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Abstract—Millions of mobile apps have been available through 

various app markets. Although most app markets have enforced 

a number of automated or even manual mechanisms to vet 
each app before it is released to the market, thousands of 
low-quality apps still exist in different markets, some of which 

violate the explicitly specified market policies. In order to identify 

these violations accurately and timely, we resort to user com-
ments, which can form an immediate feedback for app market 
maintainers, to identify undesired behaviors that violate market 
policies, including security-related user concerns. Specifically, we 

present the first large-scale study to detect and characterize the 

correlations between user comments and market policies. First, 
we propose CHAMP, an approach that adopts text mining and 

natural language processing (NLP) techniques to extract semantic 

rules through a semi-automated process, and classifies comments 

into 26 pre-defined types of undesired behaviors that violate 

market policies. Our evaluation on real-world user comments 

shows that it achieves both high precision and recall (>  0.9) in 

classifying comments for undesired behaviors. Then, we curate 

a large-scale comment dataset (over 3 million user comments) 
from apps in Google Play and 8 popular alternative Android app 

markets, and apply CHAMP to understand the characteristics 

of undesired behavior comments in the wild. The results confirm 

our speculation that user comments can be used to pinpoint 
suspicious apps that violate policies declared by app markets. The 

study also reveals that policy violations are widespread in many 

app markets despite their extensive vetting efforts. CHAMP 

can be a whistle blower that assigns policy-violation scores and 

identifies most informative comments for apps.
Index Terms—User comment, app market, undesired behavior

I. In t r o d u c t i o n

Although the mobile app ecosystem has seen explosive 

growth in recent years, app quality remains a major issue across 

app markets [1], [2]. On the one hand, it is reported that millions 

of Android malicious apps were identified every year [3], 

using more and more complex and sophisticated malicious 

payloads and evasion techniques [4], [5], [6]. On the other 

hand, a large number of fraudulent and gray behaviors (e.g., 

ad fraud) were found in the mobile app ecosystem from time 

to time [7], [8], [9], [10], [11], [12]. Furthermore, apps with 

functionality/performance issues such as “diehard apps” [13], 

and devious contents such as “anti-society contents” still remain 

in the markets [14].

*The first two authors contributed equally to this work. Prof. Haoyu Wang 
is the corresponding author (haoyuwang@bupt.edu.cn).

Example comments:

Package Name:
com.beetteer.signal.booster 

App Name:
Signal Booster 

Store:
Tencent Myapp

Too many ads. Once the app is started, 
the notification bar is full of ads. 
Time: 2015-06-10

Dnt download it, it is a virus, it crashed 
my phone !!!!!
Time: 2014-10-5

Fig. 1. An example of user-perceived undesired behavior.

Most app markets have released strict developer policies, 

along with inspection and vetting processes before app pub-

lishing, seeking to nip the aforementioned threats in the bud 

and improve app quality in the markets. For example, Google 

Play has released a set of developer policies [15] that cover 10 

main categories, including “Privacy, Security and Deception”, 

“Spam and Minimum Functionality”, and “Monetization and 

Ads”, etc. Each category stands for a type of violation that 

may be associated with various undesired behaviors. Apps that 

break these policies should not be published on Google Play.

However, it is challenging to automatically check policy 

compliance for mobile apps. Despite Google Play’s efforts in 

adopting strict vetting processes by using automated tools [16], 

[17], malware and Potentially Harmful Apps (PHAs) are recur-

rently found in Google Play [18]. Third-party app markets also 

show a significantly higher prevalence of malware, fake, and 

cloned apps [1]. On the one hand, it has been reported that many 

malicious apps use sophisticated techniques to evade automated 

detection [4]. For example, certain malicious behaviors could 

only be triggered at a specific time or environment, such as 

checking whether the app is being inspected in emulating 

environments [19]. On the other hand, even if malware can be 

detected by these automated tools, many other fraudulent and 

gray behaviors such as ad fraud and malicious push notifications 

are hard to identify. Moreover, functionality/performance issues 

are typically app-specific, while devious contents are broad 

and difficult to detect without human inspection, posing more 

challenges for automated tools [14].

In many cases, whether an app’s behavior has exposed severe 

security risks or performance issues depends on how users 

think of it [20], [21]. As an important process for developers

978-1-6654-0296-5/21/$31.00 ©2021 IEEE 
DOI 10.1109/ICSE43902.2021.00089
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to improve app quality, app markets allow users to leave 

their ratings and comments after downloading and using each 

app [22]. These comments can be considered as the direct 

feedback from users who have experienced the apps [21], 

helping developers address the issues that might not have been 

spotted in testing. For example, as shown in Figure 1, two 

users gave 1-star ratings for the app. One user complained 

that this app contains aggressive advertising behaviors, and the 

other even reported that this app might be malicious. In fact, 

this behavior is also one of the undesired behaviors explicitly 

prohibited by the developer policies. When such comments are 

made aware to the market maintainers, they should be able to 

warn the app developers about the behaviors immediately and 

remove the apps from the market if such undesired behaviors 

are not addressed by the app developers. In other words, user 

comments can form an immediate feedback fo r  app market 
maintainers to identify user concerns and characterize the 

undesired behaviors that violate market policies.
Ideally, user reviews could serve as an effective source for 

app markets to identify policy violations in the apps after 

they have passed the initial vetting process. However, the 

number of user comments in an app market is huge given 

the rapidly increasing number of apps, and there is a lack 

of automated tools to detect comments that are related to 

market policy violations and further perform deeper analysis 

on these comments. Furthermore, these useful comments are 

often buried in a much larger number of irrelevant comments, 

making it labor-intensive and error-prone to manually inspect 

these comments to obtain feedback. While user comments have 

been studied for emerging issues [23], app risks [20] and app 

recommendation [24], few research efforts have been spent 

in investigating how user comments can assist app markets 

in improving app vetting process. Thus, little is known to 

what extent user comments can provide feedback on undesired 

behaviors that violate market policies and how app markets 

can utilize these feedback to improve their app vetting and 

maintenance process.
In this work, we investigate the correlation between user com-

ments and market policies, i.e., characterizing user-perceived 

undesired behaviors prohibited by market policies. First, 

we create a taxonomy of 26 kinds of undesired behaviors 

summarized from the developer policies of 9 app markets. 

Then, we propose CHAMP, an approach that adopts text 

mining and NLP techniques to identify comments that describe 

these 26 kinds of undesired behaviors and classify them. We 

refer to such comments as undesired-behavior comments 

(UBComments). More specifically, CHAMP first extracts 

semantic rules from a training dataset of user comments via 

a semi-automated process. CHAMP then uses the extracted 

rules to automatically identify the undesired behaviors reflected 

in a given comment. Evaluation of CHAMP on benchmarks 

from real-word user comments suggests that it can successfully 

identify UBComments with high precision and recall (>0.9).

