
2
0
2

1
 I

E
E

E
/A

C
M

 4
3

rd
 I

n
te

rn
a
ti

o
n

a
l

C
o

n
fe

re
n

c
e
 o

n
 S

o
ft

w
ar

e
E

n
g

in
e
e
ri

n
g

 (
IC

S
E

)
| 9

7
8

-1
-6

6
5

4
-0

2
9

6
-5

/2
0

/$
3

1
.0

0
 ©

2
0

2
1
 I

E
E

E
 |

D
O

I:

1

0
.1

1
0

9
/I

C
S

E
4

3
9

0
2

.2
0

2
1

.0
0

0
8

9

2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)

CHAMP: Characterizing Undesired App Behaviors

from User Comments based on Market Policies
Yangyu H u1*, Haoyu W ang2*KI, Tiantong Ji3, Xusheng Xiao3, Xiapu Luo4, Peng Gao5 and Yao Guo6

1 Chongqing University of Posts and Telecommunications, Chongqing, China

2 Beijing University of Posts and Telecommunications, Beijing, China

3 Case Western Reserve University, USA 4 The Hong Kong Polytechnic University, Hong Kong, China

5 University of California, Berkeley, USA 6 Peking University, Beijing, China

Abstract—Millions of mobile apps have been available through

various app markets. Although most app markets have enforced

a number of automated or even manual mechanisms to vet
each app before it is released to the market, thousands of
low-quality apps still exist in different markets, some of which

violate the explicitly specified market policies. In order to identify

these violations accurately and timely, we resort to user com-
ments, which can form an immediate feedback for app market
maintainers, to identify undesired behaviors that violate market
policies, including security-related user concerns. Specifically, we

present the first large-scale study to detect and characterize the

correlations between user comments and market policies. First,
we propose CHAMP, an approach that adopts text mining and

natural language processing (NLP) techniques to extract semantic

rules through a semi-automated process, and classifies comments

into 26 pre-defined types of undesired behaviors that violate

market policies. Our evaluation on real-world user comments

shows that it achieves both high precision and recall (> 0.9) in

classifying comments for undesired behaviors. Then, we curate

a large-scale comment dataset (over 3 million user comments)
from apps in Google Play and 8 popular alternative Android app

markets, and apply CHAMP to understand the characteristics

of undesired behavior comments in the wild. The results confirm

our speculation that user comments can be used to pinpoint
suspicious apps that violate policies declared by app markets. The

study also reveals that policy violations are widespread in many

app markets despite their extensive vetting efforts. CHAMP

can be a whistle blower that assigns policy-violation scores and

identifies most informative comments for apps.
Index Terms—User comment, app market, undesired behavior

I. In t r o d u c t i o n

Although the mobile app ecosystem has seen explosive

growth in recent years, app quality remains a major issue across

app markets [1], [2]. On the one hand, it is reported that millions

of Android malicious apps were identified every year [3],

using more and more complex and sophisticated malicious

payloads and evasion techniques [4], [5], [6]. On the other

hand, a large number of fraudulent and gray behaviors (e.g.,

ad fraud) were found in the mobile app ecosystem from time

to time [7], [8], [9], [10], [11], [12]. Furthermore, apps with

functionality/performance issues such as “diehard apps” [13],

and devious contents such as “anti-society contents” still remain

in the markets [14].

*The first two authors contributed equally to this work. Prof. Haoyu Wang
is the corresponding author (haoyuwang@bupt.edu.cn).

Example comments:

Package Name:
com.beetteer.signal.booster

App Name:
Signal Booster

Store:
Tencent Myapp

Too many ads. Once the app is started,
the notification bar is full of ads.
Time: 2015-06-10

Dnt download it, it is a virus, it crashed
my phone !!!!!
Time: 2014-10-5

Fig. 1. An example of user-perceived undesired behavior.

Most app markets have released strict developer policies,

along with inspection and vetting processes before app pub-

lishing, seeking to nip the aforementioned threats in the bud

and improve app quality in the markets. For example, Google

Play has released a set of developer policies [15] that cover 10

main categories, including “Privacy, Security and Deception”,

“Spam and Minimum Functionality”, and “Monetization and

Ads”, etc. Each category stands for a type of violation that

may be associated with various undesired behaviors. Apps that

break these policies should not be published on Google Play.

However, it is challenging to automatically check policy

compliance for mobile apps. Despite Google Play’s efforts in

adopting strict vetting processes by using automated tools [16],

[17], malware and Potentially Harmful Apps (PHAs) are recur-

rently found in Google Play [18]. Third-party app markets also

show a significantly higher prevalence of malware, fake, and

cloned apps [1]. On the one hand, it has been reported that many

malicious apps use sophisticated techniques to evade automated

detection [4]. For example, certain malicious behaviors could

only be triggered at a specific time or environment, such as

checking whether the app is being inspected in emulating

environments [19]. On the other hand, even if malware can be

detected by these automated tools, many other fraudulent and

gray behaviors such as ad fraud and malicious push notifications

are hard to identify. Moreover, functionality/performance issues

are typically app-specific, while devious contents are broad

and difficult to detect without human inspection, posing more

challenges for automated tools [14].

In many cases, whether an app’s behavior has exposed severe

security risks or performance issues depends on how users

think of it [20], [21]. As an important process for developers

978-1-6654-0296-5/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSE43902.2021.00089

933

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2021 at 02:19:45 UTC from IEEE Xplore. Restrictions apply.

to improve app quality, app markets allow users to leave

their ratings and comments after downloading and using each

app [22]. These comments can be considered as the direct

feedback from users who have experienced the apps [21],

helping developers address the issues that might not have been

spotted in testing. For example, as shown in Figure 1, two

users gave 1-star ratings for the app. One user complained

that this app contains aggressive advertising behaviors, and the

other even reported that this app might be malicious. In fact,

this behavior is also one of the undesired behaviors explicitly

prohibited by the developer policies. When such comments are

made aware to the market maintainers, they should be able to

warn the app developers about the behaviors immediately and

remove the apps from the market if such undesired behaviors

are not addressed by the app developers. In other words, user

comments can form an immediate feedback fo r app market
maintainers to identify user concerns and characterize the

undesired behaviors that violate market policies.
Ideally, user reviews could serve as an effective source for

app markets to identify policy violations in the apps after

they have passed the initial vetting process. However, the

number of user comments in an app market is huge given

the rapidly increasing number of apps, and there is a lack

of automated tools to detect comments that are related to

market policy violations and further perform deeper analysis

on these comments. Furthermore, these useful comments are

often buried in a much larger number of irrelevant comments,

making it labor-intensive and error-prone to manually inspect

these comments to obtain feedback. While user comments have

been studied for emerging issues [23], app risks [20] and app

recommendation [24], few research efforts have been spent

in investigating how user comments can assist app markets

in improving app vetting process. Thus, little is known to

what extent user comments can provide feedback on undesired

behaviors that violate market policies and how app markets

can utilize these feedback to improve their app vetting and

maintenance process.
In this work, we investigate the correlation between user com-

ments and market policies, i.e., characterizing user-perceived

undesired behaviors prohibited by market policies. First,

we create a taxonomy of 26 kinds of undesired behaviors

summarized from the developer policies of 9 app markets.

Then, we propose CHAMP, an approach that adopts text

mining and NLP techniques to identify comments that describe

these 26 kinds of undesired behaviors and classify them. We

refer to such comments as undesired-behavior comments

(UBComments). More specifically, CHAMP first extracts

semantic rules from a training dataset of user comments via

a semi-automated process. CHAMP then uses the extracted

rules to automatically identify the undesired behaviors reflected

in a given comment. Evaluation of CHAMP on benchmarks

from real-word user comments suggests that it can successfully

identify UBComments with high precision and recall (>0.9).

To further understand UBComments in the wild, we have

curated a large-scale dataset from 9 app markets, with over

3 million user comments. We applied CHAMP on these

TABLE I
Th e d i s t r ib u t io n o f p o l ic ie s c o l l e c t e d (t o t a l 599).

Market # Policies Market # Policies

GooglePlay [27] 172 360 Market [28] 30
Huawei Market [29] 22 Lenovo Market [30] 28
Meizu Market [31] 53 Oppo Market [32] 15
Vivo Market [33] 96 Xiaomi Market [34] 159
Tencent Myapp [35] 24

comments to identify the UBComments and study their charac-

teristics. We have a number of interesting findings:

• UBComments are prevalent in the app ecosystem, which

can be found in 47% of the apps we studied. UBComments

account for 20% for the 1-star comments. Our manual

verification on sampled apps suggested the existence of

undesired behaviors (96% of them could be verified). It
confirms our assumption that users can still perceive

a large number of undesired behaviors prohibited by

market policies, even though these apps have already

passed the comprehensive vetting process.

• User-perceived undesired behaviors, even some security-

related ones, can be found in both malware and “benign”

apps (the apps that were not flagged by any anti-virus

engines on VirusTotal [25]). It suggests that user com-
ments can be a complementary source for providing

insights of malware detection.
• Although each market has explicitly declared developer

policies, roughly 34% to 65% of apps in each market

were still complained about their undesired behaviors

against the policies. This observation further indicates

that it is hard for app markets to identify all policy

violations during app vetting, while user comments

could further help detect these violations continuously.
Moreover, policies from most markets are inadequate,

as we have identified many apps (5% to 60%) showing

undesired behaviors that are not covered in their policies.

