
DeepIntent: Deep Icon-Behavior Learning for Detecting
Intention-Behavior Discrepancy in Mobile Apps

Shengqu Xi1,∗ Shao Yang2,∗ Xusheng Xiao2 Yuan Yao1 Yayuan Xiong1 Fengyuan Xu1
Haoyu Wang3 Peng Gao4 Zhuotao Liu5 Feng Xu1 Jian Lu1

1State Key Lab for Novel Software Technology, Nanjing University 2Case Western Reserve University
3Beijing University of Posts and Telecommunications 4University of California, Berkeley

5University of Illinois at Urbana-Champaign
{xsq,yayuan.xiong}@smail.nju.edu.cn, {sxy599, xusheng.xiao}@case.edu, {y.yao, fengyuan.xu, xf, lj}@nju.edu.cn

haoyuwang@bupt.edu.cn, penggao@berkeley.edu, zliu48@illinois.edu

ABSTRACT

Mobile apps have been an indispensable part in our daily life. How-
ever, there exist many potentially harmful apps that may exploit
users’ privacy data, e.g., collecting the user’s information or send-
ing messages in the background. Keeping these undesired apps
away from the market is an ongoing challenge. While existing
work provides techniques to determine what apps do, e.g., leak-
ing information, little work has been done to answer, are the apps’
behaviors compatible with the intentions reflected by the app’s UI?

In this work, we explore the synergistic cooperation of deep learn-

ing and program analysis as the first step to address this challenge.
Specifically, we focus on the UI widgets that respond to user in-
teractions and examine whether the intentions reflected by their
UIs justify their permission uses. We present DeepIntent, a frame-
work that uses novel deep icon-behavior learning to learn an icon-
behavior model from a large number of popular apps and detect
intention-behavior discrepancies. In particular,DeepIntent provides
program analysis techniques to associate the intentions (i.e., icons
and contextual texts) with UI widgets’ program behaviors, and infer
the labels (i.e., permission uses) for the UI widgets based on the
program behaviors, enabling the construction of a large-scale high-
quality training dataset. Based on the results of the static analysis,
DeepIntent uses deep learning techniques that jointly model icons
and their contextual texts to learn an icon-behavior model, and
detects intention-behavior discrepancies by computing the outlier
scores based on the learned model. We evaluate DeepIntent on a
large-scale dataset (9,891 benign apps and 16,262 malicious apps).
With 80% of the benign apps for training and the remaining for
evaluation, DeepIntent detects discrepancies with AUC scores
0.8656 and 0.8839 on benign apps and malicious apps, achieving
39.9% and 26.1% relative improvements over the state-of-the-art
approaches.

∗The first two authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’19, November 11–15, 2019, London, United Kingdom

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00
https://doi.org/10.1145/3319535.3363193

CCS CONCEPTS

• Security and privacy → Malware and its mitigation; Soft-
ware security engineering.

KEYWORDS

mobile apps; discrepancy detection; static analysis; deep learning

ACM Reference Format:

Shengqu Xi, Shao Yang, Xusheng Xiao, Yuan Yao, Yayuan Xiong, Fengyuan
Xu, Haoyu Wang, Peng Gao, Zhuotao Liu, Feng Xu, and Jian Lu. 2019.
DeepIntent: Deep Icon-Behavior Learning for Detecting Intention-Behavior
Discrepancy inMobile Apps. In 2019 ACM SIGSAC Conference on Computer &

Communications Security (CCS’19), November 11–15, 2019, London, UK. ACM,
New York, NY, USA, 16 pages. https://doi.org/10.1145/3319535.3363193

1 INTRODUCTION

Mobile apps are playing an increasingly important role in our daily
life, from travel, education, to even business [50, 87]. While these
apps use users’ personal information to provide better services,
certain behaviors of the apps are less desirable or even harmful.
Example undesired behaviors include disclosing users’ sensitive
data such as location [18, 43, 61, 92] without expressing the inten-
tions to use it, and stealthily exploiting users’ private resources for
advertising [41, 42, 75].

However, detecting such apps is challenging, since undesired be-
haviors appear to be indistinguishable from the behaviors of benign
apps. For example, apps recommending restaurants use users’ GPS
data to suggest the nearby restaurants, and apps providing travel
planning services let users make phone calls or send messages.
As such, the permission-based access control mechanism employed
by popular smartphone platforms (i.e., Android and iOS) [68], has
shown little success [9, 19, 20]. For example, users can disallow an
app to share the GPS data by not granting the GPS-related permis-
sions; however, it is a difficult decision as many benign apps do
need to use the GPS data.

To detect the undesired behaviors in mobile apps, we are moti-
vated by the vision: can the compatibility of an app’s intentions and

program behaviors be used to determine whether the app will perform

within the user’s expectation? In other words, as the user-perceivable
information of apps’ UIs (i.e., texts and images) represent users’
expectation of apps’ behaviors [33] (i.e., apps’ intentions), we aim to
automatically check the compatibility between apps’ intentions and
their behind-the-scene behaviors, i.e., detecting intention-behavior

https://doi.org/10.1145/3319535.3363193

(a) (b) (c)

Figure 1: Example icon widgets that access sensitive infor-

mation.

discrepancies. For example, if a music player app’s button shows a
“+” icon, it indicates that clicking the button will add a song to the
playlist. However, if the app discloses users’ GPS data when the
button is pressed, red flags should be raised.

In this work, we focus on detecting the intention-behavior dis-
crepancies of interactive UI widgets in Android apps1, which ex-
press their intentions via texts or images and respond to users’
interactions (e.g., clicking a button). Specifically, we focus on the
interactive UI widgets that use icons to indicate their expected be-
haviors, referred to as icon widgets, since icon widgets are prevalent
in apps and many of them access sensitive information [80]. Fig-
ure 1 shows the UI screenshots that contain example icon widgets
in which their icons and texts express their intentions in perform-
ing sensitive behaviors: Figure 1(a) shows icon widgets that use
pure icons and icons embedded with texts; Figure 1(b) shows icon
widgets that use both icons and texts, but the texts do not explicitly
explain their intentions; Figure 1(c) shows icon widgets that use
both icons and texts, and the texts help explain their intentions.

Checking the compatibility between the icon widgets’ intentions
and their behaviors is a challenging task. First, their intentions are
expressed mainly via a mixture of icons and texts, and it is difficult
to model such correlations using these unstructured artifacts. Ex-
isting approaches have either modeled the text semantics to detect
undesired disclosures of sensitive user inputs through UIs [4, 31, 51],
or classified the icons using computer vision techniques to detect
sensitive UI widgets [80]. However, none of them have modeled the
joint semantics of both icons and their texts. Second, Android’s UI
design model and the asynchronous programming model pose chal-
lenges to precisely identify sensitive behaviors of an icon widget.
Android apps may associate UI handlers2 with icon widgets via UI
layout files or code. Also, UI handlers may invoke sensitive APIs
via Android’s multi-threading [86] and Inter-Component Commu-
nication [37, 54]. Existing approaches either produce high false
positives due to enumerating all possible combinations of lifecycle
methods [5, 79], or fail to identify certain behaviors due to low

1While our work focuses on Android apps due to its popularity, the findings can be
generalized to other mobile platforms such as iOS.
2A UI handler is the method to be invoked when a user interacts with the icon widget.

coverage [24, 25, 48, 69]. Third, it is difficult to correlate an app’s
intention and behavior to determine whether the behavior is unde-
sired. Existing research efforts have been put forth to detect unde-
sired disclosures of sensitive user inputs through UIs [4, 31–33, 51].
However, the resulting behavior patterns from these approaches
can capture only a fixed set of undesired behaviors. Furthermore,
a behavior of a UI widget often uses several permissions. Existing
prediction-based approaches [33, 80] mainly focus on predicting a
single permission use based on intentions, and such lack of model-
ing multiple permission uses renders the prediction less effective
in detecting intention-behavior discrepancies.
Contributions. Towards realizing the vision, we propose to build a
novel framework, DeepIntent, that learns an icon-behavior model
from a large number of apps, and uses the model to detect unde-
sired behaviors3. In particular,DeepIntent explores the synergistic
cooperation of deep learning and program analysis as the first step
to address the above challenges in Android apps: (1) Deep Intention
Modeling: following the success of deep learning [21, 27, 28, 35, 36]
inmodeling unstructured artifacts such as texts and images,DeepIn-
tent uses deep learning to model apps’ intentions that are reflected
mainly by the unstructured information (i.e., icons and texts) and
predict expected behaviors; (2) Traceability and Label Inference: the
power of deep learning highly depends on the large-scale high-
quality labeled data [1, 21], and simply modeling all the code as
part of the features without deeper analysis on the code introduces
too much noise into the training data, rendering the deep learning
less effective. As such,DeepIntent leverages program analysis tech-
niques to associate the intentions with the program behaviors, and
infer the labels for the icon widgets based on the program behaviors
(e.g., whether the behaviors accessing sensitive data), enabling the
construction of a large-scale high-quality training dataset. Such
synergy of program analysis and deep learning enables building
an icon-behavior model from a large number of apps and exposing
intention-behavior discrepancies based on the model.

The design of DeepIntent is based on three key insights. First,
mobile apps’ UIs are expected to be evident to users, and icons
indicating the same type of sensitive behavior should have similar
looks. This inspires us to follow the success of CNN [35, 36] in
image recognition and model the icons (i.e., pixels of the icons)
using CNN to identify similar icons. Second, in different UI contexts,
icons may reflect different intentions. For example, a “send” button
may mean sending an email or an SMS in different contexts. While
it is difficult to differentiate the intentions by just comparing the
icons, the contextual texts, such as the nearby text labels and the
header of the UI, can be used to help distinguish the contexts of
the icons. Third, users expect certain behaviors when interacting
with icon widgets that have specific looks, and undesired behaviors
usually contradict users’ expectations. For example, when users
look at the first highlighted icon in Figure 1(a), they are expecting
the app to read their contacts, but not disclosing their location
information. To capture such general expectation, we propose to
develop program analysis techniques that can associate icons to
their sensitive behaviors, and apply the techniques to extract the
associations from a corpus of popular apps to learn models on
expected behaviors for icon widgets with specific looks. Such model

3DeepIntent is publicly available at https://github.com/deepintent-ccs/DeepIntent.

listener

start

Rendered UI

@drawable/di
alpad_func_bt

n_call

@id/dp_btn_call

Image Button

CallMaster

OnClick Thread

View.getId()

Itelephony.call()

CodeLayout

CALL
permission

Icon-Behavior Association

✔

Icon-Behavior Learning

Discrepancy Detection

Test Icons

<icon, text,
permissions>

timing
filter

< , call, CALL>

< , , CALL>

Image Feature
Initialization

Text Feature
Initialization

Feature
Combination

Group-Wise
Outlier Score
Computation

Final Outlier
Score

Aggregation

Figure 2: Motivating example of DeepIntent.

can then be used to detect abnormal behaviors as intention-behavior
discrepancies. In particular, we use permission uses to summarize
icon widgets’ sensitive behaviors (i.e., sensitive APIs invoked) [7,
17, 83], since undesired behaviors need to request permissions to
access sensitive information.

