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Abstract 1.81 o~ Al models
Large language models (LLMs) leverage deep learning architectures 5 151 Datasets
to process and predict sequences of words, enabling them to per- % 1.2
form a wide range of natural language processing tasks, such as 99
translation, summarization, question answering, and content gener- # 0.6
ation. As existing LLMs are often built from base models or other 0.31

pre-trained models and use external datasets, they can inevitably
inherit vulnerabilities, biases, or malicious components that exist in
previous models or datasets. Therefore, it is critical to understand
these components’ origin and development process to detect po-
tential risks, improve model fairness, and ensure compliance with
regulatory frameworks. Motivated by that, this project aims to study
such relationships between models and datasets, which are the cen-
tral parts of the LLM supply chain. First, we design a methodology
to systematically collect LLMs’ supply chain information. Then, we
design a new graph to model the relationships between models and
datasets, which is a directed heterogeneous graph, having 402,654
nodes and 462,524 edges. Lastly, we perform different types of
analysis and make multiple interesting findings.
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Figure 1: The number of AI models and datasets (in million
scale) on Hugging Face from July 2024 to June 2025.

1 Introduction

Large language models (LLMs) are AI models designed to under-
stand and generate human language by learning patterns and relation-
ships within extensive datasets [39, 47], such as GPT (Generative
Pre-trained Transformer) [60], BERT (Bidirectional Encoder Repre-
sentations from Transformers) [30], and T5 (Text-To-Text Transfer
Transformer) [5]. These models leverage deep learning architec-
tures to process and predict sequences of words based on context,
enabling them to perform a wide range of tasks [7], such as, transla-
tion [37], summarization [33], question-answering [3], and content
generation [1]. LLMs usually have billions (or even trillions) of
parameters [38], enabling them to generate high-quality text.
However, the increasing size and complexity of developing, train-
ing, and deploying cutting-edge LLMs demand extensive compu-
tational resources [58] and large-scale datasets [54]. This creates a
significant barrier for researchers and practitioners, limiting their
access to state-of-the-art models [40]. As the demand for democra-
tizing access to such LLM models continues to rise, platforms that
host models and datasets have gained widespread popularity, such as,
Hugging Face [14], ONNX Model Zoo [41], and PyTorch Hub [44].
Figure 1 shows the number of Al models and datasets (in million
scale) on Hugging Face, one of the largest public AI model hosting
platforms [14], from July 2024 to June 2025. By the end of June
2025, it has reached over 1.8M models and 450K datasets. In addi-
tion, the trend does not show any slowdown. Such platforms provide
user-friendly interfaces, APIs, and cloud-based infrastructures that
enable researchers and developers to easily share, fine-tune, and
deploy models without requiring extensive computational resources.
Based on the tasks, these models can be classified into two broad
categories, base models and task-specific models. (i) Base models
are large, pre-trained models that can be fine-tuned for specific
downstream tasks [50]. They are usually trained on vast datasets and
are general-purpose, such as GPT [60], BERT [30], and T5 [5].
(ii) Task-specific models are modified versions of base models for
a specific task. Taking Hugging Face as an example, there are four


https://doi.org/10.1145/3746252.3761510
https://doi.org/10.1145/3746252.3761510
https://doi.org/10.1145/3746252.3761510

CIKM ’25, November 10-14, 2025, Seoul, Republic of Korea

types of such models. First, fine-tuned models adapt base models for
specific tasks by training on additional task-specific datasets [61].
Second, adapter models add lightweight and modular layers to the
pre-trained models for specific tasks [22]. Third, quantization mod-
els trade off precision in numerical computations for accelerating
inference and reducing memory consumption (e.g., using less precise
model parameters) [53]. Fourth, merged models integrate multiple
models into a single unified model by combining weights or config-
urations [2]. Besides, such platforms also host many datasets used
for training or adapting (e.g., fine-tuning) models [46].

1.1 Motivation

As existing LLMs are often built from base models or other pre-
trained models and use external datasets, they can inevitably inherit
vulnerabilities, biases, or malicious components from previous mod-
els or datasets. Thus, understanding these components’ origin and
provenance can help better detect potential risks, improve model
fairness, and ensure compliance with regulatory frameworks.

Motivated by that, this paper aims to study such relationships
between models and datasets. They are the central parts of the LLM
supply chain [57], which refers to the entire lifecycle of developing,
training, and deploying LLMs, similar to a traditional supply chain
in manufacturing or software development [4, 10, 49, 62]. Such a
supply chain can help to identify critical insights for both model
evolution and dataset origin, as discussed below.

Model evolution. The study of the LLM supply chain gives a
clear overview of how LLMs evolve from base models to fine-tuned
variants, adapter integration, and quantization models. With that,
one can easily keep track of them. For example, a use case is when
a security vulnerability is found in one LLM, and we can quickly
locate the potential models that might have the same vulnerabilities.