To further understand UBComments in the wild, we have 

curated a large-scale dataset from 9 app markets, with over 

3 million user comments. We applied CHAMP on these

TABLE I
Th e  d i s t r ib u t io n  o f  p o l ic ie s  c o l l e c t e d  (t o t a l  599).

Market # Policies Market # Policies

GooglePlay [27] 172 360 Market [28] 30
Huawei Market [29] 22 Lenovo Market [30] 28
Meizu Market [31] 53 Oppo Market [32] 15
Vivo Market [33] 96 Xiaomi Market [34] 159
Tencent Myapp [35] 24

comments to identify the UBComments and study their charac-

teristics. We have a number of interesting findings:

• UBComments are prevalent in the app ecosystem, which 

can be found in 47% of the apps we studied. UBComments 

account for 20% for the 1-star comments. Our manual 

verification on sampled apps suggested the existence of 

undesired behaviors (96% of them could be verified). It 
confirms our assumption that users can still perceive 

a large number of undesired behaviors prohibited by 

market policies, even though these apps have already 

passed the comprehensive vetting process.

• User-perceived undesired behaviors, even some security- 

related ones, can be found in both malware and “benign” 

apps (the apps that were not flagged by any anti-virus 

engines on VirusTotal [25]). It suggests that user com-
ments can be a complementary source for providing 

insights of malware detection.
• Although each market has explicitly declared developer 

policies, roughly 34% to 65% of apps in each market 

were still complained about their undesired behaviors 

against the policies. This observation further indicates 

that it is hard for app markets to identify all policy 

violations during app vetting, while user comments 

could further help detect these violations continuously. 
Moreover, policies from most markets are inadequate, 

as we have identified many apps (5% to 60%) showing 

undesired behaviors that are not covered in their policies.

To the best of our knowledge, this is the first large-scale 

study on the correlation between user comments and market 
policies o f mobile apps. We believe that our research efforts 

can positively contribute to the app vetting process, promote 

best operational practices across app markets, and boost the 

focus on related topics for the research community and market 

maintainers. We have released the CHAMP tool, along with the 

policies and dataset to the research community at Github [26].

II. A Ta x o n o m y  o f  U n d e s i r e d  Be h a v i o r s

As we seek to identify the UBComments and investigate 

the correlation between user comments and market policies, 

we first collect a dataset of market policies and compile a 

taxonomy of the undesired behaviors described in them.

Market Policy Dataset. Considering that Google Play is 

the dominating market in the world except China, we seek 

to collect policies from 9 popular markets, including Google 

Play and 8 top Chinese third-party app markets, as shown in 

Table I. For each market, we crawl all the listed policies from
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TABLE II
A TAXONOMY OF UNDESIRED BEHAVIORS AND THE DISTRIBUTION ACROSS MARKET POLICIES. THE / REFERS TO THE MARKET DECLARING THE POLICIES. 

THE NUMBER REFERS TO THE # OF APPS WITH UBcomments WE IDENTIFIED FROM EACH MARKET IN SECTION VI.

Category Behavior
360

Market
Huawei Lenovo Meizu Oppo Vivo Xiaomi

Tencent
Myapp

Google
Play

fail to install 264 / (216) / (70) / (50) 33 / (32) / (39) / (106) / (5)

fail to retrieve content 30 33 5 / (9) 10 / (11) / (12) / (11) / (21)

Functionality and 
Performance

fail to uninstall /  (119) / (46) / (11) / (19) 23 / (29) / (21) / (49) / (1)

fail to start (e.g., crash) 699 / (451) / (209) / (238) / (174) / (318) 176 / (880) / (105)

bad performance (e.g., no responding) 334 / (134) 30 60 / (53) / (65) / (41) 176 / (18)

fail to login or register 180 201 / (52) 88 98 / (143) 86 184 / (33)

fail to exit /  (62) 45 4 11 11 10 9 15 / (2)

powerboot /  (3) 1 1 / (0) 0 / (0) / (3) / (0) / (5)

drive-by download 25 22 5 13 7 6 / (14) / (9) / (25)

Advertisement ad disruption /  (498) 262 / (91) / (180) / (118) / (168) / (145) / (818) / (167)

add shortcuts in launching menu 7 1 0 / (7) 1 / (0) 4 / (4) / (7)

ads in notification bar 15 1 / (0) / (3) 1 / (1) / (1) / (10) / (2)

virus /  (139) / (96) / (18) / (39) / (40) / (45) / (33) / (151) / (54)

privacy leak /  (25) 24 5 7 / (9) / (16) / (11) 24 / (30)

payment deception /  (236) / (189) / (39) 74 84 / (127) / (61) 282 / (75)

illegal background behavior (e.g., sms) 160 109 24 57 51 / (49) / (44) / (146) / (0)
Security excessive network traffic /  (90) 40 3 13 / (25) / (30) / (16) 111 / (4)

hidden app /  (12) 1 2 4 / (0) / (0) / (1) 2 / (1)

illegal redirection 80 35 / (5) 17 20 / (19) / (16) 135 / (8)

permission abuse 37 / (27) 4 / (8) 4 / (4) / (17) / (11) / (27)

illegitimate update (e.g., update to other app) 3 3 / (0) 0 3 1 2 1 / (0)

browser setting alteration 0 0 0 0 0 / (0) / (0) 0 / (0)

Illegitimate Behavior app repackaging 132 16 12 / (11) 14 17 / (13) 64 / (14)
of Developers app ranking fraud 54 28 7 / (34) 22 / (20) / (21) 45 / (6)

Content
vulgar content (e.g., pornography, anti-society) /  (47) 18 / (1) / (6) 4 / (8) 14 / (21) / (15)

inconsistency between functionality and description 15 5 / (0) 2 3 8 / (1) 8 / (1)

Total # of apps with undesired behaviors 1025 625 338 422 237 463 257 1382 274

Total # of apps with undesired behaviors (declared policies) 731 537 318 365 210 460 211 1233 274

Total # of apps with undesired behaviors (undeclared policies) 891 433 90 219 178 36 191 654 0

the corresponding webpages. In total, we have collected 599 

policies. Note that the developer policies of Google Play were 

in English, while the other market policies were in Chinese. 

Google Play has more complete and fine-grained policies than 

any of the third-party app markets.

Summary of Undesired Behaviors. As the policies defined 

by each market vary greatly (some are coarse-grained and some 

are fine-grained), it is non-trivial to automatically classify them. 

Thus, the first two authors of this paper manually went through 

these policies, and classified them into 5 main categories, 

including 26 distinct undesired behaviors. Table II shows 

the taxonomy of the summarized undesired behaviors, and 

the distribution of the corresponding policies across markets. 

