
A Theoretic Framework of Bidirectional Transformation between Systems and Models

Xiao He1, Zhenjiang Hu2 and Na Meng3

Citation: SCIENCE CHINA Information Sciences (2021); doi: 10.1007/s11432-020-3276-5

View online: https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

Published by the Science China Press

Articles you may be interested in

A bidirectional-transformation-based framework for software visualization and visual editing
SCIENCE CHINA Information Sciences 57, 052109 (2014);

Bidirectional coupling between the Earth and human systems is essential for modeling sustainability
National Science Review 3, 398 (2016);

On transformation between international celestial and terrestrialreference systems
Astronomy & Astrophysics 408, 387 (2003);

Memetic computation based on regulation between neural and immune systems: the framework and a case study
SCIENCE CHINA Information Sciences 53, 1519 (2010);

THEORETIC CALCULATION OF SPECIFIC ENERGY OF SEMICOHERENT INTERFACE BETWEEN MICROALLOY CARBONITRIDE AND FERRITE
Chinese Science Bulletin 34, 1747 (1989);

https://engine.scichina.com/publisher/scp/journal/SCIS
https://engine.scichina.com/publisher/scp/journal/SCIS
https://engine.scichina.com/doi/10.1007/s11432-020-3276-5
https://engine.scichina.com/publisher/scp
https://engine.scichina.com/doi/10.1007/s11432-013-4919-1
https://engine.scichina.com/doi/10.1093/nsr/nww094
https://engine.scichina.com/doi/10.1051/0004-6361:20030911
https://engine.scichina.com/doi/10.1007/s11432-010-4019-4
https://engine.scichina.com/doi/10.1360/sb1989-34-20-1747

For Review Only
A Theoretic Framework of Bidirectional Transformation

between Systems and Models

Journal: SCIENCE CHINA Information Sciences

Manuscript ID SCIS-2020-1198.R2

Manuscript Type: Research Paper

Date Submitted by the
Author: 17-May-2021

Complete List of Authors: He, Xiao; USTB, School of Computer and Communication Engineering;
USTB, Engineering Research Center of Intelligent Supercomputing,
Ministry of Education
Hu, Zhenjiang; PKU, School of Information Science and Technology
Meng, Na; Virginia Tech

Keywords: bidirectional transformation, change propagation, model-driven
engineering, system edit, system-model synchronization

Speciality: Software Engineering < Computer Science & Technology

SCIENCE CHINA Information Sciences

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

For Review Only

SCIENCE CHINA
Information Sciences

. RESEARCH PAPER .

A Theoretic Framework of Bidirectional
Transformation between Systems and Models

Xiao HE1,2*, Zhenjiang HU3 & Na MENG4

1School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2Engineering Research Center of Intelligent Supercomputing, Ministry of Education, Beijing 100083, China;

3School of Information Science and Technology, Peking University, Beijing 100871, China;
4Virginia Tech, Blacksburg, VA 24061, The United States

Abstract Synchronization between systems and models have been explored in model-driven engineering to

enable model-based system management. Despite its promising use, there is a lack of a theoretic foundation

for state-based system-model synchronization. This paper proposes a theory for state-based system-model

bidirectional transformation (BX), and defines seven combinators for system-model BX to facilitate the

development of well-behaved synchronizer programs. A system-model BX is a single program that converts

a system with a model consistently. Forwards, it creates a model according to a system as a conventional

BX. Backwards, it generates a set of system edits, which can turn the current system into a new state that

is consistent with the given model. System-model BX is fully aware of the domain constraints about how to

change a system, and plans a reasonable execution order for those edits, rather than applying them blindly.

The paper also demonstrates the use of system-model BX by building a generic system-model synchronizer

and a concrete file system synchronizer.

Keywords bidirectional transformation, system-model synchronization, change propagation, model-driven

engineering, system edit

Citation He X, Hu ZH J, Meng N. A theoretic framework of bidirectional transformation between systems and

models. Sci China Inf Sci, for review

1 Introduction

Bidirectional programming [1, 2] aims to develop a single program, i.e., a bidirectional transformation
(BX), to maintain the consistency between two data structures of different shapes, propagating the
changes from one structure to the other. Recently, the principle of bidirectional programming has been
adopted as the foundation of data synchronization [3–6] and model synchronization [7–10].

A BX over S and V (i.e., S ↔ V) is a pair (get, put)1) of functions, where get : S → V is called forward
transformation that converts a source of type S into a view of type V , and put : S × V → S is called
backward transformation that takes the original source and the updated view as input and produces an
updated source. A BX is well behaved if the following round-trip properties hold:

put(s, get(s)) = s (1)

get(put(s, v)) = v (2)

where Equation (1) is the GetPut law, which states that a backward transformation immediately after
a forward one should not cause any change, and Equation (2) is the PutGet law, which states that the
forward conversion of an updated source outputted by a backward conversion of a view produces the
same view. In short, the GetPut and PutGet laws prescribe that a well-behaved BX must satisfy the
following two conditions: (a) if a source and a view are synchronized, then neither the forward nor the
backward transformation will make any further changes; and (b) the execution of a forward/backward
transformation will result in a pair of synchronized source and view data.

* Corresponding author (email: hexiao@ustb.edu.cn)

1) Without the loss of generality, this paper adopts the definition of asymmetric lens [1, 7].

Page 1 of 25 SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

For Review Only

He X, et al. Sci China Inf Sci 2

Example 1. The following example illustrates a simple BX between a class in UML class model and a
table in the relational database management model. The forward transformation states that given a non-
abstract class s, a table v must be created whose name is assigned s.name; The backward transformation
declares that for a class s and a table v, we must update s by assigning false to s.abstract and assigning
v.name to s.name. It is not difficult to verify that this BX is well-behaved.

/folder
 f

a file system

<<folder>
folder

<<file>
f

s:Classput () = s:Class
name=v.name
abstract=false

v:Table,get () = v:Table
name=s.name

s:Class
abstract=false

Various theories and tools of bidirectional programming have been proposed. However, existing research
efforts assume (either implicitly or explicitly) that the data to be bidirectionally converted are free data,
i.e., values that can be changed without restriction. Targeting free data simplifies the research of BX.
The free data own the following two characteristics:

C1 Creating, altering, and deleting free data have no side effects. As a result, there is nearly no
constraint on changing free data. In put function of Example 1, we alter both s.abstract and
s.name when s is an abstract class whose name is different from the table’s name. The two changes
are independent and may happen in any order (even simultaneously).

C2 Free data conform to a well-defined interface to read and edit. In put function of Example 1, we
use name = v.name to edit the name of s with the value read from v in a highly declarative way.

In-memory data, such as JSON literals, are free data; The values in functional programming languages
(e.g., records, lists, and dictionaries) are free data; In Java, a POJO can be viewed as free data; A
software model, such as a UML model (cf. Example 1), can also be viewed as free data.

Nevertheless, there are many scenarios where we need to handle restricted data (i.e., non-free data).
For example, in the technology of runtime models [11], we use a runtime model to represent and manage
a system, e.g., a running software program. The runtime model monitors the running system to keep
itself up-to-date; Moreover, if we change the runtime model, then the changes are also propagated to the
running system. Obviously, this round-trip process is a bidirectional transformation.

In this paper, we focus on such bidirectional transformations between systems and models. We use the
term system to denote restricted data. A system may refer to (but not limited to) a file system, a running
software system, and an IoT system. A system is different from free data in the following two aspects.

1. Interacting a system may have side effects and must follow some domain constraints (e.g., execution
order). For example, supposing that we want to change an existing file named f to f ’ and create a
new file named f in a certain folder, we must rename the existing file before creating the new file;
otherwise, a file name collision arises.

2. The read/edit interfaces of a system are domain knowledge. For instance, in Java SDK, to re-
name a file, we must call API java.io.File.renameTo(); to create a new file, we must call API
java.io.File.createNewFile(). Different systems define diverse sets of APIs and impose various do-
main constraints. Without knowing these domain knowledge, we cannot manipulate a system.

Due to these differences, the existing BX technologies, especially bidirectional model transformation [8–
10], cannot handle BXs between systems and models. Specifically, we cannot declaratively specify the
expected state of the system as the output of the backward transformation (as what we did in Example
1), according to which existing BX approaches do not know what APIs should be invoked and in what
order they should be invoked to alter the original system.

This paper develops a theoretic framework general purpose bidirectional transformation between sys-
tems and models, named system-model BX. A system-model BX assumes that the source of the BX is a
system, rather than free data. It regards the system type as an abstract data type, where the read/edit
interfaces are abstract operations. It is also aware of the domain constraints among system edit op-
erations. The forward transformation of a system-model BX behaves like that of a classical BX that
converts a system into a model with the help of system read operations. The backward transformation of
a system-model BX is very different from a classical BX—instead of producing an updated source directly,
it generates a set of system edits by differencing the given model and the original system, then it orders
the generated system edits based on domain constraints, and finally, it applies the edits to the original
system to change the system into a new state that is consistent with the model. The system-model BX

Page 2 of 25SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

For Review Only

He X, et al. Sci China Inf Sci 3

guarantees the correct synchronization between systems and models when necessary domain knowledge
is correctly specified.

Paper Organization. Section 2 discusses the related work. Section 3 formalizes the modules of
systems. Section 4 proposes the concept of system-model BX and defines several combinators. Section 5
derives a generic system-model synchronizer based on system-model BX. The last section concludes the
paper and discusses the future work.

2 Related Work

Runtime models. How to bridge the gap between systems and models is a fundamental problem
and has been investigated in the community of runtime models. SM@RT [17], API2MoL [18], and
EMF-Syncer [19] are some representative solutions. SM@RT [17] is a runtime-model-based approach to
synchronizing running systems with models. SM@RT injects code that reads/writes the systems into
the implementation of models so that when models are manipulated, the injected code will be executed
instantly to access systems. In fact, SM@RT creates an adapter that converts system interfaces into model
interfaces. API2MoL is an API–MDE bridge over API objects and models [18]. In brief, API2MoL maps
every model change onto a system API so that when a model is changed, the corresponding API can be
invoked. A virtue of API2MoL is that it can automatically infer the mapping between APIs and model
changes. However, in many situations, it is impossible to establish such a simple API-model mapping.
EMF-Syncer [19] is a change-driven synchronization framework that bidirectional converts system edits
and model changes consistently. It can incrementally propagate the changes from the model domain to
the system domain to achieve efficient synchronization. The major limitation of these solutions is that
they are not fully aware of the domain constraints over system edits. To ensure that the system edits can
be successfully applied, a user must manually follow the domain constraints while changing the model.
If the model is changed by an automated model management operation, then existing solutions cannot
ensure that required system edits can be successfully performed.

Model-code synchronization. Several approaches to round-trip engineering between source code
and models [20–22] have been proposed. These approaches focused on a special case of system-model
synchronization, i.e., code-model synchronization in round-trip engineering. They are not general purpose
and cannot be extended to other cases. Some works (e.g., [23]) used model-code synchronizers but did
not discuss how to develop these synchronizers. There are also some work (e.g., [24, 25]) that converts
source code into internal representations (e.g., XML) to check the project-specific constraints. However,
they cannot fix the violations in the internal representations and propagate the changes back.

Bidirectional transformation. There have been a large number of papers on bidirectional trans-
formation. Particularly, the research efforts [6, 26–32], as well as our previous work [3, 4, 8, 9], discussed
both algebraic and solver-based BX techniques for free data (e.g., XML files and models). However, this
paper focuses on the synchronization between free data and restricted data. Fritsche et al. [33] proposed
an approach to efficient model synchronization by automatically generating and applying the shortcut
rule that merges multiple edits into an equivalent shortcut one. Hofmann et al. [6] proposed edit lens
that is able to convert the edit from one domain to another domain bidirectionally while keeping the two
domains consistent. Although edit lens focused on edits, it did not consider the execution order because
it is still built on free data. Weidner et al. [34] discussed how to keep consistency between distributed
replicas (free data). They argued that concurrent and non-commutative edits must be carefully merged
to enable out-of-order execution. Different from [34], we argue that edits to a system should be executed
in a proper order that may not be identical to the occurrence order of model changes. We regard our work
as an extension, rather than a replacement, to BX theories, because our framework bridges systems and
models, two diverse categories of data, which can be combined with existing BX approaches to handle
complex synchronization problems.

Self-Adaptive Systems. Self-adaptive systems have been intensively discussed in the community
of software engineering [36–39]. The major challenge of self-adaptive systems is the construction of a
MAPE-K loop. Various engineering approaches have been proposed [37], such as model-based approaches
(i.e., runtime models), architecture-based approaches, reflection approaches, and agent-based approaches.
Existing approaches mainly focused on how to monitor the systems, analyze the system qualities, and
plan adaption strategies. We view our work as a complement to the technique of runtime models, which
may further contribute to self-adaptive systems: our work focuses on how to maintain the casual relation

Page 3 of 25 SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

He X, et al. Sci China Inf Sci 4

between a system and a model via bidirectional programming, upon which complex model-based analysis
and reasoning procedures can be adopted.

3 Systems and its Operations

In this paper, Π denotes a set of systems. Π is also called the type of systems. We follow the design
principle of encapsulation and regard Π as a black-box, rather than defining the inner structure of Π.

3.1 Systems, Objects, and Feature Values

We assume that a system is structurally composed by a set of objects and feature values that specify the
attributes (i.e., slots) and the relationships (i.e., links) of objects. Objects and feature values are defined
in Definition 1 and Definition 2.

Definition 1 (Object). An object is an instance of a certain class c. Every object has an object identifier
i ∈ I, where I denotes the set of all object identifiers. Given a system π, we say i 7→ c ∈ π if there is an
object of class c, whose identifier is i, belongs to π; and we say i ∈ π when i 7→ ∈ π. If we do not care
about its class, then we may also say i is an object when there is no conflict.

The system class (or class) is the type of objects. A system class c consists of many structural features
(i.e., references and attributes). We assume that a reference is a directed relationship between two classes,
and that an attribute is a directed relationship from a class to a primitive data type (e.g., string and int),
and F is the set of all features. A reference may be either a containment reference (i.e., aggregation in
OO terminology) or a non-containment reference. Instances of structural features (aka. feature values)
are called links and slots, according to OO terminology, which are defined as follows.

Definition 2 (Feature value). A feature value has a form of I f−→ τ , where τ is I if the feature f is a

reference, or τ is primitive data type if the feature f is an attribute. A concrete feature value i
f−→ v ∈ π

means that in system π, object i is associated with value v via feature f. If f is a reference, then i
f−→ v

is a link and v ∈ I; If f is an attribute, then i
f−→ v is a slot and v is a primitive value.

A feature may be either ordered or unordered, depending on its domain semantics. For instance, the
content of a folder (i.e., files and sub-folders) can be viewed as an unordered collection; the widgets of
a running SWT dialog are ordered, since the order may affect the layout of the widgets. If a feature

f is ordered, then any feature value is associated with an additional integer p (written as i
f[p]−−→ v) to

represent its position. We may omit the position integer when we do not care about it.

Example 2. Assume that Π is the set of file systems. There are
three concrete classes cfolder, cfile, and clink to denote folders, (nor-
mal) files, and symbolic links. Besides, an unordered containment

reference cfolder
fitems−−→ citem is defined for Π to represent the relation

between a folder and its contents, where citem is the abstract parent
class of cfolder, cfile, and clink. A singleton non-containment refer-

ence clink
pointsTo−−−−−→ citem is defined for Π to represent the link target

of a symbolic link. Finally, an attribute citem
name−−−→ String is also

defined for Π to represent the folder/file name.

