
Data Capsule: A New Paradigm for Automatic Compliance with Data
Privacy Regulations

Lun Wang‡, Joseph P. Near†, Neel Somani‡, Peng Gao‡, Andrew Low‡, David Dao�, and Dawn Song‡

†: University of Vermont ‡: University of California, Berkeley �: ETH Zurich

Abstract. The increasing pace of data collection has led to increasing awareness of privacy risks, resulting
in new data privacy regulations like General data Protection Regulation (GDPR). Such regulations are an
important step, but automatic compliance checking is challenging. In this work, we present a new paradigm,
Data Capsule, for automatic compliance checking of data privacy regulations in heterogeneous data processing
infrastructures. Our key insight is to pair up a data subject’s data with a policy governing how the data is
processed. Specified in our formal policy language: PRIVPOLICY, the policy is created and provided by the
data subject alongside the data, and is associated with the data throughout the life-cycle of data processing (e.g.,
data transformation by data processing systems, data aggregation of multiple data subjects’ data). We introduce
a solution for static enforcement of privacy policies based on the concept of residual policies, and present a
novel algorithm based on abstract interpretation for deriving residual policies in PRIVPOLICY. Our solution
ensures compliance automatically, and is designed for deployment alongside existing infrastructure. We also
design and develop PRIVGUARD, a reference data capsule manager that implements all the functionalities of
Data Capsule paradigm.

Keywords: Data Privacy, GDPR, Formalism of Privacy Regulations, Compliance of Privacy Regulations

1 Introduction

The big data revolution has triggered an explosion in the collection and processing of our personal data, leading
to numerous societal benefits and sparking brand-new fields of research. At the same time, this trend of ever-
increasing data collection raises new concerns about data privacy. The prevalence of data breaches [1][2], insider
attacks [3], and organizational abuses of collected data [4] indicates that these concerns are well-founded. Data
privacy has thus become one of the foundational challenges of today’s technology landscape.

To address this growing challenge, governments have begun crafting data privacy regulations to protect us
(the data subjects) from those who collect and process our personal data. Recent examples include the European
Union’s General Data Protection Regulation (GDPR) [5], the California Consumer Privacy Act (CCPA) [6], the
Family Educational Rights & Privacy Act [7], and the Health Insurance Portability and Accountability Act [8].

Unfortunately, compliance with data privacy regulations is extremely challenging with current data processing
systems. The regulations are written in natural language, and thus are difficult to formalize for automatic enforce-
ment. In addition, some of the systems currently used for data processing were designed and deployed before the
existence of these privacy regulations, and their designs make the compliance even more difficult. For example,
many existing data processing systems do not provide an option to delete data, since it was assumed that organi-
zations would want to keep data forever [9]—but GDPR requires that a subject’s data be deleted on request. Even
if the deletion is possible, its enforcement can be challenging: organizations often make multiple copies of data,
without no systematic record of the copies, because each data processing platform requires its own data format; as
a result, an organization may not even be able to locate all of the copies of a data subject’s data for deletion.

Compliance with data privacy regulations is therefore costly or impossible for many organizations. These
challenges reduce the rate of compliance, resulting in harm to data subjects via privacy violations. Moreover, the
cost of implementing compliance acts as a barrier to entry for small organizations, and serves to protect large
organizations from new competition. Paradoxically, new data privacy regulations may actually help the large
corporations whose abuses of data originally motivated those regulations.

This paper presents a new paradigm for automatic compliance with data privacy regulations in heterogeneous
data processing infrastructures. Our approach is based on a new concept called the data capsule, which pairs up
a data subject’s data with a policy governing how the data may be processed. The policy follows the data sub-
ject’s data forever, even when it is copied from one data processing system to another or mixed with data from
other subjects. Our solution is designed for deployment alongside existing infrastructure, and requires only mini-
mal changes to existing data processing systems. The approach is automatic, enabling compliance with minimal
additional cost to organizations.

The Data Capsule Paradigm. We propose a new paradigm for collecting, managing, and processing sensitive
personal data, called the Data Capsule Paradigm, which automates compliance with data privacy regulations. Our
paradigm consists of three major components:

1. Data capsule, which contains sensitive personal data, a policy restricting how the data may be processed, and
metadata relevant for data privacy concerns.

2. Data capsule graph, which tracks all data capsules, including data collected from data subjects and data derived
(via processing) from the collected data.

3. Data capsule manager, which maintains the data capsule graph, registers new data capsules, enforces each
capsule’s policy, and propagates metadata through the graph.

Principles of Data Privacy. To reach the design requirements for our solution, we examine four existing data
privacy regulations (GDPR, CCPA, HIPAA, and FERPA). We propose five principles of data privacy which ac-
curately represent common trends across these regulations: transparency & auditing, consent, processing control,
data portability, and guarantee against re-identification. Our principles are designed to be flexible. A solution tar-
geting these principles can be made compliant with current data privacy regulations, and is also capable of being
extended to new regulations which may be proposed in the future.

PRIVPOLICY: a Formal Privacy Policy Language. To enforce the five principles of data privacy outlined
above, we introduce PRIVPOLICY: a novel formal policy language designed around these principles, and capable
of encoding the formalizable subset of recent data privacy regulations. By formalizable subset, we filter out re-
quirements like “legitimate business purpose” in GDPR, which is almost impossible to formalize and have to rely
on auditing to enforce requirements like this. We demonstrate the flexibility of PRIVPOLICY by encoding GDPR,
CCPA, HIPAA, and FERPA.

PRIVPOLICY has a formal semantics, enabling a sound analysis to check whether a data processing program
complies with the policy. To enforce these policies, we present a novel static analysis based on abstract interpre-
tation. The data capsule graph enables pipelines of analysis programs which together satisfy a given policy. To
enforce policies on these pipelines in a compositional way, we propose an approach which statically infers a resid-
ual policy based on an analysis program and an input policy; the residual policy encodes the policy requirements
which remain to be satisfied by later programs in the pipeline, and is attached to the output data capsule of the
program.