Based on these key insights, DeepIntent provides a novel learn-
ing approach, deep icon-behavior learning, which consists of three
major phases.

Icon Widget Analysis. The input used in our learning model con-
sists of icons, contextual texts, and the permission uses associated
with the icons. To extract the icons and their permission uses, Deep-
Intent provides a static analysis that analyzes APK files to identify
icon widgets and extract corresponding icon-permission mappings,
i.e., mapping the icons used in the UI widgets to their permission
uses. Specifically, the static analysis (1) associates icons with UI
widgets by analyzing both UI layout files and code, (2) associates
icon widgets with UI handlers, (3) builds call graphs for UI handlers
by considering multi-threading and ICCs, and (4) maps method
calls in call graphs to permission uses. From the extracted icons,
DeepIntent provides a text extraction technique that extracts con-
textual texts for the icons by analyzing UI layout files, embedded
texts in the icons, and icon file names.

Learning Icon-Behavior Model. DeepIntent adopts a parallel
co-attention mechanism [47, 90] to jointly model icons and their
contextual texts. Specifically, DeepIntent first uses DenseNet [30]
and GRUs [10] to extract the initialized features for icon images and
contextual texts, respectively. DeepIntent then combines these
two features into a joint feature vector via co-attention, whose
basic idea is to simultaneously update the image/text features by
highlighting the image/text regions that are relevant to each other.
Next, DeepIntent learns the joint feature vector for an icon by
training the model with the mapped permissions for icons. Since
each icon may relate to multiple permission uses, we formulate a
multi-label classification problem to learn the joint features.

Detecting Intention-Behavior Discrepancies. With the learned icon-
behavior model, given an icon widget, DeepIntent first extracts
its joint feature vector, and then detects the intention-behavior
discrepancies by computing and aggregating the outlier scores from
each permission used by the icon widget. Specifically, we compute
the outlier score for each used permission via AutoEncoder [3], and
aggregate these scores to form the final outlier score based on the
icon-behavior model. The actual permission uses are obtained by
the program analysis used for extracting icon-permission mappings.

Results. We collect a set of 9,891 benign apps and 16,262 malicious
apps, from which we extract over 10,000 icon widgets that are
mapped to sensitive permission uses. We use 80% of the icons from
the benign apps as training data, and detect the intention-behavior
discrepancies on the remaining icons from the benign apps and all
the icons from malicious apps. For the test set, we manually label
whether there is an intention-behavior discrepancy to form the
ground truth. Finally, DeepIntent returns a ranked list based on
the outlier scores for detecting intention-behavior discrepancies.

The results demonstrate the superior performance of the pro-
posed DeepIntent. First, our joint modeling of icons’ image and
text features is effective in terms of predicting their permission uses.
Compared to the state-of-the-art sensitive UI widget identification
approach, IconIntent [80], that relies on traditional computer
vision techniques, DeepIntent achieves at least 19.3% relative im-
provement in different permissions. DeepIntent is also better than
its sub-variants when only icons’ image or text features are used.
This result indicates the generalization ability of the proposed deep
learning techniques for the joint feature learning. Second, our static
analysis is essential to accurately extract icon-permission mappings
for the learning of the icon-behavior model. For example, DeepIn-
tent achieves 70.8% relative improvement on average compared to
the learning approach without static analysis. Third, DeepIntent
can detect discrepancies with AUC values 0.8656 and 0.8839 for
benign apps and malicious apps. For malicious apps, DeepIntent
can successfully identify over 85% discrepancies in most cases. The
state-of-the-art approach, IconIntent [80], is originally proposed
for predicting permission uses, and we extend it to the discrepancy
detection setting by feeding its features into the proposed outlier de-
tection module. The results show that DeepIntent achieves 39.9%
and 26.1% relative improvements in terms of AUC values compared
to IconIntent on benign apps and malicious apps, respectively.

2 MOTIVATING EXAMPLE

To motivate DeepIntent, we present an example in Figure 2. The
rendered UI with sensitive buttons are from the app Smart Dia-

log. Consider the phone call button as an example. DeepIntent
extracts the resource ID from the UI layout file, analyzes the code
that handles the button, builds the call graphs, and maps the button
to its permission uses (i.e., the CALL permission). The output of the
icon-behavior association is a set of ⟨icon, text ,permissions⟩ triples.
Next, DeepIntent learns an icon-behavior model using the set of
triples from popular benign apps, with the assumption that most

Icon-Behavior
Association

Training
APKs Contextual Text

Extraction

Deep Icon-
Behavior
Learning

Icon-Permission
Mappings

Contextual Texts
for Icons

Icon-Behavior
Model

Outlier
Detection

APK Behavior
Prediction

Icon Widget Analysis

Detecting Intention-Behavior Discrepancy

Predicted
Permission Use

Abnormal
Permission Use

Figure 3: Overview of DeepIntent.

of the icons in these apps use the icons and permissions properly,
capturing the general expectation of users. With the learned icon-
behavior model, DeepIntent also trains a discrepancy detection
model which can be used to compute the outlier scores for test
icons. Then, for a button whose intention-behavior discrepancy
is to be checked, DeepIntent adopts the same static analysis to
extract the ⟨icon, text ,permissions⟩ triple, and feeds the triple into
the icon-behavior models (i.e., icon-behavior learning and discrep-
ancy detection) to determine whether there are any discrepancies
between the intentions (represented using icons and contextual
texts) and the permission uses. In this example, it is expected for
the first button (‘call’) to use the CALL permission, while there is a
discrepancy for the second button (‘timing filter’) to use the CALL

permission.

3 DESIGN OF DEEPINTENT

3.1 Overview

Figure 3 shows the overview of DeepIntent. DeepIntent consists
of three phases: (1) icon widget analysis, (2) learning icon-behavior
model, and (3) detecting intention-behavior discrepancies.

The first phase accepts a training dataset of Android APK files
as input, and extracts features (i.e., icons and texts) and labels (i.e.,
permission uses) of icon widgets. Specifically, the icon-behavior
association module applies static analysis techniques to identify the
icons used in UI widgets, associates the icons with UI handlers, and
infers the icon-permission mappings based on the API-permission
mappings. The contextual text extraction module extracts the con-
textual texts for the identified icons.

Based on the output of icon widget analysis, the deep icon-
behavior learning module uses both icons and their contextual
texts as features, and the corresponding behaviors, i.e., permission
uses, as labels to train the icon-behavior model. In particular, this
module uses a parallel co-attention mechanism that can learn the
joint features from both icons and their contextual texts.

In the next phase, DeepIntent extracts the icon and text fea-
tures for each icon widget, predicts the permission uses for the icon
widgets, and detects abnormal permission uses. Specifically, given

APK

Icon-Widget
Association

Widget-API
Association

Icon-
Permission
Mappings

API Permission
Checking

Extended Call
Graph

Construction

Figure 4: Workflow of icon-behavior association module.

an icon used in a UI widget and its contextual text, the behavior pre-
diction module uses the trained icon-behavior model to predict its
permission uses. Also, based on the actual permission uses obtained
from our static analysis techniques (the same techniques used for
processing training APKs), the outlier detection module uses the
trained icon-behavior model to determine whether the permission
uses are abnormal, i.e., detecting icon-behavior discrepancies.

3.2 Threat Model

DeepIntent is a UI analysis tool that detects intention-behavior
discrepancies for icon widgets. Rather than focusing on malicious
behaviors that deliberately evade detection (i.e., camouflaged as
normal behaviors), DeepIntent is designed to determine whether
the behavior of an icon widget matches the intentions reflected
by the user-perceivable information in the UIs, i.e., whether the
UIs provide justifications for the behaviors. While some of the
underlying data flows may not be intuitively reflected by the UI
information, such as disclosing contacts, if many apps with similar
UIs have such behaviors, DeepIntent will still be able to capture
such compatibility in the model.

Note that most apps in the app markets are legitimate, whose de-
velopers design the apps to meet users’ requirements, even though
some of them may be aggressive on exploiting user privacy for rev-
enue. For certain third-party app markets that may be flooded with
malicious apps, the training quality may be affected. In that case,
anti-virus techniques and malware detection techniques should be
applied to remove such apps from the training dataset. Malicious
apps that deliberately evade detection can be detected by special
techniques [7, 16, 83, 93], which is out of scope of this paper.

4 ICON-BEHAVIOR ASSOCIATION

This module provides static analysis techniques to identify icon
widgets, extracts their icons and texts, and infers the permission
uses of the icon widgets. It plays a key role in learning an icon-
behavior model, since it enables the construction of a large-scale
high-quality training dataset. Our techniques analyze both UIs and
source code to associate icons/texts and handlers to icon widgets.
Particularly, we build extended call graphs to patch missing calling
relationships introduced by the Android environment, and use the
extended call graphs to identify APIs invoked by the UI widgets.

4.1 Static Analysis Overview

This module contains four major components: 1) Icon-Widget As-
sociation, 2) Extended Call Graph Construction, 3) Widget-API
Association, and 4) API Permission Checking, as shown in Figure 4.
The first two components take an Android APK file as input. The

1 <LinearLayout android:orientation="vertical" ...>
2 <RelativeLayout android:id="@+id/RelativeSearch" >
3 <ImageView android:id="@+id/ImageViewLocation" android:src="

@drawable/ic_location" ... />
4 <EditText android:id="@+id/TxtCity" ... />
5 <Button android:text="@string/search" .../>
6 </RelativeLayout>
7 <LinearLayout android:id="@+id/LinearLayout02" ...>
8 <TextView android:text="*" />
9 <TextView android:text="@string/select_city" />
10 </LinearLayout>
11 <ListView android:id="@+id/TxtList" />
12 </LinearLayout>

Figure 5: Simplied UI layout file (search.xml) for Animated

Weather App.

1 public class SearchForm extends Activity {
2 public void onCreate(Bundle savedInstanceState) {
3 setContentView(R.layout.search); // bound to Figure 3
4 ((ImageView) findViewById(R.id.ImageViewLocation)).

setOnClickListener(new OnClickListener {
5 public void onClick(View v) {startAsincSearch;} });
6 ... } // bound to OnClick handler
7
8 private void startAsincSearch {
9 ...
10 searchThread = new LocationThread;
11 searchThread.start; // bound to LocationThread.run
12 ... } } // end of class SearchForm
13
14 class LocationThread extends Thread {
15 ...
16 public void run {
17 ManagerOfLocation.findPosition; // use GPS data
18 ... } }
19

Figure 6: Example sensitive API in multi-threading.

output of the Icon-Widget Association component is a mapping be-
tween icons and their corresponding UI widgets. The output of the
Extended Call Graph Construction component is an extended call
graph of the entire app. Then these outputs are used as the inputs
for the Widget-API Association component, which associates the
UI handlers with the UI widgets and constructs the corresponding
call graphs for each UI handler. At last, each method call in the call
graphs is associated with the corresponding permission uses based
on the PScout [6] Android API-permission mappings. The output
of the icon-behavior association module is the icon-permission
mappings that map all the extracted icons to their corresponding
permission uses. We next present the details of each component.