<<Folder>>
root

<<Folder>>
B

<<File>>
A.txt

<<SymbolicLink>>
L

<<File>>
A.txt pointsTo

items items items

items

parent

parent

parent

parent

e0

e1 e2 e3

e4

<<Folder>>
root

<<Folder>>
B

<<File>>
A.txt D.txt

<<SymbolicLink>>
L S

<<File>>
A.txt pointsTo

items items items

items

e0

e1 e2 e3

e4
items

parent parent

parent

parent
parent

pointsTo

root

|-D.txt

|-A.txt

|-L -> "root/D.txt"

<latexit sha1_base64="9erzi8p17SlPLyv6apnFOhFzCcg=">AAAFKHiclVRNbxMxEHXbACV8pXDksmqEVCQasikScEGlINQDhyKRtlIcRV7vbGLF611sb5Ng/Ic48Ds4ckBCPcCBX4K9SQXZVkgdaeXxzHtv7Bl5o5wzpdvt05XVtdqVq9fWr9dv3Lx1+05j4+6hygpJoUsznsnjiCjgTEBXM83hOJdA0ojDUTR+5fNHJyAVy8R7Pcuhn5KhYAmjRLvQoLGPIxgyYRwmcqHU1mWW6fqn7dctPfXry8X6Nth+EWz65OMytVnHIOK/vEGj2W61SwvOO+HCaaKFHQw21r7iOKNFCkJTTpTqhe1c9w2RmlEOto4LBTmhYzKEnnMFSUH1TXllGzxwkThIMuk+oYMy+i/DkFSpWRo5ZEr0SFVzPnhhTumUyJmML0r2Cp086xsm8kKDoPNTJAUPdBb45gYxk0A1nzmHUMncRQI6IpJQ7UawVIYlegTC1utYwIRmaUpcM7Fg3BqsYaq1Nn5jl/NuymPb6/SdR8SQg2mG9pFpdiyW5b4C15KlIIdgezt947G4yHmhBgbPywNXYDB8KAg3zR1rrCsOaa5nCrT1Eeu1K6Klos7KY5SachTPYcu4E+fZXuhAuJyOkRA7feX6kmvFPoLZKm+qqFd5aG21EBNxUrgue42znrgYTO3AMyroQjAF84LYDy6KTNcBMeeR6/8YdNAMAyzlYlelR9Mq+/gS7GQSV+lvLlN8PKnS9y5BH0/m1OCsS34qQfWIZ6j/YPhFShWMOq/j335YfennncNOK3zSev6u09zdW/wF1tF9tIm2UIieol20jw5QF1H0BX1HP9Gv2ufat9qP2ukcurqy4NxDS1b7/Qf9wdFU</latexit>

<<Folder>>
root

<<Folder>>
A

<<SymbolicLink>>
L

<<File>>
B.txt pointsTo

items items

items

parent

parent

parent

e0

e1 e2

e3

<<Folder>>
root

<<Folder>>
A

<<SymbolicLink>>
L S

<<File>>
C.txt A.txt pointsTo

items items

items

e0

e2 e3

e4

items

parent

parent

parent

parent

<latexit sha1_base64="Ffeakd7nW+/Q+W4D3uaaLsPOztM=">AAAFMHiclVRdb9MwFPVYgRG+NnjkxVqENCTWNZ0QPKExJMQDD0Oi26SmqhzntrXqOMF21hbjP8UDv4GfABIS4gEe+BXYaafRbEKapSjX555zrn2vkqTgTOlW69vKldXG1WvX124EN2/dvnN3fePeocpLSaFDc57L44Qo4ExARzPN4biQQLKEw1EyfunzRycgFcvFOz0roJeRoWADRol2UH/9IE5gyIRxnMRBmQ1knuvg4/aLpp76936A8dnuDd5+jjc9ZWd/pwI3gxhEeqbvr4etZqta+HwQLYIQLdZBf2P1S5zmtMxAaMqJUt2oVeieIVIzysEGcamgIHRMhtB1oSAZqJ6prm7xQ4ekeJBL9wiNK/RfhSGZUrMsccyM6JGq5zx4YU7pjMiZTC9Kdks9eNYzTBSlBkHnpxiUHOsc+ybjlEmgms9cQKhk7iKYjogkVLtRLJVhAz0CYYMgFjCheZYR18xYMG5NrGGqtTZ+Y5fzbtpj2233XETEkIMJI/vYhG0by2pfo2vJMpBDsN3dnvHcuCx4qfomnpcHrsDE8L4k3IS71lhXHLJCzxRo6xHrvWumlaPOq2NUnnKUzmnLvBMX2W7kSHE1HSMhdf7K9aXQin0As1XdVFHv8sjaeiEm0kHpuuw9TnviMJjavlfU2KVgCuYFYz+4JDEdR4w5T1z/x6BxGOFYysWuLk+mdfXxJdSDSVqXv7pM8fGkLt+/hHw8mUvxaZf8VHD9iKes/3D4RU41jjrv47/9qP6lnw8O283oSbP1th3utRd/gTX0AG2iLRShp2gPvUYHqIMo+oy+o1/od+NT42vjR+PnnHplZaG5j5ZW489fKhvTLA==</latexit>

root

|-A.txt

|-B

|-A.txt

|-L -> "root/B/A.txt"

<latexit sha1_base64="+mv4piSfikdGq0zudNPXO1PWh/M=">AAAFfniclVRdb9MwFE23FUb52AaPvFirmDbEuqYdYk9oDAnxwMOQ6DapLpXj3LRWHSfYztpi/Ff4PfwF/g1O0iKaTUizFOn63HPOde6NE6ScKd1u/66trW/U793ffNB4+Ojxk63tnacXKskkhR5NeCKvAqKAMwE9zTSHq1QCiQMOl8HkfZ6/vAapWCK+6HkKg5iMBIsYJdpBw+2fe1jDTGttZJJo+9Xss2H7wGLc+Jv4cfiupWeLnF/NnZV4ZxVHaEXVrao+lfixw5eKw7doNz/D0dlRodzNJcPtZrvVLha6GfiLoOkt1vlwZ/0XDhOaxSA05USpvt9O9cAQqRnlYBs4U5ASOiEj6LtQkBjUwBSNtOiFQ0IUJdI9QqMC/VdhSKzUPA4cMyZ6rKq5HLw1p3RM5FyGtyX7mY5OBoaJNNMgaHmKKONIJygfGQqZBKr53AWESuZeBNExkYRqN9iVMizSYxC20cACpjSJYyJCgwXj1iz7nG/sat59OxPb7wxcRMSIg2n69pVpdiyWxb5C15LFIEdg+92Bybk4S3mmhgaX5YErMBi+ZYSbZtca64pDnOq5Am1zxObeFdPCUSfFMQpPOQ5L2irv2kW27zsSLqZjJITOX7m+pFqx72D2izdVNHc5sLZaiIkwylyXc49lTxwGMzvMFRV2JpiCsiDOBxcEpueImPPA9X8CGjV9hKVc7KryYFZVX91BHU3DqvzDXYpPplX52R3kk2kpRcsu5VNB1SMuWf/h8NucKhx108e6u+9Xb/rN4KLT8l+32p+Pm6edxV9g03vu7Xr7nu+98U69j9651/NobaP2statHde9+l79sH5UUtdqC80zb2XVT/4AGcnqIg==</latexit>

root(i0)

|-A.txt(i1)

|-B(i2)

|-A.txt(i3)

|-L(i4) -> "root/B/A.txt"

Figure 1 A simple file system, where

object identifiers are marked as super-

scripts

Figure 1 shows a simple file system π that contains two folders (i.e., root and root/B), two normal files
(i.e., root/A.txt and root/B/A.txt), and a symbolic link (i.e., root/L). Object identifiers (e.g., inode IDs
in Linux) are marked as superscripts. This file system can be abstractly represented as a set of objects
and feature values as follows:

π =


i0 : cfolder, i1 : cfile, i2 : cfolder, i3 : cfile, i4 : clink,

i0
name−−−→ “root”, i1

name−−−→ “A.txt”, i2
name−−−→ “B”, i3

name−−−→ “A.txt”, i4
name−−−→ “L”,

i0
items−−−→ i1, i0

items−−−→ i2, i2
items−−−→ i3, i0

items−−−→ i4, i4
pointsTo−−−−−→ i2



Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

For Review Only

He X, et al. Sci China Inf Sci 5

3.2 Abstract Operations

We treat classes and features as abstract data types. Hence, we define some abstract operations, which
should be provided by BX developers, to read and edit objects and systems, as follows.

• isAlive : I → Π → {true, false} is a domain-specific predicate that checks whether an object is
alive in a system. In some systems, an object is only a handler that might refer to an invalid entity (i.e.,
not alive). For instance, in Java, an instance of java.io.File is just a file handler. It is possible to create a
java.io.File object in memory that refers to an invalid file path (e.g., before java.io.File.createNewFile()
is invoked). If an object is not alive, then it means that certain edits to this object may fail.

• conc : I × [F [τ]] → Π → Π2) is an abstraction of object constructor for certain class c. The first
parameter I is a new object identifier, and the second parameter [F [τ]] is a list of feature initializers.
conc (i, [f1[v1,1, v1,2, ...], f2[v2,1, v2,2, ...], ...]) π = π′ changes the system state from π to π′ by creating an

object i of class c and initializes feature fj of this object to [i
fj−→ vj,1, i

fj−→ vj,2, ...] in the new state π′,
and fj is also called a (formal) constructor parameter.

• desc : I → Π→ Π is the destructor of c. desc i π = π′ deletes object i from system state π to form
a new state π′. Note that object destructor is not necessary in some systems. For instance, in Java-based
systems, an object does not need a destructor.

• getf : I → Π → [I f−→ τ] is the getter operation of feature f. getf i π = [i
f−→ v1, i

f−→ v2, ...] returns

the feature values of object i in system π and i
f−→ v ∈ π ⇔ i

f−→ v ∈ getf i π. Because we do not assume
that the structures of systems are known, we need such getter operations to access the inner data. We
always assume that a getter operation returns a collection.

For ordered feature f and a collection of feature values, we define the following edit operations.

• insertf : I × τ × N→ Π→ Π is an additive edit for f. insertf (i, v, p) π = π′ changes system state

π to π′ by adding a new link/slot i
f−→ v at position p.

• removef : I × N→ Π→ Π is a deletion edit for f. removef (i, p) π = π′ changes system state π to
π′ by deleting a new link/slot at position p.

• modifyf : I × τ ×N×N→ Π→ Π is a modification edit for f. modifyf (i, v, ps, pt) π = π′ changes

the system state π to π′ by replacing a link/slot at position ps with a new link/slot i
f−→ v and moving it

to position pt. If i
f−→ v is the value at position ps, then this edit just reorders it.

• moveInf : I × τ × N × I → Π → Π is an additive edit for f. moveInf (i, v, p, i′) π = π′ changes

system state π to π′ by adding i
f−→ v at position p, where v was originally a feature value of object i′.

• moveOutf : I × N × I → Π → Π is a deletion edit for f. moveOutf (i, p, i′) π = π′ changes system
state π to π′ by deleting a link/slot at position p, where the value will be further moved to object i′.

Note that moveInf and moveOutf are only defined when f is a containment reference. In OO method-

ology, if a link i
f−→ ic is removed and f is a containment reference, then there is an implication that ic

will also be deleted. Nevertheless, moveOutf states that the value to be moved out will not be deleted;
rather, it will further be moved into another container.

Similar to the ordered case, there are also five edits for the unordered feature, including insertf : I×τ →
Π→ Π, removef : I × τ → Π→ Π, modifyf : I × τ × τ → Π→ Π, moveInf : I × τ × I → Π→ Π, and
moveOutf : I × τ × I → Π→ Π.

Note that feature edit operations are only defined for the feature that is not a constructor parameter,
because we assume that a constructor parameter is immutable since the object is created.

Example 3. Assume that f is an ordered feature. As shown in the following figure, initially, in system

π1, there are three values for i and f, i.e., [i
f−→ v1, i

f−→ v2, i
f−→ v3]. After executing insertf (i, v4, 3) π1,

i
f−→ v4 is inserted at position 3 in the new system π2. Then, removef (i, 2) π2 deletes i

f−→ v2 and results

in π3. Finally, modifyf (i, v′1, 1, 3) π3 replaces i
f−→ v1 with i

f−→ v′1, and moves the value to the end of the

collection in π4 (consequently, i
f−→ v4 and i

f−→ v3 are moved forward).

2) In this paper, all system edits are defined in the curried form. In this way, the partial application of a system edit, e.g.,

conc (i, [f1[v1,1, v1,2, ...], f2[v2,1, v2,2, ...], ...]), is a function of systems. In the rest of this paper, an edit, e.g., conc, also refers to

its partial application and is viewed as a function of systems, if there is no conflict in context.

Page 5 of 25 SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

For Review Only

He X, et al. Sci China Inf Sci 6

/folder
 f

a file system

<<folder>
folder

<<file>
f

s:Classput () = s:Class
name=v.name
abstract=false

v:Table,get () = v:Table
name=s.name

s:Class
abstract=false

i 𝖿 v1
i 𝖿 v2
i 𝖿 v3

1

2

3

i 𝖿 v1
i 𝖿 v2

i 𝖿 v3

1

2

4

i 𝖿 v4
3

i 𝖿 v1

i 𝖿 v3

1

3

i 𝖿 v4
2

i 𝖿 v4

i 𝖿 v′ 1

1

3

i 𝖿 v3
2

insert𝖿 (i, v4,3) π1 remove𝖿 (i,2) π2 modify𝖿 (i, v′ 1,1,3) π3

π1
π2

π3 π4

Now we are able to define system edits.

Definition 3 (System Edits). Given a system type Π, supposing that the classes c1,c2, ... and features
f1, f2, ... are defined in Π, ∂Π is the set of system edits that is defined as follows.

∂Π =
⋃
ci

{conci
, desci

} ∪
⋃
fi

{insertfi , removefi ,modifyfi ,moveInfi ,moveOutfi}

Given any class c (any feature f) in Π, we can also define corresponding set of edits ∂c (∂f). Since ∂c
(∂f) is a subset of ∂Π, it is safe to cast ∂c (∂f) to ∂Π.

3.3 Contracts of Edits

As discussed above, system edits are domain-specific because their implementation and constraints must
be provided by BX developers. If the implementation and/or the execution order of system edits are
incorrect, then we cannot guarantee the well-behavedness of system-model BX. For example, supposing
that insertf does not insert a value but removes one, then the transformation will surely fail. Hence, we
must be able to verify the correctness of the implementation and the execution order of system edits.

We resort to contract-based programming to address this issue. Specifically, for every system edit e,
a pair of pre-/post-conditions must be defined to specify when the edit can be applied (i.e., precondition
pree) and the expected effect on the system (i.e., postcondition poste).

As expected, the postcondition poste is viewed as a predicate on the system, i.e., Π → Boolean.
However, in this paper, the precondition pree is a binary predicate Π× 2∂Π → Boolean, where the first
parameter denotes the current system state and the second parameter denotes the set of all remaining
edits. pree returns true if e can be applied to the given system before the set of remaining edits.

Remark 1. By specifying the pre-/post-conditions of an edit, we may adopt state-of-the-art static
verification technologies [12] or testing technologies [13–15] to verify the implementation of this edit.

Remark 2. Although the contract of an edit are generally domain specific, every edit declared in
Section 3.2 does have some generic conditions3). When we are creating the domain implementation, we
only need to append the domain-specific conditions.

Remark 3. The preconditions can be used to find and check the execution order of edits. Given a
sequence [e1, e2, ...en], we say this sequence in the correct order for the initial system state π0 only if

∀p ∈ [0, n]
(
preep(πp−1, {ep+1, ep+2, ..., en}) ∧ πp = ep πp−1

)
(3)

where e πp denotes performing edit e on system π. Equation (3) means that the former edit does not
break the precondition of the later so that e1, e2, ..., en can be successfully executed one-by-one.

Take the file system as an example. Assume that e1 is to create (insert) a new file named f and e2

is to rename (modify) an existing file f to g. Obviously, e1 must satisfy a precondition that there is no
other file named f ; and e2 must satisfy a precondition that there is a file named f , and must also satisfy
a postcondition that the file named f is renamed to g. Given a folder that contains a file named f (i.e., a
system π0), e2 must be executed before e1 because pree2(π0)∧ π1 = e2 π0 ∧ pree1(π1) but ¬pree1(π0,).

Remark 4. By viewing pree as a binary predicate, we get a chance to straightforwardly encode the
ordering constraints among edits into the precondition because we can specify before which edits, the
given edit cannot be performed. For example, supposing that e = moveInf (i, v, i′), we can append
the condition @e′(e′ ∈ es ∧ e′ = moveOutf′ (i′, v, i)) to pree(π, es) to specify that a moveIn cannot be
performed before a moveOut if they intend to move the same value.

3) Project page: http://www.softlang.cn/index.php/Research/Bidirectional Transformation/System-Model Synchronization.

Page 6 of 25SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

http://www.softlang.cn/index.php/Research/Bidirectional_Transformation/System-Model_Synchronization

For Review Only

He X, et al. Sci China Inf Sci 7

In theory, Equation (3) can be checked with the help of state-of-the-art model checking and SMT
solving technologies, e.g., Alloy [16], by encoding the pre-/post-conditions and the initial state into a
set of logic expressions and asking Alloy to verify those expressions. It is also possible to ask Alloy to
compute the execution order of a set of edits by finding a valid sequence that satisfies Equation (3). It
is necessary to emphasize the following facts.
• Given a set of edits, there may be many valid edit sequences that satisfy Equation (3). It is because

if two edits are totally commutable, then they can be executed in any order.
• Given a set of edits, it is also possible that there is no valid edit sequence that satisfies Equation

(3). In such a case, there must be some conflicts among those edits.
• We consider solving Equation (3) with a solver to be theoretically feasible. However, it might be

inexpressive and/or inefficient in practice to encode and solve Equation (3) in a first-order-logic-based
solver. The design of a practical solution is temporarily out of our concern.

3.4 Module of System

As discussed above, given a set of system edits, we can compute a reasonable execution order, i.e., an edit
sequence satisfying Equation (3). This can be formalized as a function4) � : 2∂Π → Π → [∂Π]. Given
a sequence of edits in a reasonable order, we can apply this edit sequence to a certain system. We also
define an edit application function � : [∂Π]→ Π→ Π that takes a sequence of edits and an initial system
as input, and applies the edits one by one. The function � is recursively defined as follows.
• []� π = π;
• [e, e1, ...]� π = [e1, ...]� (e π).
Finally, we put everything together into the module of systems, which is defined as follows.

Definition 4 (System Module). A system module is a tuple (Π, uuid, ∂Π,�,�), where Π is a system
type, ∂Π is the set of system edits, � is the edit ordering function, and � is the edit application function.

uuid can be viewed as a function uuid(I) : U → I, where U is any value. uuid(i′) u returns a new object
identifier for given input u (so we can retrieve the same identifier by sending the same u); and the optional
i′ denotes the old identifier that is intended to be replaced by the new identifier (cf. Section 5.1). In the
rest of this paper, we still use Π to denote system module. For simplicity, given a set es of edits and a
system π, es��π ≡ (es� π)� π.

We can also define object module and feature value module in the same way. Similar to the discussion
in Definition 3, object module and feature value module can also be cast the system module.

