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ABSTRACT

The Java libraries JCA and JSSE offer cryptographic APIs to facil-
itate secure coding. When developers misuse some of the APIs,
their code becomes vulnerable to cyber-attacks. To eliminate such
vulnerabilities, people built tools to detect security-API misuses via
pattern matching. However, most tools do not (1) fix misuses or (2)
allow users to extend tools’ pattern sets. To overcome both limita-
tions, we created Seader—an example-based approach to detect and
repair security-API misuses. Given an exemplar ⟨insecure, secure⟩
code pair, Seader compares the snippets to infer any API-misuse
template and corresponding fixing edit. Based on the inferred info,
given a program, Seader performs inter-procedural static analysis
to search for security-API misuses and to propose customized fixes.

For evaluation, we applied Seader to 28 ⟨insecure, secure⟩ code
pairs; Seader successfully inferred 21 unique API-misuse templates
and related fixes.With these ⟨vulnerability, fix⟩ patterns, we applied
Seader to a program benchmark that has 86 known vulnerabilities.
Seader detected vulnerabilities with 95% precision, 72% recall, and
82% F-score. We also applied Seader to 100 open-source projects
and manually checked 77 suggested repairs; 76 of the repairs were
correct. Seader can help developers correctly use security APIs.

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools;
• Security and privacy→ Software security engineering.
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1 INTRODUCTION

JCA (Java Cryptography Architecture [24]) and JSSE (Java Secure
Socket Extension [5]) are two cryptographic frameworks, provided
by the standard Java platform. These frameworks offer security
APIs to ease developers’ secure software development. For instance,
some of the APIs support key generation and secure communica-
tion. However, these libraries are not easy to use for two reasons.
First, some APIs have overly complicated usage that is poorly doc-
umented [21, 38]. Second, developers lack the necessary cyberse-
curity training to correctly implement security features [2, 3, 36].
Prior work shows that developers misused security APIs [18, 40],
and thus introduced vulnerabilities into software [16, 20]. For in-
stance, Fischer et al. found that the security-API misuses posted
on StackOverflow [6] were copied and pasted into 196,403 An-
droid applications available on Google Play [18]. Fahl et al. [16]
and Georgiev et al. [20] showed that such API misuses in software
could be exploited by hackers to steal data (e.g., user credentials).

Existing tools are insufficient to help developers eliminate security-
API misuses. Table 1 summarizes both capability and extensibility
of the mainstream techniques, and compares the tools with our new
approach Seader. As shown in the table, existing tools usually rep-
resent cryptographic API misuses as built-in rules [9, 11, 15, 29, 40];
users cannot easily extend these tools to detect more API-related
vulnerabilities. As more security libraries emerge and evolve, we
believe that vulnerability detectors should have good extensibility
to keep their pattern sets of API-misuses up-to-date. Although Cog-
niCrypt [26] offers a domain-specific language (DSL), CrySL [27],
for users to prescribe the usage templates of cryptographic APIs,
users need to spend lots of time learning CrySL and crafting tem-
plates. VuRLE [30] infers templates from user-provided code exam-
ples. However, its algorithm does not observe the unique character-
istics of security API-misuses (e.g., using an integer within certain
range); thus, VuRLE cannot always detect or fix misuses effectively.

Additionally, most existing tools merely report misuses, without
suggesting any customized fixes. When developers lack the cyber-
security knowledge to understand the reported misuses, they may
continue making mistakes when trying to fix those issues inde-
pendently [43]. Although CDRep [29] and VuRLE [30] can suggest
customized fixes, they are separately limited by (1) the inextensible
hardcoded pattern set and (2) the intra-procedural analysis adopted
for template matching. Please refer to Section 5 for more details.

To overcome the limitations of existing systems, we introduce
Seader (short for “security-API misuse detection and repair”)—our
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Table 1: Comparison of Seader against the existing detectors for security-API misuses

Tool
API-Misuse Representation Misuse-Matching Strategy Output

Built-in Rule Template Other Intra-procedural Analysis Inter-procedural Analysis Other Misuse Repair
CryptoLint [15] ✓ ✓ ✓
CDRep [29] ✓ ✓ ✓ ✓
CogniCrypt [26] ✓ ✓ ✓
CryptoGuard [40] ✓ ✓ ✓
FindSecBugs [9] ✓ ✓ ✓
Fischer et al.’s tool [18] ✓ ✓ ✓ ✓
SonarQube [11] ✓ ✓ ✓
VuRLE [30] ✓ ✓ ✓ ✓
SecureSync [39] ✓ ✓ ✓

Seader ✓ ✓ ✓ ✓

new approach for vulnerability detection and repair from a data-
driven perspective. As shown in Figure 1, there are two phases
in Seader: pattern inference and pattern application. In Phase I,
suppose that a domain expert (e.g., security researcher) provides

• I—insecure code with certain security-API misuse, and
• S—the secure counterpart showing the correct API usage.

Seader compares the two code snippets and detects program changes
that can transform I to S. Next, based on those changes, Seader
conducts intra-procedural analysis to derive a vulnerability-repair
pattern. Each pattern has two parts: (i) a vulnerable code template
together with matching-related information, and (ii) the abstract
fix. Seader stores all inferred patterns into a JSON file. In Phase II,
given a program P , Seader loads patterns from the JSON file, and
conducts inter-procedural program analysis to match code with any
template. For each code match, Seader concretizes the correspond-
ing abstract fix, and suggests code replacements to developers.

Secure 
code (S)

Insecure 
code (I)

Change 
Recognition

Pattern 
Generation JSON

Program 
(P)

Template 
Matching

Fix 
Customization

Detected API  
Misuse(s) + 
Suggested 

Secure Code

Phase I: Pattern Inference

Phase II: Pattern Application

Figure 1: The overview of Seader

According to the existing API-misuse patterns mentioned in
prior work [18, 40], there are three unique kinds of security-API
misuses that are hard to express with plain code examples, and
are thus difficult to infer for existing program differencing-based
approaches (e.g., VuRLE and SecureSync). Such misuses are about
API invocations with (i) constants instead of random values, (ii)
multiple alternative specialized constants, or (iii) constants in cer-
tain value ranges (see Section 3.5 and Table 3 for more details). To
facilitate users to describe these patterns via code examples, we
defined three novel specialized ways of example specification, and
developed Seader to specially infer patterns from those examples.

For evaluation, we crafted 28 ⟨insecure, secure⟩ code pairs based
on the API-misuse patterns summarized by prior research. Af-
ter Seader inferred patterns from those pairs, we further applied
Seader to two program datasets to evaluate its effectiveness in
vulnerability detection and repair. When applied to the first dataset,
Seader detected vulnerabilities with 95% precision, 72% recall, and
82% F-score. After applying Seader to the second dataset, we in-
spected 77 repairs output by Seader and found 76 of them correct.

To sum up, we made the following research contributions:

• We developed Seader—a new approach that performs intra-
procedural analysis to infer vulnerability-repair patterns
from ⟨insecure, secure⟩ code examples, does inter-procedural
analysis to match code with vulnerability templates, and
customizes abstract fixes to suggest repairs. No prior work
combines intra- with inter-procedural analysis in such a way.

• Seader supports specialized ways of example specification,
which enable users to define examples for API misuses re-
lated to arbitrary constant parameters, constant parameters
within certain ranges, and alternative constants. No prior
work has such speciality to strengthen the expressiveness of
example-based pattern specification.

• We conducted a comprehensive evaluation with Seader. We
observed that for vulnerability detection, Seader achieved a
higher F-score than three state-of-the-art tools. For repair
suggestion, Seader achieved 99% (76/77) accuracy.