4.2 Icon-Widget Association

In Android apps, icons can be associated with UI widgets by speci-
fying in the UI layout files or in the source code. Each UI layout,
widget, and icon has its own unique ID. UI layout files are loaded
through API calls like setContentView or inflate in activities at run-
time. Then UI widgets in the layout can be bound to variables via
API calls such as findViewByID using UI widgets’ IDs. Icons can be as-
sociated with UI widgets directly in UI layout files as well. Figure 5
shows a simplified UI layout file for the Animated Weather app.
The UI widget ImageView at Line 3 associates an icon to the widget
via the attribute android:src.

We adopt the static analysis of IconIntent [80], the state-of-
the-art sensitive UI widget identification approach, to associate
icons to the UI widgets. IconIntent performs static analysis on
both the UI layout files and the source code to infer the associations
between icons and UI widgets. The static analysis on UI layout
files parses the UI layout files and identifies the names of the app’s
icons (such as @drawable/ic_location) and the UI widgets with IDs,
such as ImageView in Figure 5. The analysis on app’s code provides
a data flow analysis to overapproximate the associations between
variables and UI widget IDs, and the associations between variables
and icon IDs. Then IconIntent combines the analysis results on
both the UI layout files and the code to determine which UI widgets
are associated with which icons (many-to-many mappings).

4.3 Extended Call Graph Construction

Android app executions follow the event-driven execution model.
When a user navigates through an app, the Android framework
triggers a set of lifecycle events and invokes lifecycle methods
such as onCreate and onResume; when a user interacts with the app’s
UIs, the Android framework triggers a set of UI interaction events
and invokes the corresponding callback methods such as onClick.
Furthermore, multi-threaded communications split the execution
into executions in both foreground and background. Thus, to de-
termine which behavior is triggered (i.e., which APIs are invoked),
DeepIntent builds a static call graph for each UI handler.

Figure 6 shows an example app that requests a user’s GPS loca-
tion via multi-threading. When the UI widget (ImageViewLocation) is
clicked at Line 5, startAsincSearch is invoked. Then a new thread
is initiated and started for startAsincSearch at Line 10 and Line 11.
At last, a sensitive API that requires the location permission is in-
voked in LocationThread.run at Line 17. In other words, in addition to
the explicit calling relationships established via calling statements,
there exist implicit calling relationships between setOnClickListener

and onClick, as well as LocationThread.start and LocationThread.run.
In addition to multi-threading, sensitive APIs may be invoked via a
service or a broadcast receiver using Inter-Component Communi-
cations (ICC) [37, 54].

These implicit calling relationships pose challenges for infer-
ring the APIs invoked when the UI handler is triggered. Existing
work [5, 79] has proposed techniques to address these challenges
in building call graphs. However, they often assume every possi-
ble combination of lifecycle methods (e.g., onCreate and OnResume),
multi-threading methods, and ICC methods, resulting in exhaustive
calling contexts. To find APIs invoked by a UI handler, such exhaus-
tive calling contexts result in a large number of false associations
between UI widget and sensitive APIs.

To address this problem, we propose a static analysis technique
to patch these missing calling relationships without exhausting the
lifecycle method calls. Specifically, our static analysis first leverages
existing static call graph techniques to build a call graph based
on calling statements, and then expands the static call graph with
edges representing implicit calling relationships. In particular, our
analysis includes four types of implicit calling relationships that are
most commonly used in Android apps, including multi-threading,
lifecycle method, event-driven method, and inter-component com-
munication (ICC). Table 1 shows the implicit calling relationships

Caller Callee

setOnClickListener onClick

Thread.start Thread.run

AsyncTask.execute doInBackground

onPreExecute

onPostExecute

sendMessage handleMessage

Table 1: Implicit caller and callee pairs captured.

used by our analysis, except for ICC methods. Our analysis lever-
ages existing ICC analysis [37, 54] to identify the implicit calling
relationships for ICCs and create edges in the call graph for them.

4.4 Widget-API Association

This component aims to associate the UI widgets with their UI han-
dlers and construct the call graphs for the UI handlers. We adapt
the existing Android static analysis tool, GATOR [63, 81, 82], to
associate the UI handlers with UI widgets. GATOR applies static
analysis to identify UI widgets and UI handlers, and provides an
over-approximation dataflow algorithm to infer the associations
between the event handler methods and the UI widgets. Our ap-
proach then combines the output from GATOR with the output
from the Icon-Widget Association component to build the associ-
ations among icons, layout files, UI widgets, and UI handlers. For
example, in Figure 6, the UI widget ImageViewLocation is bound to
the layout file in Figure 5, its icon is lc_location (Line 3 in Figure 5),
and it is associated to the UI handler SearchForm.onClick. Note that
there can be multiple handlers for one UI widget.

Once each widget is associated to icons and UI handlers, our
approach then generates a call graph for each of its UI handlers. A
call graph of a UI handler is a subgraph of the extended call graph
for the entire app, which contains the nodes that are reachable from
the UI handler. DeepIntent then finds API uses for the UI widget
by searching the API calls inside the call graph.

4.5 API Permission Checking

This component maps the APIs found in the extended call graph
of each icon widget to permission uses based on PScout [6], a
widely-used permission mapping from Android APIs to Android
permissions. This component outputs the associations between
each icon and a set of permissions. Note that an icon widget can be
mapped to one or more permission uses since it may invoke multi-
ple sensitive APIs or some sensitive APIs are mapped to multiple
permissions.

4.6 Contextual Texts Extraction for Icons

As mentioned in introduction, similar icons may reflect different
intentions in different UI contexts. While it is difficult to differenti-
ate them by just comparing the icons, the contextual texts, such as
the nearby text labels and the header of the UI, can be used to help
distinguish the contexts of the icons. Thus, DeepIntent further
provides a contextual text extraction component that extracts the
contextual texts for each icon. Specifically, DeepIntent extracts
three types of contextual texts: (1) layout texts that are contained

Text

Icon

Learning
Text Feature
Extraction

Icon Feature
Extraction

Feature
Combination

Permissions

Behavior
Prediction

Figure 7: Workflow of Deep Icon-Behavior Learning.

in the XML layout files, (2) icon-embedded texts which can be ex-
tracted by Optical Character Recognition (OCR) techniques, and
(3) resource names split by variable naming conventions. The fi-
nal output of our static analysis is a set of ⟨icon, text ,permissions⟩
triples.

5 DEEP ICON-BEHAVIOR LEARNING

Using the output (i.e., ⟨icon, text ,permissions⟩ triples) from the pre-
vious module, DeepIntent leverages the co-attention mechanism
to jointly model icons and texts, and trains an icon-behavior model
that predicts the permission uses of icon widgets.

5.1 Model Overview

The overview of the this module is shown in Figure 7. Each piece
of input consists of an icon and its text. As an initialization step to
simultaneously learning their joint features, we need to first feed
icons and texts into their respective feature extraction components.
More specifically, we adapt DenseNet layers to extract icon features
and bidirectional RNN layers to extract text features. We then com-
bine them into a joint feature vector by using co-attention layers.
The intuition is as follows. On one hand, the icon and its text could
be semantically correlated; consequently, although we can simply
concatenate the icon features and text features, the correlation
between these two sources would be ignored, making the final rep-
resentations of the input icon-text pair sub-optimal. On the other
hand, the recently proposed co-attention layers can simultaneously
update the icon features and the text features with the guidance
of each other, and thus can capture the correlations between icons
and texts. Next, since each icon may relate to multiple permissions,
we formulate a multi-label classification problem [72] to learn the
joint features. With the mapped permissions for icons, DeepIntent
trains an icon-behavior model in an end-to-end manner.

5.2 Icon Feature Extraction

Each icon can be treated as a color tensor with fixed width, height,
and color channels. In this work, we adapt DenseNet [30], the state-
of-the-art image feature extraction model, to initialize the icon
features. Typically, DenseNet contains several dense blocks and
transition layers. We do not directly use the pre-trained DenseNet
model for two reasons. First, the pre-trained model is trained on
datasets such as CIFAR [34] and ImageNet [15], which contain
natural images taken from cameras, while icons are mostly artifacts.
Second, the pre-trained model considers images with 3 channels
(RGB) and ignores the alpha channel that describes the opacity
of the image. However, many icons use the alpha channel, and
ignoring this channel might mislead the learned features [80].

Input
Icon

DenseNet

𝑢

Dense
Block

Transition
Layer

Dense
Block

C
o

n
vo

lu
tio

n

……

× 3

𝑓𝑢

(a) Icon feature extraction.

send

sms

normal

text

Input Text Bidirectional RNN

Em
b

ed
d

in
g

𝑣

𝑓𝑣

(b) Text feature extraction.

…
…

…

𝐶
𝑓𝑢

𝑓𝑣

෩𝑓𝑣

෩𝑓𝑢 𝑓

Icon Feature
and Text Feature

Co-Attention

(c) Feature combination.

Figure 8: Structure of the icon-behavior model.

Therefore, we design our own DenseNet with 4 channels (RGBA)
to extract icon features, as shown in Figure 8 (a). Our DenseNet
starts with a convolutional layer, followed by four dense blocks
and three transition layers between these dense blocks. For all the
icons, we resize them to 128 × 128 (most icons are within this size).
For an icon u, the output of our DenseNet is a 16 × 16 × 68 tensor,
which means that there areM = 16× 16 regions of the icon each of
which is represented via a du = 68 dimensional vector, i.e.,

fu = DenseNet(u), (1)
where u ∈ R128×128×4 is the color tensor of the input icon (with
width 128, height 128, and channel number 4), and fu ∈ Rdu×M

containsM regional feature vectors each of which is of du dimen-
sion. In practice, we further add a fully connected layer after the
DenseNet to convert each regional feature vector into a new vector
that has the same dimension with the text feature vectors.

5.3 Text Feature Extraction

To initialize the text features, we employ the state-of-the-art bidirec-
tional RNNs to extract the text features, whose structure is shown
in Figure 8 (b). For an input text v , i.e., a sequence of words, we
first embed each word into a vector vi , and then feed these vectors
into the RNNs with GRU neurons [10],

®hi = GRU (vi , ®hi−1)
®hi = GRU (vi , ®hi+1) (2)

where ®hi , ®hi ∈ Rd/2 are the forward and backward features of vi ,
respectively, and d/2 is dimension of the forward/backward feature
vector. We concatenate forward and backward feature vectors into
the overall feature vector for an input word, i.e., hi = [®hi ; ®hi]. By
setting the maximum length of text to N , we can obtain N feature
vectors of the text as fv = [h1, ..,hN] where hi ∈ Rd . For text
feature initialization, we can also directly adopt word embedding
models [49, 57]. However, such models tend to ignore the order of
the words in the sentence. In this work, we set d = 100 and N = 20
as the length of most surrounding texts are within this limitation.