Definition 5 (Disjoint Systems). Given two systems π1 ∈ Π1, π2 ∈ Π2 (Π1 may be equal to Π2), if
there is an edit e for πi (i=1,2), and [e]� (π1 ∪ π2) is equal to ([e]� πi) ∪ π3−i), then π1, π2 are disjoint
about e, i.e., e affects πi only when e can be applied to πi. Supposing es = [e, e1, ...] is an edit sequence
and e is defined for πi, then π1, π2 are disjoint about es if π1, π2 are disjoint about e, and [e] � πi and
π3−i are disjoint about [e1, ...]. If π1 and π2 are disjoint about any valid edit sequence, then they are
disjoint. If any π1 ∈ Π1 and π2 ∈ Π2 are disjoint, then Π1 and Π2 are disjoint.

Remark 5. Two isolated systems are obviously disjoint because their changes will not affect each other.
Nevertheless, Definition 5 also implies that a single system may conceptually be viewed as a composition
of two disjoint sub-systems if the system edits are deliberately defined. For example, a file system π can
be viewed as two sub-systems πD and πF . πD keeps the directory hierarchy of this file system, and πF
maintains all file information. Although πD and πF are mutually related, they are disjoint about the
edit e that deletes an empty folder: when e can be applied, the folder to be deleted must be empty, so e
affects πD only. However, if e can delete non-empty folders, then πD and πF are not disjoint.

The concept of disjoint systems is very important in this paper. It allows us to isolate the effect of a
system edit to a sub-system from other disjoint parts.

Given two system modules Π1 and Π2, we can combine them into a new system module Π1+2 by merging
all the definitions. Specifically, ∂Π1+2 = ∂Π1∪∂Π2. Nevertheless, �1+2 may require additional knowledge
to arrange a set of edits that mix the edits from both ∂Π1 and ∂Π2 into an edit sequence (unless �1 and
�2 already embody those knowledge). Given a system π1+2 ∈ Π1+2 and an edit sequence es1+2 ⊆ ∂Π1+2,
supposing that π1 and es1 are projections of π1+2 and es1+2 onto Π1 and ∂Π1, respectively, if es1 is a
valid sequence for π1+2, then es1 must also be a valid sequence for π1, and es1�π1 must be the projection
of es1+2 � π1+2 onto Π1.

4) In fact, � is not a (deterministic) function, because there may be multiple orders for the same set of edits.

Page 7 of 25 SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

For Review Only

He X, et al. Sci China Inf Sci 8

4 System-Model Bidirectional Transformation

4.1 Definition

Before we define system-model BX, we must formally define models and model types.

Definition 6 (Model and Model Type). A model type (say Y) denotes a set of models. In model-driven
engineering, a model type is usually encoded as a metamodel. We adopt an EMF5)-like type system, and
assume that a model type consists of a set of EClasses and EStructuralFeatures. An EStructuralFeature is
either an EReference or an EAttribute. A model y consists of a set of model elements (i.e., EObjects—the
instances of EClasses) and relationships (i.e., Settings—instances of EStructuralFeatures). The set of all
model elements is denoted as IE . Two models y1 and y2 are disjoint if y1 ∩ y2 = ∅. Two model types Y1

and Y2 are disjoint if any y1 ∈ Y1 and y2 ∈ Y2 are disjoint.

Because a model conforms to well defined interfaces, e.g., EObject and Setting in EMF, it can be
read/written as free data. Hence, for any EClass Y , iE 7→ Y declares an model element iE of type Y ;

For a feature fE , iE
fE−→ v declares a relationship, and iE .fE returns the values associated with iE via fE .

We also term iE
fE−→ v a feature value of iE . For an ordered feature, we assume that a value is associated

with its position say iE
fE[p]−−→ v.

A classical BX over type S and type V consists of two functions get : S → V and put : S →
V → S. However, the synchronization between a system and a model requires additional information
that preserves the correspondences between objects and model elements (aka. casual relations [11] and
complement [6]). We use Ψ to denote the correspondences, and we will discuss this later. Now we define
system-model BX as follows.

Definition 7 (System-model BX). A system-model BX l between system module Π and model type

Y , denoted as l : ∂Π
Ψ←→ Y , consists of a correspondence set Ψ, two functionsV : Π×Ψ→ Y ×Ψ (i.e.,

the forward transformation) andW : Π × Ψ × Y → 2∂Π × Ψ (i.e., the backword transformation), and a
ternary consistency relation K ⊆ Π×Ψ× Y that defines synchronized states, such that

• (ε, ε, ε) ∈ K, where ε means empty data that belongs to any data;

• ifV (π, ψ) = (y, ψ′), then (π, ψ′, y) ∈ K;

• if (π, ψ, y) ∈ K, thenW (π, ψ, y) = (∅, ψ);

• if (π, ψ, y) 6∈ K,W (π, ψ, y) = (dπ, ψ′), and dπ � π is defined, then (dπ ��π, ψ′, y) ∈ K.

Remark 6. Given dπ that is generated by l.W (π, , y), the fact that dπ � π is undefined implies that
the model y is invalid because π cannot be changed to a consistent state with existing system edits. In
such a case, we must alter y to make it synchronizable.

Remark 7. System-model BX is very different from classical BX because in backward direction, it is
impossible for system-model BX to obtain an intermediate system. While in classical BX, the intermediate
result is essential for BX composition and runtime checks, such as branch condition checks. Hence, existing
BX approaches cannot handle the synchronization between systems and models.

Similar to classical BX, a system-model BX must satisfy two round-trip properties as follows.

V(π, ψ) = (y, ψ′) ⇒W(π, ψ′, y) = (∅, ψ′) (4)

W(π, ψ, y) = (dπ, ψ′) ∧ dπ � π is defined ⇒V(dπ ��π, ψ′) = (y, ψ′) (5)

Despite the different forms, Equations (4) and (5) share the same rationale with Equations (1) and (2):
(a) if a system and a model are already synchronized, then nether the forward transformation (V) nor the
backward one (W) will cause any further changes, and (b) bothV andWwill reach a synchronized state.
We call Equations (4) and (5) implementation-perfect round-trip properties because we require that all
system edits and function � are correctly implemented. Our approach guarantees implementation-perfect
round-trip properties, but provides no warrant for the case when there is any error in the implementation
of system edits and �, which should be tested before the construction of system-model BXs.

Definition 8 (Correspondence). The correspondence data in our approach tells how objects in a system
and model elements in a model are mutually mapped. It may contain any information. For simplicity, we
assume that the correspondence data ψ ∈ Ψ can be used as a partial bijective function, i.e., ψ ⊂ I ×IE .

5) EMF Project: https://www.eclipse.org/modeling/emf/

Page 8 of 25SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

https://www.eclipse.org/modeling/emf/

For Review Only

He X, et al. Sci China Inf Sci 9

We can update ψ by replacing a certain object-element mapping as follows: ψ[i → iE] ≡ {(i, iE)} ∪
{(x, y)|(x, y) ∈ ψ ∧ x 6= i ∧ y 6= iE}. For two ψ1 ∈ Ψ1 and ψ2 ∈ Ψ2, ψ1] ψ2 is called consistent union,
where ψ1] ψ2 = ψ1 ∪ ψ2 if ψ1 ∪ ψ2 is still a partial bijective mapping; otherwise, ψ1] ψ2 = ⊥.

Example 4. The system type ΠVM denotes the set of virtual machines (VMs), and each VM has
an attribute ip (a constructor parameter). ΠVM is equipped with two edits (i.e., consVM i ip[v] and
desVM i) that creates and deletes a VM respectively. The model type YVM denotes the set of VM
elements, each of which has an attribute ipE to denote the IP value. We consider a VM and a VM
element are consistent if they hold the same IP address. Hence, we can define a consistency relation

KVM = {(π, {(i, iE)}, y)|π = {i, i ip−→ v} ∧ y = {iE , iE
ipE−−→ v}}. To ensure the consistency relation, the

forward transformation can be defined asV ({i, i ip−→ v}, ψ) = ({iE , iE
ipE−−→ v}, {(i, iE)}), which creates a

new VM element that is consistent with the given VM; the backward transformation can be defined as

W({i, i ip−→ v}, ψ, {iE , iE
ipE−−→ u}) =

{
(∅, {(i, iE)}) if v = u

({desVM i, consVM uuid(i)(iE) ip[u]}, {(uuid(i)(iE), iE)}) otherwise

It is not difficult to verify that KVM ,V, andWsatisfy Definition 7. Moreover, they also satisfy Equations
(4) and (5). Hence,V andW form a well-behaved system-model BX between ΠVM and YVM .

Remark 8. Definition 7 and Equations (4), (5) describe what is a well-behaved system-model BX, but
did not tell how to construct one efficiently. If there are some predefined primitive system-model BXs,
then we can combine them into a complex BX by using the combinators defined in Section 4.2. However,
how to construct primitive system-model BX is out of our concern. We assume that putback-based
bidirectional programming, such as [3–5,8], may facilitate this task.

Remark 9. The indented usage of system-model BX is as follows. Given a system of type Π and a model
type Y , the forward transformationV generates a model-based abstraction of the system. Afterward, a
user or an automated model management operation, e.g., model transformation [35] and model fixing [40],
changes the generated model. Finally, the backward transformationW generates a set of system edits by
differencing the system and the model. The generated system edits have the ability to change the system
into a new state that is consistent with the model, if all the edits are successfully applied.

4.2 Combinators

In this section, we present some combinators of system-model BXs to facilitate the development well-
behaved system-model BXs.

Parallel Union (⊗) If Π1 and Π2 are disjoint, then Π1 ⊗ Π2 forms a new module, where ⊗ denotes
disjoint union. Intuitively, for any π1+2 ∈ Π1 ⊗ Π2, we can always split π1+2 into π1 ∈ Π1 and π2 ∈ Π2,
such that π1 ∩ π2 = π1+2 and π1 ∩ π2 = ∅. For model types, ⊗ is also defined analogously.

For two disjoint modules Π1 and Π2 and two disjoint model types Y1 and Y2, the combinator par-

allel union combines two system-model BXs l1 : ∂Π1
Ψ1←−→ Y1 and l2 : ∂Π2

Ψ2←−→ Y2 into l1 ⊗ l2 :

∂(Π1 ⊗Π2)
Ψ1]Ψ2←−−−→ Y1 ⊗ Y2, where

1. l1 ⊗ l2.K = {(π1 ∪ π2, ψ1] ψ2, y1 ∪ y2)|(π1, ψ1, y1) ∈ l1.K ∧ (π2, ψ2, y2) ∈ l2.K};

2. l1 ⊗ l2. V (π1+2, ψ1+2) = (y1 ∪ y2, ψ
′
1] ψ′2), such that π1 ∈ Π1 ∧ π2 ∈ Π2 ∧ π1 ∪ π2 = π1+2,

ψ1 ∈ Ψ1 ∧ ψ2 ∈ Ψ2 ∧ ψ1] ψ2 = ψ1+2 6= ⊥, and lj .V(πj , ψj) = (yj , ψ
′
j) (j=1,2);

3. l1 ⊗ l2.W(π1+2, ψ1+2, y1+2) = (dπ1 ∪ dπ2, ψ
′
1] ψ′2), such that π1 ∈ Π1 ∧ π2 ∈ Π2 ∧ π1 ∪ π2 = π1+2,

ψ1 ∈ Ψ1 ∧ ψ2 ∈ Ψ2 ∧ ψ1] ψ2 = ψ1+2 6= ⊥, y1 ∈ Y1 ∧ y2 ∈ Y2 ∧ y1 ∪ y2 = y1+2, lj .W (πj , ψj , yj) =
(dπj , ψ

′
j) (j=1,2), and (dπ1 ∪ dπ2) � π1+2 is defined.

Intuitively, if a system and a model can be partitioned into disjoint parts that can be synchronized by l1
and l2 respectively, then l1 ⊗ l2 can synchronize the complete system and model. Note that we do not
require ψ1 ∩ ψ2 = ∅, as long as they are changed consistently.

Example 5. Assume that lA and lB are two system-model BXs that bidirectional convert the local
file systems of two computers A and B with two models, respectively. Because the two file systems are
completely unrelated (disjoint), the edits generated by lA (lB) never change the file system on B (A).
Thus, lA ⊗ lB synchronizes the two file systems with the corresponding two models in parallel.

Page 9 of 25 SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

For Review Only

He X, et al. Sci China Inf Sci 10

Theorem 1. If l1 and l2 are system-model BX, then l1 ⊗ l2 is also a system-model BX.
Proof. Because Π1 and Π2 are disjoint, and Y1 and Y2 are disjoint, l1 and l2 do not interrupt each
other. The definition of parallel union preserves the is provided of l1 and l2. Especially, when applying
the set dπ1 ∪ dπ2 of edits, when dπ1 ∪ dπ2 �π1+2 is defined, dπ1 ∪ dπ2 ��π1+2 is conceptually equivalent
to (dπ1 ��π1) ∪ (dπ2 ��π2).

Sequential Union (;) Now consider the case that two system-model BXs are chained with the help of

correspondence data. When Π1, Π2, and Y1, Y2 are disjoint, given two system-model BXs l1 : ∂Π1
Ψ1←−→ Y1

and l2 : ∂Π2
Ψ2←−→ Y2, l1; l2 : ∂(Π1 ⊗Π2)

Ψ2←−→ Y1 ⊗ Y2 is defined as follows

1. l1; l2.K = {(π1 ∪ π2, ψ2, y1 ∪ y2)|ψ1 ⊆ ψ2 ∧ (π1, ψ1, y1) ∈ l1.K ∧ (π2, ψ2, y2) ∈ l2.K};

2. l1; l2.V(π1+2, ψ2) = (y1∪y2, ψ
′
2), such that π1+2 = π1∪π2∧π1 ∈ Π1∧π2 ∈ Π2, ψ1 ⊆ ψ2∧ψ1 ∈ Π1,

l1.V(π1, ψ1) = (y1, ψ
′
1), l2.V(π2, (ψ2 − ψ1)] ψ′1) = (y2, ψ

′
2), and ψ′1 ⊆ ψ′2;

3. l1; l2. W (π1+2, ψ2, y1+2) = (dπ1 ∪ dπ2, ψ
′
2), such that π1+2 = π1 ⊗ π2 ∧ π1 ∈ Π1 ∧ π2 ∈ Π2,

y1+2 = y1 ⊗ y2 ∧ y1 ∈ Y1 ∧ y2 ∈ Y2, ψ1 ⊆ ψ2 ∧ ψ1 ∈ Π1, l1. W (π1, ψ1, y1) = (dπ1, ψ
′
1), l2. W

(π2, (ψ2 − ψ1)] ψ′1, y2) = (dπ2, ψ
′
2), ψ′1 ⊆ ψ′2, and dπ1 ∪ dπ2 � π1+2 is defined.

Intuitively, sequential union is used when l1 and l2 convert disjoint systems (and models), and l1 produces
auxiliary and read-only information for l2, which is stored in the correspondence data of l1.

Example 6. Assume that lVM converts between a set of virtual machines and a set of VM elements
bijectively, where a VM element is the model representation of a virtual machine. A virtual machine is
identified by its IP address, and a VM element is identified by a VM ID. A VM element does not record
an IP address, because it is dynamically allocated when a virtual machine is created. Assume that lNW
bidirectionally converts a virtual network and a connection model that specifies the connections among
VM elements. To configure the virtual network, lNW must know the IP addresses of all virtual machines,
which cannot be provided by the network model (since VM elements do not record IP addresses). In
such a case, we perform lVM first, and save the mapping between IP addresses and VM IDs in the
correspondence data. Afterward, we perform lNW that reads the mapping saved in the correspondence
data of lVM and converts the network connections. This process is abstracted by lVM ; lNW .

Theorem 2. If l1 and l2 are system-model BX, then l1; l2 is also a system-model BX.
Proof. In both directions, the definition of l1; l2 ensures that l2 never overwrites the correspondence
data generated by l1. Due to the fact that Π1, Π2, and Y1, Y2 are disjoint, similar to parallel union, it is
not difficult to verify that l1; l2 preserves the well-behavedness of l1 and l2.

Sum (⊕) For two sets X1 and X2, X1 ⊕ X2 ≡ {x|x ∈ X1 ∨ x ∈ X2}. When Π1, Π2, and Y1, Y2 are

disjoint, given two system-model BXs l1 : ∂Π1
Ψ1←−→ Y1 and l2 : ∂Π2

Ψ2←−→ Y2, l1 ⊕ l2 : ∂(Π1 ⊕Π2)
Ψ1⊕Ψ2←−−−−→

Y1 ⊕ Y2 is defined as follows.

1. l1 ⊕ l2.K = {(π, ψ, y)|(π, ψ, y) ∈ l1.K ∨ (π, ψ, y) ∈ l2.K};

2. If π ∈ Πj and ψ ∈ Ψj , then l1 ⊕ l2.V(π, ψ) = lj .V(π, ψ), j=1,2;

3. If π ∈ Πj and ψ 6∈ Ψj , then l1 ⊕ l2.V(π, ψ) = lj .V(π, εΨj
), j=1,2;

4. If π ∈ Πj , ψ ∈ Ψj , and y ∈ Yj , then l1 ⊕ l2.W(π, ψ, y) = lj .W(π, ψ, y), j=1,2;

5. If π ∈ Πj , ψ 6∈ Ψj , and y ∈ Yj , then l1 ⊕ l2.W(π, ψ, y) = lj .W(π, εΨj
, y), j=1,2;

6. If π 6∈ Πj , ψ ∈ Ψj , and y ∈ Yj , then l1⊕ l2.W(π, ψ, y) = (dj ∪{edits that destroy π}, ψ′), such that
(dj, ψ′) = lj .W(εΠj , ψ, y) (j=1,2), where the edits that destroy π must result in an empty system;

7. If π 6∈ Πj , ψ 6∈ Ψj , and y ∈ Yj , then l1⊕ l2.W(π, ψ, y) = (dj ∪{edits that destroy π}, ψ′), such that
(dj, ψ′) = lj .W(εΠj , εΨj , y) (j=1,2), where the edits that destroy π must result in an empty system.