Our approach for policy enforcement is entirely static. It scales to datasets of arbitrary size, and is performed as
a pre-processing step (independent of the execution of analysis programs). Our approach is therefore well-suited
to the heterogeneous data processing infrastructures used in practice.

PRIVGUARD: a Data Capsule Manager. We design and implement PRIVGUARD, a reference data capsule
manager. PRIVGUARD consists of components that manage the data capsule graph and perform static analysis
of analysis programs which process data capsules. PRIVGUARD is designed to work with real data processing
systems and introduces negligible performance overhead. Importantly, PRIVGUARD makes no changes to the
format in which data is stored or the systems used to process it. Its static analysis occurs as a separate step from
the processing itself, and can be performed in parallel. In a case study involving medical data, we demonstrate the
use of PRIVGUARD to enforce HIPAA in the context of analysis programs for a research study.

Contributions. In summary, we make the following contributions.

– We propose five principles of data privacy which encompass the requirements of major data privacy regulations.
– We introduce PRIVPOLICY: a new and expressive formal language for privacy policies, which is capable of

encoding policies for compliance with the formalizable subset of data privacy regulations.
– We propose the data capsule paradigm, an approach for ensuring compliance with privacy regulations encoded

using PRIVPOLICY, and formalize the major components of the approach.
– We present the encoding of GDPR in PRIVPOLICY.
– We introduce a solution for static enforcement of privacy policies based on the concept of residual policies, and

present a novel algorithm based on abstract interpretation for deriving residual policies in PRIVPOLICY.
– We design and develop PRIVGUARD, a reference data capsule manager that implements all the functionalities

of data capsule paradigm.

2

2 Requirements of Data Privacy Regulations

Recent years have seen new efforts towards regulating data privacy, resulting in regulations like the European
Union’s General Data Protection Regulation (GDPR). It joins more traditional regulations like the Health Insur-
ance Portability and Accountability Act (HIPAA) and the Family Educational Rights and Privacy Act (FERPA).

2.1 Principles of Data Privacy

Historically, organizations have collected as much personal data as possible, and have not generally considered
data privacy to be a high priority. The recent adoption of GDPR has forced a much wider set of organizations to
consider solutions for ensuring compliance with data privacy regulations. Complying with regulations like GDPR
is extremely difficult using existing systems, which generally are designed for easy access to data instead of
strong data privacy protections. These regulations are even more difficult to satisfy when data is shared between
organizational units or with third parties—yet the regulatory requirements apply even in these cases.

To address this challenge, we considered the commonalities between the three major data privacy regulations
mentioned above to develop five principles of data privacy. These principles expose and generalize the fundamen-
tal ideas shared between regulations, and therefore are likely to also apply to future regulations. As described in
Section 3, these five principles form the design criteria for our proposed data capsule paradigm.

In describing the five principles of data privacy, we use terminology from the GDPR. The term data subject
refers to individuals whose data is being collected and processed, and the term data controller refers to organi-
zations which collect and process data from data subjects. Briefly summarized, the five principles of data privacy
are:
1. Transparency & Auditing: The data subject should be made aware of who has their data and how it is being

processed.
2. Consent: The data subject should give explicit consent for the collection and processing of their data.
3. Processing Control: The data subject should have control over what types of processing are applied to their

data.
4. Data Portability: The data subject should be able to obtain a copy of any data related to them.
5. Guarantee Against Re-identification: When possible, the results of processing should not permit the re-

identification of any individual data subject.

2.2 Applying the Principles

The five principles described above represent the design criteria for our data capsule paradigm. They are specified
specifically to be at least as strong as the common requirements of existing privacy regulations, to ensure that our
approach is capable of expressing a large enough subset of existing and future regulations to ensure compliance.
This section demonstrates how our five principles describe and subsume the requirements of the four major privacy
regulations.
GDPR. The major pillars of GDPR fall squarely into the five requirement categories described by our principles.
Articles 13 and 14 describe transparency & auditing requirements: the data controller must inform the data subject
about the data being collected and who it is shared with. Article 4, 7 and 29WP requires consent: the controller
must generally obtain consent from the data subject to collect or process their data. Note that there are also
cases in GDPR when personal data can be used without consent, where some other “lawful basis for processing”
applies, such as public interest, legal obligation, contract or the legitimate interest of the controller. However,
these purposes are almost impossible to formalize so we have to rely on auditing to enforce them and omit them
in the system. Articles 18 and 22 ensure processing control: the data subject may allow or disallow certain types
of processing. Articles 15, 16, 17, and 20 require data portability: the data subject may obtain a copy of their data,
fix errors in it, and request that it be deleted. Finally, Recital 26 and Article 29WP describes a guarantee against
re-identification: data controllers are required to take steps to prevent the re-identification of data subjects.
CCPA. CCPA is broadly similar to GDPR, with some differences in the specifics. Like GDPR, the requirements
of CCPA align well with our five principles of data privacy. Unlike GDPR, CCPA’s consent requirements focus
on the sale of data, rather than its original collection. Its access & portability requirements focus on data deletion,
and are more limited than those of GDPR. Like GDPR, CCPA ensures a guarantee against re-identification by
allowing data subjects to sue if they are re-identified.

3

HIPAA. The HIPAA regulation is older than GDPR, and reflects a contemporaneously limited understanding
of data privacy risks. HIPAA requires the data subject to be notified when their data is collected (transparency
& auditing), and requires consent in some (but not all) cases. HIPAA requires organizations to store data in a
way that prevents its unintentional release (partly ensuring a guarantee against re-identification), and its “safe
harbor” provision specifies a specific set of data attributes which must be redacted before data is shared with other
organizations (an attempt to ensure a guarantee against re-identification). HIPAA has only limited processing
control and data portability requirements.
FERPA. The Family Educational Rights and Privacy Act of 1974 (FERPA) is a federal law in the United States
that protects the privacy of student education records. FERPA requires consent before a post-secondary institution
shares information from a student’s education record. It also requires access & portability: students may inspect
and review their records, and request amendments. In other respects, FERPA has fewer requirements than the other
regulations described above.