Seader’s extensibility is realized by its capability of inferring pat-
terns from provided ⟨𝐼 , 𝑆⟩ code examples. As security experts offer
examples for new misuse patterns, Seader can infer those patterns
to extend its pattern set. Additionally, Seader repairs misused
APIs by applying the inferred knowledge to given codebases. We
open-sourced our program and datasets at https://github.com/NiSE-
Virginia-Tech/ying-ICPC-2022.

2 A MOTIVATING EXAMPLE

This section overviews our approach with several code examples.
Priorwork shows that the security of symmetric encryption schemes
depends on the secrecy of shared key [15]. Thus, developers should
not generate secret keys from constant values hardcoded in pro-
grams [18]. Suppose a security expert Alex wants to detect and fix
such vulnerabilities using Seader. Alex needs to craft (1) an inse-
cure code example to show the API misuse, and (2) a secure example
for the correct API usage. As shown in Figure 2, the insecure code
I invokes the constructor of SecretKeySpec by passing in a constant
array. Here, ByteLiterals.CONSTANT_ARRAY is the specialized way that
Seader requires users to adopt when they represent any byte-array
constant. Meanwhile, the secure code S invokes the same API with
key—a generated unpredictable value.

Given the two examples, Seader generates abstract syntax trees
(ASTs) and compares them for any AST edit operation. For Figure 2,
Seader creates an expression update and multiple statement in-
sertions. The update operation replaces ByteLiterals.CONSTANT_ARRAY

with key. Next, based on the updated expression in I , Seader con-
ducts data-dependency analysis to find any security API that uses
the expression, and treats it as a critical API. Such critical APIs
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Insecure code (I )
1 void t e s t ( ) {
2 Sec r e tKey sekey= new Sec r e tKeySpec ( B y t e L i t e r a l s . CONSTANT_ARRAY ,

"AES " ) ; }

Secure code (S)
1 / / s t o r e t h e key as a f i e l d f o r r e u s e pu r p o s e

2 byte [ ] key = k e y I n i t ( ) ;
3
4 / / c r e a t e a key ba s ed on an u n p r e d i c t a b l e random va l u e

5 public byte [ ] k e y I n i t ( ) {
6 try {
7 KeyGenerator keyGen=KeyGenerator . g e t I n s t a n c e ( "AES " ) ;
8 keyGen . i n i t ( 2 5 6 ) ;
9 Sec r e tKey s e c r e tKey = keyGen . genera teKey ( ) ;
10 byte [ ] keyBytes= s e c r e tKey . ge tEncoded ( ) ;
11 return keyBytes ;
12 } catch ( Excep t i on e ) {
13 e . p r i n t S t a c kT r a c e ( ) ;
14 return null ;
15 }
16 }
17 void t e s t ( ) {
18 Sec r e tKey sekey= new Sec r e tKeySpec ( key , "AES " ) ; }

Figure 2: A pair of examples to show the vulnerability and

repair relevant to secret key creation

Vulnerable code template (T)

SecretKey $v_0$ = new SecretKeySpec(ByteLiterals.CONSTANT_ARRAY, "AES");
Matching-related data:

critical API: javax.crypto.spec.SecretKeySpec.SecretKeySpec(byte[], String)
other security APIs: {}

Abstract fix (F)

Replace the matched statement with:

SecretKey $v_0$ = new SecretKeySpec($v_1$, "AES");
Add these lines before the container method of the matched statement:

// store the key as a field for reuse purpose
byte[] $v_1$ = $m_0$();
// create a key based on an unpredictable random value
public byte[] $m_0$() {
try {
KeyGenerator $v_4$=KeyGenerator.getInstance("AES");
$v_4$.init(256);
SecretKey $v_3$ = $v_4$.generateKey();
byte[] $v_2$= $v_3$.getEncoded();
return $v_2$;

} catch (Exception $v_5$) {
$v_5$.printStackTrace();
return null;

}
}

Figure 3: The pattern inferred from the code pair in Figure 2

are important for Seader to later detect similar vulnerabilities in
other codebases. Afterwards, Seader generalizes a vulnerability-
repair pattern from the examples by abstracting away concrete
variable/method names and edit-irrelevant code. As shown in Fig-
ure 3, the generalized pattern has two parts: the vulnerability tem-
plate (T) together with matching-related data, and an abstract fix (F).
Such pattern generalization ensures the transformation applicable
to codebases with distinct program contexts.

With a pattern inferred from the provided code pair, Alex can
further apply Seader to an arbitrary program P , to detect and fix
any occurrence of the described vulnerability. In particular, given a
program whose simplified version is shown in Listing 1, Seader
first scans for any invocation of the critical API SecretKeySpec(...).
If no such invocation exists, Seader concludes that P does not
have the above-mentioned vulnerability; otherwise, if the API is
invoked (see line 8 in Listing 1), Seader then searches for any code
matching the template in Figure 3. The template-matching process
conducts inter-procedural analysis and checks for two conditions:

Listing 1: A simplified version of P
1 public c l a s s CEncryptor {
2 pr ivate char [ ] p a s sPh r a s e ;
3 pr ivate S t r i n g a l g = "AES " ;
4 public CEncryptor ( S t r i n g pa s sPh r a s e ) {
5 th i s . p a s sPh r a s e = pa s sPh r a s e . toCharArray ( ) ;
6 }
7 public Re s u l t enc ryp t ( byte [ ] p l a i n ) throws Excep t i on {
8 Sec r e tKey s e c r e t = new Sec r e tKeySpec (new S t r i n g ( pa s sPh r a s e ) .

g e tBy t e s ( ) , a l g ) ;
9 . . .
10 }
11 public c l a s s Main {
12 public s t a t i c void main ( S t r i n g [ ] a r g s )
13 CEncryptor ae s0 = new CEncryptor ( " password " ) ;
14 ae s0 . enc ryp t ( ( byte [ ] ) a r g s [ 0 ] ) ;
15 . . .
16 }

Replace the matched statement with:

SecretKey secret = new SecretKeySpec($v_1$, "AES");
Add these lines before the method encrypt(byte[] plain):

1. // store the key as a field for reuse purpose
2. byte[] $v_1$ = $m_0$();
3. // create a key based on an unpredictable random value
4. public byte[] $m_0$() {
5. try {
6. KeyGenerator $v_4$=KeyGenerator.getInstance("AES");
7. $v_4$.init(256);
8. SecretKey $v_3$ = $v_4$.generateKey();
9. byte[] $v_2$= $v_3$.getEncoded();
10. return $v_2$;
11. } catch (Exception $v_5$) {
12. $v_5$.printStackTrace();
13. return null;
14. }
15. }

Figure 4: A customized fix for P suggested by Seader

C1: Is the first parameter derived from a constant?
C2: Does the second parameter exactly match "AES"?

If any invocation of SecretKeySpec(...) satisfies both conditions,
Seader reports the code to be vulnerable. Notice that if we only
check line 8 of Listing 1, neither new String(passPhrase). getBytes()

nor alg satisfies any condition. Thanks to the usage of inter-procedural
analysis, Seader can perform backward slicing to trace how both
parameters are initialized. Because alg is a private field of CEncryptor,
whose value is initialized on line 3 with "AES", Seader decides that
C2 is satisfied. Similarly, passPhrase is another field whose value is
initialized with a parameter of the constructor CEncryptor(...) (lines
4-6). When CEncryptor(...) is called with parameter "password" be-
fore the invocation of SecretKeySpec(...) (lines 7-14), C1 is satisfied.
Therefore, Seader concludes that line 8 matches the template; it
matches concrete variable secret with the template variable $v_0$.