Intuitively, in forward direction, l1 ⊕ l2 calls lj if the given source π belongs to Πj (j=1,2). In backward
direction, l1 ⊕ l2 calls lj if the given view y belongs to Yj (j=1,2).

Page 10 of 25SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

For Review Only

He X, et al. Sci China Inf Sci 11

Theorem 3. If l1 and l2 are system-model BX, then l1 ⊕ l2 is also a system-model BX.
Proof. Note that the core behavior of l1 ⊕ l2 is actually achieved by l1 and l2, which are well-behaved
system-model BXs. Then, it is trivial to prove l1 ⊕ l2 is well behaved by straightforwardly checking
whether l1 ⊕ l2 satisfy Equations (4) and (5).

Recursion (+) Given a system-model BX l : ∂Π
Ψ←→ Y , assume that there are two partition functions

partlV : Π×Ψ→ (Π×Π)× (Ψ×Ψ) and partlW : Π×Ψ×Y → (Π×Π)× (Ψ×Ψ)× (Y ×Y) that satisfy
the following conditions
• partlV partitions π and ψ, i.e., partlV(π, ψ)=((πa,πb), (ψa,ψb)), such that πa ∩ πb = ∅ ∧ πa ∪ πb = π,

ψa∩ψb = ∅∧ψa∪ψb = ψ, and partlV(πa, ψ) = ((πa, ε), (ψa,ψb)); Moreover, partlV partitions π irrespective

of ψ, i.e., ∀ψ′
(
partlV(π, ψ) = ((πa,πb), (ψa,ψb)) ∧ partlV(π, ψ′) = ((πa,πb), (ψ

′
a,ψ
′
b))
)
;

• partlW partitions π, ψ, and y, i.e., partlW(π, ψ, y) = ((πa,πb), (ψa,ψb), (ya,yb)), such that πa ∩ πb =

∅ ∧ πa ∪ πb = π, ψa ∩ ψb = ∅ ∧ ψa ∪ ψb = ψ, ya ∩ yb = ∅ ∧ ya ∪ yb = y, and partlW(π, ψ, ya) =

((πa,πb), (ψa,ψb), (ya, ε)); Moreover, partlW partitions y irrespective of π and ψ, i.e., ∀π′, ψ′
(
partlW(π, ψ, y)=

((πa,πb), (ψa,ψb), (ya,yb)) ∧ partlW(π′, ψ′, y) = ((πa,πb), (ψ
′
a,ψ
′
b), (y

′
a,y
′
b))
)
;

• If (π, ψ, y) ∈ l.K, then partlW(π, ψ, y) = ((π, ε), (ψ, ε), (y, ε)) and partlV(π, ψ) = ((π, ε), (ψ, ε)), i.e.,

π, ψ, and y cannot be divided by partlV and partlW when (π, ψ, y) is a consistent tuple;
• If (π, ψ, y) ∈ l.K, partW(π, ψ, y) = ((π, ε), (ψ, ε), (y, ε)), then for any π′, ψ′, when π ⊆ π′ and ψ ⊆ ψ′,

partlW(π′, ψ′, y) = ((π, π′b), (ψ,ψ
′
b), (y, ε)), i.e., partlW only extracts necessary data from π and ψ;

We can define recursion of system-model BX l+ : ∂Π
Ψ←→ Y as follows.

1. l+.K={(π, ψ, y)|(πa, ψa, ya) ∈ l.K∧ ((πb = ε∧yb = ε)∨ (πb, ψ, yb) ∈ l+.K)}, when partlW(π, ψ, y)=
((πa,πb), (ψa,ψb), (ya,yb))};

2. l+.V(π, ψ) = (y, ψ′a ∪ ψb), when ((π, ε), (ψa,ψb)) = partlV(π, ψ), (y, ψ′a) = l.V(π, ψa);

3. l+.V(π, ψ) = (ya∪yb, ψ′), when ((πa,πb), (ψa,ψb)) = partlV(π, ψ), (ya, ψ
′
a) = l.V(πa, ψa), (yb, ψ

′) =

l+.V(πb, ψb] ψ′a), ψ′a ⊆ ψ′, and partlW(π, ψ′, ya ∪ yb) = ((πa,πb), (ψ
′
a,ψ
′
b), (ya,yb));

4. l+.W(π, ψ, y)=(dπ, ψ′a]ψb), when partlW(π, ψ, y)=((π, ε), (ψa,ψb), (y, ε)), (dπ, ψ′a) = l.W(π, ψa, y);

5. l+.W (π, ψ, y) = (dπa ∪ dπb, ψ′), when partlW(π, ψ, y) = ((πa,πb), (ψa,ψb), (ya,yb)), (dπa, ψ
′
a) = l.W

(πa, ψa, ya), (dπb, ψ
′) = l+.W(πb, ψb]ψ′a, yb), ψ′a ⊆ ψ′, dπa ∪ dπb � π is defined, and πa and πb are

disjoint about dπa ∪ dπb � π.

Intuitively, recursion performs the synchronization recursively. Each iteration handles part of the sys-
tem/model that is disjoint from the remainder. Sequential union is a special case of recursion.

Example 7. Assume that we want to synchronize in-memory linked lists Π with list models Y . Π1

denotes minimal lists that contain exactly one circle and its incoming arrow (optional), and Y1 denotes
minimal list models that contain exactly one box and its incoming arrow (optional). As shown in Figure
2(a), a linked list is represented as a chain of colored circles and a list model is represented as a chain of
colored boxes. If there is l that can converts Π1 and Y1 bidirectionally, then l+ can synchronize the entire

i0 i1 i2

iE,0 iE,1 iE,2

l+

i0 i1 i2

iE,0 iE,1 iE,2

l+l

i0 i1 i2

iE,0 iE,1 iE,2

l l l+
Linked list

List model

Step 1 Step 2

(a) A linked list and a list model
are to be synchronized with l+

(b) In step 1, the heads are synchronized
with and the tails are handled by l l+

(c) In step 2, the tails of step 1 are
recursively handled as is done in step 1

Figure 2 Illustration of recursion

linked list with the list model. For instance, as shown in Figure 2(b), the linked list and the list model
are split into list heads and list tails. We apply l to handle the head nodes and convert the tails with

Page 11 of 25 SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

For Review Only

He X, et al. Sci China Inf Sci 12

l+. The correspondence data of l, which contains the mapping between the heads, e.g., (i0, iE,0), will be
passed to the later call to l+. Finally, as shown in Figure 2(c), the list tails are recursively handled.

Theorem 4. If l is a system-model BX, then l+ is also a system-model BX.
Proof. The proof is similar to that of sequential union. We only discuss the second branch of backward
transformation as follows. Because partlW(π, ψ, y)=((πa,πb), (ψa,ψb), (ya,yb)), we have partlW(dπa ∪ dπb�
�π, ψ′, y) = ((π′a,π

′
b), (ψ

′′
a,ψ
′′
b), (ya,yb)), and then partlW(dπa∪dπb��π, ψ′, ya) = ((π′a,π

′
b), (ψ

′′
a,ψ
′′
b), (ya, ε)).

Since (dπa ��πa, ψ′a, ya) ∈ l.K, we must have partlW(dπa ∪ dπb ��π, ψ′, y) = ((dπa ��πa, dπb �
�πb), (ψ′a,ψ′b), (ya,yb)). So the round-trip properties can be ensured.

Edit Chain (�) Assume that we want to bidirectionally convert a certain type of systems Π1 and

a model type Y , and we already have a system-model BX l : ∂Π2
Ψ←→ Y . If there is an edit lens [6]

lS : ∂Π1
C←→ ∂Π2

6) between Π1 and Π2 that converts edits for Π1 and Π2 bidirectionally, then it is

possible to obtain an edit chain l� lS : ∂Π1
Π2×C×Ψ←−−−−−→ Y 7) that is defined as follows.

1. l� lS .K = {(π1, (π2, c, ψ), y)|π2 ∈ Π2 ∧ (π1, c, π2) ∈ lS .K ∧ (π2, ψ, y) ∈ l.K};

2. If (π1, c, π2) ∈ lS .K, l � lS .V (π′1, (π2, c, ψ)) = (y, (π′2, c
′, ψ′)), where es1 is the edit sequence that

can turn π1 into π′1
8), (es2, c

′) = lS .V(es1, c), π
′
2 = es2 ��π2, and (y, ψ′) = l.V(π′2, ψ);

3. If (π1, c, π2) ∈ lS .K, l� lS .W(π1, (π2, c, ψ), y) = (dπ1, (π
′
2, c
′, ψ′)), where (dπ2, ψ

′) = l.W(π2, ψ, y),
π′2 = dπ2 ��π2, and (dπ1, c

′) = lS .W(dπ2, c).

Example 8. Edit chain can be used when it is difficult to define a system-model BX between Π1 and Y
straightforwardly. Assume that we want to synchronize a local model with a remote system (i.e., Π1) that
is inaccessible directly. We can define an interface system (i.e., Π2) that exposes some APIs for remote
clients, and deploy an edit lens between Π1 and Π2 on the remote computer. Afterward, we define a
system-model BX between Π2 and Y locally. Edit chain ensures that the combination of the remote edit
lens and the local system-model BX achieves the synchronization between Π1 and Y .

Theorem 5. When l and lS are well behaved, l� lS is also well behaved.
Proof. It is trivial to verify that the definition of l� lS preserves the well-behavedness of l and lS .

Set Mapping ({.}) In some cases, a system π ∈ Π can be viewed as a set of disjoint sub-systems
π1, ..., πn ∈ Π′ (and the same to a model). We say Π = {Π′} and term it a set module. In concept, a
set module should contain three edits, i.e., insert, remove, and modify, which are used to add new values
into a set, to delete existing values, and to modify existing values. However, we do not define these edits
here, and only use them as placeholders. They should be concretized in different contexts (cf. Section 5).

When both a system and a model can be viewed as sets, we can achieve the bidirectional conversion
between them by synchronizing the sub-systems with the sub-models. Given a system-model BX l :

∂Π
Ψ←→ Y , we can lift l to a set mapping {l} when there is a pairing function pair{l} : {Π} ×Ψ× {Y } →

2Π×Ψ×Y that satisfies the following conditions.
• For any π ∈ πset, pair{l} uses π exactly once, i.e., {π|(π, ψ, y) ∈ pair{l}(πset, ψset, yset) ∧ π 6= ε} =

πset and
∣∣{(π, ψ, y)|(π, ψ, y) ∈ pair{l}(πset, ψset, yset) ∧ π 6= ε}

∣∣ = |πset|;
• For any y ∈ yset, pair{l} uses y exactly once, i.e., {y|(π, ψ, y) ∈ pair{l}(πset, ψset, yset)∧y 6= ε} = yset,∣∣{(π, ψ, y)|(π, ψ, y) ∈ pair{l}(πset, ψset, yset) ∧ y 6= ε}

∣∣ = |yset|;
• pair{l} does not return meaningless tuples, i.e., for any (π, ψ, y)∈pair{l}(πset, ψset, yset), π 6=ε∨y 6=ε;
• For any (, ψ,)∈pair{l}(, ψset,), ψ ⊆ ψset;
• If (π, ψ, y) ∈ l.K and π ∈ πset ∧ ψ ⊆ ψset ∧ y ∈ yset, then (π, ψ, y) ∈ pair{l}(πset, ψset, yset).

With such a pairing function, {l} : ∂{Π} Ψ←→ {Y } is defined as follows:

1. {l}.K = {(πset, ψset, yset)|∀(π, ψ, y)
(
(π, ψ, y) ∈ pair{l}(πset, ψset, yset)⇒ (π, ψ, y) ∈ l.K

)
};

6) For edit lens lS : ∂Π1
C←→ ∂Π2, C is called complement, and lS .K is also the consistency relation such that lS .K ⊆

Π1 × C × Π2. Please refer to [6] for more information.

7) Here, we slightly extend the definition of correspondence to allow it carry extra data. If we want to turn Π2 × C ×Ψ into a

partial bijective mapping between Π1 and Y , then we need an injective function from Π2 to Π1.

8) According to [6], es1 can be obtained by elaborately differencing π′
1 and π1.

Page 12 of 25SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

For Review Only

He X, et al. Sci China Inf Sci 13

2. If {(π1, ψ1, ε), (π2, ψ2, ε), ..., (πn, ψn, ε)} = pair{l}(πset, ψset, ε), (yi, ψ
′
i) = l. V (πi, ψi) (i=1...n),

i 6= j ⇒ yi ∩ yj = ∅,
⊎n
i=1 ψ

′
i ↓, then {l}.V(πset, ψset, ε) = ({y1, y2, ..., yn},

⊎n
i=1 ψ

′
i);

3. If {(π1, ψ1, y1), (π2, ψ2, y2), ..., (πn, ψn, yn)} = pair{l}(πset, ψset, yset), (dπi, ψ
′
i) = l. W (πi, ψi, yi)

(i=1...n), then dπ′i is defined as follows:

(a) If πi = ε, then dπ′i = dπi ∪ {insert the system dπi ��ε in the set};
(b) If yi = ε, then dπ′i = dπi ∪ {remove the system πi from the set};
(c) If dπi 6= ∅, then dπ′i = dπi ∪ {modify the set to replace πi with dπi ��πi};
(d) Otherwise, dπ′i = dπi, and in general, we expect dπi = ∅.

If i 6= j ⇒ πi and πj are disjoint about both dπ′i and dπ′j ,
⊎n
i=1 ψ

′
i ↓, and

⋃n
i=1 dπ

′
i�πset is defined,

then {l}.W(πset, ψset, yset) = (
⋃n
i=1 dπ

′
i,
⊎n
i=1 ψ

′
i).

Intuitively, set mapping ensures a bijective mapping between the system set and the model set by using
l to synchronize paired sub-systems and sub-models.

Theorem 6. {l} : ∂{Π} Ψ←→ {Y } is a well-behaved system-model BX.
Proof. In forward direction, because every (πi, ψ

′
i, yi) ∈ l.K and pair{l}(πset,

⊎n
i=1 ψ

′
i, {y1, y2, ..., yn}) =

{(πi, ψ′i, yi)|i = 1...n}, we must have (πset,
⊎n
i=1 ψ

′
i, {y1, y2, ..., yn}) ∈ {l}.K. In backward direction, {l}

first pairs πset with yset and obtains (πi, ψi, yi) (i=1...n). Afterward, {l} calls l.W for every (πi, ψi, yi) to
compute dπi. {l} may also append some set edits to dπi and obtains dπ′i. For instance, when πi = ε, {l}
generates an extra edit that intends to add dπi ��ε to the system set. In this way, dπ′i not only changes
πi but also ensures that the changed sub-system is added/removed/modified in the system set. When⋃n
i=1 dπ

′
i is applied to πset and the resulting system is π′set, we must have (1) yi = ε (and dπ′i removes

πi from the set) or (dπi ��πi, ψ′i, yi) ∈ l.K, and (2) pair{l}(π′set,
⊎n
i=1 ψ

′
i, yset) = {(dπi ��πi, ψ′i, yi)|i =

1...n ∧ yi 6= ε}. As a result, (π′set,
⊎n
i=1 ψ

′
i, yset) ∈ {l}.K.

Remark 10. If a system πset (a model yset) is not a real set, to apply set mapping, there must be a
way that can divide πset (yset) into a set and merge the sub-systems (sub-models) into πset (yset) again.

List Mapping ([.]) Consider the case that a system πlst (a model ylst) is actually a list [π1, π2, ...πn]
of sub-systems (a list of [y1, y2, ...ym] of sub-models), where πlst ∈ [Π] and πi ∈ Π (ylst ∈ [Y] and yi ∈ Y).
Then, [Π] ([Y]) is a list system module (a list model type). In concept, a list module should contain three
edits, i.e., insert, remove, and modify, which are used to add new values into a list, to delete existing
values, and to modify existing values. Similar to set mapping, we still use those edits as placeholders.

Given a system-model BX l : ∂Π
Ψ←→ Y , we need a pairing function pair[l] : [Π]×{Ψ}×[Y]→ [Π×Ψ×Y]

satisfying the following conditions.
• For any π ∈ πlst, pair[l] uses π exactly once, i.e., {π|(π, ψ, y) ∈ pair[l](πlst, ψset, ylst)∧ π 6= ε} = πlst

and
∣∣{(π, ψ, y)|(π, ψ, y) ∈ pair[l](πlst, ψset, ylst) ∧ π 6= ε}

∣∣ = |πlst|, where we cast πlst to a set;

• For any y ∈ ylst, pair[l] uses y exactly once, i.e., {y|(π, ψ, y) ∈ pair[l](πlst, ψset, ylst) ∧ y 6= ε} = ylst,∣∣{(π, ψ, y)|(π, ψ, y) ∈ pair[l](πlst, ψset, ylst) ∧ y 6= ε}
∣∣ = |ylst|, where we cast ylst to a set;

• pair[l] does not return meaningless tuples, i.e., for any (π, ψ, y) ∈ pair[l](πlst, ψset, ylst), π 6= ε∨y 6= ε;
• For any (, ψ,)∈pair[l](, ψset,), ψ ⊆ ψset;
• Given i, if ∀k

(
k < i → (πk, , yk) ∈ pair[l](πlst, ψset, ylst)

)
and there exists ψ ⊆ ψset such that

(πi, ψ, yi) ∈ l.K, then (πi, , yi) ∈ pair[l](πlst, ψset, ylst); In short, if the objects and the elements occurring
before i are mutually paired, and if πi and yi are consistent, then πi and yi must be also paired.