3 The Data Capsule Paradigm

This section introduces the data capsule paradigm, an approach for addressing the five principles of data privacy
described earlier. The data capsule paradigm comprises four major concepts:
– Data capsules combine sensitive data contributed by a data subject (or derived from such data) with a policy

governing its use and metadata describing its properties.
– Analysis programs process the data stored inside data capsules; the input of an analysis program is a set of data

capsules, and its output is a new data capsule.
– The data capsule graph tracks all data capsules and analysis programs, and contains edges between data cap-

sules and the analysis programs which process them.
– The data capsule manager maintains the data capsule graph, propagates policies and metadata within the graph,

and controls access to the data within each data capsule to ensure that capsule policies are never violated.
In Section 3.3, we demonstrate how these concepts are used to satisfy our five principles of data privacy.

Section 4 describes PRIVGUARD, our proof-of-concept data capsule manager which implements the paradigm.

3.1 Life Cycle of a Data Capsule

1 2 3

Ingestion

4

6

Declassification

5

Data Cleaning
Program

Front-end UI
Program

Machine
Learning
Program

Declassification

Data Subjects

Analyst

Data
Capsules

Analysis
Programs

Declassification
Points

Fig. 1: Example Data Capsule Graph

The life cycle of a data capsule includes four phases:
1. Data Ingestion. Data subjects construct data capsules from

their sensitive data via the ingestion process, which pairs the
data with the policy which will govern its use. In our setting,
the data subject is the original data owner, whose privacy we
would like to protect.

2. Analysis Program Submission. Analysts who would like to
process the data contained in data capsules may submit analy-
sis programs, which are standard data analytics programs aug-
mented with API calls to the data capsule manager to obtain
raw data for processing.

3. Data Processing. Periodically, or at a time decided by the an-
alyst, the data capsule manager may run an analysis program.
At this time, the data capsule manager statically determines the
set of input data capsules to the program, and performs static
analysis to verify that the program would not violate the poli-
cies of any of its inputs. As part of this process, the data capsule
manager computes a residual policy, which is the new policy to
be attached to the program’s output. The data capsule manager
then runs the program, and constructs a new data capsule by
pairing up the program’s output with the residual policy com-
puted earlier.

4. Declassification. A data capsule whose policy has been sat-
isfied completely may be viewed by the analyst in a process
called declassification. When an analyst requests that the data

4

capsule manager declassify a particular data capsule, the manager verifies that its policy has been satisfied, and
that the analyst has the appropriate role, then sends the raw data to the analyst. Declassification is the only
process by which data stored in a data capsule can be divorced from its policy.

3.2 The Data Capsule Manager

The data capsule life cycle is supported by a system implementing the functionality of the data capsule manager.
The primary responsibility of the data capsule manager is to maintain the data capsule graph and maintain its
invariants—namely, that no data capsule’s policy is violated, that new data capsules resulting from analysis pro-
grams have the right policies, and that metadata is propagated correctly. We describe our reference implementation,
PRIVGUARD, in Section 4.

Figure 1 contains a global view of an example data capsule graph. This graph contains two different organi-
zations representing data controllers, and data subjects associated with each one. Both organizations use analysis
programs which combine and clean data from multiple data subjects into a single data capsule; a third analyst
uses data capsules from both organizations to perform marketing research. Such a situation is allowed under pri-
vacy regulations like GDPR, as long as the policies specified by the data subjects allow it. This example therefore
demonstrates the ability of the data capsule paradigm to break down data silos while at the same time maintaining
privacy for data subjects—a key benefit of the paradigm.

In this example, the policy attached to each data subject’s capsule is likely to be a formal representation of
GDPR. The data capsule paradigm requires a formal encoding of policies with the ability to efficiently compute
residual policies; we describe our solution to this challenge in Section 5.

Note that the data capsules containing the data subjects’ combined data (capsules 1, 2, 3, and 4) cannot be
viewed by anyone, since their policies have not been satisfied. This is a common situation in the data capsule
paradigm, and it allows implementing useful patterns such as extract-transform-load (ETL) style pipelines [10].
In such cases, analysts may submit analysis programs whose primary purpose is to prepare data for other analysis
programs; after being processed by some (potentially long) pipeline of analysis programs, the final output has
satisfied all of the input policies and may be declassified. The intermediate results of such pipelines can never be
viewed by the analyst.

3.3 Satisfying the Principles of Data Privacy

The data capsule paradigm is designed specifically to enable systems which satisfy the principles of data privacy
laid out in Section 2.
Transparency & Auditing. The data capsule manager satisfies transparency & auditing by consulting the data
capsule graph. The global view of the graph (as seen in Figure 1) can be restricted to contain only the elements
reachable from the ingested data capsules of a single data subject, and the resulting sub-graph represents all of the
data collected about or derived from the subject, plus all of the processing tasks performed on that data.
Consent. The data capsule manager tracks consent given by the data subject as metadata for each data capsule.
Data subjects can be prompted to give consent when new analysis programs are submitted, or when they are
executed.
Processing Control. The formal policies attached to data capsules can restrict the processing of the data stored
in those capsules. These policies typically encode the restrictions present in data privacy regulations, and the data
capsule manager employs a static analysis to verify that submitted analysis programs do not violate the relevant
policies. This process is described in Section 5.
Data Portability. To satisfy the data portability principle, the data capsule manager allows each data subject
to download his or her data capsules. The data capsule manager can also provide data capsules derived from the
subject’s capsules, since these are reachable capsules in the data capsule graph. However, the derived data returned
to the data subject must not include data derived from the capsules of other subjects, so a one-to-one mapping
must exist between rows in the input and output capsules for each analysis program involved. We formalize this
process in Section 5.