5.4 Feature Combination

With the extracted icon features and text features, we next combine
them to obtain the joint feature vectors. The key idea is to apply the
parallel co-attention mechanism [47, 90] to bidirectionally update
the icon features and text features with the guidance of each other,
as shown in Figure 8 (c). Take the direction from icon features to
text features as an example. Here, the attention improves the text
feature vector by highlighting the words that are relevant to the
image.

Specifically, with the extracted icon features fu and text features
fv , we first define the correlation matrix C ∈ RN×M as follows,

C = tanh(f Tv Wc fu) (3)

whereWc ∈ Rd×d contains the parameters to be learned. Note
that, there are M regional feature vectors for an icon and N fea-
ture vectors for its text. Consequently, this C matrix contains the
similarities/correlations betweenM × N pairs of feature vectors.

Based on the above correlation matrix, we can connect the icon
features and text features by transferring the features for each other.
In particular, we use the following equations to update the icon
features with the guidance of text features,

Hu = tanh(Wu fu + (Wv fv)C)

au = so f tmax(WhHu)

˜fu =

M∑
i=0

(a
(i)
u f

(i)
u) (4)

where ˜fu ∈ Rd contains the updated icon feature vector,Wv ,Wu ∈

Rk×d ,Wh ∈ R1×k are parameters, and k is the dimension size of
these parameters. In the above equations, Hu ∈ Rk×M stands for
the feature matrix obtained by transforming the text features (i.e.,
fv) into icon features through the correlation matrix C , and au
stands for the importance/weights of each regional feature vector
to the final icon feature vector. Analogously, we can update the text
features from fv to ˜fv and the equations are omitted for brevity. In
practice, we update the icon features and text features in parallel.

With the updated icon features and text features, the combined
feature vector f ∈ Rd for an icon and its text is computed as follows.

f = ˜fu + ˜fv (5)

5.5 Training

Given the above design, the next step is to train the icon-behavior
model to connect the features to the used permissions.We formulate
it as a multi-label prediction problem to allow one icon to match
multiple permissions. Since the prediction of each permission can be

Detecting Group-wise
Outliers

Computing the Final
Outlier Score

distance-
based

prediction-
based

𝑠1

𝑠𝑛

𝑠2

Features and
Permissions

send
sms

SMS
Permission

outlier
score

Figure 9: Workflow of detecting intention-behavior discrep-

ancy.

formulated as a binary classification problem, we use the sigmoid

function in logistic regression [29] to predict whether the icon
matches each of the permissions. Next, since multiple permissions
used by an icon can be treated as a probability distribution, we
employ the binary cross entropy [21] as our loss function to measure
the differences between the predicted permissions and the real ones
obtained by our static analysis. The detailed equations are omitted
for brevity. With the trained icon-behavior model, we can easily
obtain the joint feature vector f of a test icon by feeding its icon
image and contextual text into the model.

6 DETECTING INTENTION-BEHAVIOR

DISCREPANCY

Based on the learned icon-behavior model, we next detect the icon-
behavior discrepancies via identifying the permission-based out-
liers. For example, if the feature vector of an icon is far away from
that of normal icons with the same permissions, there might be a
mismatch between the icon intention and its behavior. Although
we can directly use the icon-behavior model to predict the permis-
sion uses for each icon and then detect the outliers based on the
prediction results, we deliberately add an outlier detection module
for the following two reasons. First, directly using the prediction
results would be less accurate as neural networks are inherently
probabilistic, especially considering the fact that there might exist
some intention-behavior discrepancies in the training data. Instead,
we try to make use of the learned low-dimensional features as these
features tend to be more robust [52, 94], which is also verified by
our experimental results. Second, our outlier detection module can
effectively make use of the prediction results from the learned icon-
behavior model. For example, if the icon-behavior model predicts
that the test icon should use a certain permission, the test icon is
less likely to be an outlier in this permission group.

6.1 Outlier Detection Overview

The overview of the outlier detection module is shown in Figure 9.
Given a test icon and its contextual text from a newAPK file, we first
extract its low-dimensional feature vector f based on the learned
icon-behavior model, and obtain its actual permission uses by static
analysis (Section 4). We organize the sensitive permissions into
permission groups based on the Android dangerous permission
groups [22] (see Table 2), and learn an outlier detector for each

permission group. Note that we exclude certain permissions (e.g.,
READ_PHONE_STATE and permissions in the SENSORS and CALL_LOG groups)
since these permissions are not evident to the users through UIs
(e.g., READ_PHONE_STATE) or rarely appear in the collected apps (e.g.,
ANSWER_PHONE_CALL). We also add the NETWORK group for network com-
munications as some apps may disclose users’ data. Then, we use
group-wise outlier detectors to compute the group-based outlier

scores through each used permission. For example, the example
icon in Figure 9 uses only the SMS permission. Then, the outlier
detector corresponds to this permission group will be activated.
Next, as one icon may be related to multiple permission groups,
we aggregate the group-based outlier scores to form the the final
outlier score. Here, a key step is to compute the weights of each
group-based outlier score. The final outlier score reflects the overall
likelikood of intention-behavior discrepancy for the input test icon.

6.2 Computing Group-Wise Outlier Score

There exist several choices for the group-wise outlier detector, in-
cluding KNN [59], OCSVM [65], IForest [44], and AutoEncoders [3].
We empirically found that the performances of these detectors are
relatively close to each other (Section 7.3.3). Therefore, we adopt
the AutoEncoder structure for simplicity, which is known to be an
effective replacement of traditional methods for the outlier detec-
tion problem [3]. The key idea of AutoEncoder is to first reduce the
dimension of the original feature and then reconstruct it, i.e.,

д = reduce(f)

f ′ = reconstruct(д) (6)

where f ∈ Rd is the original feature vector from the icon-behavior
model, д is the reduced feature vector, and f ′ ∈ Rd is the re-
constructed feature vector for f . Specially, we implement reduce
and reconstruct with two fully-connected layers, respectively. The
learning process is then guided by minimizing the reconstruction
error, i.e.,

min
d∑
j=1

(
f (j) − f

′(j)
)2
. (7)

We train one AutoEncoder for each permission group, with the
icons from benign apps (the same input with the icon-behavior
learning). Then, for a test icon, the reconstruction error of the cor-
responding AutoEncoder is used to indicate the outlier score for
each permission group. The intuition is that normal icons in the
same permission group can be easily reconstructed while the recon-
struction of anomalies would be relatively difficult. To be specific,
suppose the test icon uses a permission in the i-th permission group,
and f ′i is the reconstructed feature vector in the i-th corresponding
AutoEncoder. Then, si = (f − f ′i)

2 is used as the outlier score for
this permission group.

6.3 Computing Final Outlier Score

Given that there are n permission groups with scores [s1, s2, ..., sn],
the remaining problem is to aggregate these scores into a final
outlier score s . In this work, we consider the following three aggre-
gation methods. Note that the computations of all the following
aggregation methods are based on the output of the learned icon-
behavior model.

NETWORK
61%

LOCATION
21%

MICROPHONE
4% SMS

4%
CAMERA

3%

CALL
1%

STORAGE
2%

CONTACTS
4%

OTHER
7%

Figure 10: Distribution of sensitive permission groups.

Distance-based aggregation. The first aggregationmethod is based
on the clustering degree of the neighbor icons near the test icon.
Here, the distance is computed based on the features learned from
the icon-behavior model in the vector space. The intuition is that
if the local neighborhood of a test icon is closely clustered, the
AutoEncoder should have been sufficiently trained in the neighbor-
hood; therefore, the ourlier score is more reliable. Here, we compute
the average distance among theT nearest neighbors of the test icon,
and use it to weight the group-based outlier scores as

s = s1/AvдDis1 + s2/AvдDis2 + ... + sn/AvдDisn ,

where AvдDisi means the average distance among the neighbors
in i-th permission group. We normalize 1/AvдDisi to compute s .

Prediction-based aggregation. In the second aggregation method,
we integrate the predicted probabilities over the permissions for
a test icon from the icon-behavior model. The intuition is that if
the icon-behavior model predicts that the icon widget should use a
certain permission, the test icon tends not to be an outlier in this
permission group. Therefore, we have

s = s1 ∗ (1 − p1) + s2 ∗ (1 − p2) + ... + sn ∗ (1 − pn),

where pi is the probability of using the i-th permission (group)
predicted by the icon-behavior model.

Combined aggregation. Based on the above two aggregationmeth-
ods, we also define a combined method by adding the two weights,
i.e.,

s = s1 ∗ (1 − p1 + 1/AvдDis1) + ... + sn ∗ (1 − pn + 1/AvдDisn).

7 EVALUATION

We evaluate DeepIntent on a large number of real world apps.
Specifically, we aim to answer the following research questions:
• RQ1: How effective is the co-attention mechanism for icons and

texts in improving icon-behavior learning?

• RQ2: How effective is icon-behavior association based on static

analysis in improving icon-behavior learning?

• RQ3: How effective is DeepIntent in detecting intention-behavior

discrepancies?

7.1 Evaluation Setup

To evaluate DeepIntent, we collected 9,891 benign apps and 16,262
malicious apps. The benign apps are downloaded from Google Play,
and we further send them to VirusTotal to ensure that no anti-virus
engines flag them as positive. We resort to Wang et al. [77] and
RmvDroid [2, 78] to collect the up-to-date malicious apps. These

Permission Groups Sensitive Permissions

NETWORK INTERNET

CHANGE_WIFI_STATE

LOCATION ACCESS_COARSE_LOCATION

ACCESS_FINE_LOCATION

ACCESS_MOCK_LOCATION

MICROPHONE RECORD_AUDIO

SMS SEND_SMS

READ_SMS

WRITE_SMS

RECEIVE_SMS

CAMERA CAMERA

CALL CALL_PHONE

STORAGE WRITE_EXTERNAL_STORAGE

READ_EXTERNAL_STORAGE

CONTACTS READ_CONTACTS

WRITE_CONTACTS

GET_ACCOUNTS

MANAGE_ACCOUNTS

AUTHENTICATE_ACCOUNTS

Table 2: Sensitive permissions and permission groups.

apps are flagged by at least 20 anti-virus engines on VirusTotal and
are further removed by app markets. For all the apps, we apply our
icon-behavior association techniques (Section 4) to obtain the triples
of ⟨icon, text ,permissions⟩. We then divide these permissions into
8 permission groups as shown in Table 2. The distribution of the 8
permission groups is shown in Figure 10.