To the best of our knowledge, this is the first large-scale

study on the correlation between user comments and market
policies o f mobile apps. We believe that our research efforts

can positively contribute to the app vetting process, promote

best operational practices across app markets, and boost the

focus on related topics for the research community and market

maintainers. We have released the CHAMP tool, along with the

policies and dataset to the research community at Github [26].

II. A Ta x o n o m y o f U n d e s i r e d Be h a v i o r s

As we seek to identify the UBComments and investigate

the correlation between user comments and market policies,

we first collect a dataset of market policies and compile a

taxonomy of the undesired behaviors described in them.

Market Policy Dataset. Considering that Google Play is

the dominating market in the world except China, we seek

to collect policies from 9 popular markets, including Google

Play and 8 top Chinese third-party app markets, as shown in

Table I. For each market, we crawl all the listed policies from

934

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2021 at 02:19:45 UTC from IEEE Xplore. Restrictions apply.

TABLE II
A TAXONOMY OF UNDESIRED BEHAVIORS AND THE DISTRIBUTION ACROSS MARKET POLICIES. THE / REFERS TO THE MARKET DECLARING THE POLICIES.

THE NUMBER REFERS TO THE # OF APPS WITH UBcomments WE IDENTIFIED FROM EACH MARKET IN SECTION VI.

Category Behavior
360

Market
Huawei Lenovo Meizu Oppo Vivo Xiaomi

Tencent
Myapp

Google
Play

fail to install 264 / (216) / (70) / (50) 33 / (32) / (39) / (106) / (5)

fail to retrieve content 30 33 5 / (9) 10 / (11) / (12) / (11) / (21)

Functionality and
Performance

fail to uninstall / (119) / (46) / (11) / (19) 23 / (29) / (21) / (49) / (1)

fail to start (e.g., crash) 699 / (451) / (209) / (238) / (174) / (318) 176 / (880) / (105)

bad performance (e.g., no responding) 334 / (134) 30 60 / (53) / (65) / (41) 176 / (18)

fail to login or register 180 201 / (52) 88 98 / (143) 86 184 / (33)

fail to exit / (62) 45 4 11 11 10 9 15 / (2)

powerboot / (3) 1 1 / (0) 0 / (0) / (3) / (0) / (5)

drive-by download 25 22 5 13 7 6 / (14) / (9) / (25)

Advertisement ad disruption / (498) 262 / (91) / (180) / (118) / (168) / (145) / (818) / (167)

add shortcuts in launching menu 7 1 0 / (7) 1 / (0) 4 / (4) / (7)

ads in notification bar 15 1 / (0) / (3) 1 / (1) / (1) / (10) / (2)

virus / (139) / (96) / (18) / (39) / (40) / (45) / (33) / (151) / (54)

privacy leak / (25) 24 5 7 / (9) / (16) / (11) 24 / (30)

payment deception / (236) / (189) / (39) 74 84 / (127) / (61) 282 / (75)

illegal background behavior (e.g., sms) 160 109 24 57 51 / (49) / (44) / (146) / (0)
Security excessive network traffic / (90) 40 3 13 / (25) / (30) / (16) 111 / (4)

hidden app / (12) 1 2 4 / (0) / (0) / (1) 2 / (1)

illegal redirection 80 35 / (5) 17 20 / (19) / (16) 135 / (8)

permission abuse 37 / (27) 4 / (8) 4 / (4) / (17) / (11) / (27)

illegitimate update (e.g., update to other app) 3 3 / (0) 0 3 1 2 1 / (0)

browser setting alteration 0 0 0 0 0 / (0) / (0) 0 / (0)

Illegitimate Behavior app repackaging 132 16 12 / (11) 14 17 / (13) 64 / (14)
of Developers app ranking fraud 54 28 7 / (34) 22 / (20) / (21) 45 / (6)

Content
vulgar content (e.g., pornography, anti-society) / (47) 18 / (1) / (6) 4 / (8) 14 / (21) / (15)

inconsistency between functionality and description 15 5 / (0) 2 3 8 / (1) 8 / (1)

Total # of apps with undesired behaviors 1025 625 338 422 237 463 257 1382 274

Total # of apps with undesired behaviors (declared policies) 731 537 318 365 210 460 211 1233 274

Total # of apps with undesired behaviors (undeclared policies) 891 433 90 219 178 36 191 654 0

the corresponding webpages. In total, we have collected 599

policies. Note that the developer policies of Google Play were

in English, while the other market policies were in Chinese.

Google Play has more complete and fine-grained policies than

any of the third-party app markets.

Summary of Undesired Behaviors. As the policies defined

by each market vary greatly (some are coarse-grained and some

are fine-grained), it is non-trivial to automatically classify them.

Thus, the first two authors of this paper manually went through

these policies, and classified them into 5 main categories,

including 26 distinct undesired behaviors. Table II shows

the taxonomy of the summarized undesired behaviors, and

the distribution of the corresponding policies across markets.

Note that one behavior may correspond to one or more

market policies. We observe that all of the undesired behavior

regulations can be found in Google Play. As for the third-party

markets, V i v o and X i a o m i have declared policies related to

the most types of undesired behaviors, covering 21 and 20

behaviors respectively. We believe that this taxonomy covers

most of the commonly observed undesired behaviors. Even

though it may still be incomplete, our approach is generic

and can be adapted to support new behaviors and different

granularities of behaviors (see Section VII).

III. Au t o m a t e d Cl a s s i f i c a t i o n o f UBCo m m e n t s

A. Overview
Figure 2 shows the overview of CHAMP, which builds a

training dataset of user comments (the training dataset building

phase), extracts semantic rules from the labelled comments

(the semantic rule extraction phase) and uses the rules to

identify and classify UBComments (the detection phase). The

major reason why we prefer semantic rules instead of text

similarity is that most comments are short and often use a few

key phrases in specific orders such as “icon disappears”, while

semantic rules have shown promising results in identifying

sentences with specific purposes [36], [37], [38]. On the

contrary, text similarity approaches based on word similarity

without emphasis on key phrases are optimized for general

purposes, and thus these approaches require extra tuning

to focus on certain words that play important roles in the

sentences of market policies [39], [40], [41]. Additionally,

these approaches generally require a substantial amount of

labelled samples to train the weights, which is less effective

in our context due to the limited number of labelled samples.

© In the training dataset labelling phase, we collect the

comments of the apps from Google Play and 8 third-party app

markets, and resort to text clustering model to help to label

the user comments. In the topic modeling and topic labelling

935

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2021 at 02:19:45 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Overview of CHAMP.

step, we first merge the market policies that describe a same

undesired behavior into a single document (26 documents

in total). Then, CHAMP applies a short-text topic modeling

algorithm [42], [43], [44], [45] to identify a set of topics,

where each topic contains a set of words. At last, CHAMP

labels each topic with related undesired behavior based on the

similarity between the documents of policies and the words

in the topics. In the comment classification step, CHAMP

uses the labelled topics to classify each comment into related

undesired behaviors. We further manually inspect the classified

comments to confirm whether these comments are related

to the corresponding undesired behavior. This is necessary

because we could only classify each comment based on the

keywords with the highest weight under each topic, which may

introduce false positives. For example, if a comment contains

the keyword “notification”, it is considered to be likely to

related to the behavior “ads in notification bar". However, the

word “notification” may also appear in comments that talk about

alerts and notifications (e.g., notifications and alerts for weather

apps). © In the semantic rule extraction phase, CHAMP applies

a generation algorithm on the labelled comments and generates

semantic rules for each undesired behavior automatically.©

In the detection phase, CHAMP accepts user comments as

input, and uses the semantic rules to classify comments into

the undesired behaviors defined in market policies.

B. Training Dataset Labelling

Training Dataset. To label training dataset, we randomly

select 2% of the comments for each app in our dataset

(discussed in § IV). In total, we extract 70,000 comments,

including 15,000 English comments and 55,000 Chinese

comments. Note that these comments were used separately for

training two models for both English and Chinese comments.

Topic Modeling and Topic Labelling. Unlike traditional

documents (e.g., news articles), the descriptions of undesired

behaviors in market policies consist of only one or a few short

sentences. Thus, the lack of rich context makes it infeasible

to use the topic modeling algorithms such as PLSA [46] and

LDA [47], which implicitly model document-level word co-

occurrence patterns. To address this problem, we apply BTM

(biterm topic model) [42], a widely used model for short-text

topic modeling, to learn the set of topics for market policies.

