
1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3079315, IEEE
Transactions on Dependable and Secure Computing

1

Make Web3.0 Connected
A Perspective from Interoperability and Programmability across Blockchains

Zhuotao Liu, Yangxi Xiang, Jian Shi, Peng Gao, Haoyu Wang, Xusheng Xiao, Bihan Wen, Qi Li, and Yih-Chun Hu

Abstract— Web3.0, often cited to drastically shape our lives, is ubiquitous. However, few literatures have discussed the crucial

differentiators that separate Web3.0 from the era we are currently living in. Via a thorough analysis of the recent blockchain

infrastructure evolution, we capture a key invariant featuring the evolution, based on which we provide the first academic definition for

Web3.0. Our definition is not the only way of understanding Web3.0, yet, it captures the fundamental and defining trait of Web3.0, and

meanwhile it is has two desirable properties. Under this definition, we articulate three key categories of infrastructural enablers for

Web3.0: individual smart-contract capable blockchains, federated or centralized platforms capable of publishing verifiable states, and

an interoperability platform to hyperconnect those state publishers to provide a unified and connected computing platform for Web3.0

applications. While innovations in all categories are necessary to fully enable Web3.0, in this paper, we present a design for the third

enabler, i.e., the first interoperability platform, namely HyperService, that advances the state-of-the-art by simultaneously delivers

interoperability and programmability across heterogeneous blockchains and state publishers. HyperService is powered by two

innovative designs: (i) a developer-facing programming framework that allows developers to build cross-chain applications in a unified

programming model; and (ii) a secure blockchain-facing cryptography protocol that provably realizes those applications on

blockchains. We implement a prototype of HyperService in approximately 62,000 lines of code to demonstrate its practicality, usability

and scalability.

F

1 INTRODUCTION

In the past few years, the keyword Web3.0 is ubiquitous, driven
by the hyper-enthusiasm for cryptocurrency and Blockchain.
Although Web3.0 is often cited to drastically shape our lives,
few literatures have discussed the crucial differentiators that
separate Web3.0 from the era we are currently living in. As a
result, our perception of Web3.0 is still preliminary, obfuscated
by a list of endless fancy words and terms such as cryp-
tocurrency, Bitcoin, blockchain, decentralization, ICOs, anti-
monopoly, data-ownership, “software is eating law”, etc.

Defining Web3.0 meaningfully is non-trivial. Over the past
few years, we had numerous conversations and interviews with
experts and practitioners in various Web3.0-related industry
sectors, including layer-one blockchain infrastructures, layer-
two (off-chain) protocols, consortium (or enterprise) blockchain
service providers, and decentralized applications (e.g., decen-
tralized finance and gaming), hoping to understand (i) what are
the fundamental and defining characteristics of Web3.0 and (ii)
what are the key enablers of Web3.0. We observed that although
they all claim their infrastructures or/and applications are
indeed Web3.0 products by enumerating various advantages
over the so-called Web2.0 counterparts, it is challenging to
abstract away their product-specific buzzwords to reach a
crystal-clear Web3.0 definition, letting alone articulating the
key enablers of Web3.0.

In this paper, we lay out our observations about Web3.0
(partially shaped by the aforementioned industrial study) and
the reasoning on those findings, to provide the first academic

• Z. Liu is with Google Inc. and University of Illinois at Urbana-
Champaign, USA.

• Y. Xiang and H. Wang are with Beijing University of Posts and Telecom-
munications, China.

• J. Shi and X. Xiao are with Case Western Reserve University, USA.
• P. Gao is with University of California, Berkeley, USA.
• B. Wen is with Nanyang Technological University, Singapore.
• Q. Li is with Tsinghua University, China.
• Y. Hu is with University of Illinois at Urbana-Champaign, USA.
• Part of the material in this manuscript appeared in [1].

definition for Web3.0. We do not claim that our definition is
the only way of understanding Web3.0, yet it has two desir-
able properties: generic and measurable. It is generic since it
is not limited to any overarching applications or underlying
infrastructures; it is measurable because all stakeholders can
determine an application’s eligibility for the Web3.0 era using
a fundamental and defining trait of Web3.0 that we captured
via a thorough analysis of the recent blockchain infrastructure
evolution. Under this Web3.0 definition, we articulate three
concrete key infrastructural enablers for Web3.0: (i) individual
blockchains with enhanced performance and security prop-
erties to serve as the ideal platforms to support verifiable
computing; (ii) federated or centralized platforms, capable of
publishing verifiable states, to compensate for the functionality
that is difficult or infeasible to realize on-chain; and (iii) a secure
interoperability platform to hyperconnect these distributed and
isolated state publishers (i.e., both blockchains and federated
/ centralized platforms) to provide a unified and connected
computing platform for Web3.0 applications.

While innovations in all three key enablers are necessary
to fully enable Web3.0, in this paper, we present in detail a
design for the third key enabler, i.e., the first interoperability
platform for Web3.0. Throughout the paper, we describe our
protocols mostly in the context of interoperating heterogeneous
blockchains and extend interoperability to include federated or
centralized state publishers in § 5.7. Existing interoperability
proposals [2–5] mostly focus on atomic token exchange be-
tween two blockchains without centralized exchanges. How-
ever, since smart contracts executing on blockchains have
transformed blockchains from append-only distributed ledgers
into programmable state machines, token exchange is not the
complete scope of blockchain interoperability. Instead, blockchain
interoperability is complete only with programmability, allowing
developers to write Web3.0 applications executable across those
disconnected state machines.

We recognize at least two categories of challenges for si-
multaneously delivering programmability and interoperability.
First, the programming model of cross-chain Web3.0 decen-
tralized applications (or dApps) is unclear. In general, from

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3079315, IEEE
Transactions on Dependable and Secure Computing

2

developers’ perspective, it is desirable that cross-chain dApps
could preserve the same state-machine-based programming
abstraction as single-chain contracts [6]. This, however, raises
a virtualization challenge to abstract away the heterogeneity
of smart contracts and accounts on different blockchains so
that the interactions and operations among those contracts and
accounts can be uniformly specified when writing dApps.

Second, existing token-exchange oriented interoperability
protocols, such as atomic cross-chain swaps (ACCS) [7], are not
generic enough to realize cross-chain dApps. This is because
the “executables” of those dApps could contain more complex
operations than token transfers. For instance, our example dApp
in § 3.3 invokes a smart contract using parameters obtained
from smart contracts deployed on different blockchains, and
meanwhile the condition of an invocation may even depend
on the dynamic state on remote blockchains. The complexity of
this operation is far beyond mere token transfers.

To meet these challenges, we propose HyperService, the
first interoperability platform for building and executing
Web3.0 dApps across heterogeneous blockchains. At the highest
level, HyperService is powered by two innovative designs:
a developer-facing programming framework for writing cross-
chain dApps, and a blockchain-facing cryptography protocol
to securely realize those dApps on blockchains. Within this
programming framework, we propose Unified State Model
(USM), a blockchain-neutral and extensible model to describe
cross-chain dApps, and the HSL, a high-level programming lan-
guage to write cross-chain dApps under the USM programming
model. UIP (short for universal inter-blockchain protocol) is our
cryptography protocol that handles the complexity of cross-
chain execution of dApps written in HSL. UIP is (i) generic,
operating on any blockchain with a public transaction ledger,
(ii) secure, the executions of dApps either finish with verifiable
correctness or abort due to security violations, where misbe-
having parties are held accountable, and (iii) financially atomic,
meaning all involved parties experience almost zero financial
losses, regardless of the execution status of dApps. UIP is fully
trust-free, assuming no trusted entities.

To summarize, we make the following key contributions.
(i) We provide the first generic and measurable metric to

define the era of Web3.0, based on our observations and rea-
soning about the evolution of blockchain infrastructures over
the past few years. Based on this definition, we articulate three
key infrastructural enablers for Web3.0.