Note that one behavior may correspond to one or more 

market policies. We observe that all of the undesired behavior 

regulations can be found in Google Play. As for the third-party 

markets, V i v o  and X i a o m i  have declared policies related to 

the most types of undesired behaviors, covering 21 and 20 

behaviors respectively. We believe that this taxonomy covers 

most of the commonly observed undesired behaviors. Even 

though it may still be incomplete, our approach is generic 

and can be adapted to support new behaviors and different 

granularities of behaviors (see Section VII).

III. Au t o m a t e d  Cl a s s i f i c a t i o n  o f  UBCo m m e n t s  

A. Overview
Figure 2 shows the overview of CHAMP, which builds a 

training dataset of user comments (the training dataset building 

phase), extracts semantic rules from the labelled comments 

(the semantic rule extraction phase) and uses the rules to 

identify and classify UBComments (the detection phase). The 

major reason why we prefer semantic rules instead of text 

similarity is that most comments are short and often use a few 

key phrases in specific orders such as “icon disappears”, while 

semantic rules have shown promising results in identifying 

sentences with specific purposes [36], [37], [38]. On the 

contrary, text similarity approaches based on word similarity 

without emphasis on key phrases are optimized for general 

purposes, and thus these approaches require extra tuning 

to focus on certain words that play important roles in the 

sentences of market policies [39], [40], [41]. Additionally, 

these approaches generally require a substantial amount of 

labelled samples to train the weights, which is less effective 

in our context due to the limited number of labelled samples.

© In the training dataset labelling phase, we collect the 

comments of the apps from Google Play and 8 third-party app 

markets, and resort to text clustering model to help to label 

the user comments. In the topic modeling and topic labelling
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Fig. 2. Overview of CHAMP.

step, we first merge the market policies that describe a same 

undesired behavior into a single document (26 documents 

in total). Then, CHAMP applies a short-text topic modeling 

algorithm [42], [43], [44], [45] to identify a set of topics, 

where each topic contains a set of words. At last, CHAMP 

labels each topic with related undesired behavior based on the 

similarity between the documents of policies and the words 

in the topics. In the comment classification step, CHAMP 

uses the labelled topics to classify each comment into related 

undesired behaviors. We further manually inspect the classified 

comments to confirm whether these comments are related 

to the corresponding undesired behavior. This is necessary 

because we could only classify each comment based on the 

keywords with the highest weight under each topic, which may 

introduce false positives. For example, if a comment contains 

the keyword “notification”, it is considered to be likely to 

related to the behavior “ads in notification bar". However, the 

word “notification” may also appear in comments that talk about 

alerts and notifications (e.g., notifications and alerts for weather 

apps). © In the semantic rule extraction phase, CHAMP applies 

a generation algorithm on the labelled comments and generates 

semantic rules for each undesired behavior automatically.© 

In the detection phase, CHAMP accepts user comments as 

input, and uses the semantic rules to classify comments into 

the undesired behaviors defined in market policies.

B. Training Dataset Labelling

Training Dataset. To label training dataset, we randomly 

select 2% of the comments for each app in our dataset 

(discussed in § IV). In total, we extract 70,000 comments, 

including 15,000 English comments and 55,000 Chinese 

comments. Note that these comments were used separately for 

training two models for both English and Chinese comments.

Topic Modeling and Topic Labelling. Unlike traditional 

documents (e.g., news articles), the descriptions of undesired 

behaviors in market policies consist of only one or a few short 

sentences. Thus, the lack of rich context makes it infeasible 

to use the topic modeling algorithms such as PLSA [46] and 

LDA [47], which implicitly model document-level word co-

occurrence patterns. To address this problem, we apply BTM 

(biterm topic model) [42], a widely used model for short-text

topic modeling, to learn the set of topics for market policies. 

BTM explicitly models word co-occurrence patterns using 

biterms, where each biterm is an unordered word-pair co-

occurred in a short context. The output of BTM are a set 

of topics where each topic consists of a list of words and 

their weights. For each topic z, BTM draws a topic-specific 

word distribution $z ~  D ir (ft), and draws a topic distribution 

0 ~  D ir (a) for all of the documents, where a  and ft are 

the Dirichlet priors. For each biterm b in the biterm set B , it 

draws a topic assignment Z  ~  M ulti(0) and draws two words 

(w i,w j) ~  M u lti(ftz), where wi and wj are words appearing 

in the same document. Following the above procedure, the 

joint probability of a biterm b = (wi ,w j) can be written as:

P  (b) = £  P  (z)P  (w ilZ  )P  (wj |Z )

thus the likelihood of all the documents is:

P  (B) 0{z)^i\z j
(i,j) z

We conduct topic modeling based on the merged English 

and Chinese policies, respectively. We set the number of topics 

as 26, which corresponds to the number of undesired behaviors. 

CHAMP then labels the proper undesired behaviors for the 

topics by computing the probability of each document being 

allocated to each topic. It assumes that the topic proportion of 

a document equals to the expectation of the topic proportion 

of generated biterms during topic modelling:

P  (z|d) =  £  P  (z |b)P (bid),
b

where z represents topic, b represents biterm and d represents 

document. p(z|b) can be calculated via Bayes formula based 

on the parameters estimated in BTM:

P(z\b)
$ z  ̂ i \ z  $ j \ z  

$ z  $ i \ z  $ j \ z
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TABLE III
Re p r e s e n t a t iv e  s t o p w o r d s  u s e d  in  CHAMP.

Removed Added
Stopwords stopwords

miss, high, ask, give, god, sex, s**t, s**d,
can not, how, able, stop, silly, blah, r**h, d**n,

without, allow, obtain, other d**b, da*n, horrible

p(b|d) can be estimated by the empirical distribution of biterms 

in the document, where n d(b) is the frequency of the biterm b 
in the document d :

p (b\d)
n d(b)

Y . n d(b)

At last, CHAMP selects the highest score of P(zld) and 

labels the proper undesired behaviors for each of the 26 topics.

Comment Classification. CHAMP then classifies each 

comment into related topics. It computes the probability of 

each comment being allocated to each topic. If the probability 

is above a certain threshold, CHAMP considers that the 

comment is related to the topic. We follow the same empirical 

approach [43], [44], [45] to set the threshold, and find that 0.6 

is a good indicator. In total, we obtain 9,228 comments that 

are related to 26 distinct behaviors.

Manual Inspection. Considering that the automated classi-

fied comments may be not related to the undesired behaviors 

(see § III.A ), we further manually inspected the comments 

that are classified into related topics to confirm whether these 

comments are UBComments. Besides, if a comment is related 

to more than one behavior, we split the comment into several 

sentences and each sentence is related to a kind of undesired 

behavior. Two authors inspect the comments independently. For 

the disagreements of category labelling, a further discussion is 

performed. Eventually, we obtained 8,275 comments that are 

related to 25 distinct behaviors. After splitting some comments, 

we obtained 9,057 labelled comments in total, which will be 

used for semantic rules generation. Note that we did not find 

any comments that are related to the behavior of “browser 

setting alteration”.

