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Abstract—Textual descriptions in cyber threat intelligence
(CTI) reports, such as security articles and news, are rich
sources of knowledge about cyber threats, crucial for or-
ganizations to stay informed about the rapidly evolving
threat landscape. However, current CTI knowledge extrac-
tion methods lack flexibility and generalizability, often re-
sulting in inaccurate and incomplete knowledge extraction.
Syntax parsing relies on fixed rules and dictionaries, while
model fine-tuning requires large annotated datasets, making
both paradigms challenging to adapt to new threats and
ontologies. To bridge the gap, we propose CTINexus, a novel
framework leveraging optimized in-context learning (ICL)
of large language models (LLMs) for data-efficient CTI
knowledge extraction and high-quality cybersecurity knowl-
edge graph (CSKG) construction. Unlike existing methods,
CTINexus requires neither extensive data nor parameter
tuning and can adapt to various ontologies with minimal
annotated examples. This is achieved through: (1) a care-
fully designed automatic prompt construction strategy with
optimal demonstration retrieval for extracting a wide range
of cybersecurity entities and relations; (2) a hierarchical
entity alignment technique that canonicalizes the extracted
knowledge and removes redundancy; (3) an long-distance
relation prediction technique to further complete the CSKG
with missing links. Our extensive evaluations using 150 real-
world CTI reports collected from 10 platforms demonstrate
that CTINexus significantly outperforms existing methods in
constructing accurate and complete CSKG, highlighting its
potential to transform CTI analysis with an efficient and
adaptable solution for the dynamic threat landscape.

Index Terms—Cyber Threat Intelligence, Large Language
Model, In-Context Learning, Cybersecurity Knowledge
Graph

1. Introduction

Modern cyberattacks are becoming increasingly com-
plex and rapidly evolving. Many public and commercial
organizations extensively record and share cyber threat
intelligence (CTI) on their platforms to combat evolving
threats. According to Gartner, CTI is defined as “evidence-
based knowledge, including context, mechanisms, indica-
tors, implications and actionable advice, about an existing
or emerging threat to assets, used to inform decisions
regarding the subject’s response to that threat” [7]. Such
knowledge is crucial for organizations to monitor the
rapidly evolving threat landscape, promptly detect early
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signs of an attack, and effectively contain the attack with
proper measures. Given its importance, CTI has been in-
creasingly collected and exchanged across organizations,
often in the form of Indicators of Compromise (IOC) [57].
IOCs are forensic artifacts of an intrusion such as virus
signatures, IPs/domains of botnets, MD5 hashes of attack
files, etc. However, recent studies [57], [80] showed that
knowledge offered by I0Cs is rather limited, which covers
only a limited set of knowledge and has a short lifespan.

Recognizing the limitations of IOCs, recent research
has shifted towards automatically extracting richer knowl-
edge from textual threat descriptions in CTI reports (i.e.,
CTI text). These reports, such as security blog articles [6],
[25] and news [11], [21], are produced by security re-
searchers and practitioners and published on websites,
summarizing threat behaviors in natural language. Besides
IOCs, these reports contain various other cybersecurity
entities, such as malware, vulnerabilities, and attack tech-
niques, as well as their interactions and dependencies. This
knowledge is crucial for building a comprehensive cyber
threat profile.

Several approaches have been proposed for auto-
matically extracting security knowledge from CTI and
constructing a cybersecurity knowledge graph (CSKG).
Syntax-parsing-based approaches [43], [48], [57] lever-
age fixed dependency rules and hand-crafted dictionar-
ies to parse the grammatical structure of sentences and
extract key subject-verb-object triplets. Fine-tuning-based
approaches [32], [56], [74] leverage pre-trained transform-
ers and fine-tune them on labeled CTI datasets to identify
semantic roles and extract entities and relations. However,
these methods suffer from several key drawbacks, partic-
ularly facing the evolving threat landscape:

(1) Lack of flexibility and generalizability: Many of
these methods are tailored to specific cybersecurity ontolo-
gies, focusing on a fixed set of entities and relation types.
They are difficult to generalize to new ontologies and
emerging threats and terminologies. Fixed rules have lim-
ited flexibility to adapt to new patterns and require manual
creation and maintenance. Model fine-tuning, however,
requires a large amount of labeled CTI corpus data. Such
data is scarce in security, especially for new threats that
lack annotations.

(2) Information inaccuracy and incompleteness: Due
to the peculiarities of the security context and the lack of
deep analysis, these methods often generate low-quality
CSKGs that are incomplete, inaccurate, and disconnected.
Fig. 1 shows example CSKGs generated by three repre-
sentative methods for a real-world CTI report. We can



observe issues including incomplete entities, misidentified
entity boundaries, misaligned entities, missing links, etc.
These low-quality CSKGs limit the ability to obtain a
comprehensive threat profile, hindering the effective use
of CTI to enhance defensive measures.

These limitations highlight the need for a paradigm
shift in CTI knowledge extraction that enables accurate
knowledge capture in data-limited environments while
adapting to evolving threats. Recent advancements in
LLMs have demonstrated strong capabilities in various
natural language tasks [35], shifting the focus from fine-
tuning to in-context learning (ICL), which requires min-
imal annotated data and no parameter updates. However,
ICL strategies vary in performance, from state-of-the-
art to suboptimal [59]. To address this, we conducted
thorough experiments to identify optimal ICL settings
for CSKG construction. With the optimized ICL strategy,
LLMs can effectively learn from a few examples and adapt
to new tasks with stability and high performance without
requiring model weight updates.

Contributions. We present CTINEXUS, an LLM-powered
framework for automated CTI knowledge extraction and
CSKG construction from CTI reports. Unlike existing
methods limited by generalizability and data demands,
CTINEXUS introduces an optimized-ICL-based pipeline
for data-efficient inference, enabling precise extraction of
diverse cybersecurity entities and relations while adapting
to various ontologies. In addition, CTINEXUS refines the
extracted knowledge to enhance the canonicalization and
completeness of the resulting knowledge graph. As shown
in Fig. 1, the CSKG constructed by CTINEXUS has sig-
nificantly higher quality compared to existing approaches.

CTINEXUS leverages the ICL paradigm of LLMs to
extract entity-relation triplets (i.e., (head entity, relation,
tail entity)) by analogizing similar demonstration exam-
ples in the prompt construction, eliminating the need for
large amounts of training data or extensive model tuning.
Unlike multi-round dialogue approaches, CTINEXUS per-
forms end-to-end extraction of triplets in a single step,
significantly reducing inference token costs. To ensure
the high quality of the extracted knowledge, CTINEXUS
employs a carefully designed prompt template and an opti-
mal demonstration retrieval strategy for automatic prompt
construction. This prompt construction also incorporates
the defined ontology for the task domain. Different on-
tologies can be easily swapped in, and with just a few
demonstration examples, CTINEXUS can automatically
bootstrap and adapt to new threats and tasks.

To canonicalize the knowledge and remove redun-
dancy in entities, we designed a hierarchical entity align-
ment technique, which consists of two phases. In coarse-
grained entity grouping, CTINEXUS assigns entity types
to each entity in the extracted triplets using LLM’s ICL
and groups entities within the same type. This ensures
preliminary categorization and prevents the merging of
textually similar entities that belong to different types.
In fine-grained entity merging, CTINEXUS calculates the
semantic similarity among the grouped entities and merges
those with high similarity. With this hierarchical approach,
CTINEXUS avoids the high costs of querying LLMs for
each entity pair’s similarity.

To further complete the CSKG with implicit relations
for distant entities, we designed a long-distance relation

prediction technique. First, entities with the highest degree
centrality in a subgraph are selected as the central nodes
of that subgraph. Then, CTINEXUS leverages ICL to
predict implicit relations among these central nodes to
infer connections among the disjoint subgraphs.