Dataset origin. This supply chain can also help to understand
the datasets’ origins used for training different models [47]. Dataset
origin refers to the source from which the data is collected. For ex-
ample, for a fine-tuned model, we not only care about which dataset
is used for fine-tuning but also what other datasets are involved in
training the previous model. Understanding such dataset origin helps
to ensure that the dataset used is reliable, and legally compliant.

1.2 Contribution

Our main contributions are threefold. First, we design a methodology
to systematically collect the supply chain information of LLMs.
In this paper, we mainly study the most popular Al platform, i.e.,
Hugging Face, but the same strategy applies to other platforms.
In particular, we use the APIs from the Al platform to collect the
metadata about the hosted models and datasets. To this end, we
collected a large dataset as of June 30, 2025.

Second, with the collected metadata, we construct a new graph,
named LLM supply chain graphlz, to model the relationships be-
tween models and datasets. It is a directed heterogeneous graph,
where a node denotes different types of models and datasets, and an
edge denotes the dependency between them. Together, this graph
is able to accurately capture the LLM supply chain information. To
this end, we get a graph with 402,654 nodes and 462,524 edges.

IThe constructed graph: https://github.com/SC-Lab- Go/HuggingGraph
2A demonstration website: https:/ai-supply-chain.github.io/
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Table 1: The APIs used to extract data from Hugging Face.

API Name | Description

Model hub \ Access model hub to list, search, and download models and metadata.

Datasets \ Access the datasets for discovery, metadata retrieval, and downloading.

Metrics \ Access metrics for model evaluation, e.g., metric discovery.

Search \ Search name, tag, or other metadata for model and dataset.

Lastly, we perform different types of analysis, including forward
and backward analysis. We study six research questions, including
(i) the properties of the LLM supply chain graph, (ii) structural
analysis, (iii) supply chain relationships between Al models, (iv)
supply chain relationships between models and datasets, (v) dynamic
update evaluation, and (vi) generalizability to other Al platforms.

We hope this study can not only provide insights on LLM supply
chain, but also raise awareness and future interests in this direction.

2 Preliminary

LLM supply chain encompasses the interconnected processes re-
quired for developing, deploying, and maintaining models [57]. This
includes sourcing and preparing data to ensure high-quality and di-
verse datasets [57]. It also involves creating and training models [34].
Finally, it covers making trained models available through APIs [48].
In addition, LLMs can undergo fine-tuning, adaptation, quantization,
and merging processes in which they are tuned with domain-specific
datasets to maximize performance on specific tasks [55], thus im-
proving their accuracy and applicability. This study mainly focuses
on the relationships between models and datasets, which are the
central parts of the whole LLM supply chain ecosystem.

3 Methodology
3.1 LLM Supply Chain Information Collection

To analyze the LLM supply chain ecosystem, we need a large dataset
with such information. Fortunately, platforms like Hugging Face
provide some APIs that allow us to access the model and dataset
and collect their metadata, which can be used to construct the LLM
supply chain graph.

Table 1 summarizes the four types of APIs we used. In particular,
(i) the model hub APIs allow access to the hub of existing models,
including searching and downloading the model and its metadata. (ii)
The dataset APIs allow access to the datasets for discovery, metadata
retrieval, and downloading. (iii) The metrics APIs allow access to the
metrics for model evaluation, including metric discovery, metadata
retrieval, and calculation. (iv) One can use the search APIs to search
the name, tag, or other metadata for models and datasets.

Handling missing information. Accurate construction of the
LLM supply chain graph depends on the quality of metadata from
the LLM platforms (e.g., Hugging Face), which might suffer from
missing or incomplete data. To address it, we apply the two following
techniques, i.e., cross-reference links, and textual pattern extraction.

(i) Cross-reference links. The model or dataset description could
miss the supply chain data fields for API queries, which could
be embedded within statically or dynamically rendered HTML
pages. In this example URL https://huggingface.co/models?other=
base_model:finetune:meta-llama/Meta-Llama-3-8B, one can tell the
model “Meta-Llama-3-8B” is fine-tuned from the model in the pre-
vious webpage. To capture such information, we cross-reference the
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links of the filtered model listing webpages, extract model identi-
fiers, enable the reconstruction of supply chain graph edges, and
recursively trace model lineage from the leaf node. This scraping
step complements API-based extraction and is only employed when
reverse dependency data is otherwise inaccessible.

(ii) Textual pattern extraction. When structured metadata is ab-
sent, the model and dataset cards might mention dependencies in
unstructured text descriptions. To capture that, we employ a named
entity recognition (NER) method [36, 52] to extract the dependency
relationships from the text. For example, the textual phrase like “fine-
tuned from Llama-2" contains the fine-tfuned keyword, which implies
from which model this model is actually fine-tuned. Similarly, we
also look into other words, such as, “train”, and “adapt”.