Now we define list mapping [l] : ∂[Π]
{Ψ}←−→ [Y] as follows.

1. [l].K = {([π1, π2, ..., πn], ψset, [y1, y2, ..., yn])|pair[l]([π1, π2, ..., πn], ψset, [y1, y2, ..., yn]) = [(π1, ψ1, y1),
(π2, ψ2, y2), ..., (πn, ψn, yn)] ∧ ∀i((πi, ψi, yi) ∈ l.K)};

2. If pair[l]([π1, π2, ..., πn], ψset, ε) = [(π1, ψ1, ε), (π2, ψ2, ε), ..., (πn, ψn, ε)], (yi, ψ
′
i) = l.V(πi, ψi) (i=1...n),⊎n

i=1 ψ
′
i ↓, then [l].V([π1, π2, ..., πn], ψset) = ([y1, y2, ..., yn],

⊎n
i=1 ψ

′
i);

3. If pair[l]([π1, π2, ..., πn], ψset, [y1, y2, ..., ym]) = [(πi1 , ψj1 , yk1), (πi2 , ψj2 , yk2), ..., (πip , ψjp , ykp)], sup-
posing (dπiq , ψ

′
jq

) = l.W(πiq , ψjq , ykq) (q=1...p), then we compute dπ′jq as follows.

Page 13 of 25 SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

For Review Only

He X, et al. Sci China Inf Sci 14

(a) If πiq = ε, then dπ′iq = dπiq ∪ {insert the system dπiq ��ε at kq in the list};

(b) If ykq = ε, then dπ′iq = dπiq ∪ {remove the system πiq at iq from the list};

(c) Otherwise, dπ′iq = dπiq ∪ {modify πiq at iq in the list with dπiq ��πiq and move it to kq}.

If u 6= v ⇒ πiu and πiv are disjoint about both dπ′iu and dπ′iv ,
⊎p
u=1 ψ

′
ju
↓, and

⋃p
u=1 dπ

′
iu

� πlst is

defined, then {l}.W(πlst, ψset, ylst) = (
⋃p
u=1 dπ

′
iu
,
⊎p
u=1 ψ

′
ju

).

Intuitively, list mapping ensures (1) a bijective mapping between the system list and the model list with
l and (2) the ith value (i.e., πi) in the system list must be paired with the ith value (i.e., yi) in the model
list when a consistent state is reached.

Example 9. Assume that l converts πi with yi. Given a system list [π1, π2, π3], [l].V converts every πi in
the list into yi (i=1,2,3), and then creates a resulting list [y1, y2, y3] based on the value order of the system
list. In backward direction, given a system list [π1, π2, π3] and a mode list [y3, y4, y2], [l].W first aligns the
two lists, and knows that y2 and y3 are paired with π2 and π3, and π1 and y4 are unpaired. Afterward, for
π1, [l].W generates a list edit remove π1 at 1 because π1 cannot be paired with any value in the model list;
for π2 and y2, [l].W generates a list edit modify the list by moving π2 from 2 to 3 because in the model
list, y2 appears at position 3; for π3 and y3, [l].W generates a list edit modify by moving π3 from 3 to 1
because in the model list, y3 is the first value; for y4, [l].W generates a list edit insert π4 at 2, where
l.W must generate the edits that create π4.

Before we consider the well-behavedness of list mapping, an important issue must be discussed first.
Recall that when we generate list edits (i.e., insert, remove, and modify), we specify the positions at
which the values in the list are to be removed, inserted, and changed and moved. However, all those
positions are only valid for either the original lists or the updated lists.

For example, consider the original system list [π1, π2, π3] and two edits remove the value at 1o and
insert π4 at 2n, where we use io and in to denote a position i in the original list and the updated list,
respectively. The expected result is [π2, π4, π3], i.e., the first value in the original list is removed and π4

must present at position 2 in the final updated result. If we do the removal first (and we get [π2, π3])
and the insertion afterward (and we get [π2, π4, π3]), then we obtain the expected result. However, if we
do the two edits in the reverse order, then we will get an incorrect result [π4, π2, π3]—value π4 does not
appear at position 2. The major cause is that those positions in the edit operations are state-based and
they should be dynamically refreshed when a list edit is applied (or not applied). Consider our example
again. If the removal of the first value is not done, then we should not insert π4 at 2 but at 3, so that
when the first value is removed in the future, π4 will become the second value in the final result.

/folder
 f

a file system

<<folder>
folder

<<file>
f

s:Classput () = s:Class
name=v.name
abstract=false

v:Table,get () = v:Table
name=s.name

s:Class
abstract=false

i 𝖿 v1
i 𝖿 v2
i 𝖿 v3

1

2

3

i 𝖿 v1
i 𝖿 v2

i 𝖿 v3

1

2

4

i 𝖿 v4
3

i 𝖿 v1

i 𝖿 v3

1

3

i 𝖿 v4
2

i 𝖿 v4

i 𝖿 v′ 1

1

3

i 𝖿 v3
2

insert𝖿 (i, v4,3) π1 remove𝖿 (i,2) π2 modify𝖿 (i, v′ 1,1,3) π3

π1
π2

π3 π4

1o 2o 3o 4o 5o

1n 2n 3n 4n 5npositions in updated list

positions in original list

value to be removed

value to be inserted

untouched value6o

6n

Figure 3 Position conversion

To gain more insights, please consider Figure 3, which shows a list of colored circles, where the red
circles are to be removed from the original list, green circles are to be inserted into the updated list,
and black circles are preserved in both original and updated list. Below the list, original positions are
presented (green circles do not have original positions), and above the list, updated positions are presented
(red circles do not have updated positions). For an updated position, e.g., 5n, obviously, if all the red
circles before 5n are removed from the list and all green circles before 5n are inserted, then the correct
position of 5n is exactly 5. If there is one red circle that is not removed, then we must increase the
position by 1; If there is one green circle that is not inserted, then we must decrease the position by 1.
For an original position, e.g., 4o, if any red circle before 4o is removed, then we must decrease it by 1; If
any green circle before 4o is inserted, then we must increase it by 1.

We assume that green circles must be inserted after black circles and before red circles as illustrated
in Figure 3. Hence, the key of the calculation is to know the original position of the nearest black circle
that is in front of a green circle, and we use a function nearestBlk to return the answer. For example,
nearestBlk(2n) = 2o and nearestBlk(4n) = nearestBlk(5n) = 5o. This function helps us to compare

Page 14 of 25SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

For Review Only

He X, et al. Sci China Inf Sci 15

the position of a red circle and that a green circle. For instance, because nearestBlk(2n) = 2o, we know
that the red circle at 1o is before 2n, and the red circles at 3n and 4n are after 2n.

Recall the meaning of the updated position in. It implies that in the updated list, there are i − 1
values presented before in. The i − 1 values may be green circles or black circles. That means if we
subtract the number of green circles before in from i− 1, then we obtain the number of black circles. In
the calculation, insert at jn is viewed as a green circle; remove at ko is viewed as a red circle; and modify
at ko and move it to jn is viewed as a red and a green circles. Function nearestBlk is defined as follows:

nearestBlk(in) ≡ min to, such that
∣∣{ko|k 6 t∧(@remove at ko)∧(@modify at ko)}

∣∣=blkBefore(in)

where blkBefore(in) ≡ i− 1−
∣∣{insert at jn|j < i} ∪ {modify and move the value to jn|jn < in}

∣∣
Now we are able to compute the correct position, denoted as function cur(), of any original position

ko and any updated position jn given a set of list edits at runtime as follows:

cur(jn) = j /* required position in updated list */

/* subtract the number of green circles that have not been inserted into the list */

−
∣∣{e|i < j ∧ (e = insert at in ∨ e = modify and move to in) ∧ e is not performed}

∣∣
/* add the number of red circles that have not been removed from the list */

+
∣∣{e|i<NB∧(e = remove at io∨(e = modify at io and move to pn∧p 6= j))∧e is not performed}

∣∣
where NB = nearestBlk(jn). And, for ko, we also have the following calculation:

cur(ko) = k /* required position in original list */

/* subtract the number of red circles that have been removed from the list */

−
∣∣{e|i < k ∧ (e = remove at in ∨ e = modify at in) ∧ e is performed}

∣∣
/* add the number of green circles that have been inserted into the list */

+
∣∣{e|nearestBlk(in) < k∧(e = insert at in∨e = modify and move to in)∧e is performed}

∣∣
In the rest of this paper, we assume that when a list edit is being performed, it automatically does the
position conversion. As a result, the list edits can be performed in any reasonable order. And, when all
of them are performed, the values to be deleted from the original list should not appear in the updated
list, and the values to be inserted (and moved) must occur in the updated list at the specified positions.

Theorem 7. The list mapping [l] is a well-behaved system-model BX.
Proof. In fact, list mapping is similar to set mapping, so it is analogous to show that list mapping is
well-behaved if we ignore the position constraint, i.e., the i-th value in the system list must be paired
with the i-th value in the model list. Regarding this position constraint, it is not difficult to find that
when generating dπ′iq , we add list edits to ensure that all the values occur in the correct positions in the
updated list. The position conversion strategy discussed above ensures that we can always put a value
at the right position at runtime, in whatever order the list edits are executed.

5 A Generic System-Model Synchronizer

This section first demonstrates how to use the concept of system-model BX and its combinators proposed
in this paper to develop a generic system-model synchronizer9) in Sections 5.1, 5.2, and 5.3, and then
concretizes a file system synchronizer from the generic one in Section 5.4.

The basic idea is as follows.
• For each class c in the system type, map c onto an EClass E in the model type by defining a

system-model BX ∂c
Ψ←→ E (called a class synchronizer). Without the loss of generality, we require that

the mapping between system classes and EClasses is bijective10).

9) It is possible to build other generic synchronizers.

10) In practice, c can be mapped onto multiple EClasses as long as all objects in c can be partitioned into multiple groups,

each of which corresponds to only one EClass. In such a case, c can be viewed as a sum of multiple subtypes.

Page 15 of 25 SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

For Review Only

He X, et al. Sci China Inf Sci 16

• For each structural feature f in the system type, map f onto an EStructuralFeature fE by defining

∂f
Ψ←→ fE (called a feature synchronizer). Specifically, if f is a reference, then fE must be an EReference;

if f is an attribute, then fE must be an EAttribute. The mapping between structural features and
EStructuralFeatures must be bijective.
• In both directions, we always synchronize objects with model elements with the help of class syn-

chronizers, and then handle links/slots and relationships.
• We never execute the system edits during the backward transformation because of the side effects

and domain constraints. Instead, we collect all the system edits (cf. Section 4), plan a proper order (cf.
Section 3.3), and finally apply them to the system when the entire backward transformation is completed.
The round-trip properties are guaranteed by system-model BX.

5.1 Class Synchronizer

A class synchronizer lc : ∂c
Ψ←→ E synchronizes objects in c and model elements E. The expected

behavior of lc is as follows. In forward direction, lc generates a model element from the given object. In
backward direction, lc generates some object edits (i.e., conc and desc) by differencing the given object
and model element. Especially, if no object is provided, then we must generate a conc to create an
object; if no model element is provided, then we must generate a desc to delete this object because it is
redundant; if the given object and model element are inconsistent (e.g., their constructor parameters are
inconsistent), then a new object will be created and the old object will be destroyed;

However, synchronizing an object i with an element iE is more complicated than our expectation.

Assume that i has a constructor parameter i
f−→ v but iE does not. Because we assume that no edits are

defined for constructor parameters (cf. Section 3.2), the only way of making the system and the model
consistent is to create a new object i′ that is consistent with iE to take the place of i.

We assume that π ∈ c consists of an object i 7→ c and all its constructor parameters. For simplicity,
we still regard i 7→ c or i as an instance of c, while assuming that all its constructor parameters are
automatically put into this instance. The case of E is analogous.

Definition 9 (Generic Class Synchronizer). Given any class c and EClass E, assume that their con-
structor parameters are f1, f2, ..., fn and fE,1, fE,2, ..., fE,n (fj corresponds to fE,j), and there a function
Fj for each fj , such that Fj(v) ≡ ψ(v) if fj is a reference, or Fj is a bijective function11) (by default,

Fj(v) = v). Then, lc : ∂c
Ψ←→ E is defined as follows.

1. lc.K = {(i 7→ c, ψ, iE)|ψ(i) = iE ∧ ∀j, v(i
fj−→ v ⇔ Fj(v) ∈ iE .fE,j) ∧ ψ is minimal}; The definition

of lc.K implies that Fj(v) 6= ⊥;

2. lc.V(i 7→ c, ψ) = (y, ψ′), where iE is a new element, y ≡ {iE 7→ E}∪
⋃n
j=1

⋃mj

k=1{iE
fE,j−−→ Fj(vj,k)},

and ψ′ = {(i, iE)} ∪ {(v, ψ(v))|∃i fj−→ v ∧ ψ(v) 6= ⊥}; In short, l.V creates a new element iE and
sets up its constructor parameters to be consistent with i 7→ c;

3. lc.W(i 7→ c, ψ, iE) =

(a) (∅, ψ′), if (i 7→ c, ψ′, iE) ∈ lc.K ∧ ψ′ ⊆ ψ[i→ iE] (see Figure 4(a));

(b) ({desc i, creation(i′)}, ψ′), if @ψ′′(ψ′′ ⊆ ψ[i → iE] ∧ (i 7→ c, ψ′′, iE) ∈ lc.K), where i′ =

uuid(i) iE and ψ′ = {(i′, iE)} ∪ {(ψ−1(u), u)|u ∈ iE .fE,j ∧ ψ−1(u) 6= ⊥}, i.e., lc.W creates a
new object i′ due to the change of constructor parameters (see Figure 4(b));

4. lc.W(εuuid(i) iE , ψ, iE)12) =({creation(uuid(i) iE)}, ψ′), where ψ′={(uuid(i) iE , iE)}∪{(ψ−1(u), u)|u ∈
iE .fE,j ∧ ψ−1(u) 6= ⊥};

5. lc.W(ε, ψ, iE) = lc.W(εuuid iE , ψ, iE);

6. lc.W(i 7→ c, ψ, εE) = ({desc i}, ε);

11) In fact, it can be a classical BX. However, for simplicity, we assume that it is a bijective function.

12) ε
uuid(i) iE

(and εuuid iE
) denotes a special empty value that carries additional information of an object identifier.

Page 16 of 25SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

For Review Only

He X, et al. Sci China Inf Sci 17

i ↦ ck

iE ↦ Yj

lj . ⇚

{
concj

(uuid(i) iE) . . . ,
desck

i }

uuid(i) iE
iE ↦ Yj

desck
i

concj
(uuid(i) iE) . . .

① ②

ϵ

iE ↦ Yj

lj . ⇚uuid iE
iE ↦ Yj

concj
(uuid iE) . . .

① ②

we destroy object i
because it cannot be
synchronized with lj

{concj
(uuid(i) iE) . . . }no edit

generating a new
identifier does not
change the system

System

Model

Correspondence

i ↦ c

i 𝖿 v

iE ↦ E

iE
𝖿E u

. . .
(v, u)

lc . ⇚

i ↦ c

i 𝖿 v

. . .
(v, u)
(i, iE)

no edit

i ↦ c

i 𝖿 v

iE ↦ E

iE
𝖿E u

. . .
(v′ , u)

i ↦ c

i 𝖿 v
𝚞𝚞𝚒𝚍(i) iE ↦ c
𝚞𝚞𝚒𝚍(i) iE

𝖿 v′

. . .
(v′ , u)

(𝚞𝚞𝚒𝚍(i) iE, iE)

lc . ⇚

DEL
conc(𝚞𝚞𝚒𝚍(i) iE, 𝖿[v′]), desc(i)

ϵuuid(i) iE 𝚞𝚞𝚒𝚍(i) iE ↦ cj

iE ↦ Yj

lcj
. ⇚

concj
(𝚞𝚞𝚒𝚍(i) iE, . . .)

. . .
(𝚞𝚞𝚒𝚍(i) iE, iE)

Preprocessing
in lc1 ⊕ lc2

i ↦ ck
DEL

(a) Illustration of class synchronizer:
branch 3

.

(b) Illustration of class synchronizer:
branch 4

(c) Illustration of sum of class synchronizers:
the overloaded branch

expected
result

expected
result

expected
resultmiddle

state

(a) Class synchronizer: branch 3(a)

i ↦ ck

iE ↦ Yj

lj . ⇚

{
concj

(uuid(i) iE) . . . ,
desck

i }

uuid(i) iE
iE ↦ Yj

desck
i

concj
(uuid(i) iE) . . .

① ②

ϵ

iE ↦ Yj

lj . ⇚uuid iE
iE ↦ Yj

concj
(uuid iE) . . .

① ②

we destroy object i
because it cannot be
synchronized with lj

{concj
(uuid(i) iE) . . . }no edit

generating a new
identifier does not
change the system

System

Model

Correspondence

i ↦ c

i 𝖿 v

iE ↦ E

iE
𝖿E u

. . .
(v, u)

lc . ⇚

i ↦ c

i 𝖿 v

. . .
(v, u)
(i, iE)

no edit

i ↦ c

i 𝖿 v

iE ↦ E

iE
𝖿E u

. . .
(v′ , u)

i ↦ c

i 𝖿 v
𝚞𝚞𝚒𝚍(i) iE ↦ c
𝚞𝚞𝚒𝚍(i) iE

𝖿 v′

. . .
(v′ , u)

(𝚞𝚞𝚒𝚍(i) iE, iE)

lc . ⇚

DEL
conc(𝚞𝚞𝚒𝚍(i) iE, 𝖿[v′]), desc(i)

ϵuuid(i) iE 𝚞𝚞𝚒𝚍(i) iE ↦ cj

iE ↦ Yj

lcj
. ⇚

concj
(𝚞𝚞𝚒𝚍(i) iE, . . .)