Evaluation. We conducted comprehensive evaluations us-
ing 150 CTI reports from 10 well-recognized CTI shar-
ing platforms [3], [4], [6], [10], [11], [21], [24]-[26],
[28]. CTINEXUS achieved Fl-scores of 87.65% in cy-
bersecurity triplet extraction, 89.94% in coarse-grained
entity grouping, 99.80% in fine-grained entity merging,
and 90.99% in relation prediction. Qualitative analysis
showed that CTINEXUS constructs more comprehensive
and interconnected CSKGs compared to TTPDrill [48],
EXTRACTOR [74], and LADDER [32]. Quantitatively,
CTINEXUS outperforms EXTRACTOR by 25.36% in F1-
score for cybersecurity triplet extraction and LADDER by
19% in cybersecurity entity extraction. We also explored
various prompting strategies and four backbone models
(closed-source models: GPT-3.5 and GPT-4; open-source
models: Llama3 and QWen2.5) to identify the optimal
ICL paradigm for CTI knowledge extraction, providing
valuable insights for future research. CTINEXUS’s code
and data are available at https://ctinexus.github.io/.

2. Background and Motivating Example

2.1. Cyber Threat Intelligence

Although crowd-sourced CTI reports provide valuable
information, their unstructured format significantly hin-
ders their effectiveness. As the number and complexity of
cyberattacks increase, the textual CTI descriptions have
also expanded, creating an urgent need for automated in-
formation extraction from CTI [72]. The extracted knowl-
edge can be used to construct cybersecurity knowledge
graphs (CSKGs), where nodes represent entities and edges
represent relations. Compared to unstructured CTI text,
CSKGs provide a holistic profile for cyber threats, offer
better visualization, and are more amenable to integra-
tion into downstream applications. The construction of
a CSKG typically follows an ontology, which specifies
the entity types and their allowed relations. Despite the
development of various security ontologies [49], [73], [79]
covering different aspects of threats, the rapid evolution of
threats makes it nearly impossible to maintain a universal,
comprehensive ontology. This underscores the need for
CTI knowledge extraction approaches that can adapt to
different ontologies and emerging threats with minimal
transition effort.

2.2. Limitations of Existing Approaches

Existing CTI knowledge extraction approaches face
several fundamental challenges in adapting to the rapidly
evolving threat landscape. Existing approaches follow two
paradigms: syntax parsing-based and fine-tuning-based.
Syntax parsing-based methods leverage typed dependency
rules to analyze the grammatical structure of a sentence
and extract subject-verb-object (SVO) triplets. For exam-
ple, TTPDrill [48] extracts subject entities and verb rela-
tions in CTI-related sentences as threat actions. iACE [57]
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The Akira ransomware group, a relatively new player in the ransomware market, has claimed responsibility for three recent attacks. The

victims include 4LEAF, an American engineering consultancy business; Park-Rite, a U.S.-based packaging materials manufacturer; and Family Day Care Services,
a Canadian childcare service. Akira listed the names of the three victims on their leak site threatening to release company records if they refuse to pay a
ransom. Researchers discovered the ransomware Trojan on August 28, 2017, and at that time, it appeared to be in its testing phase. The Trojan is currently
being distributed by targeting unprotected websites, with a specific focus on WordPress sites. Once infected, Akira drops one or multiple payload files.
After infection, a ransom note is left before the ransomware creates multiple registry values in Windows, such as the Run and RunOnce registries. The
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Fig. 1: CSKGs extracted by EXTRACTOR, TTPDrill, LADDER, and CTINEXUS for a real-world CTI report.
EXTRACTOR,TTPDrill, and LADDER tend to produce incomplete and fragmented subgraphs, lacking comprehensive
contextual connections. In contrast, CTINEXUS constructs a more integrated and comprehensive CSKG, with key
information extracted and entities linked, providing a clearer and more complete representation of the threat profile.

extracts verb relations between IOCs and context terms.
ThreatRaptor [43] extracts verb relations between sub-
ject IOC and object IOC. However, syntax parsing-based
methods have two main drawbacks:

o Domain complexity: The grammatical rules can apply to
any domain. However, CTT text has several peculiarities
that can confuse syntax parsing, leading to inaccurate
extraction. Cybersecurity entities can contain special
characters, such as dots in IPv4 addresses, underscores
in file names, and slashes in file paths. These spe-
cial characters can confuse basic NLP modules, like
sentence segmentation and tokenization, which syntax
parsing relies upon.

o Static nature: These methods rely on fixed syntax rules
and predefined dictionaries to filter out irrelevant in-
formation and canonicalize extracted information. For
example, TTPDrill maps extracted SVOs to a curated
list of threat action terms, while ThreatRaptor uses a
dictionary to canonicalize the extracted relation verbs.
Keeping up with the evolving threat landscape requires
continuous updates and maintenance of these rules and
dictionaries, which is hard to scale.

On the other hand, fine-tuning-based approaches fine-
tune pre-trained neural networks on annotated CTI domain
datasets to perform named entity recognition (NER) and
relation extraction (RE). For example, EXTRACTOR [74]
fine-tunes a pre-trained BERT [75] model with thousands
of annotated CTI sentences, to perform semantic role
labeling to extract subjects, objects, and verb actions.
AttacKG [56] fine-tunes a pre-trained model in the SpaCy
library [46] to recognize entities and extract dependencies.
LADDER [32] fine-tunes different pre-trained transform-
ers, including BERT, RoBERTa, and XML-RoBERTa, on
their custom datasets annotated according to their own
ontology for performing NER and RE. ThreatKG [42]
trains domain-specific BILSTM and PCNN-ATT models
for extracting security entities and relations. However,
fine-tuning-based methods also have several drawbacks:

e Resource requirement: Model training and fine-tuning
require large amounts of labeled data (i.e., annotated
CTI text corpora), and the labeling needs to be aligned
with the targeted ontology. Such annotations are expen-
sive to obtain, especially for emerging threats. Addi-
tionally, fine-tuning can be computationally expensive
if the backbone model contains lots of parameters.



e Ontology lock-in: Since the models are fine-tuned on
datasets annotated using a specific ontology, they are
difficult to generalize to new ontologies that cover
different entities and relations. Transferring to other
ontologies would require reannotating vast data and
retraining the models, which is very costly.

2.2.1. Motivating Example. We further investigate the
quality of the constructed CSKG by existing approaches
using a real-world CTI report. Fig. 1 illustrates a snippet
of the report titled “RANSOMWARE - AKIRA AND
RAPTURE” published on May 9, 2023, by Avertium [3].
The report provides rich information about the new Akira
ransomware group. We run this CTI text snippet with three
representative approaches, TTPDrill, EXTRACTOR, and
LADDER using their released implementations [8], [14],
[27]. Fig. 1 shows their constructed CSKGs. We observe
that the quality of CSKGs is very low.

o Some triplets have wrong directions. For example, in
EXTRACTOR, “ ransom note” is extracted as the sub-
ject of “leave”, whereas it should be the object.

o Many extracted entities have poor quality. Some are not
meaningful, such as “presence” extracted by TTPDrill.
Others include unnecessary words or combine multi-
ple distinct entities; for example, TTPDrill incorrectly
extracts “registry values” and “ransom note” together
when they should be separate. Similarly, in EXTRAC-
TOR, the victim entities are not properly distinguished
and should be individually separated. Although LAD-
DER'’s extracted content is of higher quality compared
to TTPDrill and EXTRACTOR, it often lacks com-
pleteness. For instance, in the context where a “Tro-
jan” targets “WordPress sites”, LADDER only extracts
“WordPress” thereby omitting contextual information
from the original phrase.

o Entities are not aligned. For example, in EXTRACTOR,
“Trojan” and “the ransomware Trojan” refer to the same
object and should be merged or associated. The same
issue is observed in TTPDrill and LADDER.

o Some critical relations are missing. In the text, “the
Akira ransomware group” uses the “ransomware Tro-
jan” to launch the attack. However, since these two
entities are mentioned in different sentences without
explicit relational indicators, all approaches fail to infer
the relationship between them.

As shown in Fig. 1, the CSKG constructed by
CTINEXUS is comprehensive, well-connected, and has
much better quality, addressing all previous drawbacks.
By leveraging the in-context learning of LLMs, the con-
struction of such a CSKG does not rely on large amounts
of training data and can adapt to different ontologies. We
describe our approach in Section 4.