3.2 LLM Supply Chain Graph

The collected metadata can be accurately modeled by the graph
data structure. It is a directed heterogeneous graph, where a node
denotes different types of datasets and models, including base, fine-
tune, adapter, quantization, and merge models. An edge denotes
the dependency relationship between them, including model-model,
dataset-dataset, and model-dataset relationships.

Figure 2 shows a simplified supply chain subgraph centering on
a base model Meta-llama. (i) Model-model relationship. To further
identify the supply chain relationship, we will check the relevant
data fields. In particular, given a model in Hugging Face, there are
data fields “finetune” that show which models are fine-tuned
from this model. Similarly, “adapter”, “quantization”, and “merge”
show which models are adapted, quantized or merged from them,
respectively. With such information, we can construct the supply
chain relationship between the models. As shown in Figure 2, model
Llama-3.3-70B is fine-tuned from the base model Meta-llama. Then,
it is used by the models Doctor-Shotgun and Llama-3.3-70B-4bit to
generate an adapter and quantization model, respectively.

(ii) Dataset—dataset relationship. The datasets within the LLM
supply chain might overlap, build upon, or extend from each other.
For example, a dataset may be a subset or modified version of another.
To capture such information, we connect them with two types of
edges. (1) Subset relationships arise when a dataset is explicitly
documented as a subsample or partition of another. For instance, a
dataset named “C4_200M” is described as a subset of “C4”. (2)
Modified versions represent updates or enhanced variants of existing
datasets. For example, “TruthfulQA_v2” incorporates corrections
and improvements over an earlier version, “TruthfulQA_vi”.

(iii) Model-dataset relationship. To capture this, we use the meta-
data from both models and datasets. The metadata of a model might
specify the datasets used for training or adapting. However, not
all the models disclose such information. To capture more infor-
mation, we find the metadata of a dataset contains a data field of
“trained_fine_tune_models” on this dataset. Thanks to that, we can
capture the accurate model and dataset relationship. In Figure 2, the
datasets The Pile and Chatgpt-prompt have directed edges to model
Meta-Llama, meaning that both datasets are used to train the model.

3.3 Supply Chain Graph Analysis

This supply chain graph can help to understand the transforma-
tional processes of the models and datasets. In particular, we can
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Figure 2: An example subgraph centering on base model
“Meta-1lama” from the complete LLM supply chain graph.

understand how base models evolve into their variants, including
fine-tuned, adapted, quantized, or merged models, and vice versa.
Similar observations can be made for datasets. This would provide
a clear view of how the base model (or dataset) is transformed for
performing a particular task. In particular, we mainly perform two
types of analysis, i.e., forward and backward analysis.

Forward analysis is the method of traversing the supply chain
graph following the dependency edges of a chosen node in a forward-
going way. This node (known as the root/source node) can be a
dataset, a base model, a fine-tuned model, an adapter, a quantized,
or a merged model. In particular, given a source node, we apply
the graph traversal algorithm (e.g., breadth-first search (BFS) [32])
to traverse all the nodes (including both models and datasets) in a
level-by-level pattern. To that end, this forward analysis will identify
all the nodes that are reachable from the source node.

Model analysis example. In Figure 2, we analyze the forward
supply chain of Meta-Llama. In particular, we identify four dis-
tinct forward paths: (i) Base model (Meta-llama) — fine-tuned
model (Llama-3.3-70B) — another fine-tuned model (Llama3.3-70B-
Vision). (i) Base model (Meta-llama) — adapted model (Doctor-
Shotgun). (iii) Base model (Meta-llama) — fine-tuned model (Llama-
3.3-70B) — quantization model (Llama-3.3-70B-4bit). (iv) Base
model (Meta-llama)) — merged model (MistLlama). These paths
show the evolution trajectory of the base model Meta-Llama, show-
casing its progressive specialization and adaptation for various tasks.

Dataset analysis example. For the dataset, our supply chain analy-
sis shows how different datasets connect and form a new dataset. This
combination creates flexible resources that show how models per-
form in various areas. In Figure 2, the dataset The Pile is composed
of multiple subsets, including Wikimedia, arXiv, OpenWebtext2, and
Pubmed Central. Together, these datasets form a unified corpus that
serves as training data for models like Meta-LlaMA.

Backward analysis is the method of traversing the supply chain
graph following the edges in a backward way. We accomplish this by
traversing the graph also with BFS [32], starting from the selected
node and following the incoming edges. To that end, this backward
analysis will identify all the nodes that can reach the source node.

Model and dataset analysis example. In Figure 2, analyzing the
backward supply chain of model RBot70Bv4, we trace its lineage
through its development stages. This model is fine-tuned from Un-
sloth, which in turn originates from its base model, Meta-Llama, and
the datasets used to train the base model are The Pile and Chatgpt-
prompts. Through this analysis, we establish the backward path,
starting from the target model, i.e., RBot70Bv4, and tracing to its
base model, Meta-Llama, revealing dependencies and transforma-
tions involved in its development. Similarly, we can analyze datasets.
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shows degrees, and Y-axis shows node count (log scale).