Next, to train the icon-behaviormodel, we randomly select 80% of
the triples from benign apps as training data, and use the remaining
20% of the triples from benign apps as a test set, i.e., benign test

set. The benign test set is used to evaluate the effectiveness of
DeepIntent in predicting permission uses based on the icons and
texts. To evaluate the effectiveness of DeepIntent in detecting
intention-behavior discrepancies, we further use all the triples from
malicious apps as the second test set, i.e., malicious test set. We also
apply DeepIntent on the benign test set to see whether there are
intention-behavior discrepancies in these benign apps.

Obtaining Ground-Truths. Since not all the permission uses in
malicious apps are abnormal, we need to collect the ground-truth of
intention-behavior discrepancies for icon widgets. We recruited 10
volunteers who are graduate students from computer science and
have been usingAndroid phones for at least three years.We then ask
these volunteers to manually mark if there are intention-behavior
discrepancies based on the ⟨icon, text ,permissions⟩ triples. We de-
fine a discrepancy as an icon widget uses the permissions that cannot

be justified by the icons and texts in the UIs. Specifically, we randomly
selected 1500 triples from both test sets. Each triple is assigned to
two volunteers for them to mark independently. In cases the two
volunteers disagree with each other, we will ask another volun-
teer to discuss with these two volunteers. If a consensus cannot be
reached, we will exclude this triple.

Overall, we obtain 7691, 1274, and 1362 unique triples that con-
tain sensitive permission uses in the training set, the benign test

Metric Method NETWORK LOCATION MICROPHONE SMS CAMERA CALL STORAGE CONTACTS

Precision

IconIntent 0.9054 0.3702 0.2334 0.3221 0.2917 0.2264 0.1286 0.2644
icon_only 0.9478 0.7006 0.7447 0.7817 0.7793 0.9138 0.8273 0.7725
text_only 0.9775 0.8505 0.8515 0.8651 0.8763 0.8028 0.7971 0.8489

concatenate 0.9665 0.8684 0.7827 0.8747 0.8955 1.000 0.8526 0.8809
add 0.9617 0.8588 0.8117 0.9076 0.9378 1.000 0.8915 0.8528

co-attention 0.9674 0.8675 0.8531 0.9389 0.9322 1.000 0.9137 0.9073

Recall

IconIntent 0.7488 0.7897 0.6985 0.6825 0.6885 0.7059 0.5454 0.5576
icon_only 0.987 0.6021 0.4355 0.5209 0.5558 0.6306 0.4548 0.5326
text_only 0.9807 0.8784 0.7473 0.7874 0.7512 0.7315 0.6802 0.7926

concatenate 0.9841 0.8426 0.5839 0.72 0.7258 0.6134 0.4054 0.7177
add 0.9858 0.8549 0.5606 0.6605 0.7214 0.65 0.468 0.7532

co-attention 0.9883 0.8325 0.6487 0.7763 0.7274 0.6111 0.5554 0.7705

F1

IconIntent 0.8197 0.5041 0.3499 0.4377 0.4098 0.3429 0.2081 0.3587
icon_only 0.967 0.6476 0.5496 0.6252 0.6488 0.7462 0.5869 0.6305
text_only 0.9791 0.8642 0.796 0.8244 0.8089 0.7655 0.734 0.8198

concatenate 0.9752 0.8553 0.6688 0.7898 0.8018 0.7604 0.5495 0.791
add 0.9736 0.8568 0.6632 0.7646 0.8155 0.7879 0.6138 0.7999

co-attention 0.9777 0.8496 0.737 0.8499 0.8172 0.7586 0.6909 0.8333

Table 3: Evaluation results for icon-permission prediction. Our co-attention mechanism in DeepIntent generally performs

the best, especially in four permission groups that are relatively difficult to predict.

set, and the malicious test set, respectively. In the two test sets, we
have manually found 432 and 865 intention-behavior discrepancies.

7.2 Implementation

DeepIntent contains three key steps: icon-behavior association,
icon-behavior modeling, and outlier detection. For icon-behavior
association, we implement it upon Gator [64] and Soot [74] for
static analysis. We decode apps using ApkTool [73] and map API
methods to permissions using PScout [6]. We use Pillow [12] to
process icons and Google Tesseract OCR [60] to extract embedded
texts from icons. We followed the standard steps as the previous
work [80] including tuning image colors and rotating images to fit
the text angles before extracting embedded texts from icons. For the
icon-behavior model, we implement it using Keras [11]. We embed
each word with the dimension of 100, and set feature dimension d
to 100. The model is trained using stochastic gradient descent with
the Adam optimizer. We also adopt dropout [21] with the dropout
rate being 0.5. For outlier detection, we set the hidden dimensions
of AutoEncoder to [64, 32, 64], where the first two dimensions are to
compress and the last two are to reconstruct. The neighborhood size
for the distance-based aggregation method is set to 5 (i.e., T = 5).

7.3 Evaluation Results

7.3.1 RQ1: Effectiveness of joint feature learning. To demonstrate
the effectiveness of the co-attention mechanism that jointly mod-
els icons and texts in icon-behavior learning, we first compare
DeepIntent with IconIntent [80], the state-of-the-art sensitive
UI widget identification approach that adapts computer vision tech-
niques (SIFT [46] and FAST [62]) to predict sensitive categories of
UI widgets. As IconIntent is designed to predict each single per-
mission group while DeepIntent targets at a multi-label prediction
problem, for fair comparison, we run IconIntent multiple times
over each permission group to obtain the predicted labels. Next, to

demonstrate the improvement brought by modeling both icons and
texts, we compare with two variants of DeepIntent: ‘icon_only’
and ‘text_only’, which consider either only image features or only
text features. Finally, we further compare the co-attention mecha-
nism used inDeepIntentwith two variants: ‘add’ and ‘concatenate’,
which adds or concatenates the image and text features to substitute
our feature combination in Figure 8 (c).

We measure the prediction accuracy of DeepIntent and the
compared approaches. The test set of this experiment is a subset
of the benign test set with icons marked as intention-behavior
discrepancies deleted. Since we model the permission prediction as
a multi-label prediction problem, we adopt the average precision,
recall, and F1-score over each icon as evaluationmetrics. The results
are shown in Table 3.

We have several major observations. First, all the three Deep-
Intent variants significantly outperform IconIntent in terms of
precision and F1-score. For example, DeepIntent achieves at least
19.3% relative improvement in different permission groups. IconIn-
tent yields higher recall values. The reason is that the extracted
features from IconIntent are less accurate, and it tends to predict
a larger number of permissions for each icon, resulting in higher
recall and lower precision. This result indicates the superior per-
formance of the used deep learning techniques clearly over the
computer vision techniques in IconIntent for large-scale datasets.

Second, compared to ‘text_only’ and ‘icon_only’, DeepIntent
performs the best in most cases on the F1-score metric. The only ex-
ception is from the Network group when comparing with ‘text_only’.
The possible reason is as follows. Compared to the other permis-
sions, various icons with more different appearances may use the
Network permission; therefore, adding icon features may mislead
the predictions when there are insufficient similar icons in the
training data. Moreover, we can observe that ‘text_only’ generally
performs better than ‘icon_only’. The reasons are three-fold: 1) text

0.0 0.2 0.4 0.6 0.8 1.0

NETWORK
LOCATION

MICROPHONE
SMS

CAMERA
CALL

STORAGE
CONTACTS

Program Analysis Manifest File

(a) The distributions of icon permissions. Directly using mani-

fest files introduces many unused permissions.

NETWORK
LOCATION

MICROPHONE SMS
CAMERA CALL

STORAGE
CONTACTS

0.0

0.2

0.4

0.6

0.8

1.0

Precision (Analysis)
Precision (Manifest)

Recall (Analysis)
Recall (Manifest)

(b) The precision/recall results for the icon-behavior model.

Training with permissions in manifest files performs poorly

in precision.

Figure 11: The necessity of icon-behavior association.

descriptions are intuitively discriminative in our prediction task, 2)
we extract text not only in apps’ UIs but also from the layout and
resource names, and 3) icon images are relatively noisy and require
more data for training.

Third, the co-attention mechanism in DeepIntent performs
especially well in 4 out of 8 permission groups (the bold cases in the
table). One common place in these 4 cases is that the accuracy of all
the feature combination methods is relatively low. This means that
our co-attention mechanism helps improve the learned model for
the permission groups that are relatively more difficult to predict.

Overall, this experiment shows the effectiveness of our co-attention

mechanism for learning the icon-behavior model, which performs

especially well in four out of eight permission groups that are relatively

difficult to predict.

7.3.2 RQ2: Effectiveness of Icon-Behavior Association. To demon-
strate the necessity of icon-behavior association in icon-behavior
learning, we compareDeepIntentwith an approachMani f est that
uses the permissions defined in an app’s manifest file for all the icon
widgets in this app. Obviously, the permission set from the manifest
file for each icon widget is a super set of that from our icon-behavior
association module. We then use these permissions for each icon
as the training set, and evaluate Mani f est ’s performance on the
benign test set without icons marked as intention-behavior discrep-
ancies. The resulting permission distributions and the prediction
accuracy results are shown in Figure 11.

Type Permission Precision/Recall AUC

benign

NETWORK 0.693 0.8638
LOCATION 0.7857 0.746
MICROPHONE 0.7613 0.8221

SMS 0.7685 0.7841
CAMERA 0.7647 0.7851
CALL 0.8697 0.9382

STORAGE 0.8571 0.9722
CONTACTS 0.7849 0.787

malicious

NETWORK 0.7568 0.8712
LOCATION 0.856 0.756
MICROPHONE - -

SMS 0.939 0.8034
CAMERA 0.9167 0.8472
CALL - -

STORAGE 0.9231 0.8462
CONTACTS 0.9412 0.8412

Table 4: Detection accuracy results over permission groups.

AUC= 0.5means randomguess.DeepIntent can accurately

detect the intention-behavior discrepancies.

Figure 11 (a) shows the permission distributions where we com-
pute the percentage of icons under each permission group. As we
can see, directly using manifest files introduces many unused per-
missions. For example, there are three times more icons with CAMERA

and CONTACTS permissions by using the manifest files. This ratio is
even larger for STORAGE and CALL.

Figure 11 (b) shows the precision and recall results of the re-
trained model with permissions from manifest files. The results of
DeepIntent are also plotted with a wider rectangle and lighter
color. As we can see, the precision results of the re-trained model
decrease dramatically in many cases while the recall results stay
high. This is consistent with our intuition that using more permis-
sions for training tends to predict more permissions on the test set,
which could dramatically degenerate the precision performance.
On average, the precision result of DeepIntent is 0.9419 while that
of the re-trained model is 0.5515.

Overall, the results show that our icon-behavior association module

is essential to accurately extract icon-permission mappings for the

learning of the icon-behavior model.