2.3. Large Language Models (LLMs)

Recently, LLMs have shown emergent abilities to learn
from just a few demonstration examples in the prompt,
a paradigm known as in-context learning (ICL) [39]. In
the ICL paradigm, the prompt input to the LLM typically
includes three components: (1) an instruction specifying

the task, (2) several demonstration examples containing
ground truth to provide task-specific knowledge, and (3) a
query to the LLM with the expectation of an appropriate
answer. This allows LLMs to adapt to new tasks with
minimal cost using task-specific prompts and demonstra-
tion examples. Multiple studies have shown that LLMs
perform well in various tasks under ICL, such as fact
retrieval [82] and mathematical reasoning [31], [50]. Ad-
ditionally, LLMs have shown promise in different cyber-
security tasks, such as vulnerability detection [41], [61],
patch generation [53], and software fuzzing [63], [85].
However, the use of LLMs for CTI knowledge extraction
and CSKG construction remains largely underexplored.

3. Overview

Fig. 2 illustrates CTINEXUS. CTINEXUS introduces
an ICL-based approach for data-efficient CTI knowl-
edge extraction and CSKG construction. Unlike previous
methods, CTINEXUS eliminates the need for extensive
data annotations and parameter tuning, facilitating gen-
eralization to various ontologies. CTINEXUS focuses on
constructing connected and comprehensive CSKGs, en-
abling entity alignment and long-distance relation infer-
ence. CTINEXUS includes three phases.

Phase 1: Given a CTI report, CTINEXUS first extracts
entity-relation triplets that align with the task ontology.
The kNN-based demonstration retriever embeds the re-
port and the candidate reports in the demonstration set
into a high-dimensional latent space. The retriever then
selects the top-k£ candidates with the highest similarity
scores. The selected demonstrations are fed into an auto-
matic prompt construction module to create a customized
prompt for the current report. As illustrated in Fig. 2, our
prompt template consists of three sections: an instruction
describing the task, a query containing the input CTI
report, and demonstration examples arranged in a specific
order. Fig. 3 illustrates our carefully designed instruction.
Note that the ontology is incorporated into the instruc-
tion. This design allows different ontologies to be easily
switched, and our automatic prompt construction module
will create a prompt specifically for this ontology and
report, enhancing knowledge extraction performance.

Phase 2: With the extracted triplets, CTINEXUS re-
moves redundancy by merging entities that refer to the
same cybersecurity object using a hierarchical approach.
The coarse-grained entity grouping module assigns types
to entities using an automatically populated ICL prompt
template, as illustrated in Fig. 4. The instruction incorpo-
rates the ontology that defines possible entity types. The
demonstration examples show how to label each entity in
the triplet. The query includes all the triplets to be typed.
Entities assigned the same type are grouped together.
Next, the fine-grained entity merging module embeds all
entities within each group and merges those that exceed
a predefined similarity threshold into a single entity.

Phase 3: To infer missing links between distant enti-
ties, CTINEXUS performs long-distance relation predic-
tion. The central entity identification module selects a
central node in each connected subgraph based on the
node’s degree centrality. Among central nodes, the module
then selects a topic node with the highest importance,
which serves as the main subject of the report. The
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central nodes and the topic node are passed to the ICL-
enhanced relation prediction module to infer their implicit
relationships. CTINEXUS automatically constructs an ICL
prompt (illustrated in Fig. 5) to perform this inference.

4. Design of CTINEXUS

4.1. CSKG Ontology

We choose MALOnt for the current implementation,
as MALOnt [73] is the most comprehensive among open-
source ontologies, featuring 33 entity types (17 types and
16 sub-types) and 27 relation types. MALOnt covers a
broad range of entities, such as Account, Action, Threat
Actor, Campaign, Event, Exploit Target, Host, Informa-
tion, Infrastructure, Location, Malware, Person, Software,
System, and Vulnerability, with detailed sub-types under
Indicator and Malware Characteristics. However, note that
CTINEXUS’s ICL-based pipeline eliminates the need for
parameter tuning on large, ontology-specific training sets,
largely simplifying generalization to other ontologies. If
downstream applications require ontologies not covered
by MALOnt, CTINEXUS can easily switch to a different
ontology. This only requires a few demonstration exam-
ples aligned with the new ontology for each ICL task,

and the ontology defined in a JSON format incorporated
in the prompts (illustrated in Figs. 3 and 4). If the new
ontology is a subset of MALOnt (which is already quite
comprehensive), CTINEXUS can directly adapt by simply
removing unrequired entity types without further actions.

4.2. Cybersecurity Triplet Extraction

Given that CTI text may contain diverse relations and
we want the approach to be adaptable to emerging threats,
we formulate the cybersecurity triplet extraction module
in our pipeline as a semi-open extraction problem: Entity
types follow MALOnt, as its coverage is already com-
prehensive, while relation extraction is modeled as open
RE to maximize the coverage. These approaches trans-
form information extraction tasks into multi-turn question-
answering, leveraging the conversational capabilities of
LLMs. Fig. 3 illustrates this paradigm. This method in-
volves creating multiple questioning prompts for each
information type and refining the responses. However,
applying this multi-turn QA formulation to cybersecurity
entity and relation extraction requires numerous lengthy
prompts due to the extensive cybersecurity ontology that
could contain many entity classes. For NV entities in the
input CTI, w prompts are needed to extract relations
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between identified entities, leading to repetitive content
and significant token waste, hindering scalability. Addi-
tionally, the multi-turn paradigm suffers from confirmation
bias [36], as LLMs may confirm with a non-existing re-
lation after several rounds of dialogue. In Section 5.3, we
present our evaluation of prompt formulation and strategy
that underpin CTINEXUS’s superiority over the multi-turn
QA formulation and baseline prompt designs.

ICL prompt template. To improve efficiency and re-
duce confirmation bias, we develop a kNN-enhanced ICL
paradigm that completes the cybersecurity triplet extrac-
tion process with only one LLM query. As illustrated
in Fig. 3, CTINEXUS extracts all cybersecurity triplets
by automatically populating a comprehensive ICL prompt
template, which comprises the following components:

(1) Instruction: The instruction specifies the task, the
applied ontology, and the required format for the ex-
tracted triplets. Instruction design is critical in LLMs,
as an unclear definition of the task can severely de-
grade the performance. We carefully designed several
versions of the instruction and identified the one pre-
sented in Fig. 3 as the most effective.

(2) Demonstrations: Top-k most relevant examples are
retrieved using the demonstration retriever. Each con-
sists of a CTI report annotated with the security
triplets. These examples are ordered in ascending
similarity to the input query based on our findings
described in Section 5.3.

(3) Query: The input CTI text that needs to be analyzed.

kNN-based demonstration retriever. Multiple stud-
ies [59], [71] have shown that prompt examples selection
can significantly affect LLM’s ICL capacity. One approach
for selecting demonstration examples involves training
a proxy LM to score candidates in the demonstration
set [87]. However, this method requires large amounts of
labeled data, which conflicts with our goal of designing
a data-efficient solution. Recently, a k-nearest neighbors
(kNN) method for selecting the most relevant demonstra-
tion examples based on semantic similarity has proven
effective [59]. This method requires no dataset annota-
tion or model tuning, making it ideal for our purposes.
Specifically, we compute high-dimensional embeddings
for the query and all candidate demonstrations using a pre-
trained embedding model. Among the models explored,
text-embedding-3-large yielded the best performance. We
then calculate the cosine similarity between the query em-
bedding and each candidate demonstration’s embedding,
selecting the top-£ most similar candidates.