3.4 Accommodating Dynamic Updates

The hosted models and datasets on Al platforms are growing fast as
new models are being developed every day. For example, between
June 25 and July 15, 2025, we observed 80,703 new models (ap-
proximately 3,843 per day), 27,405 new datasets (approximately
1,305 per day) on Hugging Face, which is just one of the many Al
platforms. Therefore, we need to accommodate the dynamic update
to accurately manage and analyze the Al supply chain.

Particularly, HuggingGraph accommodates the dynamic updates
in three steps. (i) Scoping updated models or datasets. At a time t,
we keep a copy of the hosted models and datasets with their IDs.
When it evolved to t + 1, we get another copy of the hosted models
and datasets with their IDs. The difference between them shows the
updated models and datasets, including newly added or deleted. In
our current implementation, we are keeping the update on a daily
basis. (ii) Metadata collection for the updated models or datasets.
For the identified updated models or datasets, we will collect their
metadata using the same strategy as discussed in Section 3.1. To
this end, we get the updated dependencies between models and
datasets. That is, for the update at time ¢ + 1 compared to ¢, it can be
represented as Az41. (iii) A-based dynamic graph update. Given the
newly updated dependency A1, and let G, Gs41 denote the graph
at time ¢, t + 1, respectively, then G411 = Gy U Apyq.

4 Experiment and Finding

To deeply understand the relationships between models and datasets,
we study six critical research questions (RQs) as below.

RQ #1: What are the properties of LLM supply chain graph?
RQ #2: What structural patterns emerge?

RQ #3: What are the supply chain between LLM models?

RQ #4: What are the relationships between models and datasets?
RQ #5: What insights can be gained from the dynamic updates?
RQ #6: How can HuggingGraph be applied to other platforms?

4.1 RQ #1: Supply Chain Graph Properties

This research question aims to understand the critical properties of
LLM supply chain graph, i.e., graph basics and degree distribution.

Graph basics. The collected supply chain graph is a medium-
scale directed heterogeneous graph with 402,654 nodes and 462,524
edges as of June 30th, 2025. In particular, there are six different
types of nodes, including 28,384 base models, 115,211 fine-tuned,
79,254 adapters, 98,143 quantization models, 13,028 merges, and
68,634 datasets. The average degree is about 1.15, denoting that it is
a very sparse graph. Furthermore, we identified substantial metadata
missing. As of June 30, 2025, among 1.8 million models, only
50,156 (2.79%) provides a model tree, while ~550K models lack
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any metadata beyond their names, and nearly another 400K models
are empty. Similarly, of the 450K datasets, only 68,634 (15.26%)
provide dataset cards, leaving ~380K datasets without any metadata.

This highlights a broader issue in the AI community, where a
significant number of models and datasets lack consistent and struc-
tured documentation on the supply chain. This reflects the need of
more transparent disclosure.

Degree distribution shows how node degrees (the number of
edges connected to a node) are distributed across the graph. Figure 3
illustrates the indegree and outdegree distribution of the graph. We
show not only the total distribution but also the distribution of six
types of nodes, including base models, fine-tuned models, adapter
models, quantization models, merged models, and datasets.

We observe that the degree distribution in our supply chain graph
shows a heavy-tailed behavior. In particular, the indegree distribu-
tion shows a large spread across different categories. The outdegree
distribution follows a similar pattern but may differ in specific cases
(e.g., adapters seem to have a more restricted degree distribution).
This heavy-tailed behavior suggests that most nodes have low de-
grees, while a few central nodes (hubs) dominate the graph. In
particular, the dataset macrocosm-os/images has the highest inde-
gree 550, and dataset Mistral-v0.1 from “mistral AI” has the highest
outdegree 1,093. Specifically, the base models act as high-degree
hub nodes as they are heavily used by other task-specific models.

Finding #1: The LLM supply chain graph is medium-scale, sparse,
and heavy-tailed distribution. However, a significant number of
models and datasets lack metadata, highlighting the need for more
transparent supply chain documentation.

4.2 RQ #2: Supply Chain Structural Analysis

This research question aims to understand the topology and evolution
of the LLM supply chain. To achieve that, we analyze the structural
properties with connectivity and community analysis.

Connectivity analysis. We computed weakly connected com-
ponents (WCCs), which identify a maximal subset of nodes that
remain connected when edge directions are ignored [26, 28]. The
total number of WCCs in our supply chain graph is 44,908.