For the found code match, Seader customizes the abstract fix
shown in Figure 3 by replacing the abstract variable $v_0$ with
concrete variable secret. As shown in Figure 4, the customized fix
first initializes a KeyGenerator instance with the algorithm “AES” and
the key size “256”, to generate an unpredictable AES key (lines 6–
8). Next, the AES key is converted to a byte array (line 9), which
value can be stored into a Java field so that the value is reusable by
both encryption and decryption modules. Additionally, inside the
method encrypt(...), the original vulnerable statement is updated
to create a secret key using the generated byte array.

3 APPROACH

There are two challenges to overcome in our research:
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SecretKey sekey= new SecretKeySpec(ByteLiterals.CONSTANT_ARRAY, "AES");

statement (ExpressionStmt)

variable (VariableDeclarator)

initializer (ObjectCreationExpr)

type (ClassOrInterfaceType) arguments

argument 
(NameExpr)

argument 
(StringLiteralExpr)

SecretKey sekey= new SecretKeySpec(key, "AES");

… …

… …

… … … …

… …

statement (ExpressionStmt)

variable (VariableDeclarator)

initializer (ObjectCreationExpr)

type (ClassOrInterfaceType) arguments

argument 
(FieldAccessExpr)

argument 
(StringLiteralExpr)

… …

… …

… … … …

… …

Figure 5: The simplified ASTs of the two statements related to a statement-level update operation

(1) How can we infer generalized vulnerability-repair patterns
from concrete ⟨insecure, secure⟩ code examples?

(2) How can we ensure that the inferred patterns are applicable
to code that is different from the original examples?

To address these challenges, as shown in Figure 1, we designed
two phases in Seader. The first phase takes two steps to infer
vulnerability-repair patterns from ⟨insecure, secure⟩ code examples;
the second phase contains another two steps to apply inferred
patterns to given programs. In this section, we will first describe
each of the four steps in detail (Section 3.1-Section 3.4). Next, wewill
explain the three specialized ways of example specification, which
can facilitate users to demonstrate certain API misuses (Section 3.5).

3.1 Change Recognition

Given an ⟨𝐼 , 𝑆⟩ example pair, Seader compares code to locate (1)
the root cause of any vulnerability demonstrated by 𝐼 and (2) the
security patch shown in 𝑆 . Specifically, Seader applies syntactic
program differencing to the code pair, to reveal any edit operation(s)
that can transform 𝐼 to 𝑆 . This step consists of two parts: statement-
level change recognition and expression-level change recognition.

3.1.1 Statement-level change recognition. Seader first uses Java-
Parser [23] to generate ASTs for 𝐼 and 𝑆 , and then compares ASTs
to create three types of edit operations:

• delete (Node 𝑎): Delete node 𝑎.
• insert (Node 𝑎, Node 𝑏, int 𝑘): Insert node 𝑎 and position
it as the (𝑘 + 1)𝑡ℎ child of node 𝑏.

• update (Node 𝑎, Node 𝑏): Replace 𝑎 with 𝑏. This operation
changes 𝑎’s content.

Specifically, when comparing any two statements 𝑠𝑖 ∈ 𝐼 and 𝑠𝑠 ∈ 𝑆 ,
Seader checks whether the code string of 𝑠𝑖 exactly matches that
of 𝑠 𝑗 ; if so, Seader considers 𝑠𝑖 unchanged while 𝐼 is transformed
to 𝑆 . Otherwise, if the code strings of 𝑠𝑖 and 𝑠 𝑗 are different, Seader
normalizes both statements by replacing concrete variables (e.g.,
key) with abstract ones (e.g., $v_0), and replacing constant values
(e.g., "AES") with abstract constants (e.g., $c_0). We denote the nor-
malized representations as 𝑛𝑖 and 𝑛𝑠 . Next, Seader computes the
Levenshtein edit distance [28] between 𝑛𝑖 and 𝑛𝑠 , and computes
the similarity score [19] with:

𝑠𝑖𝑚 = 1 − 𝑒𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ(𝑛𝑖 , 𝑛𝑠 )

The similarity score 𝑠𝑖𝑚 is within [0, 1]. When 𝑠𝑖𝑚 = 1, 𝑛𝑖 and
𝑛 𝑗 are identical. We set a threshold 𝑡ℎ = 0.8 such that if 𝑠𝑖𝑚 >=

𝑡ℎ, 𝑛𝑖 and 𝑛 𝑗 are considered to match. In this way, Seader can
identify update operation(s). Compared with string-based match,
the normalization-based match is more flexible, because it can
match any two statements that have similar syntactic structures
but distinct variables or constants. Finally, if a statement 𝑠𝑖 ∈ 𝐼 does
not find a match in 𝑆 , Seader infers a delete operation; if 𝑠𝑠 ∈ 𝑆 is
unmatched, Seader infers an insert operation.

3.1.2 Expression-level change recognition. For each statement-level
update, Seader tries to identify any finer-granularity edit (i.e.,
expression replacement) to better comprehend changes, and to
prepare for later pattern generation (see Section 3.2). When 𝑠𝑖 is
updated to 𝑠𝑠 , Seader conducts top-down matching between ASTs
to identify edits. Namely, while traversing both trees in a preorder
manner, Seader compares roots and inner nodes based on the AST
node types, and compares leaf nodes based on the code content.
Such node traversal and comparison continue until Seader finds
all unmatched subtrees or leaves.

For the example code shown in Figure 2, with statement-level
change recognition, Seader reveals one statement update andmulti-
ple statement additions. Figure 5 shows the simplified ASTs of both
before- and after- versions for the updated statement. By comparing
the ASTs in a top-down manner, Seader finds the first arguments
sent to the constructor to differ (e.g., FieldAccessExpr vs. NameExpr).
Thus, Seader creates a finer-granularity operation to replace the
statement-level update: update (ByteLiterals.CONSTANT_ARRAY, key).

Notice that we decided not to use existing tools, such as GumTree
[17] and ChangeDistiller [19], to recognize changes for a variety
of reasons. First, GumTree often mismatches nodes against devel-
opers’ intent [32]. GumTree can generate four types of edit opera-
tions: add, delete, update, and move. However, in our research, we
need only three edit types: add, delete, and update, so that Seader
can infer API-misuse patterns from recognized changes. Second,
ChangeDistiller only detects statement-level changes, without iden-
tifying expression-level changes. Additionally, it also generates four
edit types. To avoid (1) fixing bugs in GumTree and (2) revising
current tools to report three instead of four types of edit operations,
we created our own program differencing algorithm.

3.2 Pattern Generation

When security experts present an ⟨𝐼 , 𝑆⟩ example pair to demonstrate
any API misuse, we expect that they provide the code snippets to
show only one vulnerability and its repair. Additionally, based on
our experience with security-API misuses, each vulnerability is
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Insecure code (I )
1 void t e s t ( in t i t e r a t i o n s ) {
2 byte [ ] s a l t = new byte [ 4 ] ;
3 A lgor i thmParamete rSpec paramSpec = new PBEParameterSpec ( s a l t ,

i t e r a t i o n s ) ; }

Secure code (S)
1 void t e s t ( in t i t e r a t i o n s ) {
2 byte [ ] s a l t = new byte [ 8 ] ;
3 A lgor i thmParamete rSpec paramSpec = new PBEParameterSpec ( s a l t ,

i t e r a t i o n s ) ; }

Figure 6: An ⟨𝐼 , 𝑆⟩ where a critical API PBEParameterSpec(...) in-

directly depends on a updated constant

usually caused by the misuse of one security API. Therefore, to
infer a general vulnerability-repair pattern from a given code pair,
we need to overcome two technical challenges:

• How can we identify the security API whose misuse is re-
sponsible for the vulnerability (i.e., critical API)?