BTM explicitly models word co-occurrence patterns using

biterms, where each biterm is an unordered word-pair co-

occurred in a short context. The output of BTM are a set

of topics where each topic consists of a list of words and

their weights. For each topic z, BTM draws a topic-specific

word distribution $z ~ D ir (ft), and draws a topic distribution

0 ~ D ir (a) for all of the documents, where a and ft are

the Dirichlet priors. For each biterm b in the biterm set B , it

draws a topic assignment Z ~ M ulti(0) and draws two words

(w i,w j) ~ M u lti(ftz), where wi and wj are words appearing

in the same document. Following the above procedure, the

joint probability of a biterm b = (wi ,w j) can be written as:

P (b) = £ P (z)P (w ilZ)P (wj |Z)

thus the likelihood of all the documents is:

P (B) 0{z)^i\z j
(i,j) z

We conduct topic modeling based on the merged English

and Chinese policies, respectively. We set the number of topics

as 26, which corresponds to the number of undesired behaviors.

CHAMP then labels the proper undesired behaviors for the

topics by computing the probability of each document being

allocated to each topic. It assumes that the topic proportion of

a document equals to the expectation of the topic proportion

of generated biterms during topic modelling:

P (z|d) = £ P (z |b)P (bid),
b

where z represents topic, b represents biterm and d represents

document. p(z|b) can be calculated via Bayes formula based

on the parameters estimated in BTM:

P(z\b)
$ z ̂ i \ z $ j \ z

$ z $ i \ z $ j \ z

936

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2021 at 02:19:45 UTC from IEEE Xplore. Restrictions apply.

TABLE III
Re p r e s e n t a t iv e s t o p w o r d s u s e d in CHAMP.

Removed Added
Stopwords stopwords

miss, high, ask, give, god, sex, s**t, s**d,
can not, how, able, stop, silly, blah, r**h, d**n,

without, allow, obtain, other d**b, da*n, horrible

p(b|d) can be estimated by the empirical distribution of biterms

in the document, where n d(b) is the frequency of the biterm b
in the document d :

p (b\d)
n d(b)

Y . n d(b)

At last, CHAMP selects the highest score of P(zld) and

labels the proper undesired behaviors for each of the 26 topics.

Comment Classification. CHAMP then classifies each

comment into related topics. It computes the probability of

each comment being allocated to each topic. If the probability

is above a certain threshold, CHAMP considers that the

comment is related to the topic. We follow the same empirical

approach [43], [44], [45] to set the threshold, and find that 0.6

is a good indicator. In total, we obtain 9,228 comments that

are related to 26 distinct behaviors.

Manual Inspection. Considering that the automated classi-

fied comments may be not related to the undesired behaviors

(see § III.A), we further manually inspected the comments

that are classified into related topics to confirm whether these

comments are UBComments. Besides, if a comment is related

to more than one behavior, we split the comment into several

sentences and each sentence is related to a kind of undesired

behavior. Two authors inspect the comments independently. For

the disagreements of category labelling, a further discussion is

performed. Eventually, we obtained 8,275 comments that are

related to 25 distinct behaviors. After splitting some comments,

we obtained 9,057 labelled comments in total, which will be

used for semantic rules generation. Note that we did not find

any comments that are related to the behavior of “browser

setting alteration”.

C. Automated Semantic Rule Extraction

Based on the labelled comments, given a new comment,

the goal of CHAMP is to determine whether the comment

describes the same or similar behavior as the labelled comments.

To achieve this goal, we propose to automatically extract

semantic rules from the labelled comments for each undesired

behavior. Firstly, for each undesired behavior, CHAMP extracts

and sorts the representative words from the related comments.

Then, CHAMP analyzes the relations of the keywords by merg-

ing the keywords that usually appear in the same comments.

After that, we can get one or more keyword sets containing

different representative keywords. At last, CHAMP generates

semantic rules for each keyword set by combining keywords

and calculating the distance constraints of the keywords.

Word Segmentation. In this step, CHAMP groups the

comments related to each undesired behavior into a corpus (25

corpora in total). For each corpus, it segments the comments

into words, removes meaningless words and sorts the remaining

words in descending order based on the TF-IDF [48] weighting

to generate a word list W ordList. Stopwords are the words

considered unimportant in text analysis tasks. Thus, we take

advantage of the stopword lists provided by HIT [49] and a

public English stopwords list “stopwords-iso” [50]. However,
we find that the general stopword lists cannot well fit the app

comment study. On one hand, when some traditional stopwords

(e.g., can) are combined with other words, they become key

phrases for describing undesired behaviors in user comments.

For example, the comment “always have to download other

apps” is related to the undesired behavior “drive-by download”,

thus the traditional stopwords “always” and “other” should

not be removed. We summarized and removed 29 stopwords

(including 14 English stopwords and 15 Chinese stopwords)

that are important for describing undesired behaviors from the

stopwords list. On the other hand, existing research found that

there exist noises and spams (e.g., offensive comments) in app

comments, which are meaningless for describing undesired

behaviors. Therefore, we adapt the selected stopword list and

add over 50 new stopwords that are regularly appeared in user

comments. The representative stopwords are shown in Table III

(offensive words are sanitized).

Representative Keywords Extraction. The goal of this

step is to identify the most representative keywords that can

cover the labelled comments in a given corpus. Thus, for each

keyword in the WordList of a given corpus, CHAMP first

collects the comments in the corpus that contain the keyword

and adds them into a comment set C om tSetword. Then, a

traversal operation begins to select the keywords in order (based

on TF-IDF weight) and compare the C om tSetword of different

words. For the comment set C om tSetwordm of the m-th word

wordm in the W ordL ist, if part of the comments in it are

overlapped with the comments in the n-th word’s (n < m)

comment set C om tSetwordn, CHAMP will merge wordm and

wordn into a keyword set. Otherwise, CHAMP will assign the

word wordm into a new keyword set. Note that, the traversal

operation will stop if the union set from C om tSetwordl to

C om tSetwordm contains all of the labelled comments in the

corpus. Based on the traversal operation, CHAMP could extract

one or more keyword sets for each corpus.

Semantic Rule Generation. For each of the extracted

keyword sets in a corpus, CHAMP automatically generates

semantic rules. We observe that a behavior can be generally

described by two keywords of different part-of-speech [51]

in a comment. For example, the verb “steal” and the noun

“money” in the comment “it steals money from the credit

card!!!” are related to behavior “payment deception”. Another

example, the adverb “how” and the verb “uninstall” in the

comment “who can tell me how to uninstall this app” are

related to behavior “fail to uninstall”. Thus, for the extracted

keyword sets, CHAMP combines the keywords of different

part-of-speech pairwise. Furthermore, we observe that most

937

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2021 at 02:19:45 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
Re p r e s e n t a t iv e s e m a n t ic r u l e s f o r 4 b e h a v io r s .

Behavior semantic rules

virus
{virus, null, null}
{trojan, null, null}

{malware, null, null}

ads in notification bar

{notification, ads, 3}
{notification, full, 2}

{remove, notification, 4}

permission abuse

{ask, permission, 5}
{require, permission, 6}

{unnecessary, permission, 2}

{need, permission, 6}
{want, permission, 7}

UBComments are short and often include key phrases in specific

orders. Therefore, the semantic rules not only contain key-

words but include order and distance constraints on matching

the keywords. For two keywords keywordu and keywordv
(C om tSetu n C om tSetu = 0), CHAMP will generate

two semantic rules {keywordu, keywordv, constraints} and

{keywordv ,keyw ordu, constraints}, the constraints is used

to limit the distances of these two keywords. For example,

semantic rule {ask, perm ission, 3} means that “ask” appears

before “permission” and their distance is less than 3 words.

CHAMP automatically calculates the F1-score under different

distance constraints (we set it range from 1 to 20) for each

semantic rule, and select the best one. Note that, if all of

the keywords in a keyword set are noun, each keyword will

generate a semantic rule {keyword, null, null}.
Eventually, CHAMP generates 320 semantic rules for the

26 undesired behaviors in total (the list of rules can be found

in [26]), in which 136 semantic rules are for English comments

and 184 semantic rules are for Chinese comments. Note that

there are no comments related to the behavior of “modify

browser setttings” and thus we use the description in the

related policies to extract semantic rules (4 rules in total). The

major differences between Chinese comment rules and English

comment rules are synonyms. Synonyms in Chinese are more

frequently used than in English, leading to more rules for some

undesired behaviors. For example, two keywords “uninstall”

and “remove” of the semantic rules for behavior “fail to

uninstall” are generated in English comments, while CHAMP

has extracted 5 synonyms of these two keywords in Chinese

comments. Table IV shows representative semantic rules for 3

undesired behaviors in English comments (the complete set of

rules can be found at Github [26]). As our semantic rules are

trained to detect similar sentences that describe the behaviors

in the policies, thus the detected sentences are all high quality,

which will be evaluated in § V.

D. Semantic Rule Checking
Based on these semantic rules, CHAMP classifies each

comment into a type of UBComments or others. Given a

comment, CHAMP first removes the stopwords and performs

word segmentation [52] to extract words from the comment.

CHAMP then applies the semantic rules one by one to

determine whether the comment matches any rules. It searches

the extracted words to see whether the keywords appear in

the extracted words and checks the order and distance of

successful matching keywords to determine whether they meet

the constraints of the semantic rules. As shown in Fig. 1, the

motivating app violates two behaviors, i.e., “ads in notification

bar” and “virus”. Based on the rules defined in Table IV,

CHAMP determines that the first comment “too many ads, ...,

the notification bar is full of ads” matches 2 semantic rules of

the undesired behavior “notification bar”, since the comment

has the keywords of “notification” , “ads” and “full”. Similarly,

the other comment contains the keyword of “virus” and thus

matches the undesired behavior “virus”.