(ii) We present in detail one of the three key enablers: the
first interoperability platform, HyperService, to hyperconnect
heterogeneous blockchains and federated / centralized state
publishers to provide a unified and connected computing plat-
form for Web3.0 applications. We implement a prototype of Hy-
perService in approximately 62,000 lines of code, and evaluate
the prototype with three categories of cross-chain dApps. Our
experiments show that the end-to-end dApp execution latency
imposed by HyperService is in the order of seconds, and the
HyperService platform is horizontally scalable.

2 WHAT IS Web3.0 and WHAT DOES IT TAKE

In this section, we elaborate on our thoughts about Web3.0,
focusing on answering the following two questions: (i) what
are the fundamental and defining characteristics of Web3.0 and
(ii) what are the key enablers of Web3.0.

Our high-level reasoning process is as follows. While
Web3.0 is ubiquitous in industry sectors, there is surprisingly
little academic work to systematically study it. Thus, we extend
our study about Web3.0 by initiating numerous interviews
and conversations with many experts and practitioners from a

wide range of Web3.0-related industry sectors, including layer-
one blockchain infrastructures, layer-two (off-chain) protocols,
consortium (or enterprise) blockchain service providers, decen-
tralized applications, etc. Then, based on a thorough analysis
of the observed blockchain infrastructure evolution (see § 2.1),
we distill a key invariant featuring the evolution, which is
verifiability rather than “decentralization” or “trustlessness” or
any other buzzwords that people have used to describe Web3.0.
This invariant is somewhat surprising, yet it captures the most
defining trait of the Web3.0 evolution. Third, centering around
the key variant, we propose the first academic definition of
Web3.0. Although our definition is not the only way of under-
standing Web3.0, it has two desirable properties as explained
in § 2.3. Finally, under this definition, we propose three key
areas of infrastructural innovations required to enable Web3.0.
We summarize the academic research in each area and focus on
presenting in detail a design for one of the key enablers.

2.1 Decentralization or Not

According to conventional wisdom, decentralization is almost
the synonym for Web3.0. Admittedly, the enthusiasm for
Web3.0 was ignited by the decentralized peer-to-peer payment
network Bitcoin. Interestingly, the definition and realization of
decentralization have evolved significantly over time. Nowa-
days, the mining power of Bitcoin concentrates on several
large mining pools, which essentially undermines peer equality,
one crucial attribute of the classic decentralization definition.
Meanwhile, the emerging blockchains using (Delegated) Proof-
of-Stake as their consensus protocols (due to various benefits in-
cluding higher transaction throughput, faster transaction final-
ity and easier governance) are inherently hierarchical, which,
arguably, is more similar to the era we are currently living in
than an ideal decentralized era.

The blockchain infrastructure continues to evolve as addi-
tional features are proposed by new projects, often cited as their
market differentiators. Privacy-preserving smart contracting
is one of the most frequently mentioned and highly desired
features. The realization of privacy-preservation often relies on
hardware primitives such as Trusted Execution Environment
(TEE), because it is either infeasible or prohibitively expensive
to generalize pure software-based solutions (often based on
cryptography innovations, such as zero-knowledge proofs and
secure multiparty computation) to support generic privacy-
preserving computation in smart contracts. Paradoxically, Intel
is the dominant TEE provider world wide. Another example
is off-chain data feed (i.e., oracle) which is essential to provide
authentic external data for on-chain smart contracts (e.g., de-
centralized finance, or DeFi, applications often need data from
certified financial organizations). The authenticity of these data
feeds, again, are not decided in a decentralized manner.

The ever-changing infrastructure realization of the decen-
tralized blockchains probably means that we should not equalize
Web3.0 and decentralization. Instead, despite the infrastructure
evolvement, we observed that Web3.0 applications, in general,
hold a key invariant: stakeholders are able to prove whether the
execution of a Web3.0 application complies with or violates the
pre-agreed contractual terms between users and the applica-
tion. This invariant naturally holds when Web3.0 applications
fully execute on-chain without external dependencies, regard-
less of the governance model of the underlying blockchains.
Further, even when off-chain components are added, such as
TEEs and oracles, they often provide security primitives to
allow users to attest the correctness of code execution or the
authenticity of data feeds. Thus, compared with decentraliza-
tion, verifiability is a more precise defining-feature of Web3.0.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3079315, IEEE
Transactions on Dependable and Secure Computing

3

We also thought about several other candidate terms that may
capture the aforementioned invariant, such as accountability,
transparency, trustlessness and statefulness. However, account-
ability and statefulness are typically protocol-level features;
Web3.0 applications are not necessarily transparent for privacy
concerns; and although the Trusted Computing Base (TCB) for
Web3.0 applications is generally small, it is still challenging to
claim that they are trustless.
2.2 Critical Computing

As the complexity of Web3.0 applications continues to grow,
executing a Web3.0 application completely on-chain or inside
a TEE becomes increasingly challenging or even infeasible,
because of the memory and computation capability limitations
of the blockchains and TEEs. This naturally raises a question:
what is the proper demarcation point for verifiability when an
application requires non-trivial off-chain participation. Clearly,
the demarcation point should be application-specific. To ab-
stract it, we introduce the concept of critical computing which
represents the key contract between users and the application
that is deemed crucial to be verifiable. The critical computing
is not necessarily the most complex, or computation-intensive,
or even proprietary part of the application. Instead, it should
define the high-level business commitment and agreement be-
tween users and the application. For instance, in various crypto-
pet applications, the key contract should be how users’ pets will
evolve after gaining experiences or points by eating crypto-
foods or winning battles; in DeFi applications, verifying that
the financial terms (e.g., the interest rates of lending contracts)
are executed correctly is desirable.

Another key reason for explicitly defining critical comput-
ing for Web3.0 applications is the increasingly clear necessity of
embracing federated or centralized computation platforms (e.g.,
Cloud) in Web3.0. Going beyond preliminary applications such
as ICOs and crypto-pets, Web3.0 applications with complex
logic often require external dependencies that can only be prac-
tically or/and economically satisfied via federated or central-
ized computing. Per our discussions with industrial practition-
ers, especially those with actual application scenarios besides
token transfers, the off-chain part of their applications may
require data collections from distributed IoT sensors deployed
in different organizations, machine learning assisted big data
analytics, and endorsement or certificates from trusted parties
(usually governmental institutes). As a result, it is foreseeable
that Web3.0 will not and should not exclude interactions with
the federated or centralized platforms.

Therefore, in terms of defining applications for the Web3.0
era (separating them from the so-called Web2.0 applications),
it is crucial to draw a line between the part that verifiability
is deemed necessary and the part that still depends on the
outputs from non-decentralized organizations with proprietary
algorithms and/or hardware, and certain certificates. Thus,
introducing the abstracted and application-specific concept of
critical computing provides a definitive and measurable metric
for establishing Web3.0 applications that require non-trivial
interactions with these organizations.
2.3 Web3.0 and Its Key Infrastructural Enablers

Taking all our observations and reasoning together, we propose
our statement about Web3.0 as: Web3.0 is an era of computing
where the critical computing of applications is verifiable. We clar-
ify that this statement is not the only way of understanding
Web3.0, yet this definition captures the fundamental and defin-
ing trait of Web3.0 and has two desirable properties: generic
and measurable. Specifically, it is not limited to any specific
overarching applications or underlying infrastructures. Cru-

cially, all stakeholders are able to decide whether the execution
of an application is verifiable (i.e., measuring the application’s
eligibility for Web3.0) based on predetermined terms.

Under this definition, we propose three key infrastructural
enablers for Web3.0.