The same mechanism is used for data deletion. When a data subject wishes to delete a capsule, the set of
capsules derived from that capsule is calculated, and these derived capsules are re-computed without the deleted
capsule included in the input.
Guarantee Against Re-identification. To provide a robust formal guarantee against re-identification, the data
capsule manager supports the use of various techniques for anonymization, including both informal techniques

5

(e.g. removing “personal health information” to satisfy HIPAA) and formal techniques (e.g. k-anonymity, `-
diversity, and differential privacy). A data capsule’s policy may require that analysis programs apply one of these
techniques to protect against re-identification attacks.

4 PRIVGUARD: a Data Capsule Manager

We have designed and implemented a reference data capsule manager, called PRIVGUARD. The PRIVGUARD
system manages the data capsule graph, propagates policies and metadata, and uses static analysis to calculate
residual policies on analysis programs.

Figure 2 summarizes the architecture of PRIVGUARD. The two major components of the system are the data
capsule manager itself, which maintains the data capsule graph, and the static analyzer, which analyzes policies
and analysis programs to compute residual policies. We describe the data capsule manager here, and formalize the
static analyzer in Section 5.

PrivGuard

Data
Capsule
Manager

Static
Analyzer

Data Metadata
+ Policies

Request

 Analysis program

 Input policies

Response

 Residual policy

Manager API

Analysis
Program

Abstract
Interpreter

Attribute
Lattices

Residual
Policy

Generator

Fig. 2: The Architecture of PRIVGUARD.

Finally, outputCapsule defines an output data cap-
sule of the analysis program. The analyst specifies
a dataframe containing the output data, and PRIV-
GUARD automatically attaches the correct residual
policy. This process is formalized in Section 5.

Deployment & Integration. The data capsule
paradigm is intended to be integrated with existing
heterogeneous data processing infrastructures, like the
ones already in place for data analysis at many organi-
zations, and PRIVGUARD is designed to facilitate such
deployments. These infrastructures leverage a variety
of data stores, including SQL databases [11], key/-
value stores like MongoDB [12], distributed filesys-
tems like HDFS [13], and short-term publish/subscribe
systems like Cassandra [14]. They employ many dif-
ferent techniques for processing the data, including
SQL engines and distributed systems like MapRe-
duce [15], Hadoop [16], and Spark [17].

To work successfully in such a heterogeneous en-
vironment, PRIVGUARD is deployed alongside the ex-
isting infrastructure. As shown in Figure 2, policies
and metadata are stored separately from the data itself,
and the data can remain in the most efficient format for processing (e.g. stored in CSV files, in HDFS, or in a SQL
database).

Similarly, PRIVGUARD’s static analyzer uses a common representation to encode the semantics of many dif-
ferent kinds of analysis programs, so it works for many programming languages and platforms. The only platform-
specific code is the small PRIVGUARD API, which allows analysis programs to interact with the data capsule man-
ager. Our static analysis is based on abstract interpretation, a concept which extends to all common programming
paradigms. Section 5 formalizes the analysis for dataflow-based systems which are close to relational algebra (e.g.
SQL, Pandas, Hadoop, Spark); extending it to functional programs or traditional imperative or object-oriented
programs is straightforward.

5 Policies & Policy Enforcement
This section describes our formal language for specifying policies on data capsules, and our static approach for
enforcing these policies when an analytics program is registered with the system. We describe each of the four
major components of this approach:

– Our policy specification language: PRIVPOLICY (§ 5.1).
– A set of attribute definitions suitable for encoding policies like GDPR and HIPAA, which are more expressive

than the corresponding attributes proposed in previous work (§ 5.2).
– A flexible approach for deriving the policy effects of an analysis program via abstract interpretation (§ 5.3).
– A formal procedure for determining the residual policy on the output of an analysis program (§ 5.4).

6

5.1 PRIVPOLICY: Policy Specification Language

A ∈ attribute ::= attrName attrValue
C ∈ policy clause ::= A | A AND C | A OR C
P ∈ policy ::= (ALLOW C)+

A ::= attrName attrValue
CDNF ⊆ P(A)
PDNF ⊆ P(CDNF)

(1) PRIVPOLICY surface syntax. (2) PRIVPOLICY disjunctive normal form.

Fig. 3: Surface Syntax & Normal Form.

Our policy specification language: PRIVPOLICY is inspired by the LEGALEASE language [18], with small
changes to surface syntax to account for our more expressive attribute lattices and ability to compute residual poli-
cies.

1 ALLOW SCHEMA NotPII
2 AND NOTIFICATION REQUIRED
3 AND (ROLE $user id
4 OR (CONSENT REQUIRED
5 AND DECLASS DP 1 0.000001))

Fig. 4: A subset of GDPR using PRIVPOLICY.

The grammar for the surface syntax of PRIVPOLICY
is given in Figure 3 (1). The language allows specify-
ing an arbitrary number of clauses, each of which en-
codes a formula containing conjunctions and disjunc-
tions over attribute values. Effectively, each clause of a
policy in our language encodes one way to satisfy the
overall policy.

Example. Figure 4 specifies a subset of GDPR using
PRIVPOLICY. Each ALLOW keyword denotes a clause

of the policy, and SCHEMA, NOTIFICATION REQUIRED, ROLE, CONSENT REQUIRED, and DECLASS are at-
tributes. This subset includes only a single clause, which says that information which is not personally identifiable
may be processed by the data controller, as long as the data subject is notified, and either the results are only viewed
by the data subject, or the data subject gives consent and differential privacy is used to prevent re-identification
based on the results.

{{SCHEMA NotPII,NOTIFICATION REQUIRED,

ROLE $user id}
{SCHEMA NotPII,NOTIFICATION REQUIRED,

CONSENT REQUIRED,DECLASS DP(1.0)}}

Fig. 5: Disjunctive normal form of the example policy.