Several studies [39], [59], [65] have pointed out that
the order of demonstration examples can also affect the
performance of ICL. In particular, the model’s prediction
often exhibits a recency bias [60], meaning that LLMs
tend to pay more attention to the demonstration placed
near the query. Also, kNN similarity indicates that if the
demonstration is more similar to the query, LLMs can
better analogize it. To investigate the impact of demonstra-
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Classify the given triple's subject and object

Account
Action
Threat Actor
Campaign
Event Here are some examples:

Exploit Target Example 1:

Host "triplet": {

URTOEEAST "subject”: "CVE-2023-36884",
Indicator
— File

into one of the following categories:

{{CSKG Ontology}}

[~ URL ¥

[ Domain

I Registry Key

[ Hash

[ Mutex

[ User Agent

— Email

— Yara Rule

— SSL Certificate

Infrastructure

Location

Malware Characteristic
Behavior
Capability
Feature
Payload
Variants

Malware

Person

Software

System

Vulnerability

"tagged_triplet": {
"subject": {

"object": {

Example k:
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"text": "CVE-2023-36884",
"class": "Vulnerability"},
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"tagged_triple": """insert your answer here"""
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Fig. 4: The design of CTINEXUS’s hierarchical entity alignment. The coarse-grained entity grouping phase populates
an ICL prompt to assign entity types to the extracted triplets according to the applied ontology. Entities with the same
type are grouped together. The fine-grained entity merging phase then uses an embedding-based technique to merge
semantically similar entities within each group based on a predefined similarity threshold. During this phase, IOC
protection is enforced to prevent erroneously merging semantically similar but conceptually distinct IOC entities.

tion order in the CTI domain, we evaluated various per-
mutations, including random, ascending, and descending
orders (Section 5.3). Our findings indicate that arranging
the demonstration examples in ascending order of their
similarity to the query yields the best performance. This
confirms the recency bias phenomenon in our scenario, as
the demonstration example most similar to the query is
placed at the bottom of the list, closest to the query.

4.3. Hierarchical Entity Alignment

Entity alignment identifies entities with different men-
tions that refer to the same real-world object, a key area in
knowledge graph research [29]. Aligning these mentions
integrates sub-graphs containing complementary knowl-
edge, enhancing the comprehensiveness of the knowledge
graph. Traditional entity alignment techniques rely on
heuristics like string matching and structural similarities,
which fail to capture the underlying semantics or context
of entities and have limited accuracy. Recent studies [69],
[78], [81] have adopted deep learning-based methods
to learn vector representations (i.e., embeddings) of en-
tities, achieving better accuracy. However, embedding-
based techniques face unique challenges in our problem
domain. In CTI text, entities with similar embeddings may
refer to different concepts, e.g., “.akira files” (an IOC) and
“Akira” (a threat actor). Besides, comparing the semantic
distance between every pair of entities has a computational
complexity of n2, where n is the total number of entities.
This is inefficient when n becomes large.

To address these challenges, we perform entity align-
ment in a hierarchical way. The coarse-grained entity
grouping module leverages LLM’s ICL ability to assign
types to entities. Entities assigned the same type are then
grouped together as potential candidates for alignment,
narrowing the scope for later fine-grained merging. Fig. 4
illustrates our prompt template. CTINEXUS automatically
creates a customized prompt by assembling k carefully
annotated demonstration examples. Each demonstration
example contains an untagged triplet and a tagged triplet
with subject and object entities assigned type labels. The
query part automatically traverses all triplets generated by
the triplet extraction phase. For each triplet, we add a
placeholder, “tagged_triplet”: “insert your answer here” to
follow the format provided in the demonstration examples,
better guiding the LLM to correctly fill in the answers.

For entities within each group, the fine-grained entity
merging module uses an embedding-based technique to
merge entities with similar semantic representations. The
embedding model is central to this procedure, as its gener-
ated embeddings are used to determine the semantic close-
ness of entities. We evaluated state-of-the-art, general-
purpose text embedding models of various sizes (i.e.,
text-embedding-3-small, text-embedding-3-large) for this
task. Since these models are not specifically pre-trained
on a cybersecurity corpus, we also experimented with
a security-specific embedding model, SecureBERT [30],
which has been pre-trained on millions of cybersecurity
websites, articles, and books. Another aspect to consider



Input CTI Report

"The Akira ransomware group, a relatively new player in the ransomware
market, has claimed responsibility for three recent attacks....

Once Infected, Akira drops one or multiple payload files. After infection, a
ransom note is left before the ransomware creates multiple registry values in
Windows, such as the Run and RunOnce registries. The presence of .akira files

means that your data has likely been encrypted by Akira ransomware."
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"context": "In May 2023, Kroll Cyber Threat Intelligence analysts published their discoveries of a new ransomware variant referred to as CACTUS, which has been

actively targeting large commercial entities since March 2023. The name CACTUS is derived from the filename found within the ransom note, cAcTuS.readme.txt, and

is also self-declared within the note. ...

To maintain persistence, CACTUS deploys various remote access methods, including legitimate tools like

Splashtop, AnyDesk, and SuperOps RMM, along with malicious tools like Cobalt Strike and Chisel. The threat actor attempts to disable security software using

custom scripts, such as TotalExec, and uninstall common antivirus software."

"question": What do you think is the relationship between entity "legitimate tools" and entity "CACTUS ransomware"?

"predicted_triple": {"subject": "legitimate tools", "relation": "are used by", "object": "CACTUS ransomware"}

Example k: ...

Target task:

“context": {{ 3

"question”: What do you think is the relationship between entity "{{
"predicted_triple": """insert your answer here"""

" and entity "{{ e

Fig. 5: The design of CTINEXUS’s long-distance relation prediction. Phase 1 selects central entities (blue) and the
topic entity (yellow) from separate subgraphs based on their degree centrality. Phaes 2 populates an ICL prompt to infer
implicit relations between each central entity and the topic entity.

is the similarity threshold (degree of closeness) for deter-
mining alignment. To find the optimal threshold value, we
experimented with common threshold values in semantic
similarity comparison [70]: 0.4, 0.5, 0.6, and 0.7. Our
results indicated that 0.6 is the most effective value.
Detailed results and discussions are in Section 5.4.1.

To further ensure safe merging, we introduce an I0C
protection mechanism that prevents merging semanti-
cally similar but conceptually distinct IOCs sharing the
same general type (e.g., CVE-2023-23397 vs. CVE-2023-
23392). Specifically, we use a curated set of regular
expressions to identify IOC patterns (e.g., CVE strings,
IP addresses, file hash, etc.) and isolate them from being
merged with other mentions.

4.4. Long-Distance Relation Prediction

After entity alignment, the triplets form a set of dis-
connected subgraphs, leaving implicit relations between
distant entities unidentified. Previous methods primarily
rely on graph structure learning and graph neural net-
works [52], [90] to perform link prediction. However,
these methods require large amounts of annotated graph
data for model training. Additionally, in the CTI anal-
ysis domain, establishing relationships between distant
cybersecurity entities requires a deep natural language
understanding of their corresponding context. To make the
procedure more data-efficient, we develop a long-distance
relation prediction technique leveraging the ICL ability of
LLMs. Fig. 5 illustrates our design.

Creating links for every pair of distant entities would
introduce excessive connections, complicating the CSKG
and consuming significant computational resources. Thus,
CTINEXUS first runs a depth-first search to find all
connected subgraphs. Then, CTINEXUS leverages graph
structure information to identify a central entity for each
subgraph. A central entity represents the most important
entity in the subgraph and will be the head for inter-
subgraph connections. In our design, we identify central
entities based on their degree centrality [88], which is
the most widely used measure of a node’s importance
in a graph. It is easy to calculate, by counting the total
number of edges that a node has to other nodes. The
intuition is that an entity with the most explicit relations
with other entities is more likely to be the core subject of
that part of CTI text. Among all identified central entities,
we further identify a topic entity, which is the one with
the highest degree, representing the core subject of the
entire CTI report. Specifically, we consider both incoming
and outgoing edges when calculating degree centrality
to identify the central identity. If multiple entities have
the same highest score, we further prioritize out-degree
over in-degree, as subjects in triplets (e.g., “AndroxghOst”
in <“AndroxghOst”, “targets”, “.env files”>) are generally
more important than objects. If there is still a tie, they
are all determined as central entities. We follow the same
procedure for identifying the topic entity. In the example
shown in Fig. 5, there are five subgraphs. We identify
the following central entities: “Victim”, “Akira”, “the ran-
somware Trojan”, “Akira ransomware group”, and “.akira



files”. We select “Akira” as the topic entity, which has the
highest degree centrality score of 6. These central entities
and the topic entity are then fed into the next module for
relation inference.