IV. St u d y De s i g n

A. Research Questions
We seek to answer the following research questions (RQs):

RQ1 How effective is CHAMP in detecting UBComments?
As we aim to apply CHAMP to extract UBComments in

the wild, It is necessary to first evaluate the effectiveness

of CHAMP on extracting undesired behaviors using a

benchmark dataset.

RQ2 What kinds of undesired behaviors can be perceived

by users? It is important to explore to what extent we

can infer undesired behaviors from user comments, and

which behaviors can be perceived by users.

RQ3 How well do the policies in each app market capture

the undesired behaviors reflected by user comments?

As each app market has its own policies, we want to know

whether they are effective in flagging undesired behaviors

during the app vetting process. App markets with weak

app vetting processes are more likely to be exploited.

B. Dataset
1) Collecting App Candidates: To answer the RQs, we first

need to harvest a comprehensive dataset that covers as many

undesired behaviors as possible. We take advantage of existing

efforts, and use a large-scale Android app repository [1]. This

repository contains over 6.2 million app items collected from

Google Play and 17 third-party app markets. The dataset also

provides the detection result of VirusTotal [25], a malware

analysis service that aggregates over 60 anti-virus (AV) engines.

To better understand the distribution of UBComments across

apps with different maliciousness levels, we classified our app

candidates into 3 categories: malware, grayware and benign

apps. As previous studies [53] suggested that some AV engines

may not always report reliable results, we regard the apps

labeled by over half of the AV engines (>30) as malware, which

is supposed to be a reliable threshold by previous work [53].

We consider apps flagged by no AV engines as benign apps,

and the other apps as grayware. This roughly classification

of malware and grayware might not be accurate enough, but

this is not the focus of this paper. As the number of reported

engines can be used as an indicator of the maliciousness of

the apps, we only want to study the diversity across apps with

938

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2021 at 02:19:45 UTC from IEEE Xplore. Restrictions apply.

TABLE V
OVERVIEW OF OUR COMMENT DATASET.

Market Malware Grayware Benign Apps
apps # comments # apps # comments # apps # comments

360 Market [28] 625 33,432 399 205,383 457 161,286
Huawei [29] 144 11,193 388 212,452 296 84,221
Lenovo [30] 184 4,545 252 34,897 225 23,976
Meizu [31] 232 6,766 256 181,212 201 139,662
Oppo [32] 134 16,765 163 503,574 94 76,295
Vivo [33] 196 18,894 266 211,453 295 85,996
Xiaomi [34] 297 32,343 111 177,852 64 60,571
Tencent Mvapp [35] 1117 69,044 477 250,649 481 131,949
Google Play [27] NA NA 253 183,256 556 311,795
Total 2,027 192,982 1,416 1,960,728 1,713 1,075,751

different levels of maliciousness. We randomly selected 10,000

target app candidates (8,400 Chinese apps and 1,600 Google

Play apps) from the dataset of Wang et al. [1], including 4,000

malware, 3,000 grayware and 3,000 benign apps. Note that the

1.600 Google Play apps include 1,000 benign apps and 600

grayware, as all the malware samples were removed by Google

Play and we cannot get their comments (NA in Table V).

2) Harvesting the User Comments: All the app markets

we studied only provide a limited number of user comments.

For example, Google Play review collection service [54] only

allows reviews of last week to be crawled for each app. Instead,

we built the comment dataset using two alternative approaches.

For the 8,400 apps we selected from the Chinese markets,

we resort to a third-party app monitoring platform named

Kuchuan[55], which has maintained the app metadata including

comments from all the Chinese markets we studied. For the

1.600 apps from Google Play, we developed an automated tool

to continuously fetch the user comments everyday within the

span of 3 months. Table V shows the distribution of collected

comments. In total, we have collected over 3.2 million user

comments from 5,156 apps1, including 192,982 comments from

2,027 malware, 1,960,728 comments from 1,416 (including

1,163 Chinese apps and 253 Google Play apps) grayware and

1,075,751 comments from 1,713 (including 1,157 Chinese apps

and 556 Google Play apps) benign apps. This dataset will be

used in the large-scale measurement study (see § VI).

V. Ev a l u a t i o n o f CHAMP

A. Benchmark Datasets

We curated two benchmark datasets (English and Chinese) to

evaluate CHAMP. We first select the apps which are confirmed

to have undesired behaviors in the training dataset (see § III-B).

For each app, we exclude the comments already used in training

dataset. At last, two authors of this paper manually inspected

and labelled these comments. Within our affordable efforts,

we aim to collect and label 50 comments for each undesired

behavior, except for some behaviors with few related apps.

Figure 3 shows the distribution of our benchmark (901 Chinese

comments and 618 English comments). Note that we cannot

find comments for the behavior “browser setting alteration”.

'Note that, for the selected 10K app candidates, over 4,000 of them have
no user comments or very few user comments, which were discard by us.

B. RQ1: Effectiveness o f CHAMP

1) Overall Results: Table VI shows the evaluation results.

It shows that CHAM P is very effective in identifying

UBComments. The average precision and recall are 95% and

93% for the Chinese benchmark, and 97% and 98% for the

English benchmark. In particular, CHAMP achieves 90+% of

precision and recall for 20 out of 26 types of UBComments.

2) False Positives/Negatives: We further manually analyze

the mis-classified comments and obtain two observations. First,

the false negatives are colloquial expressions instead o f phrases.
For example, the comment “A window of card application pops

up continuously” is describing the behavior “ad disruption”.

But the key phrase “ad” is not in it. Moreover, if we add a

new semantic rule with the phrases “window” or “pop up”, it

may lead to other false positives. Second, the false positives

are generated owing to our insufficiently conservative rules.
For example, the comment “The app is completely useless,

btw I thought that this built-in app can not be uninstalled, but

it succeeded.” is irrelevant to undesired behaviors. However, it

is classified to the behavior “fail to uninstall” since it has the

phrases “can not” and “uninstall”. Analogously, if we upgrade

our rules to be more conservative, it may lead to more false

negatives. These are the inherent limitations of rule-based

matching methods. We will further discuss it in § VII.

3) Comparison with Text Similarity Approach: We compare

CHAMP with the text similarity approach, which classifies

a comment to a type of undesired behavior based on text

similarity between the comment and the classified comments

in the training dataset (see § III-B). We regard the behavior

with the highest similarity score as the classification result.

As shown in Table VI, CHAMP achieves significantly

better results than the text similarity approach. The average

precision and recall achieved by the text similarity approach

are 85% and 81% (v.s. 95% and 93% achieved by CHAMP)

for the Chinese comment dataset, and 77% and 85% (v.s. 97%

and 98% achieved by CHAMP) for the English comment

dataset, respectively. In particular, CHAMP outperforms the

text similarity approach on all behaviors. Such results indicate

that the order and distance constraints adopted by our semantic

rules can greatly reduce the false positives/negatives. For

example, the comment “I can not install the app” is similar to

“I installed but it can not help me back up files” considering

their text similarity, but they are describing different types of

undesired behaviors. CHAMP correctly distinguishes these

two comments while the text similarity approach classifies both

of them to the same type of undesired behavior.

VI. La r g e -s c a l e Me a s u r e m e n t St u d y

A. RQ2: UBComments in the Wild

1) Overall Results: From the dataset we harvested (see

§ IV), CHAM P identifies 94,028 UBComments, belonging

to 2,440 apps (47%). Each app has received 39 UBCom-
ments from multiple users on average. This indicates that

UBComments are prevalent in the mobile app ecosystem, and

the users who are sensitive to those policy violations are

939

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2021 at 02:19:45 UTC from IEEE Xplore. Restrictions apply.

� Chinese »English

Fig. 3. Distribution of labelled benchmarks.

TABLE VI
Ev a l u a t io n r e s u l t s o n t h e b e n c h m a r k d a t a s e t s (b e s t r e s u l t s a r e s h o w n in b o l d).