(i) Individual smart-contract capable blockchains will con-
tinue to play a crucial role, especially after considerable efforts
have been made to improve the performance and security
of individual blockchains, such as more efficient consensus
algorithms [8–10], improving transaction rate by sharding [11–
13], enhancing the privacy for smart contracts [14, 15], and
reducing their vulnerabilities via program analysis [16–18]. Due
to the built-in verifiability of smart contracts, executing the
critical computing of Web3.0 applications on-chain as smart
contracts is a sensible option.

(ii) A mature Web3.0 era should also include federated or
centralized platforms to compensate for functionality that is
difficult or infeasible to execute on-chain, e.g., performing com-
putationally intensive tasks or special functionality requiring
governmental endorsement. We recognize that two key capabil-
ities are required from those federated or centralized platforms
(with minimal disruption of their operational models) to make
them compatible with and qualified to be part of Web3.0: (i)
any public state they publish should be coupled with verifiable
proofs to certify the correctness of the state, where the definition
of correctness is application-specific, and (ii) all published state
should have the concept of finality. Recent proposals, such as
scaling zero-knowledge proofs using distributed clusters [19] or
exporting verifiable states from certified websites [20], provide
a promising direction in this regard.

(iii) Finally, the critical computing of complex Web3.0 appli-
cations often rely on distributed states published by different
and isolated systems, including both individual blockchains
and federated / central platforms. The reason that multiple
state publishers are required in critical computing is not be-
cause a single system, after optimization, cannot acquire all
required functionality. Instead, it is because these systems are
owned by different organizations and therefore it is impossible
to merge them. As a result, a secure interoperability platform to
hyperconnect these isolated state publishers (both decentral-
ized and federated / central ones) is the final building block to
enable Web3.0.

Among the three aforementioned categories of key infras-
tructural enablers, the focus of the remainder of this paper is
a design for the third enabler, namely the first interoperability
platform for Web3.0, named HyperService. Existing Blockchain
interoperability proposals mostly center around atomic token-
exchange, which is only a small fraction of the complete scope
of Web3.0 applications. HyperService, for the first time, delivers
programmability with interoperability, providing a unified and
connected computing platform atop heterogeneous blockchains
and federated state publishers to power the critical computing
for Web3.0 applications.

3 HyperService OVERVIEW

3.1 Architecture

As depicted in Figure 1, architecturally, HyperService is de-
signed around four components. (i) dApp Clients are the gate-
ways for dApps to interact with the HyperService platform.
When designing HyperService, we intentionally make clients
lightweight, allowing both mobile and web applications to in-
teract with HyperService. (ii) Verifiable Execution Systems (VESes)
conceptually work as blockchain drivers that compile the high-
level dApp programs given by the dApp clients into blockchain-
executable transactions, which are the runtime executables on

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3079315, IEEE
Transactions on Dependable and Secure Computing

4

Phase A. HSL Program Compilation

Client VES

T1

T3

T2

T4

……

A.1 HSL Program

A.2 Executable Graph

A.3 Insurance Smart Contract

if CorrectExecution:
 Pay service fee
else:
 Revert effective fund
 Enforce accountability

Phase B. Cross-Chain Execution Phase C. Insurance Claim

Client VES
State Channel

BN A BN B BN C

B.2 Post T3

B.1 Post T1

B.3 T2
B.4 T4

Network Status Blockchain
(NSB)

Action
PoA

Action

Overall Architecture

HyperService
Zoom-In

PoA

dApp
Clients

VESes

Blockchain
Networks

BN A BN B BN Z…

Universal State Model

BN A BN B BN Z…

HSL
Program

HSL
Program

HSL
Program

HSL Executables

Cross-chain Execution Reachability

Client VES

Security
Attestations

Security
Attestations

NSB or any mutual-agreed BN

Fig. 1: The architecture of HyperService.

HyperService. VESes and dApp clients employ the underlying
UIP cryptography protocol to securely execute those transac-
tions across different blockchains. UIP itself has two building
blocks: (iii) the Network Status Blockchain (NSB) and (iv) the
Insurance Smart Contracts (ISCs). The NSB, conceptually, is a
blockchain of blockchains designed by HyperService to provide
an objective and unified view of the dApps’ execution status,
based on which the ISCs arbitrate the correctness or violation
of dApp executions in a trust-free manner. In case of exceptions,
the ISCs financially revert all executed transactions to guarantee
financial atomicity and hold misbehaved entities accountable.
3.2 Universal State Model

A blockchain, together with smart contracts (or dApps) exe-
cuted on the blockchain, is perceived as a state machine [6].
We desire to preserve the similar abstraction for developers
when writing cross-chain dApps. To this end, we propose
Unified State Model (USM), a blockchain-neutral and exten-
sible model for describing state transitions across different
blockchains, which in essential defines cross-chain dApps. USM
realizes a virtualization layer to unify the underlying heteroge-
neous blockchains. Such virtualization includes: (i) blockchains,
regardless of their implementations (e.g., consensus mecha-
nisms, smart contract execution environment, programming
languages), are abstracted as objects with public state variables and
functions; (ii) developers write dApps by specifying operations
over those objects, along with the relative ordering among those
operations, as if all the objects were local to a single machine.

Formally, USM is defined asM = {E ,P, C} where E is a set
of entities, P is a set of operations performed over those entities,
and C is a set of constraints defining the dependencies of those
operations. Entities are to describe the objects abstracted from
blockchains. All entities are conceptually local toM, regardless
of which blockchains they are obtained from. Entities come
with kinds, and each entity kind has different attributes. The
current version of USM defines two concrete kinds of entities,
accounts and contracts, as tabulated in Table 1. Specifically, an ac-
count entity is associated with a uniquely identifiable address,
as well as its balance in certain units. A contract entity, besides
its address, is further associated with a list of public attributes,
such as state variables, callable interfaces, and its source code
deployed on blockchains. Entity attributes are crucial to enforce
the security and correctness of dApps, as discussed in § 3.3.

An operation in USM defines a step of computation per-
formed over several entities. Table 1 lists two kinds of op-
erations: a payment operation describing the balance updates
between two account entities at a certain exchange rate; and
an invocation operation describing the execution of a method
specified by the interface of a contract entity using compatible
parameters, whose values may be obtained from other contract
entities’ state variables.

Although operations are conceptually local, each operation
is eventually compiled into one or more transactions on differ-

ent blockchains, whose consensus processes are not synchro-
nized. To honor the possible dependencies among events in
distributed computing [21], USM, therefore, defines constraints
to specify dependencies among operations. Currently, USM
supports two kinds of dependencies: preconditions and deadlines,
where an operation can proceed only if all its preconditioning
operations are finished, and an operation must be finished
within a bounded time interval after its dependencies are satis-
fied. Preconditions and deadlines offer desirable programming
abstraction for dApps: (i) preconditions enable developers to
organize their operations into a directed acyclic graph, where
the state of upstream nodes is persistent and can be used
by downstream nodes; (ii) deadlines are crucial to ensure the
forward progress of dApp executions.

3.3 HyperService Programming Language

To demonstrate the usage of USM, we develop HSL, a program-
ming language to write cross-chain dApps under USM.

3.3.1 An Introductory Example for HSL Programs

Financial derivatives are among the most commonly cited
blockchain applications. Many financial derivatives rely on
authentic data feed, i.e., an oracle, as inputs. For instance, a stan-
dard call-option contract needs a genuine strike price. Existing
oracles [22] require a smart contract on the blockchain to serve
as the front-end to interact with other client smart contracts.
As a result, it is difficult to build a dependable and unbiased
oracle that is simultaneously accessible to multiple blockchains,
because we cannot simply deploy an oracle smart contract on
each individual blockchain since synchronizing the execution
of those oracle contracts requires blockchain interoperability,
i.e., we see a chicken-and-egg problem. This limitation, in turn,
prevents dApps from spreading their business across multiple
blockchains. For instance, a call-option contract deployed on
Ethereum forces investors to exercise the option using Ether,
but not in other cryptocurrencies.