The ICL-enhanced relation prediction module lever-
ages ICL of LLM to infer implicit relations between
each central entity and the topic entity, creating inter-
subgraph connections. Fig. 5 illustrates our prompt tem-
plate. For each central entity, CTINEXUS automatically
creates a customized prompt by assembling k fixed, care-
fully annotated demonstration examples, similar to the
entity alignment process. The prompt template consists of
two sections: a demonstration section (blue) and a query
section for the target task (yellow). Both sections include
“context”, “question”, and “predicted_triple” components.
The “context” component presents the CTI report, while
the “question” component asks the LLM about the re-
lation between the queried central entity and the topic
entity. The “predicted_triple” component contains the an-
notated relations for the demonstration examples and a
placeholder, “insert your answer here”, for the queried
task. This consistent design across the three components
in both the query and demonstration sections helps the
LLM effectively analogize the demonstration examples,
facilitating better relation inference.

5. Evaluation

To comprehensively study the performance of
CTINEXUS in various phases of CSKG construction, we
set the following research questions:

RQ1: How does CTINEXUS compare with existing
methods for CTI knowledge extraction?

RQ2: How do different settings in CTINEXUS affect the
cybersecurity triplet extraction?

RQ3: How do different settings in CTINEXUS affect the
entity alignment and relation prediction?

RQ4: How well does CTINEXUS perform in end-to-end
CSKG construction?

RQS5: How well does CTINEXUS adapt to different

CSKG ontologies?
RQ6: What is the efficiency of CTINEXUS?

5.1. Dataset and Metrics

Existing datasets primarily benchmark cybersecurity
triplet extraction but do not comprehensively support other
tasks in our pipeline. Additionally, their CTI reports are
often outdated. For instance, LADDER’s dataset [32] in-
cludes reports only from 2010 to 2021. To address these
limitations, we curated a new dataset specifically for eval-
vating CTINEXUS across cybersecurity triplet extraction,
hierarchical entity alignment, and long-distance relation
prediction tasks. Our dataset consists of 150 recent CTI
reports (May 2023 onwards) from 10 reputable sources,
such as Trend Micro, Symantec, and The Hacker News.

Annotations. Annotations were performed via a struc-
tured four-step approach: (1) Annotating cybersecurity
entities and their types. (2) Identifying explicit semantic

relations among entities, organized into JSON-formatted
triplets. (3) Grouping entities by type and merged men-
tions referring to identical concepts. (4) Identifying central
entities and summarizing implicit inter-entity relations.

To ensure quality and reduce annotation bias, three
PhD students with expertise in threat intelligence inde-
pendently conducted annotations, with the third serving
as an arbiter to resolve conflicts. Inter-annotator agree-
ment, measured by Cohen’s kappa [62], yielded scores
of 0.80 (triplet extraction), 0.78 (entity alignment), and
0.61 (relation prediction), averaging 0.73, indicating sub-
stantial agreement. This rigorous annotation procedure
resulted in 3,682 entity mentions, 2,039 unique entities,
and 1,982 relationships, enabling comprehensive evalua-
tion of CTINEXUS’s performance in constructing accurate
cybersecurity knowledge graphs

Metrics. For Phase 1 (triplet extraction) and Phase 3 (re-
lation prediction), performance is measured at the triplet
level. A predicted <subject, relation, object> counts as a
true positive when the three elements semantically match
a gold-standard triplet, treating active- and passive-voice
variants as equivalent. Predicted triplets with no gold
counterpart are false positives, and gold triplets that are
not predicted are false negatives. Phase 2 (entity align-
ment) is assessed at the entity level: a mention is cor-
rect if it is (i) assigned the right MALOnt type during
coarse-grained grouping, and (ii) merged with the gold
mention that refers to the same cybersecurity entity during
fine-grained clustering.

5.2. RQ1: How does CTINEXUS compare against
existing CTI knowledge extraction methods?

We evaluated CTINEXUS against two state-of-the-art
baselines, EXTRACTOR [74] and LADDER [32], rep-
resenting syntactic-analysis-based and fine-tuning-based
approaches, respectively.

Several methodological challenges were addressed to
enable fair comparison. For EXTRACTOR, we adapted
its output to our broader ontology using CTINEXUS’s
coarse-grained entity grouping module. For LADDER, we
addressed two key differences: (1) LADDER uses a word-
level annotation format, where each token is labeled with
its target class. In contrast, our dataset follows an end-
to-end report-to-triplet format, where the entire report is
input, and the label is a set of extracted triplets. (2) LAD-
DER uses a simplified ontology derived from MALONT,
which includes only 10 entity types, a subset of the entity
types used in our ontology. To facilitate comparison, we
developed scripts to tokenize our data and convert our
manually annotated datasets into LADDER’s word-level
format. To ensure a fair comparison with LADDER, we
merged our training set with LADDER’s in a 5:1 ratio,
maintaining their original training/validation split. We also
replaced LADDER’s test set with ours to ensure consistent
evaluation on the same data. We compare with LADDER
solely on named entity extraction performance, as our
method focuses on open relation extraction, while LAD-
DER targets relation classification within fixed categories.

Table I demonstrates that CTINEXUS outperforms
EXTRACTOR in all metrics in cybersecurity triplet ex-
traction. The evaluation results in Section 5.3 show that



GPT-4 outperforms all other backbone models. Thus,
we use GPT-4 as the default backbone model for
CTINEXUS’s implementation.

This superior performance can be attributed to sev-
eral factors. First, CTINEXUS leverages the robust con-
text understanding and instruction-following capabilities
of LLMs and enhances specificity with kNN-selected
demonstration examples for extracting triplets. In contrast,
EXTRACTOR employs general fine-tuning to extract se-
mantic roles not specific to any ontology, reducing its
accuracy in triplet extraction. Also, the CTI context intro-
duces peculiarities that lead to errors in EXTRACTOR’s
semantic role labeling module, which relies on a simple
BERT model. For instance, EXTRACTOR might extract a
triplet like (“AndroxghQOst malware”, “support”, “numer-
ous functions capable of abusing the Simple Mail Transfer
Protocol (SMTP), such as scanning and exploiting ex-
posed credentials and application programming interfaces
(APIs), and web shell deployment”), where the object is
a long sentence not suitable as a single entity. The object
contains multiple entities due to misidentified boundaries.
Conversely, CTINEXUS captures implicit meanings and
transforms phrases to be more suitable as entities, result-
ing in a triplet like (“AndroxghQOst malware”, “supports”,
“functions abusing SMTP”).

Table II demonstrates that CTINEXUS outperforms
LADDER in F1-Score, precision, and recall by 26.7%,
17.5%, and 19.5%, respectively. Specifically, LADDER
achieved an F1-Score of 71.13%, precision of 78.31%,
and recall of 73.94%, which were slightly lower than
the numbers reported in LADDER’s original evaluation
(75.32%, 79.06%, and 76.98%, respectively). LADDER’s
lower performance on our test data compared to its re-
ported values was likely due to a distribution shift. LAD-
DER’s dataset spans 2015 to 2021, while our data is from
May 2023 onward. This temporal gap may introduce new
patterns, terminologies, or threat vectors that LADDER’s
model struggles to generalize to, even when retrained on
a mix of old and new data.

The performance disparity between LADDER and
CTINEXUS can be attributed to several factors. First, fine-
tuning the model in LADDER may lead to overfitting
on the training set. Consequently, when confronted with
unseen entities in the test set, the model may struggle to
recognize them accurately, potentially misclassifying them
or recognizing only parts of the entities. For example, in
the sentence “... with a specific focus on WordPress sites”,
LADDER extracts only “WordPress” as an application,
resulting in ambiguous content. In contrast, CTINEXUS
correctly extracts “WordPress sites”, which more accu-
rately reflects the original context. Second, similar to
EXTRACTOR, the LADDER model lacks sufficient con-
textual understanding. For instance, in the sentence ‘“The
victims include Family Day Care Services, a Canadian
childcare service”, LADDER incorrectly identifies “Cana-
dian” as a “B-Location”, whereas it should be recognized
as a descriptive term for the childcare service. Further-
more, LADDER models relation extraction as relation
classification, limited to ten relation classes (i.e., closed-
world setting). This constraint restricts the contextual in-
formation in the extracted content and hinders the model’s
ability to generalize to new CTI data containing different
or additional relation classes.