C. Automated Semantic Rule Extraction

Based on the labelled comments, given a new comment, 

the goal of CHAMP is to determine whether the comment 

describes the same or similar behavior as the labelled comments. 

To achieve this goal, we propose to automatically extract 

semantic rules from the labelled comments for each undesired 

behavior. Firstly, for each undesired behavior, CHAMP extracts 

and sorts the representative words from the related comments. 

Then, CHAMP analyzes the relations of the keywords by merg-

ing the keywords that usually appear in the same comments. 

After that, we can get one or more keyword sets containing 

different representative keywords. At last, CHAMP generates 

semantic rules for each keyword set by combining keywords 

and calculating the distance constraints of the keywords.

Word Segmentation. In this step, CHAMP groups the 

comments related to each undesired behavior into a corpus (25 

corpora in total). For each corpus, it segments the comments 

into words, removes meaningless words and sorts the remaining 

words in descending order based on the TF-IDF [48] weighting 

to generate a word list W ordList. Stopwords are the words 

considered unimportant in text analysis tasks. Thus, we take 

advantage of the stopword lists provided by HIT [49] and a 

public English stopwords list “stopwords-iso” [50]. However, 
we find that the general stopword lists cannot well fit the app 

comment study. On one hand, when some traditional stopwords 

(e.g., can) are combined with other words, they become key 

phrases for describing undesired behaviors in user comments. 

For example, the comment “always have to download other 

apps” is related to the undesired behavior “drive-by download”, 

thus the traditional stopwords “always” and “other” should 

not be removed. We summarized and removed 29 stopwords 

(including 14 English stopwords and 15 Chinese stopwords) 

that are important for describing undesired behaviors from the 

stopwords list. On the other hand, existing research found that 

there exist noises and spams (e.g., offensive comments) in app 

comments, which are meaningless for describing undesired 

behaviors. Therefore, we adapt the selected stopword list and 

add over 50 new stopwords that are regularly appeared in user 

comments. The representative stopwords are shown in Table III 

(offensive words are sanitized).

Representative Keywords Extraction. The goal of this 

step is to identify the most representative keywords that can 

cover the labelled comments in a given corpus. Thus, for each 

keyword in the WordList of a given corpus, CHAMP first 

collects the comments in the corpus that contain the keyword 

and adds them into a comment set C om tSetword. Then, a 

traversal operation begins to select the keywords in order (based 

on TF-IDF weight) and compare the C om tSetword of different 

words. For the comment set C om tSetwordm of the m-th word 

wordm in the W ordL ist, if part of the comments in it are 

overlapped with the comments in the n-th word’s (n < m) 

comment set C om tSetwordn, CHAMP will merge wordm and 

wordn into a keyword set. Otherwise, CHAMP will assign the 

word wordm into a new keyword set. Note that, the traversal 

operation will stop if the union set from C om tSetwordl to 

C om tSetwordm contains all of the labelled comments in the 

corpus. Based on the traversal operation, CHAMP could extract 

one or more keyword sets for each corpus.

Semantic Rule Generation. For each of the extracted 

keyword sets in a corpus, CHAMP automatically generates 

semantic rules. We observe that a behavior can be generally 

described by two keywords of different part-of-speech [51] 

in a comment. For example, the verb “steal” and the noun 

“money” in the comment “it steals money from the credit 

card!!!” are related to behavior “payment deception”. Another 

example, the adverb “how” and the verb “uninstall” in the 

comment “who can tell me how to uninstall this app” are 

related to behavior “fail to uninstall”. Thus, for the extracted 

keyword sets, CHAMP combines the keywords of different 

part-of-speech pairwise. Furthermore, we observe that most
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TABLE IV
Re p r e s e n t a t iv e  s e m a n t ic  r u l e s  f o r  4 b e h a v io r s .

Behavior semantic rules

virus
{virus, null, null} 
{trojan, null, null} 

{malware, null, null}

ads in notification bar

{notification, ads, 3} 
{notification, full, 2} 

{remove, notification, 4}

permission abuse

{ask, permission, 5} 
{require, permission, 6} 

{unnecessary, permission, 2} 

{need, permission, 6} 
{want, permission, 7}

UBComments are short and often include key phrases in specific 

orders. Therefore, the semantic rules not only contain key-

words but include order and distance constraints on matching

the keywords. For two keywords keywordu and keywordv 
(C om tSetu n  C om tSetu =  0), CHAMP will generate 

two semantic rules {keywordu, keywordv, constraints} and 

{keywordv ,keyw ordu, constraints}, the constraints is used 

to limit the distances of these two keywords. For example, 

semantic rule {ask, perm ission, 3} means that “ask” appears 

before “permission” and their distance is less than 3 words. 

CHAMP automatically calculates the F1-score under different 

distance constraints (we set it range from 1 to 20) for each 

semantic rule, and select the best one. Note that, if all of 

the keywords in a keyword set are noun, each keyword will 

generate a semantic rule {keyword, null, null}.
Eventually, CHAMP generates 320 semantic rules for the 

26 undesired behaviors in total (the list of rules can be found 

in [26]), in which 136 semantic rules are for English comments 

and 184 semantic rules are for Chinese comments. Note that 

there are no comments related to the behavior of “modify 

browser setttings” and thus we use the description in the 

related policies to extract semantic rules (4 rules in total). The 

major differences between Chinese comment rules and English 

comment rules are synonyms. Synonyms in Chinese are more 

frequently used than in English, leading to more rules for some 

undesired behaviors. For example, two keywords “uninstall” 

and “remove” of the semantic rules for behavior “fail to 

uninstall” are generated in English comments, while CHAMP 

has extracted 5 synonyms of these two keywords in Chinese 

comments. Table IV shows representative semantic rules for 3 

undesired behaviors in English comments (the complete set of 

rules can be found at Github [26]). As our semantic rules are 

trained to detect similar sentences that describe the behaviors 

in the policies, thus the detected sentences are all high quality, 

which will be evaluated in § V.

D. Semantic Rule Checking
Based on these semantic rules, CHAMP classifies each 

comment into a type of UBComments or others. Given a 

comment, CHAMP first removes the stopwords and performs 

word segmentation [52] to extract words from the comment.

CHAMP then applies the semantic rules one by one to 

determine whether the comment matches any rules. It searches 

the extracted words to see whether the keywords appear in 

the extracted words and checks the order and distance of 

successful matching keywords to determine whether they meet 

the constraints of the semantic rules. As shown in Fig. 1, the 

motivating app violates two behaviors, i.e., “ads in notification 

bar” and “virus”. Based on the rules defined in Table IV, 

CHAMP determines that the first comment “too many ads, ..., 

the notification bar is full of ads” matches 2 semantic rules of 

the undesired behavior “notification bar”, since the comment 

has the keywords of “notification” , “ads” and “full”. Similarly, 

the other comment contains the keyword of “virus” and thus 

matches the undesired behavior “virus”.