Benchmark (Chinese) Benchmark (English)
Category Behavior c h a m p Similarity-Based Tool c h a m p Similarity-Based Tool

precision recall F1 precision recall F1 precision recall F1 precision recall F1

fail to install 9 6% 9 4% 9 5% 87% 90% 88% 83% 100% 9 1% 71% 100% 83%
fail to retrieve content 100% 100% 100% 89% 67% 76% 96% 9 8% 9 7% 85% 80% 82%

fail to uninstall 100% 9 6% 9 8% 91% 92% 91% 100% 100% 100% 63% 100% 77%
Functionality and fail to start (e.g., crash) 9 8% 9 6% 9 7% 88% 88% 88% 96% 9 6% 9 6% 85% 82% 84%
Performance bad performance (e.g., no responding) 8 8% 9 4% 9 1% 86% 91% 88% 91% 9 7% 9 4% 80% 77% 79%

fail to login or register 9 8% 9 8% 9 8% 87% 90% 88% 96% 100% 9 8% 87% 90% 88%
fail to exit 9 3% 9 3% 9 3% 81% 93% 87% 100% 100% 100% 100% 100% 100%
powerboot 8 3% 8 3% 8 3% 83% 83% 83% NA NA NA NA NA NA

drive-by download 100% 9 4% 9 7% 75% 85% 80% 100% 9 8% 9 9% 73% 73% 73%

Advertisement ad disruption 100% 100% 100% 73% 64% 68% 100% 100% 100% 69% 70% 69%
add shortcuts in launching menu 100% 100% 100% 100% 78% 88% NA NA NA NA NA NA

ads in notification bar 9 6% 9 6% 9 6% 55% 96% 70% 100% 100% 100% 50% 100% 67%

virus 100% 9 8% 9 9% 100% 86% 93% 100% 100% 100% 100% 88% 94%
privacy leak 9 8% 9 4% 9 6% 88% 85% 86% 96% 9 6% 9 6% 85% 82% 84%

payment deception 100% 9 1% 9 5% 92% 87% 90% 98% 9 6% 9 7% 91% 79% 85%
illegal background behavior (e.g., sms) 9 1% 9 1% 9 1% 73% 76% 75% NA NA NA NA NA NA

Security excessive network traffic 9 8% 9 8% 9 8% 90% 90% 90% 100% 100% 100% 80% 80% 80%
hidden app 100% 100% 100% 100% 67% 80% 100% 100% 100% 100% 100% 100%

illegal redirection 8 8% 8 5% 8 7% 88% 78% 82% 92% 100% 9 6% 75% 82% 78%
permission abuse 9 2% 8 0% 8 6% 86% 80% 83% 100% 9 6% 9 8% 89% 84% 87%

illegitimate update (e.g., update to other app) 8 7% 8 7% 8 7% 86% 80% 83% NA NA NA NA NA NA
browser setting alteration NA NA NA NA NA NA NA NA NA NA NA NA

Illegitimate Behavior app repackaging 8 5% 9 2% 8 8% 78% 86% 82% 97% 100% 9 9% 65% 65% 65%
of Developers app ranking fraud 9 6% 9 8% 9 7% 83% 80% 82% 83% 100% 9 1% 69% 73% 71%

Content vulgar content (e.a., pornography, anti-society) 100% 8 7% 9 3% 85% 73% 79% 100% 9 2% 9 6% 95% 84% 89%
inconsistency between functionality and description 100% 9 1% 9 5% 83% 45% 59% 100% 100% 100% 33% 50% 40%

TABLE VII
D i s t r ib u t io n o f UBComments b y Ca t e g o r ie s .

Category #Comment (%) #App (%)

Functionality/Performance 57,541 (61%) 1701 (70%)

Advertisement 22,885 (24%) 1023 (42%)

security 13,765 (15%) 1098 (45%)

Illegitimate Behavior 1,129 (1%) 173 (7%)

Content 536 (0.5%) 72 (3%)

Total 94,028 2,440

willing to report them in the comments. Table VII shows

the distribution of UBComments and apps across different

categories of behaviors. over 61% of the UBComments and

over 70% of the corresponding apps were complained to have

“functionality and performance” issues. This shows that users

are most sensitive to the issues that directly affect their uses of

the apps. For the 26 behaviors we summarized, 25 of them

could be perceived by users. The most popular behaviors of

UBComment are “fail to start”, “ad disruption”, and “payment

deception”, accounting for 79.4% of the UBComments. Both

“fail to start” and “ad disruption” are related to user experiences,

while “payment deception” shows users’ security concerns.

Manual Verification of Undesired Behaviors. To analyze

whether the undesired behaviors described in user comments

reflect the real behaviors of mobile apps, we make effort

to perform a manual verification here. For each of the 25

identified perceived behaviors, we randomly select three apps

(75 apps in total) and manually verify if indeed the apps

violated the policies as described. o u r manual verification

follows a series of steps. We first install them on smartphones

to see whether they have shown undesired behaviors as user

complained (e.g., ad disruption and malicious behaviors, etc.).

Then we rely on Testin [56], a service that provides app

testing on thousands of real-world smartphones, to check

the functionality and performance issues (e.g., fail to start

and fail to install). Furthermore, we leverage static analysis

940

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2021 at 02:19:45 UTC from IEEE Xplore. Restrictions apply.

TABLE VIII
D i s t r ib u t io n o f UBComments b y Ra t in g S t a r s .

Dataset 1-star 2-star 3-star 4-star 5-star

Malware 28.14% 17.70% 9.09% 3.85% 2.16%

Chinese Grayware 23.36% 16.22% 9.23% 4.37% 0.64%

Chinese Benign Apps 25.38% 17.58% 10.07% 5.95% 0.96%

GPlay Grayware
6.50%

(14.28%)
0.05%

(0.07%)
0.03%

(0.04%)
0.02%

(0.02%)
0%

(0%)

GPlay Benign Apps
1.96%

(8.64%)
0.33%

(0.92%)
0.15%

(0.25%)
0.07%

(0.10%)
0.01%

(0.02%)

Total 19.45% 12.15% 6.69% 2.78% 0.71%

tools (e.g., LibRadar [57] and FlowDroid [58]) to extract and

inspect behavior-related app information (e.g., sensitive code,

permissions and libraries). At last, for the apps in behavior “app

ranking fraud”, we compare their comments based on existing

approaches proposed in [59], [60] to find fake comments.

Overall, 72 apps (96%) have been confirmed with the undesired

behaviors as user commented. For the 3 unconfirmed cases

(one in the vulgar content category, and two in the payment

deception category), our dynamic analysis found that their

services have stopped and our static analysis failed due to they

have adopted heavy obfuscation and code protection using

packing services. Nevertheless, we show that most o f the

undesired behaviors can be confirmed.
2) Low-rating Comments vs. High-rating Comments (RQ2.1):

We study the distribution of UBComments across comments

with different ratings (from 1-star to 5-star).

Quantitative Analysis. As shown in Table VIII, it is appar-

ent that low-rating comments (i.e., 1-star and 2-star) are

more likely to describe undesired behaviors. UBComments

account for roughly 20% and 12% for the 1-star comments

and the 2-star comments, and 2.78% and 0.71% for the 4-

star and the 5-star comments, respectively. Note that the

proportion of UBComments in Google Play is much lower

than that of Chinese markets. The major reason is that the

crawled comments from Google Play contain a large amount of

blank comments, i.e., the comments with only a rating but no

descriptions. We further eliminate such comments and report

the result (see the percentage in brackets in Table VIII).

Qualitative Analysis. As shown in Figure 4, the distribu-

tions of UBComments in Chinese markets and Google Play

show great diversity, and thus we discuss them separately.

For app comments in Chinese markets, the distribution of

undesired behaviors does not show much diversity across

UBComments with different ratings. Behaviors of the “Func-

tionality and Performance” and “Advertisement” types are

most prevalent across all the ratings, with the “Fail to start”

and “Ad disruption” types are quite noticeable. Moreover,

we find that security related behaviors are prevalent in both

low-rating and high-rating comments of malware, but only

prevalent in low-rating comments of grayware and benign apps.

It is quite surprising that users complain about the security

issues (e.g., payment deception) but give the app (malware) a

high rating. Thus, we make efforts to manually examine all

such “contradictory” comments (21,859 in total), and identify

two major reasons. First, the default comment rating of most

Chinese app markets is 5-star, thus a number of users may only

complain the app in the comments but forget to assign a rating.

Second, it is quite possible that some users misunderstand the

meanings of 1-star and 5-star. For example, we find that several

users assign totally opposite ratings in all their comments, i.e.,,
1-star with really good comments, but 5-star with negative

comments, including the UBComments. It suggests the poor

knowledge of the rating system for market users, and the

new challenges in analyzing the comments of third-party app

markets. Nevertheless, CHAMP can reveal how the users feel

about their experiences, and even could improve the techniques

of app risk assessments based on user comments [61], [20].

In Google Play, the distribution of UBComments in low-

rating comments and high-rating comments are quite different.

Users generally give 1-star in their comments when they find

undesired behaviors in the app, even if the behaviors do not

belong to the “security” category. We only find a few comments

that are related to the “vulgar content” type in other comments.

This might be due to the high-quality market which pays

more attention to policy regulations, and this more mature and

regulated ecosystem enables users to better comprehend the

ratings when providing comments.

3) Malware vs. Grayware vs. Benign Apps (RQ2.2): For Chi-

nese markets, over 42% of malware samples have UBComments,

and they have occupied 7% of the comments. As a contrast, over

57% of benign app samples and 57% of grayware samples have

UBComments, and the percentages of these comments are 4%

and 3%, respectively. For Google Play, over 32% of benign apps

and 38% of grayware apps have UBComments, and they account

for 0.3% and 1% of the overall comments (0.6% and 1.5%

after removing the empty ones from the overall comments),

respectively. In general, one would think that malicious apps

have more UBComments than gray and benign apps, as their

behaviors are more likely to inconsistent with users’ expectation.