TABLE I: Performance comparison of CTINEXUS and
EXTRACTOR on cybersecurity triplet extraction.

Method F1-Score Precision Recall
EXTRACTOR  62.29 51.62 78.53
CTINEXUS 87.65 93.69 82.34

TABLE II: Performance comparison of CTINEXUS and
LADDER on cybersecurity entity extraction.

Method

LADDER 71.13 78.31 73.94
CTINExUS  90.13 92.00 88.35

F1-Score Precision Recall

5.3. RQ2: How do different settings affect the
cybersecurity triplet extraction?

To demonstrate the effectiveness of CTINEXUS in

cybersecurity triplet extraction, stemming from the su-
periority of the ICL paradigm and our specific prompt
design, we conducted experiments on different ICL con-
figurations, focusing on four aspects: (1) the number of
demonstration examples, (2) the permutation of these
examples, (3) the backbone model types, and (4) the
prompt formulation and design. By default, CTINEXUS
uses GPT-4 as the model backbone, selects the k most
similar prompt examples sorting in ascending order of
query similarity.
Impact of prompt example numbers. To investigate
the impact of prompt example numbers, we evaluated 4
configurations: 1, 2, 3, and 4 examples. Our observations
show effectiveness plateaus when using 2 or 3 examples,
while input ICL prompt size increases significantly with
more examples. As shown in Table III, increasing the
prompt example number from 1 to 2 improves all metrics,
particularly recall. However, with 3 examples, precision
and Fl-score plateau, and recall drops by 1% With 4
examples, recall improves from 82 to 84%, but precision
drops from 93 to 89%. This contradicts the heuristic
that more examples always improve ICL performance but
aligns with Chandra et al. [34], noting that the optimal
number of examples varies across scenarios. Additionally,
each additional example increases the input length by
an average of 603 tokens, slowing inference speed and
increasing computational costs. Thus, our implementation
uses two examples in the cybersecurity triplet extraction
phase, balancing effectiveness and efficiency.

Impact of prompt example permutations. To analyze
the effect of the permutation method for selected exam-
ples, we examined three strategies: (1) random selection
and sorting (random), (2) selection based on kNN similar-
ity and sorting in ascending order (kNN-ascend), and (3)
selection based on kNN similarity and sorting in descend-
ing order (kNN-descend). These methods were chosen
to explore the impact of recency bias in LLMs, which
suggests that models give more weight to examples placed
nearer to the query [60]. The random method served as
a baseline, while kNN-ascend and kNN-descend tested
the influence of example order based on similarity. As
shown in Table IV, kNN-ascend outperforms other meth-
ods across all metrics, indicating the presence of recency



TABLE III: Impact of example numbers on CTINEXUS’s
cybersecurity triplet extraction.

Demo. Num. F1-Score Precision Recall Inputy,

1 85.05 9439  77.40 949.95

2 87.65 93.69 8234 1539.68

3 87.04 93.62 8131 2138.41

4 86.73 89.55  84.07 2761.38
TABLE 1IV: Impact of example permutation on

CTINEXUS’s cybersecurity triplet extraction.

Permutation F1-Score Precision Recall

kNN-ascend 87.65 93.69 82.34
kNN-descend  85.82 90.58 81.53
random 84.96 90.29 80.22

bias and its potential for improving results. Consequently,
we adopt kNN-ascend for CTINEXUS and recommend ar-
ranging prompt examples in ascending order of similarity
as a universal strategy for other ICL applications.

Impact of backbone models. The emergence of ICL is
closely associated with the substantial parameter counts of
LLMs. To assess CTINEXUS’s generalizability across dif-
ferent backbone models, we evaluated its performance on
representative closed-source LL.Ms, GPT-3.5 and GPT-4,
and leading open-source LLMs, Llama3 and Qwen2.5. As
shown in Table V, CTINEXUS achieves over a 10% im-
provement in both recall and precision when using GPT-4
compared to GPT-3.5-turbo. This underscores the impor-
tance of leveraging larger models to fully exploit ICL’s
potential within CTINEXUS’s framework. For Qwen2.5
and Llama3, due to computational resource limitations, we
deployed their 72B and 70B parameter versions, respec-
tively. As shown in Table V, both Qwen2.5 and Llama3
demonstrate performance generally comparable to GPT-
3.5-turbo. Specifically, Qwen2.5 exhibits a 1.4% higher
recall but a 0.9% lower precision compared to Llama3.
GPT-4 excels in both precision and recall among all eval-
uated backbones. Therefore, all subsequent experiments
employ GPT-4 as the default base model.

Prompt formulation and design. Adhering to our “one-
CTI, one-inference” principle, CTINEXUS demonstrates
exceptional data efficiency. We compare two instruction
strategies for prompt design: a multi-round QA-based
approach (illustrated in Fig. 4 and based on [76]) and
our end-to-end prompting approach. In the multi-round
method, the extraction prompt comprises three parts: an
instruction outlining the extraction task, a context con-
taining the CTI report, and a question requesting specific
entities or relations. Conse?uently, there are O entity
. Nx(N-1) .

extraction prompts and ——5— prompts for relation
extraction, where O denotes the number of ontology entity
types and N denotes the number of extracted entities. In
contrast, CTINexus consolidates these steps into a single
inference, extracting all entities and relations in one round
with a uniform prompt template. An evaluation of token
usage revealed that end-to-end prompting reduces input
and output token consumption by 98.9% and 97.3%.

In addition, when designing CTINEXUS, we itera-
tively refined the prompt instructions and identified three
critical features that significantly boost performance: (1)

TABLE V: Impact of backbone models on CTINEXUS’s
cybersecurity triplet extraction.

Backbone F1-Score Precision Recall
GPT-4 87.65 93.69 82.34
GPT-3.5 76.97 82.37 72.24
Qwen2.5-72B  78.18 80.83 75.71
Llama3-70B 77.85 81.74 74.32

TABLE VI: Impact of example numbers on CTINEXUS’s
coarse-grained entity grouping.

Model Config. Acc. Micro-F1 Macro-F1

GPT-3.5 (I1-shot) 6150  74.71 78.50
GPT-3.5 (4-shot) 66.18  78.45 79.86
GPT-3.5 (8-shot) 69.52  80.99 82.16
GPT-3.5 (12-shot) 69.68  81.11 81.95
GPT4 (1-shot) 7698  86.27 86.10
GPT-4 (4-shot)  81.02  88.94 87.87
GPT-4 (8-shot) 8258  89.94 89.24
GPT-4 (12-shot)  81.18  89.05 88.28

constraining both output format and content, (2) simulat-
ing a role-playing scenario, and (3) placing the instruction
text at the beginning of the prompt, before any demonstra-
tions. Compared to a baseline vanilla prompt without these
designs, our refined prompt improved F1-score, precision,
and recall by 20.57%, 15.28%, and 24.73%, respectively.

5.4. RQ3: How do different settings affect the
entity alignment and relation prediction?

5.4.1. Hierarchical Entity Alignment. As described in
Section 4, for entity alignment, we first apply ICL to
perform coarse-grained grouping of entities based on their
types. We then vectorize entities into high-dimensional
embeddings and conduct fine-grained merging based on
semantic similarity. In the following, we present a series of
experiments to investigate the impact of different configu-
rations in entity grouping and merging, aiming to identify
the optimal combination.

Impact of demonstration numbers. We assessed the
impact of demonstration example numbers on ICL through
comparative experiments with four example quantities: 1,
4, 8, and 12. Additionally, we evaluated the performance
of two LLMs, GPT-4 and GPT-3.5, across different model
sizes. Notably, the performance showed no significant
improvement once the number of examples exceeded 12,
so these results were excluded from the table. Our eval-
uation methodology uses accuracy, macro-F1, and micro-
F1 metrics, consistent with previous text classification
studies [66]. The experimental results, shown in Table VI,
indicate that GPT-4 consistently outperformed GPT-3.5
across all demonstration number hierarchies. Remarkably,
GPT-4 with 1 demonstration yields better results than
GPT-3.5 with 12 demonstrations. Both models show sub-
stantial improvements when increasing from one to eight
demonstrations, but a saturation trend appears when the
number of examples exceeds eight. This trend is especially
evident in GPT-4, where all three metrics slightly decrease
as demonstration numbers increase from eight to twelve.