IV. St u d y  De s i g n

A. Research Questions
We seek to answer the following research questions (RQs): 

RQ1 How effective is CHAMP in detecting UBComments?
As we aim to apply CHAMP to extract UBComments in 

the wild, It is necessary to first evaluate the effectiveness 

of CHAMP on extracting undesired behaviors using a 

benchmark dataset.

RQ2 What kinds of undesired behaviors can be perceived 

by users? It is important to explore to what extent we 

can infer undesired behaviors from user comments, and 

which behaviors can be perceived by users.

RQ3 How well do the policies in each app market capture 

the undesired behaviors reflected by user comments? 

As each app market has its own policies, we want to know 

whether they are effective in flagging undesired behaviors 

during the app vetting process. App markets with weak 

app vetting processes are more likely to be exploited.

B. Dataset
1) Collecting App Candidates: To answer the RQs, we first 

need to harvest a comprehensive dataset that covers as many 

undesired behaviors as possible. We take advantage of existing 

efforts, and use a large-scale Android app repository [1]. This 

repository contains over 6.2 million app items collected from 

Google Play and 17 third-party app markets. The dataset also 

provides the detection result of VirusTotal [25], a malware 

analysis service that aggregates over 60 anti-virus (AV) engines. 

To better understand the distribution of UBComments across 

apps with different maliciousness levels, we classified our app 

candidates into 3 categories: malware, grayware and benign 

apps. As previous studies [53] suggested that some AV engines 

may not always report reliable results, we regard the apps 

labeled by over half of the AV engines (>30) as malware, which 

is supposed to be a reliable threshold by previous work [53]. 

We consider apps flagged by no AV engines as benign apps, 

and the other apps as grayware. This roughly classification 

of malware and grayware might not be accurate enough, but 

this is not the focus of this paper. As the number of reported 

engines can be used as an indicator of the maliciousness of 

the apps, we only want to study the diversity across apps with
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TABLE V
OVERVIEW OF OUR COMMENT DATASET.

Market Malware Grayware Benign Apps
# apps # comments # apps # comments # apps # comments

360 Market [28] 625 33,432 399 205,383 457 161,286
Huawei [29] 144 11,193 388 212,452 296 84,221
Lenovo [30] 184 4,545 252 34,897 225 23,976
Meizu [31] 232 6,766 256 181,212 201 139,662
Oppo [32] 134 16,765 163 503,574 94 76,295
Vivo [33] 196 18,894 266 211,453 295 85,996
Xiaomi [34] 297 32,343 111 177,852 64 60,571
Tencent Mvapp [35] 1117 69,044 477 250,649 481 131,949
Google Play [27] NA NA 253 183,256 556 311,795
Total 2,027 192,982 1,416 1,960,728 1,713 1,075,751

different levels of maliciousness. We randomly selected 10,000 

target app candidates (8,400 Chinese apps and 1,600 Google 

Play apps) from the dataset of Wang et al. [1], including 4,000 

malware, 3,000 grayware and 3,000 benign apps. Note that the

1.600 Google Play apps include 1,000 benign apps and 600 

grayware, as all the malware samples were removed by Google 

Play and we cannot get their comments (NA in Table V).

2) Harvesting the User Comments: All the app markets 

we studied only provide a limited number of user comments. 

For example, Google Play review collection service [54] only 

allows reviews of last week to be crawled for each app. Instead, 

we built the comment dataset using two alternative approaches. 

For the 8,400 apps we selected from the Chinese markets, 

we resort to a third-party app monitoring platform named 

Kuchuan[55], which has maintained the app metadata including 

comments from all the Chinese markets we studied. For the

1.600 apps from Google Play, we developed an automated tool 

to continuously fetch the user comments everyday within the 

span of 3 months. Table V shows the distribution of collected 

comments. In total, we have collected over 3.2 million user 

comments from 5,156 apps1, including 192,982 comments from 

2,027 malware, 1,960,728 comments from 1,416 (including 

1,163 Chinese apps and 253 Google Play apps) grayware and 

1,075,751 comments from 1,713 (including 1,157 Chinese apps 

and 556 Google Play apps) benign apps. This dataset will be 

used in the large-scale measurement study (see § VI).

V. Ev a l u a t i o n  o f  CHAMP 

A. Benchmark Datasets

We curated two benchmark datasets (English and Chinese) to 

evaluate CHAMP. We first select the apps which are confirmed 

to have undesired behaviors in the training dataset (see § III-B). 

For each app, we exclude the comments already used in training 

dataset. At last, two authors of this paper manually inspected 

and labelled these comments. Within our affordable efforts, 

we aim to collect and label 50 comments for each undesired 

behavior, except for some behaviors with few related apps. 

Figure 3 shows the distribution of our benchmark (901 Chinese 

comments and 618 English comments). Note that we cannot 

find comments for the behavior “browser setting alteration”.

'Note that, for the selected 10K app candidates, over 4,000 of them have 
no user comments or very few user comments, which were discard by us.

B. RQ1: Effectiveness o f CHAMP

1) Overall Results: Table VI shows the evaluation results. 

It shows that CHAM P is very effective in identifying 

UBComments. The average precision and recall are 95% and 

93% for the Chinese benchmark, and 97% and 98% for the 

English benchmark. In particular, CHAMP achieves 90+% of 

precision and recall for 20 out of 26 types of UBComments.

2) False Positives/Negatives: We further manually analyze 

the mis-classified comments and obtain two observations. First, 

the false negatives are colloquial expressions instead o f phrases. 
For example, the comment “A window of card application pops 

up continuously” is describing the behavior “ad disruption”. 

But the key phrase “ad” is not in it. Moreover, if we add a 

new semantic rule with the phrases “window” or “pop up”, it 

may lead to other false positives. Second, the false positives 

are generated owing to our insufficiently conservative rules. 
For example, the comment “The app is completely useless, 

btw I thought that this built-in app can not be uninstalled, but 

it succeeded.” is irrelevant to undesired behaviors. However, it 

is classified to the behavior “fail to uninstall” since it has the 

phrases “can not” and “uninstall”. Analogously, if we upgrade 

our rules to be more conservative, it may lead to more false 

negatives. These are the inherent limitations of rule-based 

matching methods. We will further discuss it in § VII.

3) Comparison with Text Similarity Approach: We compare 

CHAMP with the text similarity approach, which classifies 

a comment to a type of undesired behavior based on text 

similarity between the comment and the classified comments 

in the training dataset (see § III-B). We regard the behavior 

with the highest similarity score as the classification result.