However, the results are different for what we expected, i.e.,

the percentage of UBComments does not show much difference

across malware, grayware and benign apps. There are mainly

two reasons. First, the policy-violation behaviors of two major

types, “Functionality and Performance” and “Advertisement”,

are prevalent in both malicious and benign apps, e.g., over

74% of the UBComments in third-party benign apps are

related to “Functionality and Performance”. Second, some

malware samples were removed in time by markets, and

thus malicious apps have not received much complaints than

expected. Note that the security-related undesired behaviors

show different distributions across malicious, gray, and benign

apps (see Figure 4). As to Chinese markets, over 27% of the

UBComments belong to the security category for malware,

while the percentages for grayware and benign apps are 14%

and 9%. As to Google Play, over 31% of the UBComments

in grayware are security related (V.S. 16% in benign apps).

Furthermore, we observe that many user-perceived undesired

behaviors (including security-related ones) were found in

both malware and “benign apps”. It suggests that some

941

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2021 at 02:19:45 UTC from IEEE Xplore. Restrictions apply.

Functiona lity and Perform ance Advertisem ent Security Behavio r of
D evelopers

�
Benign Apps

(Chinese Markets)
�����

Grayware
(Google Play)

Benign Apps
(Google Play)

'¡///¿ //t? i f / // / / �/ / / * i * * i

Fig. 4. Distribution of UBComments across different ratings (y-axis) and undesired behaviors (x-axis) in different app categories. Each row adds up to 100%,
with each cell representing the percentage of a specific undesired behavior in the UBComments for a specific rating (e.g., 5 stars) in an app category (e.g.,
Malware). The depth of the color is also used to indicate the percentage in the cell, i.e.,, a deep color indicating a large percentage. For each app category, a
behavior category box represents the UBComments of a specific behavior category (e.g., Security), and the number below the box shows the percentage of the
UBComments in that behavior category.

malicious behaviors are hard to detect by AV engines but
user comments could provide insights for capturing them.

B. RQ3: Undesired Behaviors Across Markets

We perform market-level analysis to investigate the differ-

ences across markets. On one hand, for the undesired behaviors

declared in the policies of each market, we seek to measure

how many such behaviors have been identified in our dataset.

This result could be used to measure the effectiveness of

market regulation, i.e., how many of these undesired apps have

bypassed the corresponding auditing process. On the other hand,

for other undesired behaviors that were not declared in the

policies of a market, we seek to explore whether we could find

such behavior related comments in the corresponding markets.

Table II shows the results. Roughly 34% to 65% of the

apps (the numbers in bold) from each market have found

comments for undesired behaviors described in each of their

market policies. Over 65% of the apps in Huawei Market have

violated its market policies, while the percentage of such apps

in Google Play is 34%. From another point of view, roughly

5% to 60% of the apps (besides Google Play, as it covers all the

behaviors we summarized in this paper) have been complained

of having undesired behaviors that are not captured by the

markets’ policies. For example, over 60% of the apps in the 360

Market have undesired behaviors that are not listed in its market

policies. This may open doors for malicious developers to

exploit the insufficient vetting process.

VII. Di s c u s s i o n s

A. Relation with Program Analysis

A large number of papers were focused on using program

analysis to detect the security [62], [63], [64], privacy [65],

[66], [38], [67], [68], ads/third-party library [57], [9], [69],

[11], and functionality issues [70], [71], [72], [73], [74] of

mobile apps. In contrast, this paper focuses on a different

perspective, i.e., how the users feel about their experiences.
Users’ expectations play a big role on how much the users can

tolerate the apps’ behaviors.

First, although program analysis could be adopted to identify

whether some sensitive behaviors exist in mobile apps, it
is non-trivial to verify whether the behaviors violate the

policy. The borderline between policy-violation and toler-
able misbehaviors is fuzzy and highly dependent on users’
subjective expectations. For example, program analysis can

easily identify ad libraries used in apps. However, aggressive

mobile ads cannot be simply conflated with the detection

of ad libraries. The detection of ad libraries, enabled by

program analysis techniques, cannot take what users really

feel about the ads into consideration. Second, a number of
the policy-violation behaviors, e.g., payment deception and

942

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2021 at 02:19:45 UTC from IEEE Xplore. Restrictions apply.

vulgar content, are difficult to be triggered and detected

by program analysis techniques. However, they are indeed

much easier revealed by user comments.

Thus, CHAMP is complementary to program analysis,
which can provide insight to identify the boundary between

policy-violation behaviors and tolerable misbehaviors. In-

stead of identifying the policy-violation behaviors directly,

CHAMP can serve as a whistle blower that assigns policy-

violation scores and identifies most informative comments for

apps (e.g., putting security related comments at top). Note

that, not all the apps with UBComments should be removed

by the app market. App vetting is aimed at promoting the

overall quality of apps in the market. Thus, app markets would

generally give developers warnings and buffer time to fix

undesired behaviors in their apps (rather than removing them

directly). With the help of CHAMP, it will be possible to

pinpoint more urgent violations accurately, such as security-

related ones, so that the markets could choose their reaction

accordingly.

B. Threats to Validity

First, the taxonomy we summarized may be incomplete. Al-

though we have manually summarized 26 undesired behaviors,

our taxonomy may still be incomplete since it was built based

on current policies. However, our approach is generic and can

be reused to support the detection of new types of undesired

behaviors. Second, our approach inherits the drawbacks o f
rule-based approaches. Though our approach was proven to

be quite effective during our evaluation, the semantic rules we

summarized may not be complete and could introduce false

positives/negatives as mentioned in Section V-A. Nevertheless,

market policies are rarely updated. Furthermore, our approach

has strong expansibility of extracting new semantic rules

for emerging app store policies. When policies evolve, new

training can be performed to obtain new rules. Note that

only the training process is semi-automated, as we need to

manually label the classified comments. Our rules are extracted

automatically from the labelled comments, which can be

applied to identify UBComments automatically. Third, we are

not able to verify all the undesired behaviors for all the apps

we identified. We only sample 75 apps for manual verification,

and found 96% of them can be confirmed. We found most o f
the behaviors cannot be easily identified using automated tools,
that is the reason why UBComments are prevalent even though

these apps have already passed the market vetting process.

This motivates the research community to develop better tools

for identifying such behaviors. Nevertheless, as aforementioned

(see Section VII-A), instead of identifying the policy-violation

behaviors directly, CHAMP could raise alarm based on the

number of undesired comments and reported users.

VIII. Re l a t e d W o r k

To the best of our knowledge, our paper is the first

one that identifies undesired behaviors from user comments.

Nevertheless, there are a number of studies focusing on app

comments from different perspectives. We present and discuss

briefly related works on (1) general app comment analysis, and

(2) using NLP techniques in mobile app analysis.

App Comment Analysis. Mobile app comments have been

extensively studied from other perspectives, including mining

user opinions [75], [76], [77], [78], [79], [80], [81], [82],

[83], [84], [85], [86], [87], app comment filtering [88], [79],

[89], and exploring other concerns [90], [91], [92], [93], [94].

For example, Chen et al. [88] pioneered the prioritization of

user comments with AR-Miner. Chen et al. [91] conducted a

study on the unreliable maturity content ratings of mobile

apps, which will result in inappropriate risk exposure for

the children and adolescents. Nguyen et al. [90] proposed to

analyze the relationship between user comments and security-

related changes in Android apps. Kong et al. [20] presented a

machine-learning technique to identify 4 pre-defined types of

security-related comments. Although app comments have been

extensively studied from other perspectives, none of the above

work correlates user comments to the undesired behaviors

described in market policies and none of them can be easily

adopted/extended to study this issue.

NLP in Mobile App Analysis. Besides user comments, NLP

techniques have been widely adopted to study app descriptions,

privacy policies, and other meta text information related to

mobile apps. Whyper [38] and Autocog [95] adapt NLP

techniques to characterize the inconsistencies between app

descriptions and declared permissions. PPChecker [96] is a

system for identifying the inconsistencies between privacy

policy and the sensitive behaviors of apps. CHABADA [97]

adapts NLP techniques to cluster apps using description topics,

and then identifies the outliers of API usage within each cluster.

Our work is the first to investigate the correlation between user

comments and market policies.

IX. Co n c l u s i o n

We present the first large-scale study to investigate the

correlation between user comments and market policies. In

particular, we propose CHAMP, a semantic-rule based ap-

proach that effectively identifies UBComments. We apply

CHAMP to a large scale user comment dataset and observe that

UBComments are prevalent in the ecosystem, even though app

markets explicitly declared their policies and applied extensive

vetting. CHAMP offers a promising approach to detect policy

violations, so as to help market maintainers identify these

violations timely and further improve the app vetting process.

Ac k n o w l e d g m e n t

This work was supported by the National Natural Science

Foundation of China (grant numbers 62072046, 61702045

and 61772042), NSF (CNS-1755772), and Hong Kong RGC

Projects (No. 152223/17E, 152239/18E, CityU C1008-16G).

Re f e r e n c e s

[1] H. Wang, Z. Liu, J. Liang, N. Vallina-Rodriguez, Y. Guo, L. Li,
J. Tapiador, J. Cao, and G. Xu, “Beyond google play: A large-scale

comparative study of chinese android app markets,” in Proceedings of
the Internet Measurement Conference 2018, 2018, pp. 293-307.