As an introductory example, we shall see how conceptually
simple, yet elegant, it is, from developers’ perspective, to build
a universal call-option dApp that allows investors to natively
exercise options with the cryptocurrencies they prefer. The code
snippet shown in Figure 2 is the HSL implementation for the
referred dApp. In this dApp, both Option contracts deployed
on blockchains ChainY and ChainZ rely on the same Broker
contract on ChainX to provide the genuine strike price (lines
16 and 20 in Figure 2). Meanwhile, HSL supports conditional
control constructs (i.e., if and else) to enable intelligent seman-
tics such as only executing (or partially executing) the option
terms if the genuine strike price is above a certain target. In
addition, looping control constructs are allowed to achieve
concise expression of the HSL program. Detailed HSL grammar
is given in Grammar 1.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3079315, IEEE
Transactions on Dependable and Secure Computing

5

TABLE 1: Example of entities, operations and dependencies in USM

Entity Kind Attributes Operation Kind Attributes Dependency Kind
account address, balance, unit payment from, to, value, exchange rate precondition
contract address, state variables[], interfaces[], source invocation interface, parameters[const, Contract.SV, ...], invoker deadline

1 # Import the source code of contracts written in different languages.
2 import (“broker.sol”, “option.vy”, “option.go”)
3 # Entity definition.
4 # Attributes of a contract entity are implicit from its source code.
5 account a1 = ChainX::Account(0x7019..., 100, xcoin)
6 account a2 = ChainY::Account(0x47a1..., 0, ycoin)
7 account a3 = ChainZ::Account(0x61a2..., 50, zcoin)
8 account a4 = ChainZ::Account(0x853e..., 50, zcoin)
9 contract c1 = ChainX::Broker(0xbba7...)

10 contract c2 = ChainY::Option(0x917f...)
11 contract c3 = ChainZ::Option(0xefed...)
12 # Operation definition.
13 op op1 invocation c1.GetStrikePrice() using a1
14 if c1.StrikePrice > target :
15 op op2 payment 50 xcoin from a1 to a2 with 1 xcoin as 0.5 ycoin
16 op op3 invocation c2.CashSettle(10, c1.StrikePrice) using a2
17 for acc in [a3, a4] :
18 op op4 invocation c3.CashSettle(5, c1.StrikePrice) using acc
19 else : # the StrikePrice is below the target
20 op op5 invocation c3.CashSettle(3, c1.StrikePrice) using a4
21 # Dependency definition.
22 op1 before op2, op4, op5; op3 after op2
23 op1 deadline 10 blocks; op2, op3 deadline default; op4 deadline 20 mins

Fig. 2: A cross-chain Option dApp written in HSL.

3.3.2 HSL Program Compilation

The core of HyperService programming framework is the HSL
compiler. The compiler performs two major tasks: (i) enforcing
security and correctness checks on HSL programs and (ii) com-
piling HSL programs into blockchain-executable transactions.

One of the key innovations of HyperService is that it allows
dApps to natively define interactions and operations among
smart contracts deployed on heterogeneous blockchains. Since
these smart contracts could be written in different languages,
HSL provides a multi-language front end to analyze the source
code of those smart contracts. It extracts the type information
of their public state variables and functions, and then converts
them into the unified types defined by HSL (§ 4.1). This enables
effective correctness checks on the HSL programs (§ 4.3). For
instance, it ensures that all the parameters used in a contract
invocation operation are compatible and verifiable, even if
these arguments are extracted from remote contracts written
in languages different from that of the invoking contract.

Once a HSL program passes the syntax and correctness
checks, the compiler generates an executable for the program.
The executable is structured in the form of a Transaction De-
pendency Graph, which contains (i) the complete information
for computing a set of blockchain-executable transactions, (ii)
the metadata of each transaction needed for correct execution,
and (iii) the preconditions and deadlines of those transactions to
honor the dependency constraints defined in the HSL program.

In HyperService, the Verifiable Execution Systems (VESes)
are the actual entities that own the HSL compiler and there-
fore resume the aforementioned compiler responsibilities. Be-
cause of this, VESes work as blockchain drivers that bridge
our high-level programming framework with the underlying
blockchains. Each VES is a distributed system providing trust-
free service to compile and execute HSL programs together
with the dApp clients. VESes are trust-free because their actions
taken during dApp executions are verifiable. Each VES defines
its own service model, including its reachability (i.e., the set
of blockchains that the VES supports), service fees charged
for correct executions, and insurance plans (i.e., the expected
compensation to dApps if the VES’s execution is proven to be

incorrect). dApps have full autonomy to select VESes that satisfy
their requirements.

Besides owning the HSL compiler, VESes also participate in
the actual executions of HSL executables, as discussed below.
3.4 Universal Inter-Blockchain Protocol (UIP)

To correctly execute a dApp, all executable transactions
in its transaction dependency graph must be finalized on
blockchains, and meanwhile their preconditions and deadlines
are honored. Some transactions in the graph may be dynam-
ically skipped if their depending conditions are not stratified
(e.g., the transaction corresponding to op5 in Figure 2). Al-
though this executing procedure is conceptually simple (thanks
to the HSL abstraction), it is very challenging to enforce correct
executions in a fully trust-free manner where (i) no trusted
authority is allowed to coordinate the executions on different
blockchains and (ii) no mutual trust between VESes and dApp
clients are required.

To address this challenge, HyperService designs UIP, a cryp-
tography protocol between VESes and dApp clients to securely
execute HSL executables on blockchains. UIP can work on
any blockchain with public ledgers, imposing no additional
requirements such as their consensus protocols and contract
execution environment. UIP provides strong security guarantees
for executing dApps such that dApps are correctly finalized
only if the correctness is publicly verifiable by all stakehold-
ers; otherwise, UIP holds the misbehaving parties accountable,
and financially reverts all committed transactions to achieve
financial atomicity.

UIP is powered by two innovative designs: the Network
Status Blockchain (NSB) and the Insurance Smart Contract (ISC).
The NSB is a blockchain designed by HyperService to provide
objective and unified views on the status of dApp executions.
On the one hand, the NSB consolidates the finalized transac-
tions of all underlying blockchains into Merkle trees, providing
unified representations for transaction status in form of verifi-
able Merkle proofs. On the other hand, the NSB supports Proofs
of Actions (PoAs), allowing both dApp clients and VESes to
construct proofs to certify their actions taken during cross-chain
executions. The ISC is a code-arbitrator. It takes transaction-
status proofs constructed from the NSB as input to determine
the correctness or violation of dApp executions, and meanwhile
uses action proofs to determine the accountable parities in case
of exceptions. In § 5.6, we define the security properties of UIP
via an ideal functionality.
3.5 Assumptions and Threat Model

We assume that the cryptographic primitives and the consensus
protocol of all underlying blockchains are secure so that each of
them can have the concept of transaction finality. On Nakamoto
consensus based blockchains (typically permissionless), this is
achieved by assuming that the probability of blockchain reor-
ganizations drops exponentially as new blocks are appended
(common-prefix property) [23]. On Byzantine tolerance based
blockchains (usually permissioned), finality is guaranteed by
signatures from a quorum of permissioned voting nodes. For
a blockchain, if the NSB-proposed definition of transaction
finality for the blockchain is accepted by users and dApps on Hy-
perService, the operation (or trust) model (e.g., permissionless
or permissioned) and consensus efficiency (i.e., the latency for a
transaction to become final) of the blockchain have provably no
impact on the security guarantees of our UIP protocol. We also

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3079315, IEEE
Transactions on Dependable and Secure Computing

6

HSL
Front-End

Unified Types Entities Operations Dependencies

Dependency
Validation

Operation
Validation

Entity
Validation

HSL Front Ends

HSL
Program

Multi-language
Front-End

HSL Validation and Compilation

…Solidity
Contract

Vyper
Contract

Go
Contract

Transaction
Compilation

Transaction Dependency Graph

Fig. 3: Workflow of HSL compilation.

assume that each underlying blockchain has a public ledger
that allows external parties to examine and prove transaction
finality and the public state of smart contracts.