7.3.3 RQ3: Detecting Intention-Behavior Discrepancies. For RQ3,
we evaluate the effectiveness of DeepIntent in terms of detect-
ing the intention-behavior discrepancies. DeepIntent returns a
ranked list based on the outlier score of each test icon widget. We
adopt the top-K precision/recall and AUC metrics based on the
manually labeled benign and malicious test sets. To choose a best
group-wise detector, we also evaluate the effectiveness of differ-
ent group-wise detectors and different aggregation methods with
DeepIntent. Finally, to show the superiority of DeepIntent in de-
tecting discrepancies, we further compare DeepIntent with other
outlier detectors based on IconIntent and part of the features used
by DeepIntent. The results are shown in Tables 4 - 7 and Figure 12.

Detection accuracy over permission groups. Table 4 shows the
results for each permission group. The first column is the type of
test set. The precision/recall column is based on the top-K results

Type Method AUC

benign

KNN 0.8614
OCSVM 0.8493
IForest 0.8345

AutoEncoder 0.8656

malicious

KNN 0.8922
OCSVM 0.8539
IForest 0.8640

AutoEncoder 0.8839
Table 5: Detection accuracy results using different group-

wise outlier detectors. These detectors perform relatively

close to each other, and we adopt AutoEncoder due to its ef-

ficiency and simplicity.

Type Method AUC

benign

mean 0.7368
distance-based 0.8211
prediction-based 0.8313

combined 0.8656

malicious

mean 0.7914
distance-based 0.8484
prediction-based 0.8605

combined 0.8839

Table 6: Detection accuracy results using different aggrega-

tion methods. AUC = 0.5 means random guess. The com-

bined aggregation performs best.

when K is set to the real number of labeled intention-behavior
discrepancies; therefore, the precision and recall have the same
value in this case. The AUC column stands for the AUC value when
we vary K from zero to the test set size. The permission groups
MICROPHONE and CALL in the malicious test set are marked as ‘-’. This
is because the malicious apps we collected rarely contain these two
permissions.

We can first observe from the table that, in general, DeepIn-
tent can accurately detect the intention-behavior discrepancies.
For example, the precision and recall results are all above 0.9 for
SMS, CAMERA, STORAGE, and CONTACTS in the malicious test set. These
permissions are widely adopted by malicious apps to steal user
information and perform monetized actions. Second, although still
effective, the detection accuracy is relatively lower in LOCATION. The
probable reason is that many icons such as refreshing the restaurant
recommendations will update the screen using the current location;
however, this intention is hardly to observe from the UI. Third, the
performance in the NETWORK group is relatively low. This is due to the
fact that many icons with many different looks and purposes are
related to the network permissions, making it difficult to recognize
the discrepancies.

Group-wise Detectors and Aggregation Methods. In our discrep-
ancy detection, we have four group-wise detectors and three ag-
gregation methods. Table 5 and Table 6 show the results of these
choices. In Table 5, we use each outlier detector to substitute the
AutoEncoder as described in Section 6.2, followed by the combined
aggregation method. We can observe that all the four detectors

Type Method AUC

benign

IconIntent 0.6188
icon_only 0.7618
text_only 0.7739
prediction 0.7991
DeepIntent 0.8656

malicious

IconIntent 0.7009
icon_only 0.7537
text_only 0.7752
prediction 0.8122
DeepIntent 0.8839

Table 7: Detection accuracy comparisons. DeepIntent sig-

nificantly outperforms the competitors.

perform relatively close to each other, and we adopt AutoEncoder
in this work due to its simplicity and efficiency. For Table 6, we
report the results of different aggregation methods. We also show
the results when we simply compute the mean outlier score from
group-wise detectors (referred as ‘mean’ in the table). We can see
that, compared with ‘mean’ aggregation, both distance-based aggre-
gation and prediction-based aggregation can achieve much higher
accuracy in terms of correctly identifying the intention-behavior
discrepancies. Furthermore, combining these two aggregationmeth-
ods can achieve further improvement. In this work, we adopt the
combined aggregation method.

Comparisons for Outlier Detection. Finally, we compare DeepIn-
tentwith several competitors in terms of identifying the intention-
behavior discrepancies. The average AUC results are shown in
Table 7. We include 4 competitors. For IconIntent, we input the
extracted features into our outlier detection module. For ‘icon_only’
and ‘text_only’, we use only the image features and text features,
respectively. For ‘prediction’, we directly use the predicted results
from our icon-behavior model to detect the discrepancies.

The results show that DeepIntent significantly outperforms the
competitors. Compared with IconIntent, DeepIntent achieves
39.9% and 26.1% improvements on the benign apps and themalicious
apps, respectively. This result, again, indicates that the extracted
features by DeepIntent are more accurate. DeepIntent is also bet-
ter than ‘icon_only’ and ‘text_only’, which means that combining
icon and text features are also useful for discrepancy detection. Fi-
nally, DeepIntent outperforms the ‘prediction’ method. This result
is consistent with our motivation of evolving an outlier detection
module after the behavior prediction module (Section 6).

To further inspect the performance of DeepIntent, we show
its precision and recall curves in Figure 12. In the figure, the y-
axis means precision/recall, the x-axis is the K (i.e., choosing top
K candidates based on the final outlier scores), and the dashed
vertical line means the real number of labeled outliers. Intuitively,
the larger the area under the curve, the better the method. In the
figure, we also plot the theory results of the ‘random’ method which
randomly identifies the outliers for comparison. We can observe
from the figure that both curves of DeepIntent are significantly
better than the ‘random’ method. Take the malicious test set (the
right part of Figure 12) as an example. When K is less than the
real number of outliers (i.e., K < 865), the precision results are

0 250 500 750 1000 1250
0.0

0.2

0.4

0.6

0.8

1.0

0 250 500 750 1000 1250
Top-K

Pr
ec

isi
on

/R
ec

al
l

Precision (DeepIntent)
Recall (DeepIntent)

Precision (Random)
Recall (Random)

Figure 12: Detection precision and recall for benign apps

(left) and malicious apps (right).

always above 0.85. In other words, when the returned number of
icons is less than 865, over 85% of them have intention-behavior
discrepancies.

Overall, the results show that DeepIntent can accurately identify

the intention-behavior discrepancies in mobile apps.

8 DISCUSSION

Icon-Behavior Association. DeepIntent adapts static analysis
to extract the icon-permission mappings. While the static analy-
sis takes into account the major factors introduced by Android’s
complex environment (i.e., multi-threading, lifecycle methods, and
ICCs), apps may evade our analysis by invoking sensitive APIs via
reflections and native libraries. In the future, we plan to incorporate
more advanced instrumentation techniques and dynamic analysis
techniques to deal with reflections and native libraries [38, 39].
Moreover, the static analysis can produce incorrect associations
between UI handlers and UI widgets due to its overapproaxima-
tions. We plan to mitigate such issues using dynamic exploration
techniques to filter out false associations [25, 48, 70].
Deep Icon-Behavior Learning. We consider the limitations of
our learning within two aspects. First, DeepIntent is trained with
certain data and could only react with similar icons within the
training set. When DeepIntent meets new icons or noisy icons,
the performance is non-deterministic. Furthermore, icons gener-
ated by recent deep learning attack models may also compromise
DeepIntent. Second, we use contextual texts to enhance the icon-
behavior learning process, but the vocabulary of DeepIntent is
limited. This problem also troubles other natural language process-
ing approaches, which is known as OOV (i.e., out of vocabulary)
problem. Although we could use special characters like ‘UNK’ to
indicate these words, the overall performance will drop.
Adversarial Setting. Our model is learned from the behaviors col-
lected from a large set of popular apps in Google Play, representing
the expected behaviors of apps with specific UIs. To avoid our de-
tection, adversary apps may camouflage their undesired behaviors
in apps with legitimate UIs and features for the undesired behav-
iors. For example, an eavesdropping app may pretend to be a voice
recording app that has a UI widget with a microphone icon to use
the microphone legitimately. With DeepIntent, if the app tries to
send out the recorded audio, the extra permission on NETWORK will
reveal its differences and can be detected. If the app tries to use

non-UI events for using the microphone, existing malware detec-
tion techniques [83] can be leveraged to detect non-UI permission
misuses. Finally, we admit that, as a potential evasion technique, an
attacker may collect the data as we did from the whole app market
and try to hide their malicious behaviors in benign behaviors with
specific UIs. However, summarizing these benign behavior patterns
and extracting them from the learned model are non-trivial, espe-
cially given the model is trained using deep learning. As a result,
our technique significantly raises the bar for potential attacks.

9 RELATEDWORK

UI Analysis of Mobile Apps. AsDroid [33] checks the compati-
bility of the UI widgets’ descriptive texts and the pre-defined inten-
tions represented by its sensitive APIs. SUPOR, UIPicker, Uiref [4,
31, 51] analyze the descriptive texts in apps’ UI for identifying sen-
sitive UI widgets that accept user inputs. PERUIM [40] extracts the
permission-UI mappings from an app based on both dynamic and
static analysis, helping users understand the requested permissions.
Liu et al. [45] propose an automatic approach for annotating mobile
UI elements with both structural semantics such as buttons or tool-
bars and functional semantics such as add or search. AppIntent [85]
presents the sequence of UI screenshots that can lead to sensitive
data transmissions of an app for human analysts to review. None
of them model both icons and texts to detect abnormal behaviors.
TextualAnalysis onMobileApps.WHYPER [56] andAutocog [58]
adapt Natural Language Processing (NLP) techniques to identify
sentences in app descriptions that explain the permission uses.
BidText [32] detects sensitive data disclosures by performing bi-
directional data flow analysis to detect variables that are at the
sink points and are correlated with sensitive text labels. Pluto [14]
analyzes app files to identify user data exposure to ad libraries.
There are also existing techniques that leverage the textual infor-
mation from code to infer the purposes of permission uses [76],
and synthesize natural language descriptions for the data flow be-
havior in using users’ sensitive data [88]. Unlike these approaches
that map text to sensitive data directly, our text analysis uses the
contextual texts for icon widgets as part of the features to learn the
intention-behavior model.
Android Static Analysis. Existing work [5, 79] has provided ap-
proaches to build call graphs that consider Android’s complex en-
vironment. However, their focus is to enumerate all possible com-
binations of lifecycle methods for improving the precision of static
analysis, which will cause lots of false positives if used for build-
ing a UI handler’s call graph. AppAudit [13] proposes a solution
for handling Android multi-threading, system/GUI callbacks, and
lifecycle methods to build extended call graph, and it combines
dynamic analysis on filtering false positive call edges. DeepIntent
can further benefit from its techniques to improve the call graph
construction. There also exists a line of related work [37, 53–55, 91]
that leverages program analysis andmachine learning techniques to
identify the ICCs in Android apps. The ICC analysis of DeepIntent
is built on these work.
Modeling Image and Text. Images and texts could be modeled
separately or jointly. For example, CNNs (e.g., VGG [67], ResNet [26],
and DenseNet [30]) are widely used in modeling images; RNNs as

well as attention mechanisms [84], sequence to sequence struc-
tures [8], and memory networks [71] are employed to handle text-
related tasks. Recently, Lu et al. [47] and Zhang et al. [89] present
a co-attention mechanism to jointly model images and texts. Deep-
Intent trains its own DenseNet to learn the features of icons, and
further integrates the state-of-the-art network structures to co-train
icons and texts into a better feature representation.
OutlierDetection. There exist various outlier detection techniques
such as KNN [59], PCA [66], andAutoEncoder [3], which are also ap-
plied in Android analyzing scenarios. For example, CHABADA [23]
groups apps based on their topics, and identifies outliers in each
group that use abnormal APIs. MUDFLOW [7] extracts data flows
from Android apps and flags malicious apps due to their abnormal
data flows. These proposals detect app-level outliers, while Deep-
Intent considers the icon-level outliers. Moreover, one difficulty
of DeepIntent is the absence of icon-level outlier labels, and thus
we propose static analysis to obtain these labels.