• How should we capture any relationship between the critical
API and its surrounding code?

3.2.1 Task 1: Identifying the critical API. Starting with the edit
script 𝐸 created in Section 3.1, Seader looks for any update opera-
tion𝑢𝑝𝑑𝑎𝑡𝑒 (𝑒, 𝑒 ′). If there is such an operation, Seader searches for
the security API whose invocation is data-dependent on 𝑒 or 𝑒 ′, and
considers the API to be critical. For the example shown in Figure 5,
the critical API is SecretKeySpec(byte[], String) because it is invoked
with the updated expression as the first argument. Similarly, Fig-
ure 6 presents another example where a numeric literal is updated
from 4 to 8. With data-dependency analysis, Seader reveals that
the constants are used to define variable salt, while salt is used
as an argument when PBEParameterSpec(...) is invoked. Therefore,
the method invocation depends on the updated expression, and the
security API PBEParameterSpec(byte[], int) is considered critical.

If there is no update operation in 𝐸, Seader searches for any over-
ridden security API that encloses all edit operations, and considers
the overridden API to be critical. Take the code pair shown in Fig-
ure 7 as an example. By comparing 𝐼 with 𝑆 , Seader can identify one
statement deletion and multiple statement insertions. As there is
no update operation and all edit operations are enclosed by an over-
ridden method verify(String, SSLSession) (indicated by @Override),
Seader further locates the interface or super class declaring the
method (e.g., HostnameVerifier). If the overridden method together
with the interface/super class matches any known security API,
Seader concludes the overridden method to be critical.

Lastly, if no update operation or overridden security API is iden-
tified, Seader checks whether there is any deletion of security API
call in 𝐸; if so, the API is critical. To facilitate later template match-
ing (Section 3.3), for each identified critical API, Seader records the
method binding information (e.g., javax.crypto.spec.SecretKeySpec.
SecretKeySpec(byte[], String)).
3.2.2 Task 2: Extracting relationship between the critical API and
its surrounding code. When a vulnerable code example has mul-
tiple statements (e.g., Figures 6 and 7), we were curious how the
critical API invocation is related to other statements. On one ex-
treme, if the invocation is irrelevant to all surrounding statements,
we should not include any surrounding code into the generalized
pattern. On the other extreme, if the invocation is related to all
surrounding code, we should take all code into account when in-
ferring a vulnerability-repair pattern. Thus, this task intends to

Insecure code (I )
1 public c l a s s Ho s t V e r i f i e r implements Hos tnameVe r i f i e r {
2 @Override
3 public boolean v e r i f y ( S t r i n g hostname , SSLSe s s i on s s l S e s s i o n ) {
4 return true ; } }

Secure code (S)
1 public c l a s s Ho s t V e r i f i e r implements Hos tnameVe r i f i e r {
2 @Override
3 public boolean v e r i f y ( S t r i n g hostname , SSLSe s s i on s s l S e s s i o n ) {
4 / / P l e a s e change " example . com " as ne ed ed

5 i f ( " example . com " . e qu a l s ( hostname ) ) {
6 return true ;
7 }
8 Hos tnameVe r i f i e r hv = HttpsURLConnect ion .

g e tD e f a u l tHo s t n ameVe r i f i e r ( ) ;
9 return hv . v e r i f y ( hostname , s s l S e s s i o n ) ; } }

Figure 7: A pair of examples from which Seader infers the

critical API to be an overridden method

decide (1) which statements of 𝐼 to include into the vulnerable code
template, (2) what additional security API call(s) to analyze for
template matching (see Section 3.3), and (3) which statements of 𝑆
to include into the abstract fix.

Seader performs intra-procedural data-dependency analysis. If a
statement defines a variable whose value is (in)directly used by the
critical API invocation, the statement is extracted as edit-relevant
context. Seader uses such context to characterize the demonstrated
vulnerability. For the insecure code 𝐼 in Figure 6, since the API call
(line 3) data-depends on variable salt, lines 2-3 are extracted as con-
text. Additionally, when the critical API is an overridden method,
its code implementation in 𝐼 is considered edit-relevant context (see
lines 3-4 in Figure 7). Based on the extracted edit-relevant context,
Seader abstracts all variables to derive a vulnerable code template
𝑇 , and records mappings 𝑀 between abstract and concrete vari-
ables. In addition to the critical API, Seader also extracts binding
information for any other security API invoked by the contextual
code. Compared with edit-relevant context, these APIs provide
more succinct hints. In our later template-matching process, these
APIs can serve as “anchors” for Seader to efficiently decide whether
a program slice is worth further comparison with the template.

To locate the fix-relevant code in secure version 𝑆 , Seader iden-
tifies any unchanged code in the edit-relevant context, the inserted
statements, and the new version of any updated statement. For
the secure code 𝑆 shown in Figure 6, lines 2-3 are fix-relevant, be-
cause line 2 is the new version of an updated statement and line
3 is unchanged contextual code. Similarly, for the secure code 𝑆
shown in Figure 7, lines 3-9 are fix-relevant, because lines 3 presents
the critical API while lines 4-9 are inserted statements. Based on
the above-mentioned variable mappings 𝑀 and fix-related code,
Seader further abstracts variables used in the fix-related code to
derive an abstract fix 𝐹 . Seader ensures that the same concrete
variables used in 𝐼 and 𝑆 are mapped to the same abstract variables.

To sum up, given a ⟨𝐼 , 𝑆⟩ pair, Seader produces a pattern 𝑃𝑎𝑡 =
⟨𝑇, 𝐹 ⟩, which has a vulnerable code template 𝑇 , an abstract fix 𝐹 ,
and metadata to describe 𝑇 (i.e., bindings of security APIs).

3.3 Template Matching

Given a program 𝑃 , Seader uses a static analysis framework—
WALA [7]—to analyze the program JAR file (i.e., bytecode). As
shown by lines 1.2–1.4 in Algorithm 1, to find any code in 𝑃 that
matches the template 𝑇 , Seader first searches for the critical API
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(i.e., invocation or method reimplementation). If the critical API
does not exist, Seader concludes that there is no match for 𝑇 .
Next, if the critical API is invoked at least once, for each invo-
cation, Seader conducts inter-procedural backward slicing to re-
trieve all code 𝑆𝑙𝑖 on which the API call is data-dependent (i.e.,
getBackwardSlice(x)). When 𝑇 invokes one or more security APIs in
addition to the critical API, Seader further examines whether 𝑆𝑙𝑖
contains matches for those extra APIs; if not, the matching trial
fails (see lines 1.8–1.9). Next, Seader checks whether the matched
code in 𝑆𝑙𝑖 preserves the data dependencies manifested by 𝑇 (i.e.,
dataDependConsist(T, Sli)). If those data dependencies also match,
Seader reveals a vulnerability (see lines 1.10–1.11).

Alternatively, if the critical API is reimplemented, for each reim-
plementation, Seader compares the code content against 𝑇 , and
reports a vulnerability if they match (see lines 1.13–1.14). At the
end of this step, if any vulnerability is detected, Seader presents
the line number where the critical API is invoked or is declared
as an overridden method, and shows related matching details. The
matching details include both code matches and abstract-concrete
variable mappings.