Figure 4 shows the cumulative distribution function (CDF) of the
WCC distribution. We observe (i) the largest WCC covers 247,244
nodes, accounting for 61.4% of all the nodes. It reflects the dense
interconnections that pervade the ecosystem. This vital element is
essential for effective information sharing, resource allocation, and
structural support, and is the base of the ecosystem. In the largest
WCC, major models are included, such as Gemma-2B, DistilBERT,
and GPT-2. (ii) In contrast, the remaining WCCs collectively hold
38.6% of the nodes, with most having 1, 2, or 3 nodes. This indicates
a fragmented outer edge characterized by specialized models, rare
datasets, or active experimental projects. The prevalence of these
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Table 2: Top-10 Louvain communities sorted by size.
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Table 3: Top-10 base models sorted by forward subgraph size.

ID Size  E.g. models E.g. datasets Modularity
1 9,390 OLMOoE, CausalLM prompt-perfect 0.96
2 7,388  qwen2.5_math Marco-ol 0.96
3 6,989  Wanxiang smartllama3.1 0.96
4 6,813  tinyllama Llama-1B 0.96
5 5163 Qwen2.5-32B Matter-0.2 0.96
6 4,554  MedLlama-3-8B dpo-mix 0.96
7 4,262  Electra, ArliAl MixEval 0.96
8 3,947  aesqwenl.5b llava 0.96
9 3,829 bert TORGO 0.96
10 3,828  Mistral vicuna_format 0.96

small, isolated pieces suggest niche attempts that lack integration
with the overall system. For example, zhongqy/RMCBench (bench-
marking dataset) and yigit69/bert-base-uncased-finetuned-rte-run_3
(recognizing textual entailment task) remain disconnected due to
limited reuse or insufficient metadata.

We also computed strongly connected component (SCC) [27], a
maximal subgraph in which every node is reachable from every other
via directed edges, identifying 398,198 SCCs. Remarkably, only
591 of these are non-trivial (size > 1), collectively encompassing
5,047 nodes (1.25% of the graph). The largest SCC comprises 478
dataset nodes, among them tree-of-knowledge and OpenHermes-2.5,
forming a tightly-knit cluster. By contrast, the remaining 99.46% of
nodes each reside in trivial (size-1) SCCs.

Community detection identifies node groups with dense internal
connections. In LLM supply chains, it reveals aligned subgraphs
reflecting reuse patterns and task-specific assets. We apply the Lou-
vain method [13], a greedy algorithm that maximizes modularity to
find densely connected communities. Higher modularity indicates
stronger intra-community connectivity.

Table 2 summarizes the top-10 communities. (i) We find that
each of the top-10 communities achieve a high modularity score
of 0.96, indicating strong intra-community connectivity. Collec-
tively, these communities span a wide range of functional domains,
underscoring the presence of well-defined, task-aligned clusters
within the ecosystem. (ii) The largest community consists of 9,390
nodes and attains a modularity score of 0.96, indicating an extremely
cohesive internal structure. It revolves around base models like
OLMOoE and CausalLM, and general-purpose datasets like prompt-
perfect. This suggests a densely connected cluster facilitating wide-
spread reuse and fine-tuning. (iii) Several other communities reflect
clear task-based segmentation. For instance, community 2 (7,388
nodes) focuses on solving mathematical problems, with models like
gwen2.5_math and datasets like Marco-ol. Similarly, community 6
(4,554 nodes) centers on instruction-tuning, with model MedLlama-
3-8B and dataset dpo-mix.

Finding #2: The LLM supply chain graph features a dominant core
(61.4% of nodes), while high modularity (0.96) reveals task-aligned,
semantically coherent communities amid a fragmented periphery.

4.3 RQ #3: Supply Chain Analysis of LLM Models

This research question aims to provide a holistic view of the depen-
dencies between the models within the LLM supply chain, particu-
larly from both base and task-specific models.

Base model impact. We would like to understand the impact
of base models. Here, we quantify the impact of a base model as

Base model Total the- Adapter Qua‘.m- Merge Level
une zation
Llama-3.1-8B 7,544 1,710 1,542 3473 1,693 25
Mistral-7B-v0.1 6,744 2,105 2,187 1,435 1,254 27
Qwen2.5-7B 6,733 1,972 1,764 2,516 1,132 11
Meta-Llama-3-8B 5,633 967 1,511 2,220 1,967 21
Llama-3.1-70B 4,063 698 281 2,075 2,519 11
Qwen2.5-32B 3,909 1,086 158 2,311 1,049 12
Qwen2.5-1.5B 3,645 1,300 1,290 949 248 8
Qwen2.5-0.5B 3,521 1,669 1,006 810 46 11
Qwen2.5-14B 3,362 726 411 1,880 1,166 15
Meta-Llama-3-8B-Instruct 3,118 640 405 1,394 1,305 34

Table 4: Top-10 models sorted by backward subgraph size.