Conversion to Disjunctive Normal Form. Our first
step in policy enforcement is to convert the policy to
disjunctive normal form (DNF), a common conversion
in constraint solving. Conversion to DNF requires re-
moving OR expressions from each clause of the pol-
icy; we accomplish this by distributing conjunction
over disjunction and then splitting the top-level dis-
juncts within each clause into separate clauses. After
converting to DNF, we can eliminate the explicit uses
of AND and OR, and represent the policy as a set of clauses, each of which is a set of attributes as shown in Figure 3
(2). The disjunctive normal form of our running example policy is shown in Figure 5. Note that the disjunctive
normal form of our example contains two clauses, due to the use of OR in the original policy.

5.2 Policy Attributes
LEGALEASE [18] organizes attribute values into concept lattices [19], and these lattices give policies their seman-
tics. Instead of concept lattices, PRIVPOLICY leverages abstract domains inspired by work on abstract interpreta-
tion of programs [20]. This novel approach enables more expressive attributes (for example, the FILTER attribute)
and also formalizes the connection between the semantics of policies and the semantics of analysis programs.

We require each attribute domain to define the standard lattice operations required of an abstract domain: a
partial order (v), join (t), and meet (u), as well as top and bottom elements > and ⊥. Many of these can be
defined in terms of the corresponding operations of an existing abstract domain from the abstract interpretation
literature.

Filter Attributes. One example of our expressive attribute domains is the one for the FILTER attribute, which
filters data based on integer-valued fields. The attribute domain for FILTER is defined in terms of an interval
abstract domain [20]. We say filter : f : i when the value of column f lies in the interval i. Then, we define the
following operations on FILTER attributes, completing its attribute domain:

7

filter : f : i1 t filter : f : i2 = filter : f : i1 t i2
filter : f : i1 u filter : f : i2 = filter : f : i1 u i2
filter : f : i1 v filter : f : i2 = : i1 v i2

Schema Attributes. The schema attribute leverages a set abstract domain, in which containment is defined in
terms of an underlying (finite) lattice of datatypes:

schema : S1 t schema : S2 = schema : {s′ | s1 ∈ S1 ∧ s2 ∈ S2 ∧ s′ = s1 t s2}
schema : S1 u schema : S2 = schema : {s′ | s1 ∈ S1 ∧ s2 ∈ S2 ∧ s′ = s1 u s2}
schema : S1 v schema : S2 = ∀s1 ∈ S1, s2 ∈ S2 . s1 v s2

Other Attributes. In PRIVPOLICY, as in LEGALEASE, the partial ordering for analyst roles is typically finite. It
encodes the important properties of each analyst (e.g. for GDPR, the government typically has more authority to
analyze data than members of the public). The role, declass, and redact attributes are defined by finite lattices.
We omit the details here.

5.3 Abstract Interpretation of Analysis Programs

f ∈ field m ∈ int s ∈ schema x ∈ data capsules

δ ∈ filter ::= f < m | f > m
e ∈ expression ::= getDC(x) | filter(ϕ, e) | project(s, e) | redact(a, e)

| join(e, e) | union(e, e) | dpCount(ε, δ, e)

Fig. 6: Program Surface Syntax

We next describe the use of abstract interpretation to determine the policy effect of an analysis program. We
introduce this concept using a simple dataflow-oriented language, similar to relational algebra, Pandas, or Spark,
presented in Figure 6. We write an abstract data capsule with schema s and policy effect ψ as D[s, ψ]. A data
capsule environment ∆ maps data capsule IDs to their schemas (i.e. ∆ : id→ s).

∆(id) = s

∆ ` getDC(id) : D[s, ∅]
GETDC

∆ ` e : D[s, ψ] ϕ s a : v

∆ ` filter(ϕ, e) : D[s, ψ + filter : a : v]
FILTER

∆ ` e : D[s, ψ] s′ ⊆ s
∆ ` project(s′, e) : D[s′, ψ + schema : s′]

PROJECT
∆ ` e : D[s, ψ] a ∈ s er s v

∆ ` redact(a, er, e) : D[s, ψ + redact : a : v]
REDACT

∆ ` e1 : D[s1, ψ1] ∆ ` e2 : D[s2, ψ2]

∆ ` join(e1, e2) : D[s1 ∪ s2, ψ1 ∪ ψ2]
JOIN

∆ ` e1 : D[s, ψ1] ∆ ` e2 : D[s, ψ2]

∆ ` union(e1, e2) : D[s, ∅]
UNION

∆ ` e : D[s, ψ]
∆ ` dpCount(ε, δ, e) : D[s, ψ + declass : DP(ε, δ)]

DPCOUNT

Fig. 7: Sample rules implementing an abstract interpreter for the data capsule expressions in the language presented
in Figure 6.

We present the abstract interpreter [20] for PRIVPOLICY in Figure 7. If we can use the semantics to build a
derivation tree of the form ∆ ` e : D[s, ψ], then we know that the program is guaranteed to satisfy the policy
clause ψ (or any clause which is less restrictive than ψ).

8

5.4 Computing Residual Policies

Let Υ (id) be the policy of the data capsule with ID id. The free variables of a program e, written fv(e), are the
data capsule IDs it uses.

We define the input policy of a program e to be the least upper bound of the policies of its free variables:

Υin(e) =
⊔

id∈fv(e)

{Υ (id)}

This semantics means that the input policy will be at least as restrictive as the most restrictive policy on an
input data capsule. It is computable as follows, because the disjunctive normal form of a policy is a set of sets:

p1 t p2 = {c1 ∪ c2 | c1 ∈ p1 ∧ c2 ∈ p2}

The residual policy applied to the output data capsule is computed by considering each clause in the input
policy, and computing its residual based on the policy effect of the program. The residual policy is computed
using the following rule:

` e : D[s, ψ]
Υout(e) = {c′ | c ∈ Υin(e) ∧ residual(c, ψ) = c′}

RP

where

residual(c, ψ) = c− {k : p | k : p ∈ c ∧ satisfies(k : p, ψ)}
satisfies(k : p, ψ) = ∃k : p′ ∈ ψ.p v p′

Here, the satisfies relation holds for an attribute k : p in the policy when there exists an attribute k : p′ in the
policy effect of the program, such that p (from the policy) is less restrictive than p′ (the guarantee made by the
program). Essentially, we compute the residual policy from the input policy by removing all attributes for which
satisfies holds.