943

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2021 at 02:19:45 UTC from IEEE Xplore. Restrictions apply.

[2] H. Wang, H. Li, and Y. Guo, “Understanding the evolution of mobile
app ecosystems: A longitudinal measurement study of google play,” in
The World Wide Web Conference, 2019, pp. 1988-1999.

[3] “2018 Malware Forecast: the onward march of Android
malware,” 2018, https://nakedsecurity.sophos.com/2017/11/07/
2018- malware- forecast- the- onward- march- of- android- malware/.

[4] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, “The
evolution of android malware and android analysis techniques,” ACM
Computing Surveys (CSUR), vol. 49, no. 4, p. 76, 2017.

[5] Y. Tang, Y. Sui, H. Wang, X. Luo, H. Zhou, and Z. Xu, “All your app
links are belong to us: understanding the threats of instant apps based
attacks,” in Proceedings o f the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2020, pp. 914-926.

[6] Y. Hu, H. Wang, Y. Zhou, Y. Guo, L. Li, B. Luo, and F. Xu, “Dating with
scambots: Understanding the ecosystem of fraudulent dating applications,”
arXiv preprint arXiv:1807.04901, 2018.

[7] S. Xi, S. Yang, X. Xiao, Y. Yao, Y. Xiong, F. Xu, H. Wang, P. Gao, Z. Liu,
F. Xu et al., “Deepintent: Deep icon-behavior learning for detecting
intention-behavior discrepancy in mobile apps,” in Proceedings o f the
2019 ACM SIGSAC Conference on Computer and Communications
Security, 2019, pp. 2421-2436.

[8] Y. Hu, H. Wang, R. He, L. Li, G. Tyson, I. Castro, Y. Guo, L. Wu, and
G. Xu, “Mobile app squatting,” in Proceedings of The Web Conference
2020, 2020, pp. 1727-1738.

[9] F. Dong, H. Wang, L. Li, Y. Guo, T. F. Bissyande, T. Liu, G. Xu, and
J. Klein, “Frauddroid: Automated ad fraud detection for android apps,” in
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 2018, pp. 257-268.

[10] B. Andow, A. Nadkarni, B. Bassett, W. Enck, and T. Xie, “A study of
grayware on google play,” in 2016 IEEE Security and Privacy Workshops
(SPW). IEEE, 2016, pp. 224-233.

[11] T. Liu, H. Wang, L. Li, X. Luo, F. Dong, Y. Guo, L. Wang, T. Bissyande,
and J. Klein, “Maddroid: Characterizing and detecting devious ad contents
for android apps,” in Proceedings of The Web Conference 2020, 2020,
pp. 1715-1726.

[12] T. Liu, H. Wang, L. Li, G. Bai, Y. Guo, and G. Xu, “Dapanda: Detecting
aggressive push notifications in android apps,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 66-78.

[13] H. Zhou, H. Wang, Y. Zhou, X. Luo, Y. Tang, L. Xue, and T. Wang,
“Demystifying diehard android apps,” in 2020 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). IEEE,
2020, pp. 187-198.

[14] H. Wang, H. Li, L. Li, Y. Guo, and G. Xu, “Why are android apps
removed from google play?: a large-scale empirical study,” in Proceedings
of the 15th International Conference on Mining Software Repositories.
ACM, 2018, pp. 231-242.

[15] Google, “Google play developer policy,”
https://play.google.com/about/developer-content-policy.

[16] “Google Bouncer,” 2018, https://krebsonsecurity.com/tag/
google-bouncer/.

[17] “Combating Potentially Harmful Applications with Machine Learning
at Google: Datasets and Models,” 2018, https://android-developers.
googleblog.com/2018/11/combating-potentially-harmful.html.

[18] H. Wang, J. Si, H. Li, and Y. Guo, “Rmvdroid: towards a reliable
android malware dataset with app metadata,” in 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR). IEEE,
2019, pp. 404-408.

[19] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and
S. Ioannidis, “Rage against the virtual machine: hindering dynamic
analysis of android malware,” in Proceedings of the Seventh European
Workshop on System Security. ACM, 2014, p. 5.

[20] D. Kong, L. Cen, and H. Jin, “Autoreb: Automatically understanding the
review-to-behavior fidelity in android applications,” in Proceedings of
the 22Nd ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’15, 2015, pp. 530-541.

[21] G. Xiaodong and K. Sunghun, “"what parts of your apps are loved by
users?" (T),” in 30th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13,
2015, 2015, pp. 760-770.

[22] Google, 2019, https://developer.android.com/distribute/best-
practices/launch/launch-checklist.

[23] G. Cuiyun, Z. Jichuan, L. Michael, R, and K. Irwin, “Online app
review analysis for identifying emerging issues,” in Proceedings of
the 40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018, 2018, pp. 48-58.

[24] Y. Li, B. Jia, Y. Guo, and X. Chen, “Mining user reviews for mobile app
comparisons,” Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.,
vol. 1, no. 3, pp. 75:1-75:15, Sep. 2017.

[25] “VirusTotal,” 2018, https://www.virustotal.com.
[26] “UBCFinder,” 2020, https://github.com/UBCFinder/UBCFinder.
[27] “Google Play,” 2019, https://play.google.com/intl/zh-CN/about/

developer- content-policy/#!?modal_active=none.
[28] “360 Market,” 2018, http://zhushou.360.cn/.
[29] “Huawei,” 2018, http://app.hicloud.com/.
[30] “Lenovo,” 2018, https://www.lenovomm.com/apps/1038/0?type=1.
[31] “Meizu,” 2018, http://app.meizu.com/.
[32] “Oppo,” 2018, https://store.oppomobile.com/.
[33] “Vivo,” 2018, http://zs.vivo.com.cn/.
[34] “Xiaomi,” 2018, http://app.mi.com/.
[35] “Tencent Myapp,” 2018, https://sj.qq.com/myapp/.
[36] X. Xiao, A. Paradkar, S. Thummalapenta, and T. Xie, “Automated

extraction of security policies from natural-language software documents,”
in International Symposium on the Foundations of Software Engineering
(FSE), 2012, pp. 12:1-12:11.

[37] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and A. Paradkar,
“Inferring method specifications from natural language API descriptions,”
in International Conference on Software Engineering (ICSE), 2012, pp.
815-825.

[38] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “{WHYPER}:
Towards automating risk assessment of mobile applications,” in Presented
as part of the 22nd {USENIX} Security Symposium ({USENIX} Security
13), 2013, pp. 527-542.

[39] C. Aggarwal and C. Zhai, Mining text data, ser. A survey of text
clustering algorithms. Boston, MA: Springer, 2012. [Online]. Available:
https://doi.org/10.1007/978-1-4614-3223-4_4

[40] Y. Li, D. McLean, A. Bandar, Zuhair, K. Crockett, and et al, “Sen-
tence similarity based on semantic nets and corpus statistics,” IEEE
Transactions on Knowledge & Data Engineering, no. 8, pp. 1138-1150,
2006.

[41] A. Islam and D. Inkpen, “Semantic text similarity using corpus-based
word similarity and string similarity,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 2, no. 2, p. 10, 2008.

[42] X. Yan, J. Guo, Y. Lan, and et al, “A biterm topic model for short texts,”
in Proceedings of the 22nd international conference on World Wide Web.
ACM, 2013, pp. 1445-1456.

[43] C. Weizheng, W. Jinpeng, Z. Yan, Y. Hongfei, and X. L, “User based
aggregation for biterm topic model,” in Proceedings of the 53rd Annual
Meeting o f the Association for Computational Linguistics, 2015, pp.
489-494.

[44] W. Jian, G. Panpan, M. Yutao, H. Keqing, and et al, “A web service
discovery approach based on common topic groups extraction,” IEEE
Access, no. 5, pp. 10 193-10 208, 2017.

[45] L. Xiangsheng, R. Yanghui, X. Haoran, and et al, “Bootstrapping social
emotion classification with semantically rich hybrid neural networks,”
IEEE Transactions on Affective Computing, no. 8, pp. 428-428, 2017.

[46] T. Hofmann, “Probabilistic latent semantic indexing,” in Proceedings
of the 22Nd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, ser. SIGIR ’99.
New York, NY, USA: ACM, 1999, pp. 50-57. [Online]. Available:
http://doi.acm.org/10.1145/312624.312649

[47] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J.
Mach. Learn. Res., vol. 3, pp. 993-1022, Mar. 2003. [Online]. Available:
http://dl.acm.org/citation.cfm?id=944919.944937

[48] Wikipedia, “Tf-idf,” http://en.wikipedia.org/wiki/Tf-idf.
[49] “Chinese Stopwords List,” 2018, https://github.com/goto456/stopwords.
[50] “English Stopwords List,” 2018, https://github.com/stopwords-iso/

stopwords-en.
[51] “Part of speech,” 2020, https://en.wikipedia.org/wiki/Part_of_speech.
[52] “Word segmentation Library,” 2018, https://pypi.org/project/jieba/.
[53] F. Wei, Y. Li, S. Roy, and et al, “Deep ground truth analysis of current

android malware,” in International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment. Springer, 2017, pp. 252-
276.