. . .
(𝚞𝚞𝚒𝚍(i) iE, iE)

Preprocessing
in lc1 ⊕ lc2

i ↦ ck
DEL

(a) Illustration of class synchronizer:
branch 3

.

(b) Illustration of class synchronizer:
branch 4

(c) Illustration of sum of class synchronizers:
the overloaded branch

expected
result

expected
result

expected
resultmiddle

state

(b) Class synchronizer: branch 3(b)

i ↦ ck

iE ↦ Yj

lj . ⇚

{
concj

(uuid(i) iE) . . . ,
desck

i }

uuid(i) iE
iE ↦ Yj

desck
i

concj
(uuid(i) iE) . . .

① ②

ϵ

iE ↦ Yj

lj . ⇚uuid iE
iE ↦ Yj

concj
(uuid iE) . . .

① ②

we destroy object i
because it cannot be
synchronized with lj

{concj
(uuid(i) iE) . . . }no edit

generating a new
identifier does not
change the system

System

Model

Correspondence

i ↦ c

i 𝖿 v

iE ↦ E

iE
𝖿E u

. . .
(v, u)

lc . ⇚

i ↦ c

i 𝖿 v

. . .
(v, u)
(i, iE)

no edit

i ↦ c

i 𝖿 v

iE ↦ E

iE
𝖿E u

. . .
(v′ , u)

i ↦ c

i 𝖿 v
𝚞𝚞𝚒𝚍(i) iE ↦ c
𝚞𝚞𝚒𝚍(i) iE

𝖿 v′

. . .
(v′ , u)

(𝚞𝚞𝚒𝚍(i) iE, iE)

lc . ⇚

DEL
conc(𝚞𝚞𝚒𝚍(i) iE, 𝖿[v′]), desc(i)

ϵuuid(i) iE 𝚞𝚞𝚒𝚍(i) iE ↦ cj

iE ↦ Yj

lcj
. ⇚

concj
(𝚞𝚞𝚒𝚍(i) iE, . . .)

. . .
(𝚞𝚞𝚒𝚍(i) iE, iE)

Preprocessing
in lc1 ⊕ lc2

i ↦ ck
DEL

(a) Illustration of class synchronizer:
branch 3

.

(b) Illustration of class synchronizer:
branch 4

(c) Illustration of sum of class synchronizers:
the overloaded branch

expected
result

expected
result

expected
resultmiddle

state

(c) Sum of class synchronizers: overloaded case

Figure 4 Synchronization of objects

Particularly, creation(x) is conc(x, f1[F−1
1 (u1,1), ..., F−1

1 (u1,m1
)], ..., fn[F−1

n (un,1), ..., F−1
n (un,mn

)]), where
we assume uj,k ∈ iE .fE,j .
Remark 11. It is not difficult to verify that this generic class synchronizer is a well behaved system-
model BX that satisfies Definition 7 and Equations (4) and (5).

To concretize a class synchronizer, we must (1) identify c and E as well as their constructor parameters
f1, ..., fn and fE,1, ..., fE,n, (2) provide bijective functions F1, F2, ..., Fn, and (3) define edits conc and desc.

Sum of Class Synchronizers In practice, there are many classes and EClasses. We can use the
generic class synchronizer to develop many concrete synchronizers. Then, we can combine all concrete

class synchronizers with sum ⊕. For two class synchronizers lc1
: ∂c1

Ψ←→ E1 and lc2
: ∂c2

Ψ←→ E2,
lc1 ⊕ lc2 have to be specialized by refactoring the sixth and seventh branches of the sum as follows:
• If π = i 7→ ck ∧ ck 6= cj , y = iE 7→ Ej , and (dj, ψ′) = lcj .W (εuuid(i) iE , ψ\(i,), y), then lc1

⊕ lc2
.W

(π, ψ, y) = (dj∪{desck
i}, ψ′) (j=1,2); In such a case, the given model element iE 7→ Ej is paired with an

object i 7→ ck, but the type of i is inconsistent with Ej ; hence, as illustrated in Figure 4(c), we generate
descj

i (step ¬) and ask lcj
to generate an invocation of concj

(step ­).

Remark 12. Because c1, c2 and E1, E2 are disjoint, based on Theorem 3, lc1
⊕ lc2

is also well behaved.

In the rest of this section, lc : ∂c
Ψ←→ E may also represent a sum of many class synchronizers.

Synchronization of a Set of Objects Now, let us consider how to synchronize all the objects in a

system with the model elements in a model. Intuitively, if lc : ∂c
Ψ←→ E is a class synchronizer, then we

can apply set mapping {lc} to the set of objects and the set of model elements.
To apply {lc}, we first define a pairing function pair{lc} : {c} ×Ψ× {E} → 2c×Ψ×E as follows: given

πset ∈ {c}, ψ ∈ Ψ, yset ∈ {E},
• new pairs = {(i, iE)|i ∈ πset ∧ (i,) 6∈ ψ ∧ iE ∈ yset ∧ (, iE) 6∈ ψ ∧ isAligned(i, iE)}, where

isAligned(i, iE) is a domain-specific predicate that checks whether an object i and a model element iE
can be paired; Intuitively, new pairs contains the pairs of objects and elements that satisfy isAligned,
such that ψ does not include the correspondence information about those objects and model elements;
• Pprev = {(i, iE)|i ∈ πset ∧ iE ∈ yset ∧ ψ(i) = iE}, i.e., the previously paired objects and elements;
• Pnew = {i|(i, iE) ∈ new pairs∧@i′E(iE 6= i′E∧(i, i′E) ∈ new pairs)∧@i′(i 6= i′∧(i′, iE) ∈ new pairs)},

i.e., newly paired objects and elements;
• PunpairedO = {(i, ε)|i ∈ πset ∧ @(i,) ∈ Pprev ∪ Pnew}, i.e., the objects that cannot be paired;
• PunpairedE = {(ε, iE)|iE ∈ m ∧ @(, iE) ∈ Pprev ∪ Pnew}, i.e., the elements that cannot be paired.
• pair{lc}(πset, ψ, yset) = {(i, ψ(i,iE), iE)|(i, iE) ∈ Pprev ∪ Pnew ∪ PunpairedO ∪ PunpairedV }, where

ψ(i,iE) = {(i′, i′E)|(i′, i′E) ∈ ψ ∧ ((i′ = i ∧ i′E = iE) ∨ i f−→ i′ ∈ πset ∨ i′E ∈ iE .fE)}, and f and fE are
constructor parameters.

Remark 13. It is not difficult to verify that pair{lc} meets the requirements needed by set mapping.
Moreover, any two objects in an object set are mutually disjoint, because an object edit that is generated
by lc for a certain object never affects others when the edit is applicable. Accordingly, based on Theorem
6, {lc} must be a well-behaved system-model BX.

Page 17 of 25 SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

For Review Only

He X, et al. Sci China Inf Sci 18

Regarding the object set edits, insert and remove are concretized as conc and desc, respectively, while
modify is concretized as a pair of conc and desc. However, in most cases, the class synchronizer {lc}
already produces the needed edits for the object set.

Although {lc} is a well-behaved system-model BX, it still may fail in the synchronization. Re-
member that in a system module, an object is always created with a constructor that may require
other objects as its (actual) constructor parameters (cf. Section 3.2). If we synchronize an object
and its constructor parameters simultaneously, then {lc} may not return a result. For instance, if

π = {i, i′, i f−→ i′, i′
f′−→ v}, y = {iE , i′E , iE

fE−→ i′E}, and ψ = {(i, iE), (i′, i′E)}, then {lc}. W (π, ψ, y)

is equal to the merge of lc.W ({i, i f−→ i′}, {(i, iE), (i′, i′E)}, {iE , iE
fE−→ i′E}) = (∅, {(i, iE), (i′, i′E)}) and

lc.W({i′, i′ f′−→ v}, {(i′, i′E)}, {i′E}) = ({desc i′, consc i′′}, {(i′′, i′E)}). However, the merge will fail accord-
ing to definition of set mapping, because the resulting correspondence data does not converge.

To reflect such dependencies among objects, we define a partial order ≺ as follows: for any two objects

i and i′, i ≺ i′ if and only if i
f−→ i′ belongs to the current system and f is a constructor parameter. A

given a set S of objects, we can pick the largest independent subset, in which for any two objects i1 and
i2, i1 6≺ i2 ∧ i2 6≺ i1. Similarly, we can also define a partial order ≺ over model elements as follows: for
any two elements iE and i′E , iE ≺ i′E if and only if i′E ∈ iE .fE , where fE is synchronized with f that is
a constructor parameter. A given a set M of model elements, we can also pick the largest independent
subset, in which for any two elements iE,1 and iE,2, iE,1 6≺ iE,2 ∧ iE,2 6≺ iE,1.

Based on the partial order ≺ and {lc}, a set of objects is synchronized with a set of model elements
by recursion, i.e., {lc}+. First, we extract the largest independent subsets out from the given set of
objects and the set of model elements, and synchronize the independent subsets. Then, we process the
remainder recursively. Note that {lc}, in this context, is defined for independent (sub-)sets. During each
recursion, we apply set mapping {lc} to synchronize independent objects and model elements, resulting in
more independent objects and model elements in the remainder of the given sets. Specifically, in forward
direction, {lc} generates an independent set of model elements from an independent set of objects; In
backward direction, {lc} turns a set of objects into an independent set of objects that are bijectively
mapped onto the given independent set of model elements.

To apply recursion, we define the two partition functions part
{lc}
V and part

{lc}
W as follows.

1. part
{lc}
V : {c} ×Ψ→ ({c} × {c})× (Ψ×Ψ): given a set πset ∈ {c} of objects and ψ ∈ Ψ,

• let π≺ = {i|i ∈ πset ∧ ∀i′(i′ ∈ πset ∧ i′ 6= i⇒ i 6≺ i′ ∧ i′ 6≺ i)}, and π+ = πset − π≺, i.e., π≺ is a
largest independent subset of πset;

• let ψ≺ = {(i, iE)|(i, iE) ∈ ψ ∧ (i ∈ π≺ ∨ i′
f−→ i ∈ π≺)}, and ψ+ = ψ − ψ≺, i.e., ψ≺ contains

the correspondence information on the objects to be converted and their constructor parameters,
where we assume that f is a constructor parameter of i′;

then, part
{lc}
V (πset, ψ) = ((π≺, π+), (ψ≺, ψ+)).

2. part
{lc}
W : {c}×Ψ×{E} → ({c}×{c})× (Ψ×Ψ)× ({E}×{E}): given a set πset ∈ {c} of objects,

ψ ∈ Ψ, and a set yset ∈ {E} of model elements (yset 6= ε),

• let y≺ = {iE |iE ∈ yset ∧ ∀i′E(i′E ∈ yset ∧ i′E 6= iE ⇒ iE 6≺ i′E ∧ i′E 6≺ iE)}, and y+ = yset − y≺,
i.e., y≺ is a largest independent subset of yset;

• let π≺ = {i|i ∈ πset ∧ iE ∈ y≺ ∧ (i, iE) ∈ ψ} ∪ {i|(i, iE) ∈ new pairs ∧ @i′E(iE 6= i′E ∧ (i, i′E) ∈
new pairs)∧@i′(i 6= i′∧ (i′, iE) ∈ new pairs)}, π+ = πset−π≺; Intuitively, π≺ contains the objects
mapped onto y≺;

• let ψ≺ = {(i, iE)|(i, iE) ∈ ψ∧(iE ∈ y≺∨(iE ∈ i′E .fE∧i′E ∈ y≺))}∪{(i, iE)|(i, iE) ∈ ψ∧i ∈ π≺},
and ψ+ = ψ − ψ≺, where we assume that f and fE are constructor parameters;

then, part
{lc}
W (πset, ψ, yset) = ((π≺, π+), (ψ≺, ψ+), (y≺, y+)).

3. If yset = ε, then part
{lc}
W (πset, ψ, yset) = ((πset, ε), (ε, ψ), (ε, ε))

Remark 14. It is not difficult to verify that the two partition functions meet the requirements imposed
by recursion. Hence, according to Theorem 4, {lc}+ is a well behaved system-model BX. Particularly,
{lc}+ takes the dependencies among objects into account and overcomes the limitation of {lc} when
being used to synchronize a set of objects.

Page 18 of 25SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

For Review Only

He X, et al. Sci China Inf Sci 19

Alignment Predicate In the partition and the pairing functions, we used a domain-specific predicate
isAligned to establish new correspondence between objects and model elements. It is used to handle the
case that a system is synchronized with a model without previous correspondence data. isAligned checks
whether an object can be paired with an element by using domain knowledge. For instance, supposing
that there is a file model that synchronizes with the file system, a file in the file system can be paired with
a model element that denotes a file by using their full paths; For a running IoT system and a IoT model
that represents this running IoT system, an object (i.e., a device) can be paired with a model element that
denotes a device by using IP addresses. We expect that an object (an element) can only be paired with at
most one element (one object), i.e., isAligned(i, iE)⇒ ∀i′(¬isAligned(i′, iE)) ∧ ∀i′E(¬isAligned(i, i′E)).
However, if this requirement cannot be satisfied at runtime, a runtime error arises.

5.2 Feature Synchronizer

A feature synchronizer lf : ∂f
Ψ←→ fE synchronizes a feature value of f in the system with a feature value of

fE in the model, where ∂f consists of the feature edits defined in Section 3.2. The basic idea of a feature

synchronizer is to ensure that a system feature value i
f−→ v corresponds to a model feature value iE

fE−→ u,
such that i and v corresponds to iE and u, respectively.

Depending on whether f and fE are ordered, we have two generic feature synchronizers as follows.

Definition 10 (Generic Unordered Feature Synchronizer). Given unordered feature f and unordered

feature fE , the generic unordered feature synchronizer lf : ∂f
Ψ←→ fE is defined as follows.

1. lf .K = {(i f−→ v, ψ, iE
fE−→ u)|ψ(i) = iE ∧ F (v) = u}, where the function F has the same meaning as

that is described in class synchronizer;

2. lf .V (i
f−→ v, ψ) = (ψ(i)

fE−→ F (v), ψ), i.e., create a model feature value that is consistent with the
system feature value;

3. lf .W(i
f−→ v, ψ, iE

fE−→ u) =

• (∅, ψ), if (i
f−→ v, ψ, iE

fE−→ u) ∈ lf .K;

• ({modifyf(i, v, F−1(u))}, ψ), if (i
f−→ v, ψ, iE

fE−→ u) 6∈ lf .K ∧ iE = ψ(i);

4. Supposing i−1
E = ψ−1(iE) and u−1 = F−1(u), then l.W(ε, ψ, iE

fE−→ u) =

• ({insertf(i−1
E , u−1)}, ψ), if f is a not containment reference or u−1 6= uuid(v) u;

• ({moveInf(i
−1
E , u−1, i)}, ψ), if f is a containment reference, and i is current container of u−1

or i is the current container of v where u−1 = uuid(v) u;

5. lf .W(i
f−→ v, ψ, ε) =

• ({removef(i, v)}, ψ), if f is a not containment reference, or F (v) = ⊥∧@u(F−1(u) = uuid(v) u);

• ({moveOutf(i, v, i′)}, ψ), if f is a containment reference, and F (i′) is current container u, such

that u = F (v) ∧ u 6= ⊥ or u = F (uuid(v) u).

In brief, in forward transformation (branch 2), the synchronizer creates a model feature value that is
consistent with the given system feature value. Backwards, if the given system feature value is consistent
with or can be changed based on the model feature value, then the synchronizer does nothing or produce
a modify edit (branch 3); if no system feature value is provided, then the synchronizer produces either an
insert edit or a moveIn edit to add a feature value (branch 4); if no model feature value is provided, then
the synchronizer produces either an remove edit or a moveOut edit to delete a feature value (branch 5).

Remark 15. After checking Definition 7 and Equations (4) and (5), it is not difficult to find that the
generic unordered feature synchronizer is a well-behaved system-model BX.

Afterward, we can lift lf to a set mapping {lf} with a pairing function pair{lf}. Given a system feature
value set valss ∈ {f}, a model feature value set valsm ∈ {fE}, and ψ ∈ Ψ, let

1. Pψ = {(i f−→ v, ψ, iE
fE−→ u)|i f−→ v ∈ valss ∧ iE

fE−→ u ∈ valsm ∧ (ψ−1(iE) = i ∨ ψ−1(iE) =

uuid(i) iE) ∧ (F−1(u)=v ∨ F−1(u)=uuid(v) u)},

Page 19 of 25 SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

For Review Only

He X, et al. Sci China Inf Sci 20

2. PS = {(i f−→ v, ψ, ε)|i f−→ v ∈ valss ∧ @iE
fE−→ u((i

f−→ v, ψ, iE
fE−→ u) ∈ Pψ)},

3. PM = {(ε, ψ, iE
fE−→ u)|iE

fE−→ u ∈ valsm ∧ @i f−→ v((i
f−→ v, ψ, iE

fE−→ u) ∈ Pψ)},
then pair{lf}(valss, ψ, valsm) = Pψ ∪ PS ∪ PM .

Remark 16. It is trivial to prove that the above pairing function satisfies the conditions required by
set mapping. Because any edit to a certain feature value never touches other feature values, a set of
feature values can be viewed as a set of disjoint sub-systems, each of which contains a single feature
value. According to Theorem 6, {lf} is a well-behaved system-model BX. Besides, the set edits for {lf}
are, in fact, ∂f. Since lf already produces those edits, there is no need for {lf} to generate extra set edits.