As shown in Table VI, CHAMP achieves significantly 

better results than the text similarity approach. The average 

precision and recall achieved by the text similarity approach 

are 85% and 81% (v.s. 95% and 93% achieved by CHAMP) 

for the Chinese comment dataset, and 77% and 85% (v.s. 97% 

and 98% achieved by CHAMP) for the English comment 

dataset, respectively. In particular, CHAMP outperforms the 

text similarity approach on all behaviors. Such results indicate 

that the order and distance constraints adopted by our semantic 

rules can greatly reduce the false positives/negatives. For 

example, the comment “I can not install the app” is similar to 

“I installed but it can not help me back up files” considering 

their text similarity, but they are describing different types of 

undesired behaviors. CHAMP correctly distinguishes these 

two comments while the text similarity approach classifies both 

of them to the same type of undesired behavior.

VI. La r g e -s c a l e  Me a s u r e m e n t  St u d y  

A. RQ2: UBComments in the Wild

1) Overall Results: From the dataset we harvested (see 

§ IV), CHAM P identifies 94,028 UBComments, belonging 

to 2,440 apps (47%). Each app has received 39 UBCom- 
ments from multiple users on average. This indicates that 

UBComments are prevalent in the mobile app ecosystem, and 

the users who are sensitive to those policy violations are
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Fig. 3. Distribution of labelled benchmarks.

TABLE VI
Ev a l u a t io n  r e s u l t s  o n  t h e  b e n c h m a r k  d a t a s e t s  (b e s t  r e s u l t s  a r e  s h o w n  in  b o l d ).

Benchmark (Chinese) Benchmark (English)
Category Behavior c h a m p Similarity-Based Tool c h a m p Similarity-Based Tool

precision recall F1 precision recall F1 precision recall F1 precision recall F1

fail to install 9 6% 9 4% 9 5% 87% 90% 88% 83% 100% 9 1% 71% 100% 83%
fail to retrieve content 100% 100% 100% 89% 67% 76% 96% 9 8% 9 7% 85% 80% 82%

fail to uninstall 100% 9 6% 9 8% 91% 92% 91% 100% 100% 100% 63% 100% 77%
Functionality and fail to start (e.g., crash) 9 8% 9 6% 9 7% 88% 88% 88% 96% 9 6% 9 6% 85% 82% 84%
Performance bad performance (e.g., no responding) 8 8% 9 4% 9 1% 86% 91% 88% 91% 9 7% 9 4% 80% 77% 79%

fail to login or register 9 8% 9 8% 9 8% 87% 90% 88% 96% 100% 9 8% 87% 90% 88%
fail to exit 9 3% 9 3% 9 3% 81% 93% 87% 100% 100% 100% 100% 100% 100%
powerboot 8 3% 8 3% 8 3% 83% 83% 83% NA NA NA NA NA NA

drive-by download 100% 9 4% 9 7% 75% 85% 80% 100% 9 8% 9 9% 73% 73% 73%

Advertisement ad disruption 100% 100% 100% 73% 64% 68% 100% 100% 100% 69% 70% 69%
add shortcuts in launching menu 100% 100% 100% 100% 78% 88% NA NA NA NA NA NA

ads in notification bar 9 6% 9 6% 9 6% 55% 96% 70% 100% 100% 100% 50% 100% 67%

virus 100% 9 8% 9 9% 100% 86% 93% 100% 100% 100% 100% 88% 94%
privacy leak 9 8% 9 4% 9 6% 88% 85% 86% 96% 9 6% 9 6% 85% 82% 84%

payment deception 100% 9 1% 9 5% 92% 87% 90% 98% 9 6% 9 7% 91% 79% 85%
illegal background behavior (e.g., sms) 9 1% 9 1% 9 1% 73% 76% 75% NA NA NA NA NA NA

Security excessive network traffic 9 8% 9 8% 9 8% 90% 90% 90% 100% 100% 100% 80% 80% 80%
hidden app 100% 100% 100% 100% 67% 80% 100% 100% 100% 100% 100% 100%

illegal redirection 8 8% 8 5% 8 7% 88% 78% 82% 92% 100% 9 6% 75% 82% 78%
permission abuse 9 2% 8 0% 8 6% 86% 80% 83% 100% 9 6% 9 8% 89% 84% 87%

illegitimate update (e.g., update to other app) 8 7% 8 7% 8 7% 86% 80% 83% NA NA NA NA NA NA
browser setting alteration NA NA NA NA NA NA NA NA NA NA NA NA

Illegitimate Behavior app repackaging 8 5% 9 2% 8 8% 78% 86% 82% 97% 100% 9 9% 65% 65% 65%
of Developers app ranking fraud 9 6% 9 8% 9 7% 83% 80% 82% 83% 100% 9 1% 69% 73% 71%

Content vulgar content (e.a., pornography, anti-society) 100% 8 7% 9 3% 85% 73% 79% 100% 9 2% 9 6% 95% 84% 89%
inconsistency between functionality and description 100% 9 1% 9 5% 83% 45% 59% 100% 100% 100% 33% 50% 40%

TABLE VII
D i s t r ib u t io n  o f  UBComments b y  Ca t e g o r ie s .

Category #Comment (%) #App (%)

Functionality/Performance 57,541 (61%) 1701 (70%)

Advertisement 22,885 (24%) 1023 (42%)

security 13,765 (15%) 1098 (45%)

Illegitimate Behavior 1,129 (1%) 173 (7%)

Content 536 (0.5%) 72 (3%)

Total 94,028 2,440

willing to report them in the comments. Table VII shows 

the distribution of UBComments and apps across different 

categories of behaviors. over 61% of the UBComments and 

over 70% of the corresponding apps were complained to have 

“functionality and performance” issues. This shows that users 

are most sensitive to the issues that directly affect their uses of 

the apps. For the 26 behaviors we summarized, 25 of them 

could be perceived by users. The most popular behaviors of

UBComment are “fail to start”, “ad disruption”, and “payment 

deception”, accounting for 79.4% of the UBComments. Both 

“fail to start” and “ad disruption” are related to user experiences, 

while “payment deception” shows users’ security concerns.

Manual Verification of Undesired Behaviors. To analyze 

whether the undesired behaviors described in user comments 

reflect the real behaviors of mobile apps, we make effort 

to perform a manual verification here. For each of the 25 

identified perceived behaviors, we randomly select three apps 

(75 apps in total) and manually verify if indeed the apps 

violated the policies as described. o u r manual verification 

follows a series of steps. We first install them on smartphones 

to see whether they have shown undesired behaviors as user 

complained (e.g., ad disruption and malicious behaviors, etc.). 

Then we rely on Testin [56], a service that provides app 

testing on thousands of real-world smartphones, to check 

the functionality and performance issues (e.g., fail to start 

and fail to install). Furthermore, we leverage static analysis
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TABLE VIII
D i s t r ib u t io n  o f  UBComments b y  Ra t in g  S t a r s .