[54] “Google play reviews collection service,” 2018, https://developers.google.
com/android-publisher/api-ref/reviews.

[55] “Kuchuan,” 2018, http://www.kuchuan.com/.

944

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2021 at 02:19:45 UTC from IEEE Xplore. Restrictions apply.

[56] Testin, “Testin service,” https://www.testin.cn/.
[57] Z. Ma, H. Wang, Y. Guo, and X. Chen, “Libradar: fast and accurate

detection of third-party libraries in android apps,” in Proceedings of the
38th international conference on software engineering companion, 2016,
pp. 653-656.

[58] A. Steven, R. Siegfried, F. Christian, B. Eric, B. Alexandre, K. Jacques,
L. T. Yves, O. Damien, and M. Patrick, “Flowdroid: precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” ACM Sigplan Notices, no. 6, pp. 259-269, 2014.

[59] Y. Hu, H. Wang, L. Li, Y. Guo, G. Xu, and R. He, “Want to earn a
few extra bucks? a first look at money-making apps,” in 2019 IEEE
26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2019, pp. 332-343.

[60] M. Daniel and M. Walid, “Towards understanding and detecting fake
reviews in app stores,” Empirical Software Engineering, pp. 1-40, 2019.

[61] H. Zhu, H. Xiong, Y. Ge, and E. Chen, “Mobile app recommendations
with security and privacy awareness,” in Proceedings of the ACM SIGKDD
international conference on Knowledge discovery and data mining (KDD),
2014, pp. 951-960.

[62] W. Pengcheng, S. Jeffrey, W. Yanzhao, and et al, “Ccaligner: a token
based large-gap clone detector,” in Proceedings of the 40th International
Conference on Software Engineering. ACM, 2018, pp. 1066-1077.

[63] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in Proceedings o f the 36th International
Conference on Software Engineering, 2014, pp. 1025-1035.

[64] M. Fan, X. Luo, J. Liu, M. Wang, C. Nong, Q. Zheng, and T. Liu, “Graph
embedding based familial analysis of android malware using unsupervised
learning,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 2019, pp. 771-782.

[65] H. Wang, J. Hong, and Y. Guo, “Using text mining to infer the purpose
of permission use in mobile apps,” in Proceedings o f the 2015 ACM
International Joint Conference on Pervasive and Ubiquitous Computing,
2015, pp. 1107-1118.

[66] M. Liu, H. Wang, Y. Guo, and J. Hong, “Identifying and analyzing
the privacy of apps for kids,” in Proceedings of the 17th International
Workshop on Mobile Computing Systems and Applications, 2016, pp.
105-110.

[67] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer,
and E. Bodden, “Mining apps for abnormal usage of sensitive data,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 1. IEEE, 2015, pp. 426-436.

[68] H. Wang, Y. Li, Y. Guo, Y. Agarwal, and J. I. Hong, “Understanding
the purpose of permission use in mobile apps,” ACM Transactions on
Information Systems (TOIS), vol. 35, no. 4, pp. 1-40, 2017.

[69] H. Wang, Y. Guo, Z. Ma, and X. Chen, “Wukong: A scalable and accurate
two-phase approach to android app clone detection,” in Proceedings of
the 2015 International Symposium on Software Testing and Analysis,
2015, pp. 71-82.

[70] L. Li, T. F. Bissyande, H. Wang, and J. Klein, “Cid: Automating
the detection of api-related compatibility issues in android apps,” in
Proceedings o f the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2018, pp. 153-163.

[71] L. Wei, Y. Liu, S.-C. Cheung, H. Huang, X. Lu, and X. Liu, “Under-
standing and detecting fragmentation-induced compatibility issues for
android apps,” IEEE Transactions on Software Engineering, 2018.

[72] T. Shin Hwei, D. Zhen, G. Xiang, and et al, “Repairing crashes in android
apps.” IEEE, 2018, pp. 187-198.

[73] B. Pan, L. Bin, S. Wenchang, and et al, “Nar-miner: Discovering negative
association rules from code for bug detection,” in 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 2018, pp. 411-422.

[74] H. Wang, H. Liu, X. Xiao, G. Meng, and Y. Guo, “Characterizing android
app signing issues,” in 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2019, pp. 280-292.

[75] K. H, “On identifying user complaints of ios apps,” in Proceedings of
the 2013 International Conference on Software Engineering. IEEE
Press, 2013, pp. 1474-1476.

[76] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do mobile
app users complain about? a study on free ios apps,” IEEE Software,
vol. 99, no. 1, pp. 1-10, 2014.

[77] E. Guzman and W. Maalej, “How do users like this feature? a fine
grained sentiment analysis of app reviews,” in IEEE 22nd international
requirements engineering conference (RE). IEEE, 2014, pp. 153-162.

[78] L. V. G. Carreno and K. Winbladh, “Analysis of user comments: an
approach for software requirements evolution,” in Proceedings o f the
2013 International Conference on Software Engineering. IEEE Press,
2013, pp. 582-591.

[79] B. Fu, J. Lin, L. Li, and et al, “Why people hate your app: Making
sense of user feedback in a mobile app store,” in Proceedings o f the
19th ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2013, pp. 1276-1284.

[80] A. Di, Sorbo, S. Panichella, V. Alexandra, C, and et al., “Surf: summarizer
of user reviews feedback,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C). IEEE,
2017, pp. 55-58.

[81] L. Villarroel, G. Bavota, B. Russo, and et al, “Release planning of mobile
apps based on user reviews,” in 2016 IEEE/ACM 38th International
Conference on Software Engineering. IEEE, 2016, pp. 14-24.

[82] S. Panichella, A. Di, Sorbo, G. E, and et al, “Ardoc: app reviews
development oriented classifier,” in Proceedings o f the 2016 24th
ACM SIGSOFT International Symposium on Foundations o f Software
Engineering. ACM, 2016, pp. 1023-1027.

[83] M. Vu, P, V. Pham, H, and T. Nguyen, T, “Phrase-based extraction of user
opinions in mobile app reviews,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering. ACM,
2016, pp. 726-731.

[84] Y. Li, B. Jia, Y. Guo, and X. Chen, “Mining user reviews for mobile app
comparisons,” Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.,
vol. 1, no. 3, pp. 75:1-75:15, Sep. 2017.

[85] S. FA, S. Kairit, and P. Dietmar, “Using app reviews for competitive
analysis: tool support,” in Proceedings o f the 3rd ACM SIGSOFT
International Workshop on App Market Analytics. ACM, 2019, pp.
40-46.

[86] D. Jacek, L. Emmanuel, P. Anna, and S. Angelo, “Finding and
analyzing app reviews related to specific features: A research preview,”
in International Working Conference on Requirements Engineering:
Foundation for Software Quality. Springer, 2019, pp. 183-189.

[87] E. Noei, F. Zhang, and Y. Zou, “Too many user-reviews, what should app
developers look at first?” IEEE Transactions on Software Engineering,
pp. 1-12, 2019.

[88] N. Chen, J. Lin, S. C. H. Hoi, and et al, “Ar-miner: mining informative
reviews for developers from mobile app marketplace,” in Proceedings
of the 36th International Conference on Software Engineering. ACM,
2014, pp. 767-778.

[89] L. Washington, V. Felipe, A. Rafael, and et al, “A feature-oriented
sentiment rating for mobile app reviews,” in Proceedings o f the 2018
World Wide Web Conference. International World Wide Web Conferences
Steering Committee, 2018, pp. 1909-1918.

[90] D. C. Nguyen, E. Derr, M. Backes, and S. Bugiel, “Short text, large
effect: Measuring the impact of user reviews on android app security &
privacy,” 2019.

[91] Y. Chen, H. Xu, Y. Zhou, and et al, “Is this app safe for children?: a
comparison study of maturity ratings on android and ios applications,”
in Proceedings of the 22nd international conference on World Wide Web.
ACM, 2013, pp. 201-212.

[92] L. Cen, L. Si, N. Li, and et al, “User comment analysis for android apps
and cspi detection with comment expansion,” in Proceeding of the 1 st
International Workshop on Privacy-Preserving IR: When Information
Retrieval Meets Privacy and Security. PIR, 2014, pp. 25-30.

[93] F. Palomba, M. Linares-Vasquez, G. Bavota, and et al, “User reviews
matter! tracking crowdsourced reviews to support evolution of successful
apps,” in 2015 IEEE international conference on software maintenance
and evolution (ICSME). IEEE, 2015, pp. 291-300.

[94] H. Chen, D. He, S. Zhu, and et al, “Toward detecting collusive ranking
manipulation attackers in mobile app markets,” in Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security.
ACM, 2017, pp. 58-70.

[95] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “Autocog:
Measuring the description-to-permission fidelity in android applications,”
in Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2014, pp. 1354-1365.

[96] L. Yu, X. Luo, X. Liu, and T. Zhang, “Can we trust the privacy policies of
android apps?” in 2016 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE, 2016, pp. 538-549.

[97] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in Proceedings of the International Conference
on Software Engineering (ICSE). ACM, 2014.

945

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 28,2021 at 02:19:45 UTC from IEEE Xplore. Restrictions apply.