Actually, we designed our algorithm of template matching based
on three considerations. First, as developers provide code examples
in Java but WALA analyzes JAR files, template matching should
leverage the minimum information (i.e., security APIs and vari-
able data dependencies) to overcome any discrepancy between
program representations (i.e., source code vs. bytecode). Second,
although Seader infers templates from simple code examples via
intra-procedural analysis, we need to match code with templates
step-by-step via inter-procedural analysis, so that Seader can
find matches even if the program context is more complicated.
Third, many security-API misuses are relevant to parameter usage
or method overriding, so our matching algorithm observes such
unique characteristics to establish matches.

Algorithm 1:Matching Program P to template T
Input: P, T, D /* program, template, and related metadata */

Output:Matched /* a set of code matches from P to T */

1.1 Candi := ∅, Matched := ∅;
/* 1. search for matches of the critical API */

1.2 foreach code line x ∈ P do

1.3 if x invokes D(critical) || x declares D(critical) then

1.4 Candi := Candi ∪ x;

1.5 foreach x ∈Candi do
1.6 if x invokes D(critical) then

/* 2(a). For API call, do program slicing and look for

matches of other security APIs */

1.7 Sli = getBackwardSlice(x);
1.8 if (Sli has all matches for D(other)) == false then

1.9 continue;

/* 3. check whether the data dependencies between

security APIs in T match those in Sli */

1.10 if dataDependConsist(T, Sli) then

1.11 Matched:=Matched ∪ {Sli, mappings};

1.12 else

/* 2(b). For API overriding, check the code */

1.13 if contentMatch(code(P, x), T) then

1.14 Matched := Matched ∪ {code(P, x), mappings};

Table 2: The stubs defined to ease example specification

Class Members Semantics

StringLiterals
(String... a)

This constructor creates a StringLiterals ob-
ject with one or more string literals.

StringLiterals getAString() This method randomly returns one of the
strings originally used to construct the
StringLiterals object.

ByteLiterals CONSTANT_
ARRAY

This field serves as a placeholder for a byte-array
constant, whose value can be unspecified.

CharLiterals CONSTANT_
ARRAY

This field serves as a placeholder for a char-array
constant, whose value can be unspecified.

3.4 Fix Customization

This step involves two types of customization: variable customiza-
tion and edit customization. To customize variables, based on the
matching details mentioned in Section 3.3, Seader replaces abstract
variables in 𝐹 with the corresponding concrete ones. We denote this
customized version as 𝐹𝑐 . For edit customization, Seader suggests
code replacements in two distinct ways depeding on the inferred
edit operations mentioned in Section 3.1. Specifically, if there is
only one update operation inferred, Seader simply recommends an
alternative expression to replace the original expression. Otherwise,
Seader presents 𝐹𝑐 for developers to consider.

Notice that Seader does not directly modify 𝑃 to repair any vul-
nerability for two reasons. First, when template𝑇 contains multiple
statements, it is possible that the corresponding code match in-
volves statements from multiple method bodies. Automatically edit-
ing those statements can be risky and cause unpredictable impacts
on program semantics. Second, some fixes require for developers’
further customization based on their software environments (e.g.,
network configurations, file systems, and security infrastructures).
As implied by Figure 7, the abstract fix derived from 𝑆 will con-
tain a comment "//Please change ’example.com’ as needed", so will the
customized fix by Seader. This comment instructs developers to
replace the standard hostname based on their circustances.

3.5 Specialized Ways of Example Specification

We believe that by crafting ⟨𝐼 , 𝑆⟩ code pairs, security experts can
demonstrate the misuse and correct usage of security APIs. How-
ever, we also noticed some scenarios where plain Java examples can-
not effectively reflect the vulnerability-repair patterns. To solve this
problem, we defined three stub Java classes (i.e., fake classes) for
user adoption and invented three specialized ways of example

definition. As shown in Table 2, the stub classes offer stub meth-
ods or fields to facilitate constant-related example specification.
This section explains the scenarios where our special specification
methods are needed.

Scenario 1. An API misuse involves an arbitrary constant value

instead of any particular constant. Plain examples only show the
usage of particular constant values, but cannot generally represent
the constant concept. Consider the vulnerability introduced in Sec-
tion 2. Without using ByteLiterals.CONSTANT_ARRAY, a domain expert
has to define a plain example to show the API misuse, such as

SecretKey sekey = new SecretKeySpec("ABCDE".getBytes(), "AES");

Seader is designed to preserve all string literals from 𝐼 when gen-
eralizing template 𝑇 , and to look for those values when match-
ing code with 𝑇 . Consequently, given the above-mentioned exam-
ple, Seader will inevitably embed "ABCDE" into the inferred tem-
plate. To help users avoid such unwanted literal values in 𝑇 , we
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Insecure code (I )

1 S t r i n g L i t e r a l s l i t e r a l s =new S t r i n g L i t e r a l s ( "AES " , " RC2 " , " RC4 " ,
" RC5 " , "DES " , " b l ow f i s h " , " DESede " , "ARCFOUR" ) ;

2 Cipher . g e t I n s t a n c e ( l i t e r a l s . g e tAS t r i n g ( ) ) ;
Secure code (S)

1 S t r i n g L i t e r a l s l i t e r a l s = new S t r i n g L i t e r a l s ( "AES /GCM/ NoPadding "
, " RSA /ECB /OAEPWithSHA−1AndMGF1Padding " ) ;

2 Cipher . g e t I n s t a n c e ( l i t e r a l s . g e tAS t r i n g ( ) ) ;

Figure 8: A code pair where multiple alternative secure and

insecure options are specified simultaneously

defined ByteLiterals.CONSTANT_ARRAY and CharLiterals.CONSTANT_ARRAY.
These static fields can be used as placeholders or wildcards for con-
stant arrays, to represent the general constant concept in examples.
When Seader detects such fields in examples, it keeps them as they
are in 𝑇 and later matches them with constant values in 𝑃 .

Scenario 2. An API misuse has multiple alternative insecure (or

secure) options. Given a parameter of certain security API, suppose
that there are (1)𝑚 distinct values to cause API misuse and (2) 𝑛
alternatives to ensure correct API usage, where𝑚 ≥ 1, 𝑛 ≥ 1. To
express all possible combinations between the insecure and secure
options via plain Java examples, users have to provide𝑚 × 𝑛 pairs
of examples, which practice is inefficient and undesirable. To solve
this issue, we defined two stub methods in StringLiterals. As shown
in Figure 8, one is a constructor of StringLiterals, which can take
in any number of string literals as arguments (see line 1 in 𝐼 ) and
store those values into an internal list structure. The other method
is getAString(), which randomly picks and returns a value from that
list (see line 2 in 𝐼 ). In this way, a domain expert can efficiently
enumerate multiple secure/insecure options in just one code pair.

The examples in Figure 8 show that when security API Cipher.
getInstance(...) is called, the parameter may have one of the in-
secure values (e.g., "AES"). Such vulnerability can be addressed
when the value is replaced by one of the three secure options (e.g.,
"AES/GCM/NoPadding"). Given the example in Figure 8, Seader extracts
insecure and secure options from StringLiterals-related statements,
detects vulnerabilities in 𝑃 if the security API is invoked with any
insecure option, and suggests all secure alternatives.