Dataset 1-star 2-star 3-star 4-star 5-star

Malware 28.14% 17.70% 9.09% 3.85% 2.16%

Chinese Grayware 23.36% 16.22% 9.23% 4.37% 0.64%

Chinese Benign Apps 25.38% 17.58% 10.07% 5.95% 0.96%

GPlay Grayware
6.50%

(14.28%)
0.05%

(0.07%)
0.03%

(0.04%)
0.02%

(0.02%)
0%

(0%)

GPlay Benign Apps
1.96%

(8.64%)
0.33%

(0.92%)
0.15%

(0.25%)
0.07%

(0.10%)
0.01%

(0.02%)

Total 19.45% 12.15% 6.69% 2.78% 0.71%

tools (e.g., LibRadar [57] and FlowDroid [58]) to extract and 

inspect behavior-related app information (e.g., sensitive code, 

permissions and libraries). At last, for the apps in behavior “app 

ranking fraud”, we compare their comments based on existing 

approaches proposed in [59], [60] to find fake comments. 

Overall, 72 apps (96%) have been confirmed with the undesired 

behaviors as user commented. For the 3 unconfirmed cases 

(one in the vulgar content category, and two in the payment 

deception category), our dynamic analysis found that their 

services have stopped and our static analysis failed due to they 

have adopted heavy obfuscation and code protection using 

packing services. Nevertheless, we show that most o f the 

undesired behaviors can be confirmed.
2) Low-rating Comments vs. High-rating Comments (RQ2.1): 

We study the distribution of UBComments across comments 

with different ratings (from 1-star to 5-star).

Quantitative Analysis. As shown in Table VIII, it is appar-

ent that low-rating comments (i.e., 1-star and 2-star) are 

more likely to describe undesired behaviors. UBComments 

account for roughly 20% and 12% for the 1-star comments 

and the 2-star comments, and 2.78% and 0.71% for the 4- 

star and the 5-star comments, respectively. Note that the 

proportion of UBComments in Google Play is much lower 

than that of Chinese markets. The major reason is that the 

crawled comments from Google Play contain a large amount of 

blank comments, i.e., the comments with only a rating but no 

descriptions. We further eliminate such comments and report 

the result (see the percentage in brackets in Table VIII).

Qualitative Analysis. As shown in Figure 4, the distribu-

tions of UBComments in Chinese markets and Google Play 

show great diversity, and thus we discuss them separately.

For app comments in Chinese markets, the distribution of 

undesired behaviors does not show much diversity across 

UBComments with different ratings. Behaviors of the “Func-

tionality and Performance” and “Advertisement” types are 

most prevalent across all the ratings, with the “Fail to start” 

and “Ad disruption” types are quite noticeable. Moreover, 

we find that security related behaviors are prevalent in both 

low-rating and high-rating comments of malware, but only 

prevalent in low-rating comments of grayware and benign apps. 

It is quite surprising that users complain about the security 

issues (e.g., payment deception) but give the app (malware) a 

high rating. Thus, we make efforts to manually examine all

such “contradictory” comments (21,859 in total), and identify 

two major reasons. First, the default comment rating of most 

Chinese app markets is 5-star, thus a number of users may only 

complain the app in the comments but forget to assign a rating. 

Second, it is quite possible that some users misunderstand the 

meanings of 1-star and 5-star. For example, we find that several 

users assign totally opposite ratings in all their comments, i.e.,, 
1-star with really good comments, but 5-star with negative 

comments, including the UBComments. It suggests the poor 

knowledge of the rating system for market users, and the 

new challenges in analyzing the comments of third-party app 

markets. Nevertheless, CHAMP can reveal how the users feel 

about their experiences, and even could improve the techniques 

of app risk assessments based on user comments [61], [20].

In Google Play, the distribution of UBComments in low- 

rating comments and high-rating comments are quite different. 

Users generally give 1-star in their comments when they find 

undesired behaviors in the app, even if the behaviors do not 

belong to the “security” category. We only find a few comments 

that are related to the “vulgar content” type in other comments. 

This might be due to the high-quality market which pays 

more attention to policy regulations, and this more mature and 

regulated ecosystem enables users to better comprehend the 

ratings when providing comments.

3) Malware vs. Grayware vs. Benign Apps (RQ2.2): For Chi-

nese markets, over 42% of malware samples have UBComments, 

and they have occupied 7% of the comments. As a contrast, over 

57% of benign app samples and 57% of grayware samples have 

UBComments, and the percentages of these comments are 4% 

and 3%, respectively. For Google Play, over 32% of benign apps 

and 38% of grayware apps have UBComments, and they account 

for 0.3% and 1% of the overall comments (0.6% and 1.5% 

after removing the empty ones from the overall comments), 

respectively. In general, one would think that malicious apps 

have more UBComments than gray and benign apps, as their 

behaviors are more likely to inconsistent with users’ expectation. 

However, the results are different for what we expected, i.e., 

the percentage of UBComments does not show much difference 

across malware, grayware and benign apps. There are mainly 

two reasons. First, the policy-violation behaviors of two major 

types, “Functionality and Performance” and “Advertisement”, 

are prevalent in both malicious and benign apps, e.g., over 

74% of the UBComments in third-party benign apps are 

related to “Functionality and Performance”. Second, some 

malware samples were removed in time by markets, and 

thus malicious apps have not received much complaints than 

expected. Note that the security-related undesired behaviors 

show different distributions across malicious, gray, and benign 

apps (see Figure 4). As to Chinese markets, over 27% of the 

UBComments belong to the security category for malware, 

while the percentages for grayware and benign apps are 14% 

and 9%. As to Google Play, over 31% of the UBComments 

in grayware are security related (V.S. 16% in benign apps). 

Furthermore, we observe that many user-perceived undesired 

behaviors (including security-related ones) were found in 

both malware and “benign apps”. It suggests that some
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Fig. 4. Distribution of UBComments across different ratings (y-axis) and undesired behaviors (x-axis) in different app categories. Each row adds up to 100%, 
with each cell representing the percentage of a specific undesired behavior in the UBComments for a specific rating (e.g., 5 stars) in an app category (e.g., 
Malware). The depth of the color is also used to indicate the percentage in the cell, i.e.,, a deep color indicating a large percentage. For each app category, a 
behavior category box represents the UBComments of a specific behavior category (e.g., Security), and the number below the box shows the percentage of the 
UBComments in that behavior category.

malicious behaviors are hard to detect by AV engines but 
user comments could provide insights for capturing them.

B. RQ3: Undesired Behaviors Across Markets

We perform market-level analysis to investigate the differ-

ences across markets. On one hand, for the undesired behaviors 

declared in the policies of each market, we seek to measure 

how many such behaviors have been identified in our dataset. 