The correctness of UIP relies on the correctness of the
NSB. An example implementation of NSB is a permissioned
blockchain, where any information on NSB becomes legitimate
only if a quorum of consensus nodes that maintain the NSB
have approved the information. We thus assume that at least K
consensus nodes of the NSB are honest, where K is the quorum
threshold (e.g., the majority). In this design, an NSB node is not
required to become either a full or light node for any of the
underlying blockchains.

We consider a Byzantine adversary that interferes with
our UIP protocol arbitrarily, including delaying and reorder-
ing network messages indefinitely, and compromising protocol
participants. As long as at least one protocol participant is not
compromised by the adversary, the security properties of UIP
are guaranteed.

4 PROGRAMMING FRAMEWORK

The design of the HyperService programming framework cen-
ters around the HSL compiler. Figure 3 depicts the compilation
workflow. The HSL compiler has two frond-ends: one for ex-
tracting entities, operations, and dependencies from a HSL pro-
gram and one for extracting public state variables and methods
from smart contracts deployed on blockchains. A unified type
system is designed to ensure that smart contracts written in
different languages can be abstracted as interoperable entities
in HSL programs. Afterwards, the compiler performs semantic
validations on all entities, operations and dependencies to
ensure the security and correctness of the HSL program. Finally,
the compiler produces an executable for the HSL program,
which is structured in the form of a transaction dependency
graph. We next describe the details of each component.

4.1 Unified Type System

The USM is designed to provide a unified virtualization layer
for developers to define invocation operations in their HSL pro-
grams, without handling the heterogeneity of contract entities.
Towards this end, the programming framework internally de-
fines a Unified Type System so that state variables and methods
of all contract entities can be abstracted using the unified types
when writing HSL programs. This enables the HSL compiler to
ensure that all arguments specified in an invocation operation
are compatible (§ 4.3).

Specifically, the unified type system defines nine elementary

TABLE 2: Unified type mapping for Solidity, Vyper, and Go
Type Solidity Vyper Go
Boolean bool bool bool
Numeric int, uint int128, uint256,

decimal, unit
type

int, uint, uintptr,
float

Address address address string
String string string string
Array array, bytes array, bytes array, slice
Map mapping map map
Struct struct struct struct
Function function, enum def func
Contract Contract file type

types, as shown in Table 2. Data types that are commonly used
in smart contract programming languages will be mapped to
these unified types during compilation. For example, Solidity
does not fully support fixed-point number, but Vyper (decimal)
and Go (float) do. Also, Vyper’s string is fixed-sized (declared
via string[Integer]), but Solidity’s string is dynamically-sized
(declared as string). Our multi-lang front-end recognizes these
differences and performs type conversion to map all the nu-
meric literals including integers and decimals to the Numeric
type, and the strings to the String type. For types that are
similar in Solidity, Vyper, and Go, such as Boolean, Map, and
Struct, we simply map them to the corresponding types in
our unified type system. Finally, Solidity and Vyper provide
special types for representing contract addresses, which are
mapped to the Address type. But Go does not provide a type
for contract addresses, and thus Go’s String type is mapped
to the Address type. The mapping of language-specific types to
the unified type system is tabulated in Table 2. Our unified type
system is horizontally scalable to support additional strong-
typed programming languages. Note that the use of complex
data types as contract function parameters has not been fully
supported yet in production blockchains. We therefore omit
complex types in HSL.

4.2 HSL Language Design

The language constructs provided by HSL are coherent with
USM. One additional construct, import, is added to import the
source code of contract entities, as discussed below. Grammar 1
shows the representative rules of HSL. We omit the terminal
symbols such as 〈id〉 and 〈address〉.
Contract Importing. Developers use the 〈import〉 rule to include
the source code of contract entities. Depending on the program-
ming language of an imported contract, HSL’s multi-lang front
end uses the corresponding parser to parse the source, based
on which it performs semantic validation (§ 4.3). For security
purpose, the compiler should verify that the imported source
code is consistent with the actual deployed code on blockchain,
for instance, by comparing their compiled byte code.
Entity Definition. The 〈entity_def〉 rule specifies the definition
of an account or a contract entity. An entity is defined via
constructor, where the on-chain (〈address〉) of the entity is a
required parameter. An account entity can be initialized with
an optional unit (〈unit〉) to specify the cryptocurrency held by
the account. All contract entities must have the corresponding
contract objects/classes in one of the imported source code files.
Each entity is assigned with a name (〈entity_name〉) that can be
used for defining operations.
Operation Definition. The 〈op_def〉 rule specifies the defini-
tion of a payment or an invocation operation, as well as a
conditional / iteration control construct. A payment opera-
tion (〈op_payment〉) specifies the transfer of a certain amount
of coins (〈coin〉) between two accounts that may live on
different blockchains (〈accts〉). Note that no new coins on
any blockchains are ever created during the operation. The

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3079315, IEEE
Transactions on Dependable and Secure Computing

7

〈hsl〉 ::= (〈import〉)+ (〈entity_def〉)+ (〈op_def〉)+ (〈dep_def〉)*
Contract Imports:
〈import〉 ::= ‘import’ ‘(’ 〈file〉 (‘,’ 〈file〉)* ‘)’
〈file〉 ::= 〈string〉

Entity Definition:
〈entity_def〉 ::= 〈entity_type〉 〈entity_name〉 ‘=’ 〈chain_name〉 ‘::’

〈constructor〉
〈entity_name〉 ::= 〈id〉
〈chain_name〉 ::= ‘Chain’ 〈id〉
〈constructor〉 ::= 〈contract_type〉 ‘(’ 〈address〉, (〈unit〉)? ‘)’
〈contract_type〉 ::= ‘Account’ | 〈id〉
〈entity_type〉 ::= ‘account’ | ‘contract’

Operation Definition:
〈op_def〉 ::= 〈op_payment〉 | 〈op_invocation〉 | 〈op_cond〉 | 〈op_for〉 |

〈op_loop〉
〈op_payment〉 ::= ‘op’ 〈op_name〉 ‘payment’ 〈coin〉 〈accts〉 〈exchange〉
〈op_name〉 ::= 〈id〉
〈coin〉 ::= 〈num〉 〈unit〉
〈accts〉 ::= ‘from’ 〈acct〉 ‘to’ 〈acct〉
〈acct〉 ::= 〈id〉
〈exchange〉 ::= ‘with’ 〈coin〉 ‘as’ 〈coin〉
〈op_invocation〉 ::= ‘op’ 〈op_name〉 ‘invocation’ 〈call〉 ‘using’ 〈acct〉
〈call〉 ::= 〈recv〉 ‘.’ 〈method〉 ‘(’ (arg)*‘)’
〈arg〉 ::= 〈int〉 | 〈float〉 | 〈string〉 | 〈state_var〉
〈state_var〉 ::= 〈varname〉 ‘.’ 〈prop〉
〈op_block〉 ::= (〈entity_def〉)+ (〈op_def〉)+
〈op_cond〉 ::= ‘if’ 〈cond〉 ‘:’ 〈op_block〉 (‘else’ ‘:’ 〈op_block〉)?
〈cond〉 ::= 〈arg〉 | 〈arg〉 〈bop〉 〈arg〉 | 〈cond〉 ‘and’ 〈cond〉 | 〈cond〉