6 Formally Encoding GDPR

1 ALLOW SCHEMA NotPII
2 AND NOTIFICATION REQUIRED
3 AND (ROLE $user id
4 OR (CONSENT REQUIRED
5 AND DECLASS DifferentialPrivacy 1 0.000001))
6

7 # Definitions mainly given in Article 6. Also Article 4, 25, 32
8 ALLOW SCHEMA PersonalInformation (Article 9)
9 AND CONSENT REQUIRED (Article 4, 6)

10

11 ALLOW SCHEMA PersonalInformation (Article 9)
12 AND ROLE UserAffiliatedOrganizations($user id)
13 AND SCHEMA HasAppropriateSafeguards (article 25, 32, 46)
14

15 ALLOW SCHEMA PersonalInformation
16 AND ROLE SupervisoryAuthority OR ROLE

HealthcareOrganization
17 AND PURPOSE PublicInterest LegalObligation PublicHealth
18

19 ALLOW SCHEMA PersonalInformation
20 AND ROLE LegalAuthority
21 AND PURPOSE PublicInterest ForJudicialPurposes

Fig. 8: Formal encoding of GDPR.

This section describes our formal encoding
of a subset of GDPR, which is intended to
ensure automated compliance with the reg-
ulation. We are in the process of develop-
ing similar encodings for other regulations,
including HIPAA, FERPA.

Figure 8 contains our formal encoding.
The first clause (lines 1-5) allows the use
of data for any purpose, as long as it is pro-
tected against re-identification and subject
to consent by the data subject. The third
clause (lines 11-13) allows the use of per-
sonal information by organizations affili-
ated with the data subject—a relationship
which we encode as a metafunction. The
final two clauses specify specific public in-
terest exceptions, for public health (lines
15-17) and for judicial purposes (lines 19-
21).

GDPR is designed specifically to be
simple and easy for users to understand,
and its requirements are well-aligned with

9

our five principles of data privacy. Our for-
mal encoding is therefore correspondingly simple. We expect that most uses of data will fall under the third clause
(for “business uses” of data, e.g. displaying Tweets to a Twitter user) or the first clause (for other purposes, e.g.
marketing).

Data subjects who wish to modify this policy will generally specify more rigorous settings for the technologies
used to prevent their re-identification. For example, a privacy-conscious data subject may require differential
privacy in the first clause, instead of allowing any available de-identification approach.

7 Performance Evaluation

Recall that one of the goals of PRIVGUARD is to easily work with existing heterogeneous data processing systems
and incur smallest additional overhead to the analysis itself. In order to achieve this goal, PRIVGUARD must have
good scalability when the number of users are large. In this section, we first conduct an end-to-end evaluation to
figure the bottleneck of the system scalability. Then we conduct several experimental evaluation to test the scala-
bility of the bottleneck component. Specifically, we want to answer the following question: how is the scalability
of PRIVGUARD and how much overhead PRIVGUARD will incur into the original data processing system.

7.1 Experimental Design & Setup

We first conduct an end-to-end evaluation to determine the sources of overhead when PRIVGUARD is used in a
complete analysis. We then focus on the performance of policy ingestion as described in Section 3.1, which turns
out to be the largest source of overhead in PRIVGUARD. We vary the number of data capsules from 2 to 1024 (with
a log interval 2) and the policies are random subset of GDPR, HIPAA, FERPA or CCPA following a Gaussian
distribution. The experiments are run on a single thread on top of an Ubuntu 16.04 LTS server with 32 AMD
Opteron Processors. The experiments are run for 10 iterations to reach relatively stable results. Performance of
PRIVGUARD does not depend on the data, so a real deployment will behave just like the simulation if the policies
are similar.

7.2 Evaluation Results

In the following, we show and summarize the experiment results. In addition, we discuss and analyze the reasons
for our findings.

Operation Parsing Ingestion Residual Policy
Time (ms) 83 9769 11

Table 1: End-to-end evaluation

End-to-end evaluation. We first conduct an end-to-
end evaluation to figure out the most time-consuming
component in the execution path of PRIVGUARD. We
evaluate the time of each component in the execution
path in an system with 1024 clients with random sub-
sets of HIPAA.

101 102 103

10−5

10−4

10−3

10−2

10−1

100

101

Data Capsules

R
un

ni
ng

Ti
m

e
(s

)

GDPR HIPAA FERPA CCPA

Fig. 9: Scalability of policy analysis: ingestion operation.

The results are summarized in 1. The “Parsing”
column represents the time parsing the analysis pro-
gram. The “Ingestion” column represents the time in-
gesting the input policies. The “Residual Policy” col-
umn represents the time computing residual policy
given the ingested input policy and the analysis pro-
gram. Note that the input policy ingestion take up al-
most all of the running time, which indicates this op-
eration as the bottleneck of the system.

The results demonstrate that the performance over-
head of PRIVGUARD is negligible for these programs
when the policy guard approach is used, and the bot-
tleneck of PRIVGUARD is the ingestion operation.
Policy ingestion evaluation : Next, we perform a tar-
geted microbenchmark to evaluate the scalability of
the policy ingestion operation. Figure 9 contains the
results. As we can observe in the figure, the running

10

time exhibits a polynomial growth (recall that both the x-axis and y-axis are in log scale) at first and then keep
stable after the policy number reaches some threshold. The reason is that the ingestion is implemeted using a
least upper bound (LUB) operation, and the LUB operation in PRIVGUARD is composed of two sub-operations:
(1) unique with O(n log n) complexity, and (2) reduce with O(n′) complexity (n′ is the number of policies after
unique operation). Because policies are a random subset of some complete policy (GDPR, HIPPA, FERPA and
CCPA in this case), if the number of policies are large enough, n′ will become a constant. Furthermore the unique
operation is O(n log n) with a small coefficient so this part is negligible compared to the reduce operation. All
these factors result in the trend we observe in Figure 9. This indicates excellent scalability of PRIVGUARD in
terms of the number of data capsules.