Scenario 3. An API misuse requires for a parameter value in a spe-

cific range. Given an integer parameter 𝑝 of certain API, suppose
that there is a threshold value 𝑡ℎ such that the API invocation is se-
cure only when 𝑝 ≥ 𝑡ℎ. To enumerate all possible vulnerable cases
and related repairs via plain examples, theoretically, a user has to
provide (𝑡ℎ − 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 .𝑀𝐼𝑁_𝑉𝐴𝐿𝑈𝐸) × (𝐼𝑛𝑡𝑒𝑔𝑒𝑟 .𝑀𝐴𝑋_𝑉𝐴𝐿𝑈𝐸 −
𝑡ℎ + 1) code pairs, which practice is infeasible. Therefore, we in-
vented a special way of example definition, which requires users to
provide only (1) one insecure example by setting 𝑝 to a concrete
value less than 𝑡ℎ and (2) one secure example by setting 𝑝 = 𝑡ℎ. As
shown in Figure 6, if a security expert wants to describe the pattern
that the array size of the first parameter should be no less than 8, then
s/he can define 𝐼 by creating an array with a smaller size (i.e., 4) and
define 𝑆 by setting the size to 8. Seader can identify the integer
literals used by 𝐼 and 𝑆 , and infer the secure value range 𝑠𝑖𝑧𝑒 ≥ 8.

4 EVALUATION

This section first describes the evaluation datasets and metrics, and
then presents Seader’s effectiveness of pattern inference. Next,
it explains the tool effectiveness of pattern application, including
vulnerability detection and repair. We did all experiments on Linux

Mint 20.3 Cinnamon, version 5.2.7; we used Intel Core i7-8700
processor and 32GB memory.

4.1 Datasets

We used one dataset to evaluate pattern inference, and two datasets
to evaluate pattern application.
4.1.1 A dataset to evaluate pattern inference. Prior research re-
vealed a number of security-API misuses and related correct usage
in Java [1, 14, 16, 18, 25, 31, 33, 36, 40, 42]. To evaluate Seader’s ef-
fectiveness of pattern inference, we referred to those well-described
API misuses and fixes while crafting code examples for Seader.
Table 3 lists the 13 security class APIs we focused on, the insecure
usage of certain method API(s) frequently mentioned by prior work,
and the secure usage. With this domain knowledge, we handcrafted
28 ⟨𝐼 , 𝑆⟩ pairs. Among the pairs, 19 pairs are defined in the special-
ized ways introduced in Section 3.5, and 9 pairs are defined with
plain Java examples. Within the 19 pairs, 8 pairs, 6 pairs, and 5 pairs
separately belong to Scenarios 1–3.
4.1.2 Two datasets to evaluate pattern application. The first dataset
is a third-party benchmark, consisting of 86 real vulnerabilities
from 10 Apache open-source projects [8, 12]. We decided to use this
dataset for two reasons. First, it was created by other researchers, so
it can be used to objectively assess the effectiveness of different vul-
nerability detectors. Second, most of the 86 vulnerabilities belong
to the 13 security classes shown in Table 3, so they can properly
measure Seader’s capability of pattern application. The second
dataset contains 100 widely used Apache open-source projects. To
create this dataset, we first ranked the Apache projects available
on GitHub [4] in a descending order of their popularity (i.e., star
counts). Next, we located the top 100 projects that satisfy the follow-
ing constraints: (1) the project uses the security APIs that Seader
examines; (2) the project is compilable because Seader analyzes
the compiled JAR files. The resulting dataset is used to evaluate
Seader’s effectiveness of repair suggestion.

4.2 Metrics

As with prior work [40], we leveraged the following three metrics
to measure tools’ capability of vulnerability detection:

Precision (P) measures among all reported vulnerabilities, how
many of them are true vulnerabilities.

𝑃 =
# of correct reports
Total # of reports

When a tool reports a set of vulnerabilities 𝑆1 and the known set
of vulnerabilities is 𝑆2, we intersected 𝑆1 with 𝑆2 to automatically
compute precision. Namely, 𝑃 = |𝑆1 ∩ 𝑆2 |/|𝑆1 |.

Recall (R)measures among all known vulnerabilities, howmany
of them are detected by a tool.

𝑅 =
# of correct reports

Total # of known vulnerabilities
When a tool reports a set of vulnerabilities 𝑆1, we intersected 𝑆1
with the set of known vulnerabilities 𝑆2 to automatically compute
recall, i.e., 𝑅 = |𝑆1 ∩ 𝑆2 |/|𝑆2 |.

F-score (F) is the harmonic mean of precision and recall; it can
reflect the trade-off between precision and recall.

𝐹 =
2 × 𝑃 × 𝑅
𝑃 + 𝑅



ICPC ’22, May 16–17, 2022, Virtual Event, USA Ying Zhang, Ya Xiao, Md Mahir Asef Kabir, Danfeng (Daphne) Yao, and Na Meng

Table 3: The API misuses and related fixes summarized by prior work [1, 18, 33, 40]

Id Security Class

API

Insecure Secure

1 Cipher The algorithm and/or mode is set as AES, RC2, RC4, RC5, DES, DESede,
AES/ECB, Blowfish, ARCFOUR, or RSA/None/NoPadding.

The algorithm and/or mode is set as AES/GCM/NoPadding,
RSA/ECB/OAEPWithSHA-1AndMGF1Padding, AES/CFB/P-
KCS5Padding, or RSA/CBC/PKCS5Padding.

2 HostnameVerifier Allow all hostnames. Implement logic to actually verify hostnames.
3 IvParameterSpec Create an initialization vector (IV) with a constant. Create an IV with an unpredictable random value.
4 KeyPairGenerator Create an RSA key pair where key size < 2048 bits or create an ECC key

pair where key size < 224 bits.
RSA key size >= 2048 bits, ECC key size >= 224 bits.

5 KeyStore When loading a keystore from a given input stream, the provided pass-
word is a hardcoded constant non-null value.

The password is retrieved from some external source (e.g., database
or file).

6 MessageDigest The algorithm is MD2, MD5, SHA-1, or SHA-224. The algorithms is SHA-256, SHA-512 or SHA-3.
7 PBEKeySpec Create a PBEKey based on a constant salt. Use an unpredictable random salt value to create the key.
8 PBEParameterSpec Create a parameter for password-based encryption (PBE) by setting salt

size < 64 bits or iteration count < 1000, or by using a constant salt.
Salt size >= 64 bits, iteration count >=1000. Use an unpredictable
randomly generated salt value.

9 SecretKeyFactory Create secret keys with algorithm DES, DESede, ARCFOUR, PBE-
WithMD5AndDES, or PBKDF2WithHmacSHA1.

Create secret keys with AES or PBEWithHmacSHA256AndAES_256.

10 SecretKeySpec Create a secret key with a constant value, or using the algorithm DES,
DESede, Blowfish, HmacSHA1, ARCFOUR, PBEWithMD5AndDES, or
PBKDF2WithHmacSHA1.

Create a secret key with an unpredictable randomly generated value,
or using the algorithm AES or PBEWithHmacSHA256AndAES_128.

11 SecureRandom Use Random to generate random values, or set SecureRandom to use a
constant seed.

Use SecureRandom instead of Random, and ensure the seed to be a
random value.

12 SSLContext Use the protocol SSL, TLSv1.0, or TLSv1.1. Use the protocol TLSv1.2 or TLSv1.3
13 TrustManager Trust all clients or servers Check clients and/or check servers.

Table 4: The 28 code pairs for pattern inference

Single statement Multiple statements

Identical 4 5
Abstract 1 18

4.3 Effectiveness of Pattern Inference

As mentioned in Section 4.1, we crafted 28 code pairs to evaluate
Seader’s effectiveness of pattern inference. We categorized the 28
pairs based on two criteria:
C1. Do 𝐼 and 𝑆 contain single or multiple statements?
C2. Does pattern inference abstract variables?