‘or’ 〈cond〉 | ‘!’ 〈cond〉
〈op_for〉 ::= ‘for’ 〈var〉 ‘in’ 〈collection〉 ‘:’ 〈op_block〉
〈var〉 ::= 〈id〉
〈collection〉 ::= ‘[’((〈acct〉)+ | (〈cont〉)+)‘]’
〈cont〉 ::= 〈id〉
〈op_loop〉 ::= ‘loop’ ‘(’ 〈loop_cnt〉 ‘)’ ‘:’ 〈op_block〉
〈loop_cnt〉 ::= 〈int〉

Dependency Definition:
〈dep_def〉 ::= 〈temp_deps〉 | 〈del_deps〉
〈temp_deps〉 ::= 〈temp_dep〉 (‘;’ 〈temp_dep〉)*
〈temp_dep〉 ::= 〈op_name〉 (‘before’ | ‘after’) 〈op_name〉 (‘,’

〈op_name〉)*
〈del_deps〉 ::= 〈del_dep〉 (‘;’ 〈del_dep〉)*
〈del_dep〉 ::= 〈op_name〉 (‘,’ 〈op_name〉)* ‘deadline’ 〈del_spec〉
〈del_spec〉 ::= 〈int〉 ‘blocks’| ‘default’ | 〈int〉 〈time_unit〉

Grammar 1: Representative BNF grammar of HSL

〈exchange〉 rule is used to specify the exchange rate between
the coins held by the two accounts. An invocation operation
(〈op_invocation〉) specifies calling one contract entity’s public
method with certain arguments (〈call〉). The arguments passed
to a method invocation can be literals (〈int〉, 〈float〉, 〈string〉),
and state variables (〈state_var〉) of other contract entities. When
using state variables, semantic validation is required (§ 4.3).

The second category of operation in HSL is control con-
structs. A conditional expression (〈op_cond〉) specifies the con-
ditional execution of a sequence of operations (〈op_block〉),
depending on the evaluation of the conditional expression
(〈cond〉). HSL supports both direct evaluation of a boolean
variable (〈arg〉) or a comparison of variables (〈arg〉 〈bop〉 〈arg〉)
in a conditional expression. Further, it also supports using the
operators and and or to combine multiple conditional expres-
sions and the operator ! to negate a conditional expression.
Finally, a conditional construct may specify another sequence
of operations (i.e., “else block”) that will be executed if the
conditional expression is evaluated to false. For iteration con-
structs, HSL supports for and loop. A for construct (〈op_for〉)
specifies a sequence of operations to be repeated for each
element in a collection (〈collection〉). The elements contained
by a collection can be either account entities (〈acct〉) or contract
entities (〈cont〉). A loop construct (〈op_loop〉) provides another
simple way to specify a sequence of operations to be repeated
a fixed number of times (〈loop_cnt〉).

Dependency Definition. The 〈dep_def〉 specifies the rule of
defining preconditions and deadlines for operations. A precon-
dition (〈temp_deps〉) specifies the temporal constraints for the
execution order of operations. A deadline (〈del_deps〉) specifies
the deadline constraints of each operation. The deadline de-
pendency may be given either using the number of NSB blocks
(〈int〉 blocks) or in absolute time (〈int〉 〈time_unit〉) (c.f., § 4.4).

4.3 Semantic Validation

The compiler performs two types of semantic validation to
ensure the security and correctness of HSL programs. First,
the compiler guarantees the compatibility and verifiability of the
arguments used in invocation operations, especially when those
arguments are obtained from other contract entities. For com-
patibility check, the compiler performs type checking to ensure
the types of arguments and the types of method parameters
are mapped to the same unified type. For verifiability check,
the compiler ensures that only literals and state variables that
are publicly stored on blockchains are eligible to be used as
arguments in invocation operations. For example, the return
values of method calls to a contract entity are not eligible if
these results are not persistent on blockchains. This requirement
is necessary for the UIP protocol to construct publicly verifiable
attestations to prove that correct values are used to invoking
contracts during actual on-chain execution. The same require-
ment is enforced for the conditional control constructs (i.e., if
and else), i.e., only literals and state variables are eligible in the
conditional statement.

Second, the compiler performs dependency validation to
make sure that the dependency constraints defined in a HSL
program uniquely specify a directed acyclic graph connecting
all operations. This ensures that no conflicting temporal con-
straints are specified. If the HSL contains a loop statement,
a single declared operation could be compiled into multiple
operations (e.g., the op4 in Figure 2). In this case, all derived
operations will have same dependency constraint as the origi-
nal one, and meanwhile they do not have mutual dependency.

4.4 HSL Program Executables

Once a HSL program passes all validations, the HSL compiler
generates executables for the program in form of a transaction
dependency graph GT . Each vertex of GT , referred to as a trans-
action wrapper, contains the complete information to compute
an on-chain transaction executable on a specific blockchain, as
well as additional metadata for the transaction. The edges in GT
define the preconditioning requirements among transactions,
which are consistent with the dependency constraints specified
by the HSL program. Figure 4 show the GT generated for the
HSL program in Figure 2.

A transaction wrapper is in form of T :=[from, to, seq,meta],
where the pair {from, to} decides the sending and receiving
addresses of the on-chain transaction, seq (omitted in Figure 4)
represents the sequence number of T in GT , and meta stores the
structured and customizable metadata for T . Below we explain
the fields of meta. First, to achieve financial atomicity, meta
must populate a tuple 〈amt, dst〉 used in fund reversion. In par-
ticular, amt specifies the total value that the from address has
to spend when T is committed on its destination blockchain,
which includes both the explicitly paid value in T , as well as
any gas fee. If the entire execution of GT aborts whereas T is
committed, the dst account is guaranteed to receive the amount
of fund specified in amt. As we shall see in § 5.4, the fund
reversion is handled by the Insurance Smart Contract (ISC).
Therefore, the unit of amt (represented as ncoin in Figure 4)
is given based on the cryptocurrency used by the blockchain
where the ISC is deployed, and the dst should also live on the
same blockchain hosting ISC.

Second, for a transaction (such as T1) whose resulting state
is subsequently used by other downstream transactions (such
as T4), its meta needs to be populated with a corresponding
state proof. This proof should be collected from the transac-
tion’s destination blockchain after the transaction is finalized
(c.f., § 5.2.3). Third, a cross-chain payment operation in the HSL

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3079315, IEEE
Transactions on Dependable and Secure Computing

8

Transaction T1 on ChainX:
 <from, to>: <a1.address, c1.address>
Meta:
 data: c1.getStrikePrice
 <amt, dst>: <0.1 ncoin, 0x1…>
 state_proof: collect from NSB

Transaction T2 on ChainX:
 <from, to>: <a1.address, VES.relayX.address>
Meta:
 value: 50 xcoin
 <amt, dst>: <25 ncoin, 0x2…>
 deadline: 4 NSB blocks

Transaction T4 on ChainY:
 <from, to>: <a2.address, c2.address>
Meta:
 data: c2.CashSettle(10, c1.StrikePrice)
 <amt, dst>: <0.1 ncoin, 0x4…>
 value_proof: T1.meta.state_proof

Transaction T5 on ChainZ:
 <from, to>: <a3.address, c2.address>

T1.meta.state_proof

Transaction T7 on ChainZ:
 <from, to>: <a4.address, c3.address>
Meta:
 data: c3.CashSettle(3, c1.StrikePrice)
 <amt, dst>: <0.1 ncoin, 0x7…>
 value_proof: T1.meta.state_proof

T1.meta.state_proof

Transaction T6 on ChainZ:
 <from, to>: <a4.address, c2.address>

Transaction T3 on ChainY:
 <from, to>: <VES.relayY.address, a2.address>
Meta:
 value: 25 ycoin
 <amt, dst>: <5 ncoin, 0x3…>
 deadline: 6 NSB blocks

Fig. 4: GT generated for the example HSL program.

program results in multiple transactions in GT . For instance,
to realize the op1 in Figure 2, two individual transactions, in-
volving the relay accounts owned by the VES, are generated. As
blockchain drivers, each VES is supposed to own some accounts
on all blockchains that it has visibility so that the VES is able
to send and receive transactions on those blockchains. For in-
stance, in Figure 4, the relayX and relayY are two accounts used
by the VES to bridge the balance updates between ChainX::a1
and ChainY::a2. Because of those VES-owned accounts, GT is in
general VES-specific.