Model Model Total Fine- Quar.m- Level Base Model
Type tune zation

command-r-1-layer Finetune 40 39 0 39 cdai
KoModernBERT Finetune 21 20 0 20 ModernBERT
t5-small Finetune 21 20 0 20 t5-small
clinical_260k Finetune 20 19 0 19 clinical_180K
t5-small-finetuned Finetune 17 16 0 16 t5-small
clinical_300k Finetune 16 15 0 15 clinical_180K
clinical_259k Finetune 16 15 0 15 clinical_180K
LeoPARD-0.8.1 Finetune 16 2 13 15 DeepSeek-R1
LeoPARD-0.8.2-4bit Quantization 16 1 14 15 DeepSeek-R1
LeoPARD-0.8.1-4bit Quantization 16 1 14 15 DeepSeek-R1

the number of task-specific models that depend on it. The more
dependencies, the larger the impact it has. We start with a base
model and perform forward analysis by computing BFS following
the outgoing edges. This leads to a forward subgraph, which denotes
all the models that depend on the base model, including fine-tuned,
adapted, quantized, or merged models.

Table 3 shows the top-10 base models sorted by the forward sub-
graph size, which is the number of impacted task-specific models.
We find (i) a base model can significantly impact the LLM sup-
ply chain ecosystem. For example, Llama-3.1-8B is a base model
from Meta used for efficient text generation, code assistance, and re-
search [20]. Due to its relatively small size, which allows for deploy-
ment in resource-constrained environments, making advanced Al
accessible to broader stakeholders [17]. It has generated up to 7,544
models, including 1,710 fine-tuned versions, 1,542 adapters, 3,473
quantizations, and 1,693 merged models tailored to specific tasks.
(ii) For fine-tuning, the base model Mistral-7B-v0.1 has been fine-
tuned the most, totaling 2,105. It is a faster, lighter Mistral model
trained by Mistral Al with grouped-query and sliding-window atten-
tion, enabling efficient text generation, NLP, and code assistance on
consumer hardware for low-latency tasks [S1].

Task-specific model analysis. Given a task-specific model, we
want to understand how it evolves, e.g., what other models it relies
on. To achieve that, for each model, we perform a backward analysis
by running BFS following the incoming edges. To that end, the
derived subgraph shows the models it relies on.

Table 4 shows the top-10 task-specific models sorted by the back-
ward subgraph size, which is the number of models they rely on. We
make two interesting observations. (i) A fine-tuned model, command-
r-1-layer, illustrates the depth and complexity of transformations
in the LLM supply chain. This model operates in bfloat16 (BF16)
precision for efficient text generation and natural language under-
standing [43], originates from the base model c4ai, and has un-
dergone extensive lineage evolution before reaching its final form.
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Table 5: Top-10 datasets sorted by # of models trained.
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Table 6: Top-10 models sorted by # of training datasets.

Dataset Total Fine-tune Adapter Quantization Merge

Model Model Type # of training dataset

Mistral-v0.1 1,093 300 300 193 300
TinyLlama-1.1B-v1.0 728 300 300 100 28
open_llama_3b 304 15 285 4 0
Yarn-Mistral-7b-128k 301 8 279 14 0
WizardVicuna-open-llama 280 12 261 7 0
TinyLlama-1.1B-v0.6 266 10 243 13 0
Yarn-Mistral-7b-64k 248 0 242 [ 0
Nous-Capybara-7B-V1 213 11 174 27 1
MAmmoTH2-7B 213 0 0 3 210
Starling-LM-7B-alpha 210 10 165 18 17

DeBERTa-ST-AllLayers-v3.1 Fine tune 116
DeBERTa-ST-AllLayers-v3.1bis Adapters 116
static-similarity-mrl-mul-v1 Fine tune 108
static-similarity-mrl-multilingual Fine tune 108
ModernBERT-base-embed Fine tune 88
Llama-3.2-3B-Instruct Fine tune 87
Llama-3.2-3B-Instruct-GGUF Quantization 87
DavidLanz-3.2-3B-Instruct Fine tune 87
static-retrieval-mrl-en-v1 Fine tune 79
XLMRoBERTaM3-CustomPoolin Fine tune 72

Specifically, it depends on 40 upstream artifacts, including 39 other
fine-tuned models, and spans 39 transformation levels in its back-
ward lineage chain, as detailed in Table 4. (ii) We observe that
adapters are mainly used for lightweight fine-tuning and merges for
model integration, but task-specific models like command-r-1-layer,
as optimized standalone derivatives, do not evolve from adapters or
merges in their backward lineage [43].

Finding #3: Base models like Llama-3.1-8B dominate the LLM
supply chain, spawning thousands of derivatives, while task-specific
models such as command-r-1-layer exhibit deep dependencies with
other task-specific variants but avoid adapters or merges.

4.4 RQ #4: Supply Chain of Models and Datasets

This research question aims to explore the interconnections between
models and datasets from dual perspectives, including one dataset
versus multiple models and one model versus multiple datasets.