10 CONCLUSION

We have presented a novel framework, DeepIntent, that syner-
gistically combines program analysis and deep learning to detect
intention-behavior discrepancies inmobile apps. In particular,Deep-
Intent includes a static analysis that handles the complex Android
environment to identify icon widgets and associate the widgets to
permission uses, applies the parallel co-attention mechanism to
jointly model icons and their contextual texts of the icon widgets,
and detects the intention-behavior discrepancies by computing and
aggregating the outlier scores from each permission used by the
icon widget. Our evaluation on a large number of real apps demon-
strates that DeepIntent effectively detects intention-behavior dis-
crepancies by checking the intentions reflected by apps’ UIs against
the behind-the-scene program behaviors.

ACKNOWLEDGMENTS

This work is supported in part by the Natural Science Founda-
tion of China (No. 61690204, 61932021, 61672274), the National
Science Foundation (CNS-1755772), and the Collaborative Innova-
tion Center of Novel Software Technology and Industrialization.
Fengyuan Xu is partly supported by the National Science Founda-
tion of China (No. 61872180) and Jiangsu “Shuang-Chuang”. Haoyu
Wang is partly supported by the National Science Foundation of
China (No. 61702045). Peng Gao is supported in part by the CLTC
(Center for Long-Term Cybersecurity). Yuan Yao is the correspond-
ing author.

REFERENCES

[1] 2017. How Big Data Is Empowering AI and Machine Learning at Scale.
(2017). https://sloanreview.mit.edu/article/how-big-data-is-empowering-ai-and-
machine-learning-at-scale/.

[2] 2019. RmvDroidDataset. (2019). https://zenodo.org/record/2593596#.XNtieI4zZyw.
[3] Charu C Aggarwal. 2015. Outlier analysis. In Data mining.
[4] Benjamin Andow, Akhil Acharya, Dengfeng Li, William Enck, Kapil Singh, and

Tao Xie. 2017. UiRef: Analysis of Sensitive User Inputs in Android Applications.
In Proceedings of the 10th ACM Conference on Security and Privacy in Wireless and

Mobile Networks (WiSec).
[5] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. In Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI).

[6] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. PScout:
Analyzing the Android Permission Specification. In Proceedings of the 2012 ACM

Conference on Computer and Communications Security (CCS).
[7] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas Zeller, Steven

Arzt, Siegfried Rasthofer, and Eric Bodden. 2015. Mining apps for abnormal
usage of sensitive data. In Proceedings of the International Conference on Software

Engineering (ICSE).
[8] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint

arXiv:1409.0473.
[9] David Barrera, H. Güneş Kayacik, Paul C. van Oorschot, and Anil Somayaji. 2010.

A Methodology for Empirical Analysis of Permission-based Security Models
and Its Application to Android. In Proceedings of the 17th ACM Conference on

Computer and Communications Security (CCS).
[10] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv.

[11] François Chollet et al. 2015. Keras. https://keras.io. (2015).
[12] Alex Clark. 2010. Pillow. https://github.com/python-pillow/Pillow. (2010).
[13] Octeau Damien, McDaniel Patrick, Jha Somesh, Bartel Alexandre, Bodden Eric,

Klein Jacques, and Traon Yves, Le. 2013. Effective inter- component communica-
tion mapping in Android with EPIC: An essential step towards holistic security
analysis. In Proceedings of the USENIX Security Symposium ((USENIX Security)).

[14] Soteris Demetriou, Whitney Merrill, Wei Yang, Aston Zhang, and Carl A. Gunter.
2016. Free for All! Assessing User Data Exposure to Advertising Libraries on
Android. In 23rd Annual Network and Distributed System Security Symposium

(NDSS).
[15] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition (CVPR).
[16] Michael D. Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart Pernsteiner,

Franziska Roesner, Karl Koscher, Paulo Barros, Ravi Bhoraskar, Seungyeop Han,
Paul Vines, and Edward XueJun Wu. 2014. Collaborative Verification of Infor-
mation Flow for a High-Assurance App Store. In Proceedings of the 2014 ACM

SIGSAC Conference on Computer and Communications Security (CCS).
[17] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.

2011. Android Permissions Demystified (Proceedings of ACM Conference on

Computer and Communications Security (CCS)).
[18] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David

Wagner. 2011. A survey of mobile malware in the wild. In Proceedings of ACM

CCSWorkshop on Security and Privacy in Smartphones and Mobile Devices (SPSM).
[19] Adrienne Porter Felt, Kate Greenwood, and David Wagner. 2011. The Effec-

tiveness of Application Permissions. In USENIX Conference on Web Application

Development (WebApps).
[20] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and

David Wagner. 2012. Android Permissions: User Attention, Comprehension, and
Behavior. In Proceedings of the Eighth Symposium on Usable Privacy and Security

(SOUPS).
[21] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. 2016. Deep Learning.

MIT Press. http://www.deeplearningbook.org/
[22] Google. 2019. Android Permission Overview. (2019).

https://developer.android.com/guide/topics/permissions/overview.
[23] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. 2014.

Checking app behavior against app descriptions. In Proceedings of the Inter-

national Conference on Software Engineering (ICSE).
[24] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao,

Qirun Zhang, Jian Lu, and Zhendong Su. 2019. Practical GUI testing of Android
applications via model abstraction and refinement. In Proceedings of the 41st

International Conference on Software Engineering (ICSE).
[25] Shuai Hao, Bin Liu, Suman Nath, William G. J. Halfond, and Ramesh Govindan.

2014. PUMA: programmable UI-automation for large-scale dynamic analysis
of mobile apps. In The 12th Annual International Conference on Mobile Systems,

Applications, and Services (MobiSys).
[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition (CVPR).
[27] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. 2006. A Fast Learning

Algorithm for Deep Belief Nets. Neural Computing.
[28] Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006. Reducing the dimensional-

ity of data with neural networks. Science.
[29] David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. 2013. Applied

logistic regression. Vol. 398. John Wiley & Sons.
[30] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.

2017. Densely connected convolutional networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition (CVPR).
[31] Jianjun Huang, Zhichun Li, Xusheng Xiao, Zhenyu Wu, Kangjie Lu, Xiangyu

Zhang, and Guofei Jiang. 2015. SUPOR: Precise and Scalable Sensitive User Input

https://keras.io
https://github.com/python-pillow/Pillow
http://www.deeplearningbook.org/

Detection for Android Apps. In USENIX Security Symposium ((USENIX Security)).
[32] Jianjun Huang, Xiangyu Zhang, and Lin Tan. 2016. Detecting Sensitive Data

Disclosure via Bi-directional Text Correlation Analysis. In ACM SIGSOFT Inter-

national Symposium on Foundations of Software Engineering (FSE).
[33] Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang. 2014. As-

Droid: Detecting Stealthy Behaviors in Android Applications by User Interface
and Program Behavior Contradiction. In Proceedings of the 36th International

Conference on Software Engineering (ICSE).
[34] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features

from tiny images. Technical Report. Citeseer.
[35] Yann LeCun, Yoshua Bengio, et al. 1995. Convolutional networks for images,

speech, and time series. The handbook of brain theory and neural networks.
[36] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature.
[37] Li Li, Alexandre Bartel, Tegawendé François D Assise Bissyande, Jacques Klein,

Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and
Patrick McDaniel. 2015. IccTA: detecting inter-component privacy leaks in an-
droid apps. In Proceedings of the International Conference on Software Engineering

(ICSE).
[38] Li Li, Tegawendé F. Bissyandé, Damien Octeau, and Jacques Klein. 2016. DroidRA:

taming reflection to support whole-program analysis of Android apps. In Pro-

ceedings of the 25th International Symposium on Software Testing and Analysis

(ISSTA).
[39] Li Li, Tegawendé F. Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre

Bartel, Damien Octeau, Jacques Klein, and Yves Le Traon. 2017. Static analysis of
android apps: A systematic literature review. Information & Software Technology

(IST).
[40] Yuanchun Li, Yao Guo, and Xiangqun Chen. 2016. PERUIM: Understanding

Mobile Application Privacy with permission-UI Mapping. In Proceedings of the

2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing

(UbiComp).
[41] Jialiu Lin, Shahriyar Amini, Jason I. Hong, Norman Sadeh, Janne Lindqvist, and

Joy Zhang. 2012. Expectation and Purpose: Understanding Users’ Mental Models
of Mobile App Privacy Through Crowdsourcing. In Proceedings of the ACM

International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp).
[42] Bin Liu, Bin Liu, Hongxia Jin, and Ramesh Govindan. 2015. Efficient Privilege

De-Escalation for Ad Libraries in Mobile Apps. In Proceedings of the Annual

International Conference on Mobile Systems, Applications, and Services (MobiSys).
[43] Bin Liu, Bin Liu, Hongxia Jin, and Ramesh Govindan. 2015. Medusa: A program-

ming framework for crowd-sensing applications. In Proceedings of the Annual

International Conference on Mobile Systems, Applications, and Services (MobiSys).
[44] Fei Tony Liu, Ming Ting Kai, and Zhi Hua Zhou. 2009. Isolation Forest. In Eighth

IEEE International Conference on Data Mining (ICDM).
[45] Thomas F. Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomír Mech, and Ranjitha

Kumar. 2018. Learning Design Semantics for Mobile Apps. In ACM Symposium

on User Interface Software and Technology (UIST).
[46] David G. Lowe. 1999. Object Recognition from Local Scale-Invariant Features. In

Proceedings of the International Conference on Computer Vision (ICCV).
[47] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. 2016. Hierarchical

question-image co-attention for visual question answering. In Advances In Neural

Information Processing Systems (NeurIPS).
[48] Yun Ma, Yangyang Huang, Ziniu Hu, Xusheng Xiao, and Xuanzhe Liu. 2019.

