015.7070484
https://doi.org/10.1109/SWAN.2015.7070484
https://doi.org/10.1145/3533767.3534396
https://doi.org/10.1145/3533767.3534396
https://doi.org/10.1145/3533767.3534396
https://doi.org/10.1145/3276536

	Introduction
	Background
	Motivation
	Our Research

	Dataset Construction
	Our Characterization Study
	Statistical Analysis via H Test
	Statistical Analysis via Chi-Square Test

	Approach
	Evaluation
	Evaluation Metrics
	RQ1: Effectiveness of Within-Project Prediction
	Baseline
	Comparison with Baseline

	RQ2: Effectiveness of Cross-Project Prediction
	Baseline
	Comparison with Baseline
	Comparison between Cross-Project and Within-Project Prediction

	RQ3: Prediction Effectiveness on Unbalanced Data
	Effectiveness of Within-Project Prediction on Unbalanced Data
	Effectiveness of Cross-Project Prediction on Unbalanced Data

	RQ4: Sensitivity to The Amount of Training Data
	RQ5: Sensitivity to The Age of Training Data
	RQ6: Sensitivity to The Adopted Machine-Learning Algorithm
	RQ7: Sensitivity to Threshold Setting
	A Threshold-Based Variant Approach: RPredictorv
	Experiment with RPredictorv

	Threats to Validity
	Discussion
	The Benefit of RPredictor's Recommendations for Developers
	The Impact of Mispredictions and Developers' Trust in Automated Recommendations
	Applicability of RPredictor on Less-Balanced Projects
	What If A Project Has Little Training Data Available?

	Related Work
	Empirical Studies on Merge Conflicts
	Awareness-Raising Tools
	Automated Software Merge

	Conclusion
	Research Artifact