One dataset versus multiple models refers to the case when a
single dataset is used to train multiple models. Table 5 shows the
top-10 datasets based on the number of models trained on them. In
particular, (i) Mistral-v0.1 takes the leading position and is a widely
adopted open-source dataset known for its strong performance in
general-purpose language understanding and generation tasks. It has
been used to train 1,093 models, including 300 fine-tuned variants,
300 adapters, 193 quantized models, and 300 merged models, high-
lighting its broad adoption across diverse model derivation strategies.
(ii) The dataset TinyLlama-1.1B-vI.0 has been used to train 728
models, featuring 300 fine-tuned variants and 300 adapters. Simi-
larly, open_Illama_3b, an open-access dataset of Llama, supports 285
adapter-based models, indicating a preference for lightweight, mod-
ular adaptation. (iii) Furthermore, MAmmoTH?2-7B stands out with
210 merged models, showcasing its role in ensemble-style model
fusion rather than traditional fine-tuning or adapter strategies.

One model versus multiple datasets refers to the case when
an LLM model is trained with multiple datasets. Table 6 shows the
top-10 models ranked by the number of datasets used for training.
We observe that DeBERTa-ST-AllLayers-v3.1, a fine-tuned variant
of the DeBERTa model, takes the top position, having been trained
on 116 different datasets. Its adapter-based counterpart, DeBERTa-
ST-AllLayers-v3.1bis, also leverages the same number of datasets
via adapter-based training, emphasizing modular reuse across tasks.

In addition, models like static-similarity-mrl-mul-v1 and static-
similarity-mrl-multilingual are both fine-tuned on 108 datasets, in-
dicating their roles in multilingual and multi-task similarity-based
retrieval applications. Interestingly, most of these models are fine-
tuned, specifically, 8 out of the top-10, suggesting that fine-tuning
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Figure 5: The number of changed datasets and models on Hug-
ging Face from June 25 to July 15, 2025.

remains a dominant strategy for adapting base models to downstream
tasks across heterogeneous data sources.

Finding #4: Models and datasets exhibit strong bidirectional inter-
dependence, with datasets like Mistral-v0.1 spawning hundreds of
models, while models such as DeBERTa-ST-AllLayers-v3.1 leverage
different datasets to enhance adaptability, highlighting the critical
roles of dataset-model interactions in advancing Al

4.5 RQ #5: Dynamic Update Evaluation

This research question aims to understand the dynamic update of
the LLM supply chain. We perform a daily-based data collection by
capturing the addition and deletion of nodes and edges each day.

Figure 5 illustrates the sum of daily additions and deletions of six
key node categories (base, fine-tuned, adapters, quantized, merge
variants, and datasets) from June 25 to July 15, 2025. We make three
interesting observations. (i) The daily dynamic update is significant.
That is, an average of 4,622 models are changing every day, including
~3,843 model additions and ~779 deletions. In addition, about 1,538
datasets are changing each day, containing ~1,305 dataset additions
and ~233 deletions. An addition occurs when a new model or dataset
is uploaded to the Hugging Face platform. This includes base models,
task-specific variants, and new training datasets. A deletion refers
to the removal of such nodes, often due to licensing issues, privacy
concerns, or contributor decisions, such as replacing outdated models
or withdrawing low-quality or sensitive datasets.

(ii) Fine-tuned models dominate daily activity, averaging over
2,988 changes per day, followed by consistent contributions from
adapters (~1,224/day) and datasets (~1,539/day). Noticeable spikes,
such as on July 7 and July 9, align with major events like the
Mistral-Fusion-v3 fine-tuning wave and dataset updates such as
HFTime2025-News. (iii) Furthermore, adapter uploads peaked at
1,249 on June 28, while quantized variants reached 381 on July 9,
driven by releases such as Qwen-GGUF-7B. These patterns demon-
strate HuggingGraph’s ability to capture evolving supply chain dy-
namics at a fine-grained level.
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Finding #5: The LLM supply chain exhibits continuous and high-
volume daily changes, driven by frequent additions and deletions
of models and datasets. This reflects a rapidly evolving and highly
dynamic ecosystem shaped by active contributor behavior.

4.6 RQ #6: Generalizability to Other Al Platforms

To validate HuggingGraph’s generalizability beyond Hugging Face,
we applied our pipeline to another Al platform, Kaggle [6]. As of
July 25, 2025, Kaggle hosts 470 base models, 3,146 task-specific
models, and ~502K datasets. Using Kaggle’s kernel and dataset
APIs, we collected 2,640 models and 105,867 datasets. This signifi-
cant gap is due to a lack of models’ and datasets’ metadata. Of the
datasets retrieved (~105K), only 137 datasets were included in our
graph, as most lacked standardized documentation or traceable links
to models. Many are standalone, poorly described, or lack contextual
information, a challenge also observed on Hugging Face.