TABLE VII: Impact of merging threshold values on
CTINEXUS’s fine-grained entity merging.

Threshold F1-Score Precision Recall Entitiynym

0.4 90.10 81.99 100 13.32
0.5 95.18 90.80 100 15.13
0.6 99.80 99.61 100 16.62
0.7 96.29 99.58  93.21 17.50

TABLE VIII: Impact of embedding models on
CTINEXUS’s fine-grained entity merging.

Model F1-Score Precision Recall Entitiynym

SecureBERT 79.15 65.50 100 8.11
text-embedding-3-small ~ 98.10 97.54  98.66 16.50
text-embedding-3-large  99.80 99.61 100 16.62

Impact of embedding models and merging threshold.
The entity merging module applies a text embedding
model to vectorize candidate entities grouped by the entity
grouping module and uses a merging threshold to identify
equivalent entities. Here, we evaluated different embed-
ding models and merging thresholds. We used OpenAlI’s
third-generation embedding models, text-embedding-3-
small and text-embedding-3-large, which differ in vec-
tor size and represent the latest state-of-the-art general-
purpose models. In addition, we also compared with Se-
cureBERT [30], a cybersecurity-specific embedding model
based on the RoBERTa architecture pre-trained on a large
corpus of cybersecurity data. We consider merging thresh-
olds of 0.4, 0.5, 0.6, and 0.7. Besides common metrics for
entity alignment, we introduce Num_ent, which records
the number of entities after alignment.

The experimental results are shown in Tables VII
and VIII. Threshold values of 0.4, 0.5, and 0.6 all achieve
a 100% recall rate, indicating the algorithm’s ability to
detect all entities that should be merged. However, lower
thresholds can erroneously merge non-equivalent entities
based on the Num_ent and precision metrics. The highest
precision is observed when the merging threshold is 0.6.
Increasing the threshold to 0.7 maintains precision but sig-
nificantly reduces recall, suggesting overly fine granularity
that misclassifies equivalent entities as distinct. Regard-
ing embedding models, text-embedding-3-large demon-
strates the best performance, with text-embedding-3-small
showing similar results. SecureBERT, despite its high
recall, struggles to correctly cluster entities, as reflected
in low precision and Num_ent scores. This may be due
to the smaller size of RoBERTa compared to the text-
embedding-3, leading to less accurate entity distinction.

5.4.2. Long-Distance Relation Prediction. As men-
tioned in Section 4, we compose ICL prompts to guide
the LLM in inferring relations between disconnected sub-
graphs using demonstration examples and context. We
evaluated different ICL settings by varying the number of
demonstration examples and the backbone models. Addi-
tionally, we examined the effectiveness of zero-shot learn-
ing, where the LLM inferred relationships of given enti-
ties without demonstration examples. Zero-shot learning
results were excluded from previous ICL experiments due
to poor performance. The better performance in implicit

TABLE IX: Impact of example numbers on CTINEXUS’s
relation prediction.

Model Config. F1-Score Precision Recall

GPT-3.5 (0-shot)  65.95 5126 9242
GPT-3.5 (1-shot)  70.21 5546  95.65
GPT-3.5 (2-shot)  76.87 63.31 97.84
GPT-3.5 (3-shot)  74.83 61.06  96.46

GPT-4 (0-shot) 85.76 75.07 100
GPT-4 (1-shot) 89.13 80.39 100
GPT-4 (2-shot) 90.99 83.47 100
GPT-4 (3-shot) 89.00 80.11 100

relation inference compared to other tasks in CTINEXUS
could be that relation prediction aligns more closely with
general NLP tasks. Unlike triplet extraction or entity
alignment, which require domain-specific knowledge in
the cybersecurity context, relation prediction relies more
on LLMs’ general ability to infer connections between
entities based on linguistic cues. This makes relation
prediction less dependent on specialized domain knowl-
edge and more aligned with the LLM’s general language
understanding capabilities.

Experimental results, shown in Table IX, indicate that
GPT-4 outperforms GPT-3.5 in every setting by a large
margin, achieving a 100% recall rate compared to 92%-
96% for GPT-3.5. The reason for this discrepancy is that
GPT-3.5 has a higher tendency to produce hallucinated
answers, either by not following the required instructions
for the task (e.g., generating relations between entities
not present in the queries) or by not adhering to the
required format (e.g., generating a string instead of the
requested JSON format). Both models show suboptimal
performance with zero-shot learning. Increasing the num-
ber of demonstration examples from 1 to 2 significantly
improves results, but a slight decline is observed with 3-
shot examples. This suggests that while some examples
can enhance performance, too many examples may intro-
duce additional complexity or noise.

5.5. RQ4: How well does CTINEXUS perform in
end-to-end CSKG construction?

In contrast to RQ2 and RQ3, which evaluate the ef-
fectiveness of each CTINEXUS’s component using ground
truth inputs, this research question aims to assess the end-
to-end performance of CTINexus, where each component
operates on the output of the preceding one. We evaluated
the final CSKGs constructed by CTINEXUS in the end-
to-end setting by comparing them to the ground truth
CSKGs. The evaluation used the triplet-level metrics de-
scribed in Section 5.1, where a triplet was considered cor-
rect if its subject, relation, and object semantically match
those of a gold-standard triplet. We evaluated CTINexus
with its optimal configuration on ten sampled CTI reports
from our dataset, and achieved an end-to-end F1-Score of
87.80%, a precision of 81.82%, and a recall of 94.74%.
These findings confirm that CTINEXUS exhibits minimal
error propagation across phases, ruling out the snowball
effect and ensuring robust utility for downstream applica-
tions.



TABLE X: Averaged token cost and time cost per CTI report for each module and the overall CTINexus pipeline,

comparing GPT-4 and GPT-3.5.

Backbone  Cybersecurity Triplet Extraction Hierarchical Entity Alignment Long-Distance Relation Prediction Overall CTINEXUS Pipeline
Token Cost ($/CTI)  Time(s/CTI)  Token Cost ($/CTI)  Time(s/CTI)  Token Cost ($/CTI)  Time(s/CTI)  Token Cost ($/CTI)  Time(s/CTI)

GPT-4 0.0364 11.0905 0.0393 26.1590 0.0728 24.2483 0.1485 67.4865

GPT-3.5 0.0013 5.9824 0.0018 10.6606 0.0038 9.5013 0.0069 32.1330

5.6. RQS5: How well does CTINEXUS adapt to
different CSKG ontologies?

To evaluate the adaptability of CTINEXUS to various
CSKG ontologies, we conduct an experiment using the
STIX ontology, a widely recognized threat intelligence-
sharing standard [22] supported by numerous vendors.
STIX categorizes entities into STIX Domain Objects
(SDOs) and STIX Relationship Objects (SROs) to sys-
tematically capture entities and their interrelationships
within threat intelligence. For our evaluation, we select
13 SDOs: Campaign, Grouping, Identity, Indicator, In-
frastructure, Intrusion Set, Location, Attack Pattern, Mal-
ware, Threat Actor, Tool, Vulnerability, and Report. Five
SDOs, Course of Action, Note, Opinion, Malware Anal-
ysis, and Observed Data, were omitted because they are
usually paragraph-length text blocks that bundle multiple
entities, whereas CSKG nodes should represent discrete,
meta-level concepts. We performed an experiment on a
small-scale corpus of ten CTI reports (mean length ~
1, 318 tokens) from STIXnet [23]. Manual annotation un-
der the STIX ontology yielded 128 gold-standard triplets.
On this set, CTINEXUS achieved 89.7 % precision, 81.9
% recall, and an 85.6 % Fl-score—only a few points
below its MALOnt performance. This small drop confirms
CTINEXUS’s resilience to ontology shifts: the underlying
LLM weights remain frozen, and the target ontology is
simply injected into the prompt (and mirrored in a handful
of ontology-consistent demonstration examples), enabling
the model to adapt on-the-fly to new ontologies.