The two conditions actually reflect the difficulty levels or challenges
of these pattern inference tasks. For instance, if 𝐼 or 𝑆 has multiple
statements, Seader conducts data-dependency analysis to locate
the edit-relevant context in 𝐼 or to reveal the fix-relevant code in
𝑆 . If 𝐼 or 𝑆 uses variables, Seader abstracts all variable names to
ensure the general applicability of inferred patterns. As shown in
Table 4, there are four simplest pairs; Seader can handle these pairs
without conducting any data-dependency analysis or identifier gen-
eralization. Meanwhile, there are 18 most complicated cases that
require Seader to analyze data dependencies and generalize iden-
tifiers. In our evaluation, Seader correctly inferred patterns from
all pairs. When some pairs present secure/insecure options (e.g.,
distinct string literals) for the same critical API, Seadermerged the
inferred patterns. In this way, Seader derived 21 unique patterns.
Finding 1:Our experiment shows Seader’s great capability of pat-

tern inference. Seader shows impressive extensibility by inferring

patterns from various examples.

4.4 Effectiveness of Vulnerability Detection

To assess Seader’s capability of vulnerability detection, we used a
third-party dataset (see Section 4.1.2). We applied Seader and three
state-of-the-art vulnerability detectors (i.e., CogniCrypt [26], Cryp-
toGuard [40], and FindSecBugs [9]) to all subject programs. The
tool versions we used include CogniCrypt-2.7.1, commit 94135c5
of CryptoGuard, and findsecbugs-cli-1.10.1. To ensure that Cog-
niCrypt has enough memory during execution, instead of using

its default configuration, we set the maximum heap size to 30G
(-Xmx30g) and the maximum stack size to 60M (-Xss60m). For other
tools, we adopted the default tool configuration in our experiments.
Seader spent 262 seconds analyzing all programs. As shown in Ta-
ble 5, Seader outperformed the other tools by acquiring the highest
average recall (72%) and F-score (82%). It obtained the same average
precision rate—95%—as CryptoGuard and FindSecBugs, which rate
is much higher than that of CogniCrypt (i.e., 58%).

Seader reported API misuses in eight projects, while the other
three tools reported issues in nine projects. As the dataset labels
no vulnerability in tika.jar and all tools found zero vulnerability in
that project, we could not measure P, R, or F for these tools. Seader
was unable to analyze tomee.jar, because WALA does not always
work well with the JAR files built by Maven [10]. We believe that
once WALA developers overcome the limitation between WALA
and Maven JARs in the future, Seader can also analyze tomee.jar.
Among the four tools under comparison, CryptoGuard obtained
a slightly lower F-score than Seader (78% vs. 82%), followed by
FindSecBugs and CogniCrypt. Two possible reasons can explain
Seader’s higher F-score. First, thanks to its great extensibility,
Seader has a larger pattern set of API misuses. Second, its inter-
procedural analysis can accurately detect API misuses in more
complex scenarios.

Analysis of False Positives.We manually inspected the cases
where Seader did not report misuses correctly. We found one
reason to explain why Seader did not achieve 100% precision:
the ground truth is incomplete, as it labels some instead of all
invocations of Random(). We currently consider the extra calls of
Random() found by Seader to be false positives, although the actual
precision rate is higher.

Analysis of False Negatives. Seader missed some labeled API
misuses, because the corresponding misuse patterns are not cov-
ered by our 21 inferred patterns. Some of these missing patterns can
be added to Seader if we feed the tool with more code examples.
One missing pattern cannot get added even if we provide ⟨𝐼 , 𝑆⟩
pairs to Seader. The pattern is to replace new URL("http://...") with
new URL("https://..."). HTTPS is HTTP with encryption. Nowadays
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Table 5: Evaluation results on the 86-vulnerability dataset [8]

Apache Project
# of Labeled CogniCrypt CryptoGuard FindSecBugs Seader

Vulnerabilities P(%) R(%) F(%) P(%) R(%) F(%) P(%) R(%) F(%) P(%) R(%) F(%)

deltaspike.jar 2 40 100 57 100 100 100 100 100 100 100 100 100
directory-server.jar (apacheds-kerberos-codec) 19 51 95 67 100 26 42 100 58 73 94 84 89

incubator-taverna-workbench.jar 5 57 80 67 100 80 89 100 40 57 80 80 80
manifoldcf.jar (mcf-core) 3 17 33 22 60 100 75 75 100 86 75 100 86

meecrowave.jar 3 100 100 100 100 67 80 100 67 80 100 100 100
spark.jar 27 100 26 41 100 100 100 100 85 92 100 93 96
tika.jar 0 - - - - - - - - - - - -

tomee.jar (openejb-core) 7 60 43 50 83 71 77 60 43 50 - - -
wicket.jar 5 40 40 40 100 100 100 100 40 57 100 60 75

artemis-commons.jar 15 100 40 57 100 27 42 100 33 50 100 40 57
Overall 86 58 53 56 95 66 78 95 62 75 95 72 82

“-” means no value is computed, because there is no labeled API misuse in the ground truth dataset or there is no tool-reported misuse.
Table 6: The sampled vulnerabilities and repairs

Security # of Vulnerability Detection Repair Suggestion

Class API
Re-

ports
Basic Intra- Inter-

Parameter

or API re-

placement

Code

replace-

ment

Cipher 6 5 1 6
HostnameVerifier 2 2 2
IvParameterSpec 4 1 3 4
KeyPairGenerator 3 1 2 3
KeyStore 5 1 4 5
MessageDigest 7 5 2 7
PBEParameter-
Spec

7 1 4 2 4 3

SecretKeyFactory 4 2 2 4
SecretKeySpec 11 6 1 4 9 8
SecureRandom 5 5 5
SSLContext 5 5 5
TrustManager 12 12 12
Total 71 44 7 20 43 34

all websites are supposed to use HTTPS instead of HTTP for se-
cure communication, so any URL string hardcoded in programs
should always start with “https” instead of “http”. In this pattern,
the difference between insecure and secure code lies in the string
literal, which is not handled by Seader currently. To derive the
pattern from given code examples, we need to extend Seader and
our specialized ways of example definition, to accurately locate and
properly represent any difference within strings.
Finding 2: On the third-party Apache dataset, Seader outper-

formed existing tools by achieving the highest precision, recall,

and F-score on average. Our experiment indicates Seader’s great

capability of vulnerability detection.

4.5 Effectiveness of Repair Suggestion

By applying Seader to the second datasetmentioned in Section 4.1.2,
we got hundreds of vulnerabilities reported together with repair
suggestions. Due to the time limit, we did not check every vulnera-
bility as well as their repair(s); instead, we manually sampled the
vulnerability reports and suggested repairs for 71 misuse instances.

To ensure the representativeness of our manual inspection re-
sults, we took four steps to create the sample set. First, we clustered
all bug reports based on API-misuse patterns. Second, we randomly
picked 10 reports from each cluster for further checking. If any clus-
ter contained nine or fewer reports, we picked all reports. Third,
when bug reports referred to duplicated code snippets, we removed
duplicates to simplify our manual task, getting 71 sampled vulnera-
bilities. Fourth, we mapped the 71 samples to the security classes
that they correspond to, and created Table 6. Notice that because
some security classes (e.g., SecretKeySpec and TrustManager) have

multiple method APIs that are prone to misuses (i.e., have multiple
API-misuse patterns), the corresponding rows contain more than
10 samples (e.g., 11 for SecurityKeySpec and 12 for TrustManager).

After the first author created the sample set, both the first and
fifth authors independently checked bug reports and fixing sugges-
tions. The two authors compared their manual inspection results
for cross-checking; they had extensive discussion for any opinion
divergence and even involved the second author into discussion,
until reaching a consensus.