We follow the same way to construct a heterogeneous graph
consisting of 2,777 nodes, which include 2,640 model nodes, com-
prising 59 base models, 2,410 fine-tuned, 171 quantization models,
and 137 dataset nodes. The graph contains a total of 3,990 edges,
on which we observed seven types of edges, (i) base model — fine-
tuned model (467 edges), (ii) base model — quantization model (62
edges), (iii) fine-tuned model — fine-tuned model (1,696 edges),
(iv) fine-tuned model — quantized model (107 edges), (v) quantized
model — quantized model (1 edge), (vi) dataset — fine-tuned model
(1,614 edges), and (vii) dataset — quantization model (43 edges).

We observed that the average degree is 1.44, indicating that the
graph is sparse. We made two interesting observations. (i) The de-
gree distribution is heavy-tailed and skewed: out of 2,777 total nodes,
2,305 nodes (83%) have a total degree of 1. Most nodes have low
degrees, while a few highly connected hubs dominate the graph. For
example, in-degrees range from 0 to 4, and tensorflow/mobilenet-vi
has the highest out-degree of 64, followed by google/nnim with 56.
(ii) Furthermore, the graph contains 448 WCCs, reflecting high frag-
mentation. However, the largest WCC includes 65 nodes, suggesting
the presence of a moderately sized core subgraph.

Finding #6: The resulting graph exhibits structural properties con-
sistent with our Hugging Face analysis, including a heavy-tailed
degree distribution, sparse connectivity, and strong modular frag-
mentation, demonstrating the robustness and generalizability of our
pipeline across platforms despite metadata limitations.

5 Use Case

HuggingGraph presents a technique to analyze the supply chain of
the LLM ecosystem, which can be used for various applications,
e.g., auditing provenance, identifying biases, and revealing trends
like quantized model scarcity. We discuss the two use cases.

Use case #1: Tracing lineage and dependencies in the LLM
supply chain. Models are frequently built upon others through fine-
tuning, adapter training, or quantization, forming complex chains of
dependencies. However, when these relationships are not explicitly
visible, it becomes difficult to verify where a model comes from,
whether it inherits bias from upstream datasets, or if it complies
with licensing constraints. HuggingGraph can be used to address this
challenge by constructing the supply chain of models and datasets,
uncovering both direct and derived dependencies, even when they
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are not formally documented. For example, it can trace how the
model Meta-llama indirectly relies on a dataset like Wikimedia via
Chatgpt-prompt (Figure 2). This transparency supports developers,
auditors, and policymakers in validating provenance, detecting risks,
and enabling trustworthy Al

Use case #2: Identifying critical nodes and structural vulner-
abilities. In the LLM ecosystem, certain models (e.g., gemma-2b)
and datasets (e.g., The Pile) are reused so frequently that they be-
come critical structural hubs, where failure or removal of them could
disrupt numerous downstream dependencies. These hidden single
points of failure are difficult to detect without a comprehensive view
of resource interconnections. HuggingGraph can be used to address
this by modeling the supply chain as a graph and analyzing node
connectivity to surface highly reused models and datasets with signif-
icant inbound or outbound links. This visibility enables maintainers
to safeguard vital assets and helps developers mitigate the risk of
overreliance on fragile or under-maintained components.

6 Related Work and Discussion

LLM supply chain perspectives in AL. LLMs are advancing across
model infrastructure, lifecycle, and applications [57]. Model reuse
is widespread, promoting large-scale sharing and adaptation of base
models [29]. Open-source ecosystems such as Hugging Face host di-
verse LLMs and datasets, democratizing Al [45]. Base models [58],
trained on broad datasets, enable task-specific variants via fine-
tuning [18], reinforcing democratization and innovation [12].

Relationship analysis between LLM models and datasets. A
recent study investigates the practical adaptation of base models
to specific tasks. Multitask fine-tuning has demonstrated the poten-
tial to enhance performance on target tasks with scarce labels [59].
In plant phenotyping, adapting vision-based models by techniques
like adapter tuning and decoder tuning has shown results compa-
rable to those of leading task-specific models [9]. The Quadapter
technique for language models tackles quantization difficulties by in-
corporating learnable parameters that scale activations channel-wise,
mitigating overfitting during quantization-aware training [42].

In future, we would like to explore more through the following
perspectives, (i) collecting more LLM supply chain information
accurately and scalably; (ii) understanding the LLM supply chain
better via both fundamental graph analytics [15, 21, 35] and graph
Al techniques [16, 23, 31, 56]; and (iii) exploring the security and
privacy threats on the LLM supply chain [8, 11, 19, 24, 25].

7 Conclusion

This project studies the relationships between models and datasets in
the LLM ecosystem, which are the central parts of the LLM supply
chain. First, we systematically collect the supply chain informa-
tion of LLMs. With that, we construct a directed heterogeneous
graph, having 402,654 nodes and 462,524 edges. Lastly, we perform
different types of analysis and make multiple interesting findings.
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