8 Related Work

Recently, there are some research efforts on bootstrapping privacy compliance in big data systems. Technically,
the works in this area can be categorized into two directions - (1) summarize the issues in privacy regulations to
guide deployment; (2) formalise privacy regulations in a strict programming language flavor; (3) enforce privacy
policies in data processing systems. Our work falls into all three categories. In the following, we briefly describe
these research works and discuss why these existing approaches do not fully solve the problems in our setting.

Issues in Deploying Privacy Regulations. Gruschka et al. [21] summarize privacy issues in GDPR. Renaud et
al. [22] synthesize the GDPR requirements into a checklist-type format, derive a list of usability design guidelines
and providing a usable and GDPR-compliant privacy policy template for the benefit of policy writers. Politou
et al. [23] review all controversies around the new stringent definitions of consent revocation and the right to
be forgotten in GDPR and evaluate existing methods, architectures and state-of-the-art technologies in terms of
fulfilling the technical practicalities for the implementation and effective integration of the new requirements into
current computing infrastructures. Tom et al. [24] present the current state of a model of the GDPR that provides a
concise visual overview of the associations between entities defined in the legislation and their constraints. In this
work, our research goal is to summarize and formalize general-purpose privacy principles and design a lightweight
paradigm for easy deployment in heterogeneous data processing systems. As a result, these discussions can serve
as a good guidance to our work but not actually solve the problem we aim to tackle.

Privacy Regulation Formalism. In [25], Hanson et al. present a data-purpose algebra that can be used to model
these kinds of restrictions in various different domains. To formalise purpose restrictions in privacy policies,
Tschantz et al. [26] provide a semantics using a formalism based on planning modeled using a modified version of
Markov Decision Processes. Chowdhury [27] present a policy specification language based on a restricted subset
of first order temporal logic (FOTL) which can capture the privacy requirements of HIPAA. Lam et al. [28] prove
that for any privacy policy that conforms to patterns evident in HIPAA, there exists a finite representative hospital
database that illustrates how the law applies in all possible hospitals. However, because of these works’ specific
focus on purpose restriction or HIPAA, the above two approaches do not generalize to other regulations like GDPR.
Gerl et al. [29] introduce LPL, an extensible Layered Privacy Language that allows to express and enforce these
new privacy properties such as personal privacy, user consent, data provenance, and retention management. Sen
et al. introduce LEGALEASE [18], a language composed of (alternating) ALLOW and DENY clauses where each
clause relaxes or constricts the enclosing clause. LEGALEASE is compositional and specifies formal semantics
in attribute lattices. These characteristics are useful in general-purpose description of privacy regulations and are
inherited in PRIVPOLICY. However, compared with LEGALEASE, PRIVPOLICY supports much more expressive
attributes to represent abstract domains for static analysis which allows us to encode more complicated privacy
regulations. Other work (e.g. Becker et al. [14]) focuses on the access control issues related to compliance with
data privacy regulations, but such approaches do not restrict how the data is processed—a key component of recent
regulations like GDPR.

Privacy Regulation Compliance Enforcement. Going beyond formalism of privacy regulations, recent research
also explores techniques to enforce these formalised privacy regulations in real-world data processing systems.
Chowdhury et al. [30] propose to use temporal model-checking for run-time monitoring of privacy policies. While
Chowdhury demonstrates the effectiveness of this approach in online monitoring of privacy policies, it does not
provide the capability of static analysis to decide if a analytic program satisfies a privacy policy and can only
report privacy violation after it happens. Sen et al. [18] introduce GROK, a data inventory for Map-Reduce-like
big data systems. Although working perfectly in Map-Reduce-like systems, GROK lacks adaptability to non-Map-
Reduce-like data processing systems.

11

9 Conclusion & Future Work
In this paper, we have proposed the data capsule paradigm, a new paradigm for collecting, managing, and process-
ing sensitive personal data. The data capsule paradigm has the potential to break down data silos and make data
more useful, while at the same time reducing the prevalence of data privacy violations and making compliance
with privacy regulations easier for organizations. We implemented PRIVGUARD, a reference platform for the new
paradigm.

We are currently in the preliminary stages of a collaborative case study to apply the data capsule paradigm
to enforce HIPAA in a medical study of menstrual data collected via mobile app. The goal of this study [31]
and similar work [32, 33] is to demonstrate the use of mobile apps to assess menstrual health and fertility. Data
capsules will allow study participants to submit their sensitive data in the context of a policy which protects its
use. As part of this effort, we are in the process of encoding the requirements of HIPAA using PRIVPOLICY and
applying PRIVGUARD to the analysis programs written by the study’s designers.

Acknowledgments

We thank the anonymous reviewers for their helpful comments. This work was supported by DARPA & SPAWAR
under contract N66001-15-C-4066. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes not withstanding any copyright notation thereon. The views, opinions, and/or findings
expressed are those of the author(s) and should not be interpreted as representing the official views or policies of
the Department of Defense or the U.S. Government.

References

1. “The 18 biggest data breaches of the 21st century,” https://www.csoonline.com/article/2130877/
the-biggest-data-breaches-of-the-21st-century.html, 2019, online; accessed 23 May 2019.