The case that feature f (and fE) is ordered is very similar to the unordered case. We define a generic
ordered feature synchronizer as follows.

Definition 11 (Generic Ordered Feature Synchronizer). Given ordered feature f and ordered feature

fE , the generic ordered feature synchronizer lf : ∂f
Ψ←→ fE is defined as follows.

1. lf .K = {(i f[p]−−→ v, ψ, iE
fE[q]−−→ u)|ψ(i) = iE ∧ F (v) = u ∧ p = q}, where the function F has the same

meaning as that is described in class synchronizer;

2. lf .V (i
f[p]−−→ v, ψ) = (ψ(i)

fE[p]−−→ F (v), ψ), i.e., create a model feature value that is consistent with
the system feature value, including their posistions;

3. lf .W(i
f[p]−−→ v, ψ, iE

fE[q]−−→ u) =

• ({modifyf(i, F−1(u), p, q)}, ψ), if iE = ψ(i); Note that if cur(po) = cur(qn) ∧ v = F−1(u) at
runtime, then this modify changes nothing; In such a case, we still view the produced edit set as ∅;

4. Supposing i−1
E = ψ−1(iE) and u−1 = F−1(u), then l.W(ε, ψ, iE

fE[q]−−→ u) =

• ({insertf(i−1
E , u−1, q)}, ψ), if f is a not containment reference or u−1 6= uuid(v) u;

• ({moveInf(i
−1
E , u−1, q, i)}, ψ), if f is a containment reference, and i is current container of u−1

or i is the current container of v where u−1 = uuid(v) u;

5. lf .W(i
f[p]−−→ v, ψ, ε) =

• ({removef(i, p)}, ψ), if f is a not containment reference, or F (v) = ⊥∧@u(F−1(u) = uuid(v) u);

• ({moveOutf(i, p, i′)}, ψ), if f is a containment reference, and F (i′) is current container u, such

that u = F (v) ∧ u 6= ⊥ or u = F (uuid(v) u).

Remark 17. In short, the ordered feature synchronizer ensures that a system feature value exists if
and only if there is model feature value that can be paired with the system value. By checking Definition
7 and Equations (4) and (5), we can prove that the above synchronizer is a well-behaved BX.

Similarly, l can be lifted to a list mapping [lf] with a pairing function pair[lf]. Given a system feature
value list valss ∈ {f}, a model feature value list valsm ∈ {fE}, and ψ ∈ Ψ, let

1. Pψ = {(i f[p]−−→ v, ψ, iE
fE[q]−−→ u)|i f[p]−−→ v ∈ valss ∧ iE

fE[q]−−→ u ∈ valsm ∧ (ψ−1(iE) = i ∨ ψ−1(iE) =

uuid(i) iE) ∧ (F ′−1(u)=v ∨ F ′−1(u)=uuid(v) u) ∧ (count(i
f[p]−−→ v) = countE(iE

fE[p]−−→ u))},
• if f (fE) is a reference (EReference), then F ′−1 = F−1; otherwise F ′−1() = ⊥, i.e., when

pairing primitive values, we only check their positions;

• count(i f[p]−−→ v) = |{p′|p′ 6 p ∧ i f[p′]−−→ v ∈ valss}|, and countE(iE
fE[p]−−→ u) is analogous;

2. PS = {(i f[p]−−→ v, ψ, ε)|i f[p]−−→ v ∈ valss ∧ @iE
fE[q]−−→ u((i

f[p]−−→ v, ψ, iE
fE[q]−−→ u) ∈ Pψ)},

3. PM = {(ε, ψ, iE
fE[q]−−→ u)|iE

fE[q]−−→ u ∈ valsm ∧ @i f[p]−−→ v((i
f[p]−−→ v, ψ, iE

fE[q]−−→ u) ∈ Pψ)},
then pair[lf](valss, ψ, valsm) = Pψ ∪ PS ∪ PM .

Remark 18. We can prove that the above pairing function satisfies the conditions required by list
mapping. Especially, Pψ ensures that for the object and the element at position i, if their former
objects/elements are mutually paired and they are consistent, then they will also be paired. According
to Theorem 7, [lf] is a well-behaved system-model BX. Besides, the list edits for [lf] are still ∂f.

Page 20 of 25SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

For Review Only

He X, et al. Sci China Inf Sci 21

5.3 Building System-Model Synchronizer

Given a system module Π, we can split Π into many disjoint sub-system modules, i.e., the sub-system
modules Πc1 ,Πc2 , ...,Πcm of all class c1,c2, ...,cm and the sub-system modules Πf1 , Πf2 ,..., Πfn of struc-
tural features f1, f2, ..., fn that are not constructor parameters, such that Π = Πc⊕Πf1⊕Πf2⊕ ...⊕Πfn . For
the model type Y , the case is similar, and we also have Y = YE1

⊕YE2
⊕...⊕YEm

⊕YfE,1
⊕YfE,2

⊕...⊕YfE,n
.

Given a model y ∈ Y , it is very easy to split y into many sub-models according to the corresponding
sub-model types by traversing the entire model. However, to split a system π ∈ Π, we need a root object
iroot ∈ π as the starting point and call the getter methods of all features (i.e., getf declared in Section
3.2) repeatedly to traverse the system.

Supposing that we have realized the class synchronizers lci : ∂ci
Ψ←→ Ei (i=1...m) and the feature

synchronizers lfEj
(j=1...n), we can combine them into a system-model synchronizer lΠ : ∂Π

Ψ←→ Y as

lΠ ≡ {lc1
⊕ lc2

⊕ ...⊕ lcm
}+; (lf1 ⊗ lf2 ⊗ ...⊗ lfn) (6)

where l∗fi is either {lfi} or [lfi]. In brief, we synchronize all objects first with {l∗c1
⊕ l∗c2

⊕ ... ⊕ l∗cm
}+ (as

described in Section 5.1), and then synchronize feature values with l∗f1 ⊗ l
∗
f2
⊗ ...⊗ l∗fn

13).

Remark 19. lΠ has two parts, which are combined by sequential union. The former part is the
synchronizer for objects, which has been discussed in Section 5.1. The later part is the parallel union
of all l∗fi , which is also a well-behaved system-model BX according to Theorem 1, because the edit to a
feature value should not affect the value of another feature. Due to the fact that feature synchronizers
never change the correspondence data, lΠ is a well-behaved BX according to Theorem 2.

We need the following necessary knowledge to create a concrete system-model synchronizer.

1. The definition of a system module, including

• the classes in the system, and the implementation of their constructors and destructors,

• the features in the system, and the implementation of their getter methods and edits (for non
constructor parameters),

• the domain constraints (i.e., the contracts) of system edits (cf. Section 3.3);

• optionally, the domain-specific predicate isAlive (cf. Section 3.2).

2. The definition of a metamodel that consists of a set of EClasses and EStructuralFeatures.

3. Information needed by concrete class synchronizers and feature synchronizers, including

• the mapping between classes and EClasses and the mapping between system features and
EStructuralFeatures,

• the implementation of the domain-specific alignment predicate isAligned (cf. Section 5.1),

• optionally, the implementation of a bijective function (or a BX) F for a feature synchronizer
that converts between an attribute and an EAttribute (cf. Section 5.2), i.e., F converts free data.

5.4 Example: File System Synchronizer

This subsection demonstrates how to develop a file system synchronizer by concretizing the generic
system-model synchronizer. In this example, a file system consists of a root directory and all the contents
within this root directory. We use the Java class java.io.File to represent the system objects in a file
system. A file model conforms to the metamodel (i.e., the model type) as shown in Figure 5(a). The
metamodel defines three concrete EClasses, i.e., Folder, File, and SymbolicLink that is a subclass of File.
A Folder contains many FileItems, and a SymbolicLink points to a FileItem. For simplicity, we assume
that a SymbolicLink must point to a FileItem in the same file system. Figure 5(b) shows the expected file
model that is consistent with the simple file system in Figure 1.

There are several difficulties in the development of the file system synchronizer. First, in Java,
java.io.File is the class to denote files and folders. It means that java.io.File is mapped onto File,
Folder, and SymbolicLink, so the mapping between Java classes and EClasses is not bijective. Second,

13) All feature synchronizers share the same correspondence data generated by class synchronizers.

Page 21 of 25 SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

He X, et al. Sci China Inf Sci 22

Folder File

FileItemitems
*

name

SymbolicLink

pointsTo

1 root

|-A.txt

|-B

|-C.txt

|-L -> "root/B/C.txt"

<latexit sha1_base64="0bmcbopPLhMf+ykSD8uvh9iMQGw=">AAAFMHiclVRdb9MwFPVYgRG+NnjkxVqFNCTWNR0S8IJGJyEeeBgS3SbVVeUkt61Vxwm2s7Z4/lM88Bv4CSAhIR7ggV+BnXaCZhPSLEW5Pvecc+17lUQ5Z0o3m19XrqzWrl67vnYjuHnr9p276xv3DlVWyBg6ccYzeRxRBZwJ6GimORznEmgacTiKxvs+f3QCUrFMvNOzHHopHQo2YDHVDuqvH5AIhkwYx4kclNpAZpkOTrdfNvTUv9sBxqfb+4vdG7z9Am96yk57pwQ3AwIi+avvr9ebjWa58PkgXAR1tFgH/Y3VzyTJ4iIFoWNOleqGzVz3DJWaxRxsQAoFOY3HdAhdFwqaguqZ8uoWP3RIggeZdI/QuET/VRiaKjVLI8dMqR6pas6DF+aUTqmcyeSiZLfQg2c9w0ReaBDx/BSDgmOdYd9knDAJseYzF9BYMncRHI+opLF2o1gqwwZ6BMIGAREwibM0pa6ZRDBuDdEw1Vobv7HLeTftse22ei6iYsjB1EP72NRblshyX6FryVKQQ7Dd3Z7xXFLkvFB9Q+blgSswBN4XlJv6rjXWFYc01zMF2nrEeu+Kaemos/IYpaccJXPaMu/ERbYbOhIpp2MkJM5fub7kWrEPYLbKm6rYuzyytlqIiWRQuC57j7OeOAymtu8VFXYhmIJ5QeIHF0Wm44iE88j1fwwa10NMpFzsqvJoWlUfX0I9mCRV+avLFB9PqvL2JeTjyVyKz7rkp4KrRzxj/YfDL3KqcNR5H//th9Uv/Xxw2GqETxrP37bqe+3FX2ANPUCbaAuF6CnaQ6/RAeqgGH1C39BP9Kv2sfal9r32Y069srLQ3EdLq/b7D0Pf00g=</latexit>

<<Folder>>
root

<<Folder>>
B

<<File>>
A.txt

<<SymbolicLink>>
L

<<File>>
C.txt pointsTo

items items items

items

parent parent parent

parent

e0

e1 e2 e3

e4

<<Folder>>
root

<<Folder>>
B

<<File>>
A.txtC.txt

<<SymbolicLink>>
L

<<File>>
C.txtA.txt pointsTo

items items items

items

e0

e1 e2 e3

e4

items

parent parent

parent

parentparent root

|-A.txt

|-B

|-C.txt

|-L -> "root/B/C.txt"

<latexit sha1_base64="0bmcbopPLhMf+ykSD8uvh9iMQGw=">AAAFMHiclVRdb9MwFPVYgRG+NnjkxVqFNCTWNR0S8IJGJyEeeBgS3SbVVeUkt61Vxwm2s7Z4/lM88Bv4CSAhIR7ggV+BnXaCZhPSLEW5Pvecc+17lUQ5Z0o3m19XrqzWrl67vnYjuHnr9p276xv3DlVWyBg6ccYzeRxRBZwJ6GimORznEmgacTiKxvs+f3QCUrFMvNOzHHopHQo2YDHVDuqvH5AIhkwYx4kclNpAZpkOTrdfNvTUv9sBxqfb+4vdG7z9Am96yk57pwQ3AwIi+avvr9ebjWa58PkgXAR1tFgH/Y3VzyTJ4iIFoWNOleqGzVz3DJWaxRxsQAoFOY3HdAhdFwqaguqZ8uoWP3RIggeZdI/QuET/VRiaKjVLI8dMqR6pas6DF+aUTqmcyeSiZLfQg2c9w0ReaBDx/BSDgmOdYd9knDAJseYzF9BYMncRHI+opLF2o1gqwwZ6BMIGAREwibM0pa6ZRDBuDdEw1Vobv7HLeTftse22ei6iYsjB1EP72NRblshyX6FryVKQQ7Dd3Z7xXFLkvFB9Q+blgSswBN4XlJv6rjXWFYc01zMF2nrEeu+Kaemos/IYpaccJXPaMu/ERbYbOhIpp2MkJM5fub7kWrEPYLbKm6rYuzyytlqIiWRQuC57j7OeOAymtu8VFXYhmIJ5QeIHF0Wm44iE88j1fwwa10NMpFzsqvJoWlUfX0I9mCRV+avLFB9PqvL2JeTjyVyKz7rkp4KrRzxj/YfDL3KqcNR5H//th9Uv/Xxw2GqETxrP37bqe+3FX2ANPUCbaAuF6CnaQ6/RAeqgGH1C39BP9Kv2sfal9r32Y069srLQ3EdLq/b7D0Pf00g=</latexit>

rename to C.txt

delete B

move it to root and rename it to A.txt

change the link to “root/A.txt”

parent

*

(a) File metamodel

Folder File

FileItemitems
*

name

SymbolicLink

pointsTo

1 root

|-A.txt

|-B

|-C.txt

|-L -> "root/B/C.txt"

<latexit sha1_base64="0bmcbopPLhMf+ykSD8uvh9iMQGw=">AAAFMHiclVRdb9MwFPVYgRG+NnjkxVqFNCTWNR0S8IJGJyEeeBgS3SbVVeUkt61Vxwm2s7Z4/lM88Bv4CSAhIR7ggV+BnXaCZhPSLEW5Pvecc+17lUQ5Z0o3m19XrqzWrl67vnYjuHnr9p276xv3DlVWyBg6ccYzeRxRBZwJ6GimORznEmgacTiKxvs+f3QCUrFMvNOzHHopHQo2YDHVDuqvH5AIhkwYx4kclNpAZpkOTrdfNvTUv9sBxqfb+4vdG7z9Am96yk57pwQ3AwIi+avvr9ebjWa58PkgXAR1tFgH/Y3VzyTJ4iIFoWNOleqGzVz3DJWaxRxsQAoFOY3HdAhdFwqaguqZ8uoWP3RIggeZdI/QuET/VRiaKjVLI8dMqR6pas6DF+aUTqmcyeSiZLfQg2c9w0ReaBDx/BSDgmOdYd9knDAJseYzF9BYMncRHI+opLF2o1gqwwZ6BMIGAREwibM0pa6ZRDBuDdEw1Vobv7HLeTftse22ei6iYsjB1EP72NRblshyX6FryVKQQ7Dd3Z7xXFLkvFB9Q+blgSswBN4XlJv6rjXWFYc01zMF2nrEeu+Kaemos/IYpaccJXPaMu/ERbYbOhIpp2MkJM5fub7kWrEPYLbKm6rYuzyytlqIiWRQuC57j7OeOAymtu8VFXYhmIJ5QeIHF0Wm44iE88j1fwwa10NMpFzsqvJoWlUfX0I9mCRV+avLFB9PqvL2JeTjyVyKz7rkp4KrRzxj/YfDL3KqcNR5H//th9Uv/Xxw2GqETxrP37bqe+3FX2ANPUCbaAuF6CnaQ6/RAeqgGH1C39BP9Kv2sfal9r32Y069srLQ3EdLq/b7D0Pf00g=</latexit>

<<Folder>>
root

<<Folder>>
B

<<File>>
A.txt

<<SymbolicLink>>
L

<<File>>
C.txt pointsTo

items items items

items

parent parent parent

parent

e0

e1 e2 e3

e4

<<Folder>>
root

<<Folder>>
B

<<File>>
A.txtC.txt

<<SymbolicLink>>
L

<<File>>
C.txtA.txt pointsTo

items items items

items

e0

e1 e2 e3

e4

items

parent parent

parent

parentparent root

|-A.txt

|-B

|-C.txt

|-L -> "root/B/C.txt"

<latexit sha1_base64="0bmcbopPLhMf+ykSD8uvh9iMQGw=">AAAFMHiclVRdb9MwFPVYgRG+NnjkxVqFNCTWNR0S8IJGJyEeeBgS3SbVVeUkt61Vxwm2s7Z4/lM88Bv4CSAhIR7ggV+BnXaCZhPSLEW5Pvecc+17lUQ5Z0o3m19XrqzWrl67vnYjuHnr9p276xv3DlVWyBg6ccYzeRxRBZwJ6GimORznEmgacTiKxvs+f3QCUrFMvNOzHHopHQo2YDHVDuqvH5AIhkwYx4kclNpAZpkOTrdfNvTUv9sBxqfb+4vdG7z9Am96yk57pwQ3AwIi+avvr9ebjWa58PkgXAR1tFgH/Y3VzyTJ4iIFoWNOleqGzVz3DJWaxRxsQAoFOY3HdAhdFwqaguqZ8uoWP3RIggeZdI/QuET/VRiaKjVLI8dMqR6pas6DF+aUTqmcyeSiZLfQg2c9w0ReaBDx/BSDgmOdYd9knDAJseYzF9BYMncRHI+opLF2o1gqwwZ6BMIGAREwibM0pa6ZRDBuDdEw1Vobv7HLeTftse22ei6iYsjB1EP72NRblshyX6FryVKQQ7Dd3Z7xXFLkvFB9Q+blgSswBN4XlJv6rjXWFYc01zMF2nrEeu+Kaemos/IYpaccJXPaMu/ERbYbOhIpp2MkJM5fub7kWrEPYLbKm6rYuzyytlqIiWRQuC57j7OeOAymtu8VFXYhmIJ5QeIHF0Wm44iE88j1fwwa10NMpFzsqvJoWlUfX0I9mCRV+avLFB9PqvL2JeTjyVyKz7rkp4KrRzxj/YfDL3KqcNR5H//th9Uv/Xxw2GqETxrP37bqe+3FX2ANPUCbaAuF6CnaQ6/RAeqgGH1C39BP9Kv2sfal9r32Y069srLQ3EdLq/b7D0Pf00g=</latexit>

rename to C.txt

delete B

move it to root and rename it to A.txt

change the link to “root/A.txt”

parent

*

(b) A simple file model

Figure 5 File system example

java.io.File does not define a field to denote the target of the symbolic link, when the file object is a
symbolic link file. Besides, java.io.File does not provide a setter method to change the symbolic link.
Third, a file system imposes many domain constraints that determine the execution order of the system
edits. For example, if a folder is deleted from disk, then its contents are also removed; we cannot insert
a file into a folder that has not been created; two files (folders) should not have the same name.