Finally, the deadlines of transactions could be specified
using the number of blocks on the NSB. This is because the
NSB constructs a unified view of the status of all underlying
blockchains and therefore can measure the execution time of
each transaction. Specifically, the deadline of a transaction T is
measured as the number of blocks between two NSB blocks
B1 and B2 (including B2), where B1 proves the finalization
of T ’s last preconditioned transaction and B2 proves the fi-
nalization of T itself. We explain in detail how the finality
proof is constructed based on NSB blocks in § 5.2.2. Transaction
deadlines are indeed enforced by the ISC using the number of
NSB blocks. To improve expressiveness, the HSL language also
allows developers to define deadlines in time intervals (e.g.,
minutes). The compiler will then convert those time intervals
into numbers of NSB blocks.

The execution of transactions connected by dotted lines in
the GT is dynamically decided based on the resulting state of
upstream transactions. For instance, in Figure 4 whether T2
(and all its downstream transactions) or T7 will be executed
is decided by the state after T1 is finalized.

In summary, the executable produced by the HSL compiler
defines the blueprint of cross-blockchain execution to realize
the HSL program. It is the input instructions that direct the
underlying cryptography protocol UIP, as detailed below.

5 UIP DESIGN DETAIL

UIP is the cryptography protocol that executes HSL program
executables. The main protocol ProtUIP is divided into five pre-
liminary protocols. In particular, ProtVES and ProtCLI define the
execution protocols implemented by VESes and dApp clients,
respectively. ProtNSB and ProtISC are the protocol realization of
the NSB and ISC, respectively. Lastly, ProtUIP includes ProtBC, the
protocol realization of a general-purposed blockchain. Overall,
ProtUIP has two phases: the execution phase where the transac-
tions specified in the HSL executables are posted on blockchains
and the insurance claim phase where the execution correctness
or violation is arbitrated.

Block Number: N + 1

ActionRoot StatusRoot…

Block Number: NPrevHash

ActionRoot

Hash

CommonRoots StatusRoot

Blockchain X

BlockID: 2012

StateRoot: 0x1…

TxRoot: 0xf…

Blockchain X

BlockID: 2019

StateRoot: 0x2…

TxRoot: 0xe…
Cert(z)Cert(a)

Fig. 5: The architecture of NSB blocks.

5.1 Protocol Preliminaries

5.1.1 Runtime Transaction State

During the execution phase, a transaction may be in any of the
following state {unknown, init, inited, open, opened, closed},
where a latter state is considered more advanced than a former
one. The state of each transaction must be gradually promoted
following the above sequence. For each state (except for the
unknown), ProtUIP produces a corresponding attestation to prove
the state. When the execution phase terminates, the final exe-
cution status of the HSL program is collectively decided by the
state of all transactions, based on which ProtISC arbitrates its
correctness or violation.

5.1.2 Off-Chain State Channels

The protocol exchange between ProtVES and ProtCLI can be con-
ducted via off-chain state channels for low latency. One chal-
lenge, however, is that it is difficult to enforce accountability
for non-closed transactions without preserving the execution
steps by both parties. To address this issue, ProtUIP proposes
Proof of Actions (PoAs), allowing ProtVES and ProtCLI to stake
their execution steps on NSB. As a result, the NSB is treated as a
publicly-observable fallback communication medium for the off-
chain channel. The benefit of this dual-medium design is that
the protocol exchange between ProtVES and ProtCLI can still pro-
ceed agilely via off-chain channels in typical scenarios, whereas
the full granularity of their protocol exchange is preserved on
the NSB in case of exceptions, eliminating the ambiguity for
accountability enforcement.

As mentioned in § 5.1.1, ProtUIP produces security attesta-
tions to prove the runtime state of transactions. As we shall
see below, an attestation may come in two forms: a certificate,
denoted by Cert, signed by ProtVES or/and ProtCLI during their
off-chain exchange, or an on-chain Merkle proof, denoted by
Merk, constructed using the NSB and underlying blockchains.
An Cert and its corresponding Merk are treated equivalently by
the ProtISC in code arbitration.

5.1.3 Architecture of the NSB

The NSB is a blockchain designed to provide an objective
view on the execution status of dApps. Figure 5 depicts the
architecture of NSB blocks. Similar to typical blockchain blocks,
an NSB block contains several common fields, such as the hash
fields to link blocks together and the Merkle trees to store
transactions and state. To support the extra functionality of the
NSB, an NSB block contains two additional Merkle tree roots:
StatusRoot and ActionRoot.

StatusRoot is the root of a Merkle tree (referred as StatusMT)
that stores transaction status of underlying blockchains. The
NSB represents the transaction status of a blockchain based
on the TxRoots and StateRoots retrieved from the blockchain’s
public ledger. Although the exact namings may vary on dif-
ferent blockchains, in general, the TxRoot and StateRoot in a
blockchain block represent the root of a Merkle tree storing
transactions and storage state (e.g., account balance, contract

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3079315, IEEE
Transactions on Dependable and Secure Computing

9

state), respectively. Note that the NSB only stores relevant
blockchain state, where a blockchain block is considered to be
relevant if the block packages at least one transaction that is
part of any dApp executables.

ActionRoot is the root of a Merkle tree (referred to as Ac-
tionMT) whose leaf nodes store certificates computed by VESes
and dApp clients. Each certificate represents a certain step taken
by either the VES or the dApp client during the execution
phase. To prove such an action, a party needs to construct a
Merkle proof to demonstrate that the certificate mapped to the
action can be linked to a committed block on the NSB. These
PoAs are crucial for the ISC to enforce accountability if the
execution fails. Since the information of each ActionMT is static,
we lexicographically sort the ActionMT to achieve fast search
and convenient proof of non-membership.

The construction of StatusMT ensures that each underlying
blockchain can have a dedicated subtree for storing its trans-
action status. This makes the NSB shardable on the granularity
of individual blockchains, ensuing that the NSB is horizontally
scalable as HyperService incorporates new blockchains. ProtNSB,
discussed in § 5.5, is the protocol that specifies the detailed
construction of both roots and guarantees their correctness.

5.2 Execution Protocol by VESes

The full protocol of ProtVES is detailed in Figure 6. Below we
clarify some technical subtleties.

5.2.1 Post Compilation and Session Setup

After GT is generated, ProtVES initiates an execution session for
GT in the PostCompiliation daemon by creating and deploying
an insurance contract to protect the execution of GT . Towards
this end, ProtVES interacts with the protocol ProtISC to create the
insurance contract for GT , and further deploys the contract on
NSB after the dApp client D agrees on the contract. Throughout
the paper, Cert([∗]; Sig) represents a signed certificate proving
that the signing party agrees on the value enclosed in the
certificate. We use SigV

sid and SigD
sid to represent the signature

by ProtVES and ProtCLI, respectively.
Additionally, both ProtVES and ProtCLI are required to deposit

sufficient funds to ProtISC to ensure that ProtISC holds sufficient
funds to financially revert all committed transactions regardless
of the step at which the execution aborts prematurely. Intu-
itively, each party would need to stake at least the total amount
of incoming funds to the party without deducting the outgoing
funds. This strawman design, however, require high stakes.
More desirably, considering the dependency requirements in
GT , an party X (ProtVES or ProtCLI) only needs to stake

max
s∈GS

∑
T ∈s ∧ T .to=X

T .meta.amt−
∑

T ∈s ∧ T .from=X

T .meta.amt

where GS is the set of all committable subsets in GT , where
a subset s ⊆ GT is committable if, whenever T ∈ s, all
preconditions of T are also in s. All vertexes in GT , includ-
ing those connected by dotted edges, should be included.
For clarity of notation, throughout the paper, when saying
T .from =ProtVES or T is originated from ProtVES, we mean that
T is sent and signed by an account owned by ProtVES. Likewise,
T .from =ProtCLI indicates that T is sent from an account entity
defined in the HSL program. ProtISC refunds any remaining
funds after the contract is terminated.