Paladin: Automated Generation of Reproducible Test Cases for Android Apps. In
Proceedings of the 20th International Workshop on Mobile Computing Systems and

Applications, HotMobile.
[49] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems (NIPS).

[50] K. W. Miller, J. Voas, and G. F. Hurlburt. 2012. BYOD: Security and Privacy
Considerations. IT Professional.

[51] Yuhong Nan, Min Yang, Zhemin Yang, Shunfan Zhou, Guofei Gu, and Xiaofeng
Wang. 2015. Uipicker: User-input privacy identification in mobile applications.
In Proceedings of the USENIX Security Symposium (USENIX Security).

[52] Feiping Nie, Heng Huang, Xiao Cai, and Chris H Ding. 2010. Efficient and robust
feature selection via joint âĎŞ2, 1-norms minimization. In NIPS.

[53] Damien Octeau, Somesh Jha, Matthew Dering, Patrick D. McDaniel, Alexandre
Bartel, Li Li, Jacques Klein, and Yves Le Traon. 2016. Combining static analy-
sis with probabilistic models to enable market-scale Android inter-component
analysis. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (POPL 2016), St. Petersburg, FL, USA,

January 20 - 22, 2016.
[54] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick

McDaniel. 2015. Composite Constant Propagation: Application to Android Inter-
component Communication Analysis. In Proceedings of the 37th International

Conference on Software Engineering (ICSE)

[55] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,
Jacques Klein, and Yves Le Traon. 2013. Effective Inter-component Communica-
tion Mapping in Android with Epicc: An Essential Step Towards Holistic Security
Analysis. In Proceedings of the USENIX Conference on Security (USENIX Security).

[56] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. 2013. WHY-
PER: Towards Automating Risk Assessment of Mobile Applications. In USENIX

Security Symposium.
[57] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:

Global vectors for word representation. In Proceedings of the 2014 conference on

empirical methods in natural language processing (EMNLP).
[58] Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan Chen, Tiantian Zhu, and

Zhong Chen. 2014. AutoCog: Measuring the Description-to-permission Fidelity
in Android Applications. In Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security (CCS).
[59] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. 2000. Efficient algo-

rithms for mining outliers from large data sets. In ACM Sigmod Record.
[60] Zdenko Podobny Ray Smith et al. 2006. Tesseract. https://github.com/tesseract-

ocr/tesseract. (2006).
[61] Sanae Rosen, Zhiyun Qian, and Z. Morely Mao. 2013. AppProfiler: A Flexible

Method of Exposing Privacy-related Behavior in Android Applications to End
Users. In Proceedings of ACM Conference on Data and Application Security and

Privacy (CODASPY).
[62] E. Rosten, R. Porter, and T. Drummond. 2010. Faster and Better: A Machine

Learning Approach to Corner Detection. IEEE Transactions on Pattern Analysis

and Machine Intelligence (TPAMI).
[63] Atanas Rountev and Dacong Yan. 2014. Static Reference Analysis for GUI Objects

in Android Software. In Proceedings of Annual IEEE/ACM International Symposium

on Code Generation and Optimization (CGO).
[64] Atanas Rountev and Dacong Yan. 2014. Static Reference Analysis for GUI Objects

in Android Software. In Proceedings of Annual IEEE/ACM International Symposium

on Code Generation and Optimization (CGO).
[65] Bernhard Sch?lkopf, John C. Platt, John Shawe-Taylor, Alex J. Smola, and Robert C.

Williamson. 2014. Estimating the Support of a High-Dimensional Distribution.
Neural Computation.

[66] Mei-Ling Shyu, Shu-Ching Chen, Kanoksri Sarinnapakorn, and LiWu Chang.
2003. A novel anomaly detection scheme based on principal component classifier.
Technical Report. MIAMI UNIV CORAL GABLES FL DEPT OF ELECTRICAL
AND COMPUTER ENGINEERING.

[67] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556.

[68] statista. 2017. (2017). https://www.statista.com/statistics/266572/market-share-
held-by-smartphone-platforms-in-the-united-states/.

[69] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang
Pu, Yang Liu, and Zhendong Su. 2017. Guided, stochastic model-based GUI testing
of Android apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of

Software Engineering (ESEC/FSE).
[70] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang

Pu, Yang Liu, and Zhendong Su. 2017. Guided, stochastic model-based GUI testing
of Android apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of

Software Engineering (ESEC/FSE).
[71] Sainbayar Sukhbaatar, JasonWeston, Rob Fergus, et al. 2015. End-to-end memory

networks. In Advances in neural information processing systems (NeurIPS).
[72] Grigorios Tsoumakas and Ioannis Katakis. 2007. Multi-label classification: An

overview. International Journal of Data Warehousing and Mining (IJDWM).
[73] Connor Tumbleson and Ryszard Wisniewski. 2017. Apktool. (2017). https:

//ibotpeaches.github.io/Apktool/.
[74] Raja Vallee-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice Pom-

inville, and Vijay Sundaresan. 2000. Optimizing Java Bytecode using the Soot
Framework: Is it Feasible?. In Proceedings of the International Conference on Com-

piler Construction (CC).
[75] Nicolas Viennot, Edward Garcia, and Jason Nieh. 2014. A Measurement Study of

Google Play. In Proceedings of ACM SIGMETRICS conference (SIGMETRICS).
[76] Haoyu Wang, Jason Hong, and Yao Guo. 2015. Using Text Mining to Infer the

Purpose of Permission Use in Mobile Apps. In Proceedings of the 2015 ACM

International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp).
[77] Haoyu Wang, Zhe Liu, Jingyue Liang, Narseo Vallina-Rodriguez, Yao Guo, Li

Li, Juan Tapiador, Jingcun Cao, and Guoai Xu. 2018. Beyond Google Play: A
Large-Scale Comparative Study of Chinese Android App Markets. In 2018 Internet
Measurement Conference (IMC).

[78] Haoyu Wang, Junjun Si, Hao Li, and Yao Guo. 2019. RmvDroid: Towards A
Reliable Android Malware Dataset with App Metadata. In The 16th International

Conference on Mining Software Repositories (MSR 2019), Data Showcase Track.
[79] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2014. Amandroid: A

Precise and General Inter-component Data FlowAnalysis Framework for Security
Vetting of Android Apps. In Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security (CCS).
[80] Xusheng Xiao, Xiaoyin Wang, Zhihao Cao, Hanlin Wang, and Peng Gao. 2019.

IconIntent: Automatic Identification of Sensitive UI Widgets based on Icon Clas-
sification for Android Apps. In Proceedings of the International Conference on

Software Engineering (ICSE).
[81] Shengqian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev. 2015.

Static Control-Flow Analysis of User-Driven Callbacks in Android Applications.

https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/

In Proceedings of the 37th International Conference on Software Engineering (ICSE).
[82] Shengqian Yang, Hailong Zhang, Haowei Wu, Yan Wang, Dacong Yan, and

Atanas Rountev. 2015. Static Window Transition Graphs for Android (T). In
Proceedings of the 2015 30th IEEE/ACM International Conference on Automated

Software Engineering (ASE).
[83] Wei Yang, Xusheng Xiao, Benjamin Andow, Sihan Li, Tao Xie, and William Enck.

2015. AppContext: Differentiating Malicious and Benign Mobile App Behaviors
Using Context. In International Conference on Software Engineering (ICSE).

[84] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard
Hovy. 2016. Hierarchical attention networks for document classification. In
Proceedings of the 2016 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies.
[85] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and X. Sean Wang.

2013. AppIntent: analyzing sensitive data transmission in android for privacy
leakage detection. In Proceedings of the 2013 ACM SIGSAC conference on Computer

& communications security (CCS).
[86] Yujie Yuan, Lihua Xu, Xusheng Xiao, Andy Podgurski, and Huibiao Zhu. 2017.

RunDroid: recovering execution call graphs for Android applications. In Pro-

ceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering

(ESEC/FSE).
[87] ZDNet. 2015. Research: 74 percent using or adopting BYOD. (2015). http:

//www.zdnet.com/article/research-74-percent-using-or-adopting-byod/

[88] Mu Zhang, Yue Duan, Qian Feng, and Heng Yin. 2015. Towards Automatic
Generation of Security-Centric Descriptions for Android Apps. In Proceedings

of the 22Nd ACM SIGSAC Conference on Computer and Communications Security

(CCS).
[89] Qi Zhang, Jiawen Wang, Haoran Huang, Xuanjing Huang, and Yeyun Gong.

2017. Hashtag Recommendation for Multimodal Microblog Using Co-Attention
Network.. In IJCAI.

[90] Suwei Zhang, Yuan Yao, Fent Xu, Hanghang Tong, Xiaohui Yan, and Jian Lu.
2019. Hashtag Recommendation for Photo Sharing Services. In AAAI.

[91] Jinman Zhao, Aws Albarghouthi, Vaibhav Rastogi, Somesh Jha, and Damien
Octeau. 2018. Neural-augmented static analysis of Android communication.
In Proceedings of the 2018 ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE).
[92] Yajin Zhou and Xuxian Jiang. 2012. Dissecting Android Malware: Characteriza-

tion and Evolution. In Proceedings of the IEEE Symposium on Security and Privacy

(IEEE S & P).
[93] Yajin Zhou and Xuxian Jiang. 2012. Dissecting Android Malware: Character-

ization and Evolution. In IEEE Symposium on Security and Privacy (IEEE S &

P).
[94] Xiaofeng Zhu, Cong Lei, Hao Yu, Yonggang Li, Jiangzhang Gan, and Shichao

Zhang. 2018. Robust Graph Dimensionality Reduction. In IJCAI.

http://www.zdnet.com/article/research-74-percent-using-or-adopting-byod/
http://www.zdnet.com/article/research-74-percent-using-or-adopting-byod/

	Abstract
	1 Introduction
	2 Motivating Example
	3 Design of DeepIntent
	3.1 Overview
	3.2 Threat Model

	4 Icon-Behavior Association
	4.1 Static Analysis Overview
	4.2 Icon-Widget Association
	4.3 Extended Call Graph Construction
	4.4 Widget-API Association
	4.5 API Permission Checking
	4.6 Contextual Texts Extraction for Icons

	5 Deep Icon-Behavior Learning
	5.1 Model Overview
	5.2 Icon Feature Extraction
	5.3 Text Feature Extraction
	5.4 Feature Combination
	5.5 Training

	6 Detecting Intention-Behavior Discrepancy
	6.1 Outlier Detection Overview
	6.2 Computing Group-Wise Outlier Score
	6.3 Computing Final Outlier Score

	7 Evaluation
	7.1 Evaluation Setup
	7.2 Implementation
	7.3 Evaluation Results

	8 Discussion
	9 Related Work
	10 Conclusion
	References