5.7. RQ6: What is the efficiency of CTINEXUS?

We assessed the average token and time costs of
three modules within CTINEXUS, using GPT-3.5 and
GPT-4 as backbone models. As shown in Table X, the
average cost per CTI report is $0.1485 with GPT-4 and
only $0.0069 with GPT-3.5. The maximum per-report cost
reaches $0.1778 (GPT-4) and $0.0086 (GPT-3.5), while
the minimum costs are $0.0423 and $0.0021, respectively.
The results indicate that using GPT-4 as the backbone
results in token costs 20-30 times higher than those of
GPT-3.5. Additionally, the time cost of using GPT-4 is
approximately twice as high compared to GPT-3.5 for
each module and the overall pipeline. The ICL-enhanced
relation prediction module is the most computationally
expensive, requiring multiple inferences for each input
CTL In contrast, the cybersecurity triplet extraction and
hierarchical entity alignment modules have similar token
costs, approximately half that of the long-distance relation
prediction module, as they adhere to the “one input,
one inference” principle, making them more economical.
Specifically, for the hierarchical entity alignment module,
the token and time costs are mainly attributed to the

coarse-grained entity grouping module. The fine-grained
entity merging module, which uses the text-embedding-3-
large model, incurs minimal costs ($0.13 per 1M tokens),
resulting in the entire experiment costing less than $0.30.

6. Discussion

Limitations. In CTINEXUS, the demonstration examples
must be carefully chosen and of high quality, with correct
answers and the required prompt format. This ensures
that CTINEXUS can fully utilize the ICL capability to
infer the correct answers from the provided examples.
CTINEXUS’s performance can degrade if the demon-
stration set contains incorrect or misformatted samples.
Additionally, although CTINEXUS can operate in a data-
constrained manner, it still requires a certain amount
of labeled data, with a recommended minimum of 100
samples. Data imbalance within the demonstration set
also affects CTINEXUS’s performance, as an imbalanced
label distribution leads to less diverse retrieved examples,
increasing the likelihood of biased content generation and
reducing overall effectiveness.

Hallucinations in LLMs. LLMs can generate hallucina-
tions, which are plausible yet factually inaccurate out-
puts [47]. For instance, CTINEXUS with GPT-3.5 ex-
tracted the incorrect triplet (“July 20227, “threat actors
behind FARGO attacks were hijacking”, “vulnerable Mi-
crosoft SQL servers”) instead of (“vulnerable Microsoft
SQL servers”, “are hijacked by”, “July 2022”), leading to
a misplacement of the subject and object and an incoherent
relation. This issue is more prevalent in smaller models
like GPT-3.5, LLaMA3-70B, and QWen2.5-72B. While
potential solutions include fine-tuning hallucination detec-
tion classifiers or using stronger LLMs for verification, we
leave these challenges for future work. Our current focus
is on CSKG construction under data scarcity, where GPT-
4 has demonstrated reliable performance and surpasses
existing state-of-the-art CTI extraction approaches by a
large margin.

Empowering downstream defenses. CTINEXUS has the
potential to empower various defensive applications. For
example, the extracted CTI knowledge can be converted
(also via LLMs) into open formats like STIX [22], and
exchanged in platforms like AlienVault OTX [2], and
ingested by intrusion prevention systems [33], [44], [68]
and log analysis frameworks [86]. A question-answering
system can be developed upon the constructed CSKG us-
ing LLM’s retrieval-augmented generation [77], to provide
grounded answers to threat-related questions. Cyber threat
hunting [43], [64] and investigation [40], [45] systems
can also be enhanced. For example, the effort required
for manually constructing investigation queries can be
reduced by using LLMs to synthesize or suggest next steps



based on the CSKG and partial user input. We leave the
exploration of these downstream applications for future
work.

7. Related Work

In Section 2, we discussed CTI knowledge extraction
works in detail. Here, we discuss additional related work.

CTI services and platforms. There exist several services
that regularly publish updated CTI feeds. For example,
PhishTank [20] and OpenPhish [19] focus on phishing
URLs. Abuse.ch [1] focuses on malware samples and
botnet C&C servers. A key limitation is that they only
provide isolated IOC feeds. There are also several com-
prehensive platforms that allow users to (1) share CTI
data with other members of the community to benefit
from the crowd-sourced knowledge, or (2) systematically
manage their CTI data. These systems often provide web
interfaces for user exploration and APIs for system inte-
gration. For example, AlienVault OTX [2] and IBM X-
Force Exchange [12] are company-owned crowd-sourced
platforms for sharing and searching threat data like IOCs,
malware, and vulnerabilities. MISP [15] is an open-source
platform for sharing, storing, and correlating IOCs of
targeted attacks. OpenCTI [18] is an open-source plat-
form that allows users to structure, store, organize, and
visualize their CTI knowledge and observables. Unlike
CTINEXUS’s automated approach, these platforms require
users to actively participate in the sharing process and
manually contribute CTI data.

Cybersecurity knowledge bases. Several comprehensive
cybersecurity knowledge bases have been created by the
industry. CVE [5] and NVD [17] are two most widely
used vulnerability databases. Several threat encyclopedias
exist (Trend Micro [26], Kaspersky [13], F-Secure [9])
for malware and vulnerabilities. MITRE ATT&CK [16]
is a knowledge base for cyber adversary tactics and tech-
niques based on real-world observations. These knowl-
edge bases are manually created by security experts, and
hence their update frequency is typically low. The scope
of CTINEXUS differs from these systems. Nevertheless,
since these knowledge bases also contain textual CTI de-
scriptions about malware and vulnerabilities, CTINEXUS
can be applied to further structuralize such knowledge.

LLMs for cybersecurity. Recent works have explored
applying LLMs to cybersecurity challenges. Pentest-
GPT [37] investigates LLM capabilities in penetration
testing, revealing that while LLMs can handle fundamen-
tal tasks and use testing tools competently, they struggle
with context loss and attention issues. TitanFuzz [38] in-
troduces an innovative approach for fuzzing deep-learning
libraries using LLMs. It employs a generative LLM for
high-quality seed programs and an infilling LLM for
mutations, significantly improving API and code coverage,
and detects numerous previously unknown bugs. Recent
studies have also explored the use of LLMs in tasks
such as vulnerability detection [58], patch generation [83],
malware detection [89], and phishing and scam detec-
tion [55]. Unlike these works, CTINEXUS leverages the
ICL paradigm of LLMs for comprehensive CTI knowl-
edge extraction and CSKG construction.

Other CTI research. Several studies have empirically
examined various aspects of CTI, including understanding
vulnerability reproducibility [67], evaluating the quality
of CTI feeds in terms of volume, timeliness, and cov-
erage [51], [54], and analyzing information inconsisten-
cies [84]. These works offer valuable insights into the
current state of CTI data. In contrast to these empiri-
cal efforts, CTINEXUS focuses on designing an LLM-
empowered approach for automated extraction of CTI
knowledge from CTI reports. The scope is different.

8. Conclusion and Future Work

We presented CTINEXUS, a framework leveraging the
ICL of LLMs for efficient and adaptive CTI knowledge
extraction and CSKG construction. Unlike existing meth-
ods, CTINEXUS requires minimal data and parameter
tuning and can adapt to various ontologies with mini-
mal data annotation. Extensive evaluations demonstrated
CTINEXUS’s effectiveness in extracting comprehensive
knowledge, highlighting its potential to transform CTI
analysis into a data-efficient and adaptable paradigm.

The rapid adoption of LLMs in security calls for foun-
dation models that can ingest and refresh large-scale threat
intelligence in near real time. Current solutions—continual
pre-training on security corpora and retrieval-augmented
generation—are computationally costly, slow to incorpo-
rate new data, and struggle to reconcile heterogeneous
sources. CTINEXUS offers an alternative: KG-augmented
generation. By continuously extracting, aligning, and in-
tegrating information into evolving cybersecurity knowl-
edge graphs, CTINEXUS can supply downstream security
LLMs with a structured, up-to-date memory, enabling
accurate, cross-source reasoning at inference time.

Another direction for future work is the integration of
visual analytics into CTINEXUS. Visual representations
of malicious activities could aid analysts in identifying
behavior patterns and relationships, offering additional
context for understanding threat evolution. Such tools
would enhance interpretability and assist in supporting
timely cybersecurity decision-making.
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