Among the examined vulnerabilities, Seader revealed 44misuses
without doing any backward slicing (see the Basic column); it
successfully matched templates with single Java statements. Seader
revealed seven misuses via intra-procedural slicing because in each
of these scenarios, Seader located and analyzedmultiple statements
to match the related template. Seader revealed 20 misuses via inter-
procedural slicing, because multiple statements from different Java
entities (i.e., methods or fields) demonstrate each of the misuses.

70 of the vulnerabilities are true positives; the remaining one
was falsely reported. This is because during its analysis, Seader
checks whether the second parameter of KeyStore.load(InputStream

stream, char[] password) is derived from a hardcoded constant; if
so, the API call is considered insecure. Such analysis logic can
effectively identify any password derived from a hardcoded secret.
However, in our experiment, it incorrectly reported a scenario
where the password is loaded from a file, whose name is hardcoded
as a string literal. In the future, we will overcome this limitation by
implementing heuristics (e.g., regular expressions) in Seader, to
differentiate between constants serving for distinct purposes.

Additionally, among the 77 suggested repairs, 43 repairs are
solely about parameter/API replacement; Seader does not need
to generate any code or customize any identifier to propose these
fixes. Meanwhile, 34 repairs involve both multi-statement fixes
and identifier customization. Notice that the total number of repair
suggestions (i.e., 77) is larger than the vulnerability count (i.e.,
71). This is because Seader provides multiple suggestions for six
vulnerabilities, as each of the code snippets matches two templates
simultaneously and Seader suggests a repair for eachmatch. Finally,
we found all repairs by Seader to be correct. However, as Seader
has a false positive when reporting API misuses, we count the
repairs for the other 70 misuses as correct suggestions.
Finding 3: We manually checked 77 fixes generated by Seader,

and found 76 of them to be correct. It indicates that Seader has

great capability of repair suggestion.
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5 RELATEDWORK

The related work of our research includes automatic detection of
security-API misuses, and example-based program transformation.

5.1 Detection of Security-API Misuses

Tools were built to detect security-API misuses [9, 11, 15, 16, 18,
22, 26, 27, 29, 30, 40]. As shown in Table 1, most tools statically
analyze programs based on hardcoded or built-in rules. Specifically,
CryptoLint hardcoded six API misuse patterns. For each located po-
tentially vulnerable API call (e.g., Cipher.getInstance(v)), CryptoLint
conducts backward slicing to decide whether the used parameter
value is insecure (e.g., v="AES/ECB"). CDRep reimplements the design
of CryptoLint for misuse detection. It also repairs detected misuses
leveraging manually created patch templates. Such tools are not
easy to extend, because tool builders or users have to modify tool
implementation to expand the rulesets of vulnerabilities.

Fischer et al. [18] built a tool to detect misuses in two ways:
machine learning and graph matching. Both methods detect vul-
nerabilities based on the similarity between given programs and
labeled (in)secure code. However, this tool does not rigorously rea-
son about misuse patterns; it cannot pinpoint the exact location
of misused API in vulnerable code. CogniCrypt [26] supports rule
definition via a domain-specific language CrySL [27]. Each CrySL
rule specifies correct API usage, and CogniCrypt detects misuses
by scanning programs for rule violation. CogniCrypt has three limi-
tations. First, manually prescribing rules with CrySL can be tedious
and error-prone for tool users. Second, CrySL cannot express the
API misuses related to constant placeholders and constants within
certain ranges. Third, CogniCrypt does not customize fixes.

VuRLE [30] is most relevant to our work. VuRLE also detects and
repairs vulnerabilities based on the ⟨𝐼 , 𝑆⟩ code examples provided
by users. Seader complements VuRLE in three ways. First, Seader
infers each pattern from one instead of multiple code pairs, so it
works well when users have only one pair. Second, Seader con-
ducts inter-procedural analysis and adopts succinct info (security
APIs and data dependencies) to match code with templates, while
VuRLE uses intra-procedural analysis and tree matching. Thus,
Seader can find more matches. Listing 1 is an exemplar program,
where the API misuse is only identifiable when a tool conducts
inter-procedural program analysis. VuRLE cannot locate the API
misuse but Seader can. Third, Seader supports specialized example
definitions, and VuRLE does not. As the source code of VuRLE is not
publicly available, we cannot empirically compare it with Seader.

5.2 Example-Based Program Transformation

Based on the insight that developers modify similar code in simi-
lar ways, researchers built tools to infer program transformations
from exemplar code change examples, and to manipulate code or
suggest changes accordingly [13, 34, 35, 37, 39, 41, 44]. For instance,
given one or multiple code change examples, LASE [35] and RE-
FAZER [41] infer a program transformation from the examples; they
then use the transformation to locate similar code to edit, and apply
customized transformations to those locations. Given a set of vulner-
able and patched code fragments 𝐾 = {(𝐴1, 𝐴′

1), (𝐴2, 𝐴′
2), . . . , (𝐴𝑛,

𝐴′
𝑛)}, SecureSync [39] scans the source code of programs to find

fragments, which are similar to vulnerable code 𝐴𝑖 but dissimilar
to the patched code 𝐴′

𝑖
(𝑖 ∈ [1, 𝑛]).

Sharing the same insight, we designed Seader to detect and fix
vulnerabilities based on code examples. However, Seader is differ-
ent from prior work for two reasons. First, Seader infers a program
transformation via intra-procedural analysis, but conducts pattern
matching via inter-procedural analysis. All the tools mentioned
above are limited to intra-procedural analysis. Our unique design
makes Seadermore powerful when it searches for pattern matches;
it can find matches that go beyond the method boundary and span
multiple Java methods. Second, Seader supports three specialized
ways of example specification, which can describe transformations
that are not expressible via plain code examples. Based on our
experience with security-API misuses, these unique specification
methods are necessary and helpful.

6 THREATS TO VALIDITY

All inferred patterns and detected vulnerabilities are limited to
our experiment datasets and two cryptographic libraries: JCA and
JSSE. The observations may not generalize well to other subject
programs (e.g., closed-source projects) or other security libraries.
We actually also manually checked API misuses in Spring Security—
a widely-used third-party security framework, and found more
misuse patterns that can be handled by Seader (e.g., the parame-
ter value of BCryptPasswordEncoder’s constructor should not be
less than 10). Seader can handle the API misuses that involve (1)
calling certain method APIs with incorrect parameter values, (2)
calling certain method APIs in incorrect sequential orders, and (3)
incorrectly overriding certain method APIs. Therefore, Seader is
generalizable in terms of (1) the API misuse patterns to handle, and
(2) security libraries to cover.

In some repair suggestions provided by Seader, there are place-
holders that we need developers to further customize (see “//Please
change ‘example.com’ as needed” in Figure 7). Such placeholders should
be filled based on developers’ software environments, or even re-
quire extra configurations outside the codebase (e.g., generating
and loading SSL certificates). In the future, we will provide clearer
suggestions on hands-on experience and create interactive tools
that guide developers to apply complete repairs step-by-step.

7 CONCLUSION

We created Seader—a new approach to take in ⟨insecure, secure⟩
code examples, infer vulnerability-repair patterns from examples,
and apply those patterns for vulnerability detection and repair sug-
gestion. Compared with prior work, Seader offers a more powerful
means for security experts to extend the pattern set of API-misuse
detectors, and concretizes security expertise as customized fixing
edits for developers. Our evaluation shows Seader’s great capabil-
ities of pattern inference and application; it detects API misuses
and suggests fixes with high accuracy. In the future, we will widen
Seader’s applicability by specifying more code pairs. We will also
extend Seader’s capability by adding support for more kinds of
API misuse patterns (e.g., patterns involving Java annotations).
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