This result could be used to measure the effectiveness of 

market regulation, i.e., how many of these undesired apps have 

bypassed the corresponding auditing process. On the other hand, 

for other undesired behaviors that were not declared in the 

policies of a market, we seek to explore whether we could find 

such behavior related comments in the corresponding markets.

Table II shows the results. Roughly 34% to 65% of the 

apps (the numbers in bold) from each market have found 

comments for undesired behaviors described in each of their 

market policies. Over 65% of the apps in Huawei Market have 

violated its market policies, while the percentage of such apps 

in Google Play is 34%. From another point of view, roughly 

5% to 60% of the apps (besides Google Play, as it covers all the 

behaviors we summarized in this paper) have been complained 

of having undesired behaviors that are not captured by the 

markets’ policies. For example, over 60% of the apps in the 360 

Market have undesired behaviors that are not listed in its market

policies. This may open doors for malicious developers to 

exploit the insufficient vetting process.

VII. Di s c u s s i o n s  

A. Relation with Program Analysis

A large number of papers were focused on using program 

analysis to detect the security [62], [63], [64], privacy [65], 

[66], [38], [67], [68], ads/third-party library [57], [9], [69], 

[11], and functionality issues [70], [71], [72], [73], [74] of 

mobile apps. In contrast, this paper focuses on a different 

perspective, i.e., how the users feel about their experiences. 
Users’ expectations play a big role on how much the users can 

tolerate the apps’ behaviors.

First, although program analysis could be adopted to identify 

whether some sensitive behaviors exist in mobile apps, it 
is non-trivial to verify whether the behaviors violate the 

policy. The borderline between policy-violation and toler-
able misbehaviors is fuzzy and highly dependent on users’ 
subjective expectations. For example, program analysis can 

easily identify ad libraries used in apps. However, aggressive 

mobile ads cannot be simply conflated with the detection 

of ad libraries. The detection of ad libraries, enabled by 

program analysis techniques, cannot take what users really 

feel about the ads into consideration. Second, a number of 
the policy-violation behaviors, e.g., payment deception and
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vulgar content, are difficult to be triggered and detected 

by program analysis techniques. However, they are indeed 

much easier revealed by user comments.

Thus, CHAMP is complementary to program analysis, 
which can provide insight to identify the boundary between 

policy-violation behaviors and tolerable misbehaviors. In-

stead of identifying the policy-violation behaviors directly, 

CHAMP can serve as a whistle blower that assigns policy- 

violation scores and identifies most informative comments for 

apps (e.g., putting security related comments at top). Note 

that, not all the apps with UBComments should be removed 

by the app market. App vetting is aimed at promoting the 

overall quality of apps in the market. Thus, app markets would 

generally give developers warnings and buffer time to fix 

undesired behaviors in their apps (rather than removing them 

directly). With the help of CHAMP, it will be possible to 

pinpoint more urgent violations accurately, such as security- 

related ones, so that the markets could choose their reaction 

accordingly.

B. Threats to Validity

First, the taxonomy we summarized may be incomplete. Al-

though we have manually summarized 26 undesired behaviors, 

our taxonomy may still be incomplete since it was built based 

on current policies. However, our approach is generic and can 

be reused to support the detection of new types of undesired 

behaviors. Second, our approach inherits the drawbacks o f 
rule-based approaches. Though our approach was proven to 

be quite effective during our evaluation, the semantic rules we 

summarized may not be complete and could introduce false 

positives/negatives as mentioned in Section V-A. Nevertheless, 

market policies are rarely updated. Furthermore, our approach 

has strong expansibility of extracting new semantic rules 

for emerging app store policies. When policies evolve, new 

training can be performed to obtain new rules. Note that 

only the training process is semi-automated, as we need to 

manually label the classified comments. Our rules are extracted 

automatically from the labelled comments, which can be 

applied to identify UBComments automatically. Third, we are 

not able to verify all the undesired behaviors for all the apps 

we identified. We only sample 75 apps for manual verification, 

and found 96% of them can be confirmed. We found most o f 
the behaviors cannot be easily identified using automated tools, 
that is the reason why UBComments are prevalent even though 

these apps have already passed the market vetting process. 

This motivates the research community to develop better tools 

for identifying such behaviors. Nevertheless, as aforementioned 

(see Section VII-A), instead of identifying the policy-violation 

behaviors directly, CHAMP could raise alarm based on the 

number of undesired comments and reported users.

VIII. Re l a t e d  W o r k

To the best of our knowledge, our paper is the first 

one that identifies undesired behaviors from user comments. 

Nevertheless, there are a number of studies focusing on app 

comments from different perspectives. We present and discuss

briefly related works on (1) general app comment analysis, and 

(2) using NLP techniques in mobile app analysis.

App Comment Analysis. Mobile app comments have been 

extensively studied from other perspectives, including mining 

user opinions [75], [76], [77], [78], [79], [80], [81], [82], 

[83], [84], [85], [86], [87], app comment filtering [88], [79], 

[89], and exploring other concerns [90], [91], [92], [93], [94]. 

For example, Chen et al. [88] pioneered the prioritization of 

user comments with AR-Miner. Chen et al. [91] conducted a 

study on the unreliable maturity content ratings of mobile 

apps, which will result in inappropriate risk exposure for 

the children and adolescents. Nguyen et al. [90] proposed to 

analyze the relationship between user comments and security- 

related changes in Android apps. Kong et al. [20] presented a 

machine-learning technique to identify 4 pre-defined types of 

security-related comments. Although app comments have been 

extensively studied from other perspectives, none of the above 

work correlates user comments to the undesired behaviors 

described in market policies and none of them can be easily 

adopted/extended to study this issue.

NLP in Mobile App Analysis. Besides user comments, NLP 

techniques have been widely adopted to study app descriptions, 

privacy policies, and other meta text information related to 

mobile apps. Whyper [38] and Autocog [95] adapt NLP 

techniques to characterize the inconsistencies between app 

descriptions and declared permissions. PPChecker [96] is a 

system for identifying the inconsistencies between privacy 

policy and the sensitive behaviors of apps. CHABADA [97] 

adapts NLP techniques to cluster apps using description topics, 

and then identifies the outliers of API usage within each cluster. 

Our work is the first to investigate the correlation between user 

comments and market policies.

IX. Co n c l u s i o n

We present the first large-scale study to investigate the 

correlation between user comments and market policies. In 

particular, we propose CHAMP, a semantic-rule based ap-

proach that effectively identifies UBComments. We apply 

CHAMP to a large scale user comment dataset and observe that 

UBComments are prevalent in the ecosystem, even though app 

markets explicitly declared their policies and applied extensive 

vetting. CHAMP offers a promising approach to detect policy 

violations, so as to help market maintainers identify these 

violations timely and further improve the app vetting process.
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