File System Module There is only one class java.io.File in our example. However, we split all objects
of java.io.File into the following three groups that are regarded as three subclasses

1. cdir is the set {o|o ∈ java.io.File ∧ o.isDirectory()} of folders. cdir has the following features:

• fdir name is the name of this folder, which is a constructor parameter.

• fdir par is the parent folder of this folder, which is a constructor parameter.

• fdir items is the content of this folder, which is an unordered containment reference.

2. cfile is the set {o|o ∈ java.io.File ∧ o.isF ile() ∧ o is not a symbolic link} of normal files; Note that
we can call API java.nio.file.Files.isSymbolicLink() to determine whether a file is a symbolic link.
cfile is equipped with the following features:

• ffile name is the name of this file, which is a constructor parameter.

• ffile par is the parent folder of this file, which is a constructor parameter.

3. clink is the set {o|o ∈ java.io.File ∧ o.isF ile() ∧ o is a symbolic link} of symbolic links. clink is
equipped with the following features:

• flink name is the name of this symbolic link, which is a constructor parameter.

• flink par is the parent folder of this symbolic link, which is a constructor parameter.

• flink pointsTo is the content of this symbolic link, which is a singleton non-containment reference.

The constructors concdir
, concfile

, and conclink
can be realized by creating a new instance of java.io.File

with a parent folder and a name, i.e., using new java.io.File(parent,name). Regarding destructors, since
they are not required in Java, we omit them in this example.

The feature getters can be realized as follows. getfdir name
, getffile name

, and getflink name
are imple-

mented by calling API java.io.File.getName(). getfdir par
, getffile par

, and getflink par
are implemented by

calling API java.io.File.getParentFile(). getfdir items
is implemented by calling API java.io.File.listFiles().

getflink pointsTo
is implemented by calling API java.io.File.getCanonicalFile() that will return the link tar-

get if the file object is a symbolic link.
The feature edits for fdir items are realized as follows. insertfdir items

is implemented by calling
APIs java.io.File.mkdir() and java.io.File.createNewFile(), depending on whether a subfolder or a file
will be inserted into this folder. removefdir items

is implemented by calling API java.io.File.delete().
modifyfdir items

is implemented by calling API java.io.File.renameTo(). moveOutfdir items
is implemented

by moving the original file/subfolder into a temporary folder and renaming it with a temporary name us-
ing API java.io.File.renameTo(). moveInfdir items

is implemented by moving the file/subfolder from the
temporary folder into this folder and renaming it to the required name using API java.io.File.renameTo().

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

For Review Only

He X, et al. Sci China Inf Sci 23

forward
transformation

change
programmatically

backward transformation, edit
scheduling, and execution

original file system original file model changed file model updated file system

Figure 6 Execution of file system synchronizer

The feature edits for flink pointsTo is implemented as follows. insertflink pointsTo
is implemented by

calling API java.nio.file.Files.createSymbolicLink. removeflink pointsTo
is implemented by turning the link

target to a predefined invalid path using API java.nio.file.Files.createSymbolicLink. modifyflink pointsTo

is implemented by chaining removeflink pointsTo
and insertflink pointsTo

.

Constraints of Edits A file system imposes many constraints that can be encoded as the preconditions
of system edits. We list some examples as follows.
P0 Any object must be created before being used;
P1 To remove/move out a file/sub-folder from a parent folder, or to insert/move a file/sub-folder into a

parent folder, the parent folder must be present, i.e., the preconditions of insertfdir items
, removefdir items

,
modifyfdir items

, moveInfdir items
, and moveOutfdir items

.
P2 To delete/rename/move out a folder/file, the folder/file must be present, i.e., the preconditions of
removefdir items

, renamefdir items
, and moveOutfdir items

.
P3 To insert/rename (i.e., modify)/move in a file/folder, file/folder name collision is not allowed, i.e.,

the preconditions of insertfdir items
, modifyfdir items

, and moveInfdir items
;

P4 To move a file/folder into a target folder, this file/folder must be present in the temporal folder, i.e.,
the precondition of moveInfdir items

.

Class and Feature Mapping The mapping from system classes and features to the EClasses and
EStructuralFeatures defined in Figure 5(a) is straightforward, as follows:
• cdir, cfile, and clink are mapped onto Folder, File, and SymbolicLink, respectively;
• fdir name/ffile name/flink name and fdir par/ffile par/flink par are mapped onto name and parent of

Folder/File/SymbolicLink (inherited from FileItem), respectively;
• fdir items is mapped onto item of Folder, and flink PointsTo is mapped onto pointsTo of SymbolicLink.

Alignment Predicate The last step to develop the file system synchronizer is to define isAligned that
can compute the missing correspondences between objects of java.io.File and model elements of FileItem.
The pair function is quite simple—comparing the full path of an object and an element.

Now, we have defined all necessary information that is needed to derive the file system synchronizer
from the generic system-model synchronizer that is defined in Equation (6).

Runtime Behavior We have implemented this file system synchronizer in our prototype tool support.
Figure 6 shows the execution of this synchronizer. The original file system is a super set of Figure 1, where
the link target, i.e., feature pointsTo, is denoted as a dashed arrow (which is also a superset of Figure
5(b)). The forward transformation of the file system synchronizer successfully generates a file model that
reflects the folder structure.

Then, we change the file model programmatically as follows to simulate an automated model conversion:
(1) remove Folder B, (2) move File C.txt to Folder root, (3) rename File A.txt to C.txt, (4) rename the
original File C.txt to A.txt, (5) rename Folder D to renamed-D, (6) remove Folder E, (7) move File F.txt
to renamed-D, and (8) change the target of pointsTo of SymbolicLin L to File F.txt. Please note that the
above sequence of changes to the file model are invalid for a real file system because
• we cannot move a file from a folder has been deleted, i.e., (1) and (2), and (6) and (7),
• and we cannot rename a file to a name that is occupied, i.e., (3) since we have moved the original

File C.txt to the root folder in (2).
That is to say, if we try to propagate these model changes with the state-of-the-art change-driven

approaches (e.g., SM@RT [17]), then we are unable to obtain the expected result.

Page 23 of 25 SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

For Review Only

He X, et al. Sci China Inf Sci 24

The key of system-model BX is that it calculates the system edits according to the current state of
the system and the model, rather than the changes/delta of the model (no matter whether they are
valid to the system). By comparing the changed file model and the current file system, the file system
synchronizer determines the following system edits:
e1 remove root/B from root,
e2 remove root/D/E from D,
e3 set the link target of root/L to root/renamed-D/F.txt,
e4 create a file object pointing to root/A.txt,
e5 create a file object pointing to root/C.txt,
e6 create a file object pointing to root/renamed-D,
e7 create a file object pointing to root/renamed-D/F.txt,
e8 move root/D/E/F out of root/D/E,
e9 move root/D/E/F into root/renamed-D,

e10 move root/B/C.txt out of root/B,
e11 move root/B/C.txt into root and renamed it to root/A.txt,
e12 modify the original root/A.txt into root/C.txt in root,
e13 modify root/D into root/renamed-D in root.

After collecting all those edits, the file system synchronizer is able to plan an execution order as follows.
According to P2, e8 and e10 must run before e2 and e1, respectively. According to P1, e2 must run before
e13. According to P0, e4, e5, e6, and e7 must run before e11, e12, e13, and e3, e9, respectively. According
to P4, e8 and e10 must run before e9 and e11, respectively, because moveOuts must run before moveIns.
According to P3, e12 must run before e11 to avoid file name collision. Finally, the file system synchronizer
produces an edit sequence as follows during execution of backward transformation:

[e10, e5, e6, e8, e7, e4, e1, e12, e2, e3, e11, e13, e9]

By applying this edit sequence, we obtain the updated file system as shown in Figure 6, which is consistent
with the updated file model.

6 Conclusion and Future Work

This paper investigates how to synchronize a system and a model, and proposed system-model BX as
a theoretical solution to this problem. This paper also proposed a set of combinators for system-model
BX and proved their correctness. System-model BX is different from existing BX technologies in the
following aspects: (1) the system-model BX does not treat a system as free data and requires BX
developers to explicitly define system read/write operations; (2) the system-model BX is fully aware of
domain knowledge and constraints on system edits; (3) the system-model BX computes a set of system
edits during the backward transformation, and then plans a proper execution order according to the
domain knowledge, rather than blindly executing them.

Regarding the future work, we plan to improve our work in the following aspects. First, we will continue
enriching the formal definition of system-model BX and defining more useful combinators. Second, we
notice that some system edits computed by a backward transformation can be merged to reduce the total
number of edits to be executed. We will investigate how to automatically infer mergeable edits. Third,
we will study how to automatically check the correctness of system-model BXs, such as the verification
of Equations (4) and (5), the disjoint property required by many combinators, and the well-formedness
conditions of pairing functions and partition functions. At last, we plan to enhance our tool support and
develop a programming environment for system-model BX, and will conduct more case studies with the
help of our tool.

Acknowledgements This work was supported by Beijing Natural Science Foundation (Grant No. 4192036).

References

1 Fischer S, Hu ZH J, Pacheco H. The essence of bidirectional programming. Sci China Inf Sci, 2015, 58:052106.

2 Foster J N, Greenwald M B, Moore J T, Pierce B C, Schmitt A. Combinators for Bidirectional Tree Transformations: A

Linguistic Approach to the View-update Problem. ACM Trans Program Lang Syst, 2007, 29(3):Article 17.

3 Ko H S, Hu ZH J. An Axiomatic Basis for Bidirectional Programming. In: Proceedings of the ACM on Programming

Languages, Los Angeles, 2018. POPL, Article 41

Page 24 of 25SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

For Review Only

He X, et al. Sci China Inf Sci 25

4 Pacheco H, Zan T, Hu ZH J. BiFluX : A Bidirectional Functional Update Language for XML. In: Proceedings of 16th

International Symposium on Principles and Practice of Declarative Programming (PPDP 2014), Canterbury, 2014. 1–12

5 Tran V D, Kato H, Hu ZH J. Programmable View Update Strategies on Relations. In: Proceedings of VLDB Endow., Tokyo,

2020. 726–739

6 Hofmann M, Pierce C B, Wagner D. Edit Lenses. In: Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, Philadelphia, 2012. 495–508.

7 Diskin Z, Gholizadeh H, Wider A, Czarnecki K. A three-dimensional taxonomy for bidirectional model synchronization.

Journal of Systems and Software, 2014, 111:298–322.

8 He X, Hu ZH J. Putback-based bidirectional model transformations. In: Proceedings of the 2018 26th ACM Joint Meeting

on European Software, Lake City, 2018. 434–444

9 Xiong, Y F, Song H, Hu ZH J, Takeichi M. Synchronizing Concurrent Model Updates Based on Bidirectional Transformation.

Softw. Syst. Model., 2013, 12:89–104.

10 Hermann F, Ehrig H, Orejas F, et al. Model synchronization based on triple graph grammars: correctness, completeness and

invertibility. Software & Systems Modeling, 2015, 14:241–269.

11 Bencomo N, Götz S, Song H. Models@run.time: a guided tour of the state of the art and research challenges. Software and

Systems Modeling, 2019, 18:3049-3082.

12 Zee K, Kuncak V, Rinard M. Full Functional Verification of Linked Data Structures. SIGPLAN Not., 2008, 43:349–361.

13 Boyapati C, Khurshid S, Marinov D. Korat: Automated Testing Based on Java Predicates. In: Proceedings of the 2002 ACM

SIGSOFT International Symposium on Software Testing and Analysis, Roma, 2002. 123–133

14 Aichernig B K. Contract-Based Testing. Lecture Notes in Computer Science, 2003, 2757:34–48.

15 He X, Chen X, Cai S B, et al. Testing Bidirectional Model Transformation Using Metamorphic Testing. Information and

Software Technology, 2018, 104:109–129.

16 Jackson D. Software Abstractions: Logic, Language, and Analysis. MIT Press, 2012.

17 Song H, Huang G, Chauvel F, et al. Supporting Runtime Software Architecture: A Bidirectional-transformation-based Ap-

proach. J. Syst. Softw., 2011, 84:711–723.

18 Cánovas I, Javier L, Jouault, F, et al. API2MoL: Automating the building of bridges between APIs and Model-Driven

Engineering. Information and Software Technology, 2012, 54:257–273.

19 Boronat A. Code-first model-driven engineering: On the agile adoption of MDE tooling. In: Proceedings of 34th IEEE/ACM

International Conference on Automated Software Engineering, San Diego, 2019. 874–886.

20 Antkiewicz M, Czarnecki K, Stephan M. Engineering of framework-specific modeling languages. Transactions on Software

Engineering, 2009, 35:795–824.

21 Brunelière H, Cabot J, Dupé G, Madiot F. MoDisco: A model driven reverse engineering framework. Information and Software

Technology, 2014, 56:1012–1032.

22 Yu Y, Lin Y, Hu ZH J, et al. Maintaining Invariant Traceability Through Bidirectional Transformations. In: Proceedings of

the 34th International Conference on Software Engineering, Zurich, 2012. 540–550

23 Reimann J, Seifert M and Aßmann U. Role-based generic model refactoring. Lecture Notes in Computer Science, 2010,

6395:78–92.

24 Noguera C, Duchien L. Annotation Framework Validation Using Domain Models. Lecture Notes in Computer Science, 2008,

5095: 48–62.

25 Eichberg M, Schäfer T, Mezini M. Using Annotations to Check Structural Properties of Classes. Lecture Notes in Computer

Science, 3442:237–252.

26 Kawanaka S, Hosoya H. biXid: a bidirectional transformation language for XML. ACM SIGPLAN Notices, 2006, 41:201–214.

27 Giese H, Wagner R. From model transformation to incremental bidirectional model synchronization. Software & Systems

Modeling, 2009, 8:21–43.

28 Bohannon A, Foster J N, Pierce B C, et al. Boomerang: resourceful lenses for string data. ACM SIGPLAN Notices, 2008,

43:407–419.

29 Macedo N, Cunha A. Least-change bidirectional model transformation with QVT-R and ATL. Softw. & Syst. Modeling, 2016,

15:783–810.

30 Eramo R, Pierantonio A, Rosa G. Managing Uncertainty in Bidirectional Model Transformations. In: Proceedings of 2015

ACM SIGPLAN International Conference on Software Language Engineering, Pittsburg, 2015. 49–58

31 Semeráth O, Debreceni C, Horváth Á, Varró D. Incremental Backward Change Propagation of View Models by Logic Solvers.

In: Proceedings of the ACM/IEEE 19th International Conference on Model Driven Engineering Languages and Systems, San

Malo, 2016. 306–316.

32 Hermann F, Ehrig H, Orejas F, et al. Model synchronization based on triple graph grammars: correctness, completeness and

invertibility. Software & Systems Modeling, 2015, 14:241–269.

33 Fritsche L, Kosiol J, Schürr A, et al. Efficient model synchronization by automatically constructed repair processes. Lecture

Notes in Computer Science, 2019, 11424: 116–133.

34 Weidner M, Miller H, Meiklejohn C. Composing and decomposing op-based CRDTs with semidirect products. In: Proceedings

of the ACM on Programming Languages, Virtual, 2020. Article 94.

35 Jouault, F, Allilaire F, Bézivin J, et al. ATL: A Model Transformation Tool. Sci. Comput. Program., 2008, 72:31–39.

36 Mahdavi-Hezavehi S, Durelli V H S, Weyns D, et al. A systematic literature review on methods that handle multiple quality

attributes in architecture-based self-adaptive systems. Inf. Softw. Technol., 2017, 90:1–26.

37 Krupitzer C, Roth F M, Vansyckel S, et al. A survey on engineering approaches for self-adaptive systems. Pervasive Mob.

Comput., 2015, 17(Part B):184–206.

38 Cheng B H C, de Lemos R, Giese H, et al. Software Engineering for Self-Adaptive Systems: A Research Roadmap. Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

2009, 5525:1–26.

39 Maćıas-Escrivá F D, Haber R, Del Toro R, et al. Self-adaptive systems: A survey of current approaches, research challenges

and applications. Expert Syst. Appl., 2013, 40(18):7267–7279.

40 Xiong Y F, Hu ZH J, Zhao H Y, et al. Supporting Automatic Model Inconsistency Fixing. In: Proceedings of the the 7th

Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of

Software Engineering, Amsterdam, 2009. 315–324

Page 25 of 25 SCIENCE CHINA Information Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

te
d

 https://engine.scichina.com/doi/10.1007/s11432-020-3276-5