2. D. J. Solove and D. K. Citron, “Risk and anxiety: A theory of data-breach harms,” Tex. L. Rev., vol. 96, p. 737, 2017.
3. “Insider threat 2018 report,” https://www.ca.com/content/dam/ca/us/files/ebook/insider-threat-report.pdf, 2019, online;

accessed 23 May 2019.
4. L. E. Murdock, “The use and abuse of computerized information: Striking a balance between personal privacy interests

and organizational information needs,” Alb. L. Rev., vol. 44, p. 589, 1979.
5. “The eu general data protection regulation (gdpr),” https://eugdpr.org/, 2019, online; accessed 16 April 2019.
6. “California consumer privacy act (ccpa),” https://www.caprivacy.org/, 2019, online; accessed 16 April 2019.
7. “The family educational rights and privacy act of 1974 (ferpa),” https://www.colorado.edu/registrar/students/records/ferpa,

2019, online; accessed 16 April 2019.
8. “Health insurance portability and accountability act (hipaa),” https://searchhealthit.techtarget.com/definition/HIPAA,

2019, online; accessed 16 April 2019.
9. “Google keeps your data forever - unlocking the future transparency of your past,” https://www.siliconvalleywatcher.

com/google-keeps-your-data-forever---unlocking-the-future-transparency-of-your-past/, 2019, online; accessed 30 May
2019.

10. “Extract, transform, load,” https://en.wikipedia.org/wiki/Extract, transform, load, 2019, online; accessed 30 May 2019.
11. E. F. Codd, “A relational model of data for large shared data banks,” Communications of the ACM, vol. 13, no. 6, pp.

377–387, 1970.
12. K. Chodorow, MongoDB: the definitive guide: powerful and scalable data storage. ” O’Reilly Media, Inc.”, 2013.
13. K. Shvachko, H. Kuang, S. Radia, R. Chansler et al., “The hadoop distributed file system.” in MSST, vol. 10, 2010, pp.

1–10.
14. A. Lakshman and P. Malik, “Cassandra: a decentralized structured storage system,” ACM SIGOPS Operating Systems

Review, vol. 44, no. 2, pp. 35–40, 2010.
15. J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,” Communications of the ACM, vol. 51,

no. 1, pp. 107–113, 2008.
16. K. Shvachko, H. Kuang, S. Radia, R. Chansler et al., “The hadoop distributed file system.” in MSST, vol. 10, 2010, pp.

1–10.
17. M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster computing with working sets.”

HotCloud, vol. 10, no. 10-10, p. 95, 2010.
18. S. Sen, S. Guha, A. Datta, S. K. Rajamani, J. Tsai, and J. M. Wing, “Bootstrapping privacy compliance in big data systems,”

in 2014 IEEE Symposium on Security and Privacy. IEEE, 2014, pp. 327–342.
19. “Formal concept analysis,” https://en.wikipedia.org/wiki/Formal concept analysis, 2019, online; accessed 30 May 2019.
20. F. Nielson, H. R. Nielson, and C. Hankin, Principles of program analysis. Springer, 2015.

12

21. N. Gruschka, V. Mavroeidis, K. Vishi, and M. Jensen, “Privacy issues and data protection in big data: A case study analysis
under gdpr,” in 2018 IEEE International Conference on Big Data (Big Data). IEEE, 2018, pp. 5027–5033.

22. K. Renaud and L. A. Shepherd, “How to make privacy policies both gdpr-compliant and usable,” in 2018 International
Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). IEEE, 2018, pp. 1–8.

23. E. Politou, E. Alepis, and C. Patsakis, “Forgetting personal data and revoking consent under the gdpr: Challenges and
proposed solutions,” Journal of Cybersecurity, vol. 4, no. 1, p. tyy001, 2018.

24. J. Tom, E. Sing, and R. Matulevičius, “Conceptual representation of the gdpr: Model and application directions,” in
International Conference on Business Informatics Research. Springer, 2018, pp. 18–28.

25. C. Hanson, T. Berners-Lee, L. Kagal, G. J. Sussman, and D. Weitzner, “Data-purpose algebra: Modeling data usage
policies,” in Eighth IEEE International Workshop on Policies for Distributed Systems and Networks (POLICY’07). IEEE,
2007, pp. 173–177.

26. M. C. Tschantz, A. Datta, and J. M. Wing, “Formalizing and enforcing purpose restrictions in privacy policies,” in 2012
IEEE Symposium on Security and Privacy. IEEE, 2012, pp. 176–190.

27. O. Chowdhury, A. Gampe, J. Niu, J. von Ronne, J. Bennatt, A. Datta, L. Jia, and W. H. Winsborough, “Privacy promises
that can be kept: a policy analysis method with application to the hipaa privacy rule,” in Proceedings of the 18th ACM
symposium on Access control models and technologies. ACM, 2013, pp. 3–14.

28. P. E. Lam, J. C. Mitchell, A. Scedrov, S. Sundaram, and F. Wang, “Declarative privacy policy: finite models and attribute-
based encryption,” in Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium. ACM, 2012,
pp. 323–332.

29. A. Gerl, N. Bennani, H. Kosch, and L. Brunie, “Lpl, towards a gdpr-compliant privacy language: Formal definition and
usage,” in Transactions on Large-Scale Data-and Knowledge-Centered Systems XXXVII. Springer, 2018, pp. 41–80.

30. O. Chowdhury, L. Jia, D. Garg, and A. Datta, “Temporal mode-checking for runtime monitoring of privacy policies,” in
International Conference on Computer Aided Verification. Springer, 2014, pp. 131–149.

31. L. Symul, K. Wac, P. Hillard, and M. Salathe, “Assessment of menstrual health status and evolution through mobile apps
for fertility awareness,” bioRxiv, 2019. [Online]. Available: https://www.biorxiv.org/content/early/2019/01/28/385054

32. B. Liu, S. Shi, Y. Wu, D. Thomas, L. Symul, E. Pierson, and J. Leskovec, “Predicting pregnancy using large-scale data
from a women’s health tracking mobile application,” arXiv preprint arXiv:1812.02222, 2018.

33. A. Alvergne, M. Vlajic Wheeler, and V. Hgqvist Tabor, “Do sexually transmitted infections exacerbate negative
premenstrual symptoms? Insights from digital health,” Evolution, Medicine, and Public Health, vol. 2018, no. 1, pp.
138–150, 07 2018. [Online]. Available: https://doi.org/10.1093/emph/eoy018

13