After the contract is instantiated and sufficiently staked,
ProtVES initializes its internal bookkeeping for the session. The
two notations SCert and SMerk represent two sets that store the
signed certificates received via off-chain channels and on-chain
Merkle proofs constructed using ProtNSB and ProtBC.

5.2.2 Protocol Exchange for Transaction Handling

In ProtVES, SInitedTrans and OpenTrans are two handlers pro-
cessing northbound transactions which originates from ProtVES.
The SInitedTrans handling for T is invoked when all its pre-
conditions are finalized, which is detected by the watching
service of ProtVES (c.f., § 5.2.3). The SInitedTrans computes Certid

T
to prove T is in the inited state , and then passes it to the
corresponding handler of ProtCLI for subsequent processing.
Meanwhile, SInitedTrans stakes Certid

T on ProtNSB, and later it
retrieves a Merkle proof Merki

T from the NSB to prove that
Certid

T has been sent. Merkid
T essentially is a hash chain linking

Certid
T back to an ActionRoot on a committed block of the NSB.

The proof retrieval is a non-blocking operation triggered by the
consensus update on the NSB.

The OpenTrans handler pairs with SInitedTrans. It listens
for a timestamped CertoT , which is supposed to be generated
by ProtCLI after it processes Certid

T from ProtVES. OpenTrans
performs special correctness check on the tsopen enclosed in
CertoT . In particular, ProtVES and ProtCLI use the block height of
the NSB as a calibrated clock. By checking that tsopen is within
a bounded range of the NSB height, ProtVES ensures that the
tsopen added by ProtCLI is fresh. After all correctness checks
on Certid

T are passed, the state of T is promoted from open
to opened. OpenTrans then computes certificate to prove the
updated state and posts T̃ on its destination blockchain for
on-chain execution. Throughout the paper, T̃ denotes the on-
chain executable transaction computed and signed using the
information contained in T . Note that the difference between
the CertoT received from ProtCLI and a post-open (i.e., opened)
certificate Certod

T computed by ProtVES is that latter one is signed
by both parties. Only the tsopen specified in Certod

T is used by
ProtISC when evaluating the deadline constraint of T .

Southbound transactions originating from ProtCLI are pro-
cessed by ProtVES in a similar manner as the northbound trans-
actions, via the RInitedTrans and OpenedTrans handlers. We
clarify a subtlety in the RInitedTrans handler when verifying
the association between T̃ and T (line 61). If T̃ depends on the
resulting state from its upstream transactions (for instance, T4
depends on the resulting state of T1 in Figure 4), ProtVES needs
to verify that the state used by T̃ is consistent with the state
enclosed in the finalization proofs of its upstream transactions.
5.2.3 Proactive Watching Services

Cross-chain execution makes forward progress when session-
relevant blockchains and the NSB make progress on trans-
actions. As the driver of execution, ProtVES internally creates
two watching services to proactively read the status of those
blockchains.

In the watching daemon to one blockchain, ProtVES mainly
reads the public ledger of ProtBC to monitor the status of
transactions that have been posted for on-chain execution. If
ProtVES notices that an on-chain transaction T̃ is recently final-
ized, it requests the closing process for T by sending ProtCLI a
timestamped certificate Cclosed. The pair of handlers, CloseTrans
and ClosedTrans, are used by both ProtVES and ProtCLI in this
exchange. Both handlers can be used for handling northbound
and southbound transactions, depending on which party sends
the closing request. In general, a transaction’s originator has a
stronger motivation to initiate the closing process because the
originator would be held accountable if the transaction were
not timely closed by its deadline.

In addition, ProtVES needs to retrieve a Merkle Proof from
ProtBC to prove the finalization of T̃ . This proof, denoted by
Merkc1

T , serves two purposes: (i) it is the first part of a complete
on-chain proof to prove that the state T̃ can be promoted to

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3079315, IEEE
Transactions on Dependable and Secure Computing

10

1 Init: Data := ∅
2 Daemon PostCompiliation():
3 generate the session ID sid← {0, 1}λ
4 call [cid, contract] := ProtISC.CreateContract(GT)
5 send Cert([sid,GT , contract]; SigV

sid) to ProtCLI for approval
6 halt until Cert([sid,GT , contract]; SigV

sid, SigD
sid) is received

7 package contract as a valid transaction ̂contract
8 call ProtNSB.Exec(̂contract) to deploy the ̂contract
9 halt until ̂contract is initialized on ProtNSB

10 call ProtISC.StakeFund to stake the required funds in ProtISC

11 halt until D has staked its required funds in ProtISC

12 initialize Data[sid] := {GT , cid, SCert=∅, SMerk=∅}
13 Daemon Watching(sid, {ProtBC, ...}) private:
14 (GT , _, SCert, SMerk) := Data[sid]; abort if not found
15 for each T ∈ GT :
16 continue if T .state is not opened
17 identify T ’s on-chain counterpart T̃
18 continue if ProtBC.Status(T̃) is not committed
19 get tsclosed := ProtNSB.BlockHeight()

20 compute CT
closed := Cert([T̃ , closed, sid, T , tsclosed], SigV

sid)

21 call ProtCLI.CloseTrans(CT
closed) to negotiate the closed attestation

22 call ProtBC.MerkleProof(T̃) to obtain a finalization proof for T̃
23 denote the finalization proof as Merk

c1
T (Figure 7)

24 update SCert.Add(CT
closed) and SMerk.Add(Merk

c1
T)

25 Daemon Watching(sid, ProtNSB) private:
26 (GT , _, SCert, SMerk) := Data[sid]; abort if not found
27 watch four types of attestations {Certid, Certo, Certod, Certc}
28 process fresh attestations via corresponding handlers (see below)
29 # Retrieve alternative attestations if necessary.
30 for each T ∈ GT :
31 if T .state = opened and Merk

c1
T ∈ SMerk :

32 retrieve the roots [R, ...] of the proof Merk
c1
T

33 call ProtNSB.MerkleProof([R, ...]) to obtain a status proof Merk
c2
T

34 continue if Merk
c2
T is not available yet on ProtNSB

35 compute the complete proof MerkcT := [Merk
c1
T ,Merk

c2
T]

36 update T .state := closed and SMerk.Add(MerkcT)

37 compute eligible transaction set S using the current state of GT
38 for each T ∈ S:
39 continue if T .state is not unknown
40 if T .from = ProtCLI:
41 compute CertiT := Cert([T , init, sid]; SigV

sid)

42 call ProtCLI.InitTrans(CertiT) to request initialization
43 call ProtNSB.AddAction(CertiT) to prove CertiT is sent
44 update SCert.Add(CertiT) and T .state := init

45 non-blocking wait until ProtNSB.MerkleProof(CertiT) rt. MerkiT
46 update SMerk.Add(MerkiT)
47 else: call self.SInitedTrans(sid, T)

48 Upon Receive SInitedTrans(sid, T) private: Northbound
49 (GT , _, SCert, SMerk) := Data[sid]; abort if not found
50 compute and sign the on-chain counterpart T̃ for T
51 compute Certid

T := Cert([T̃ , inited, sid, T]; SigV
sid)

52 call ProtCLI.InitedTrans(Certid
T) to request opening of initialized T

53 call ProtNSB.AddAction(Certid
T) to prove Certid

T is sent
54 update SCert.Add(Certid

T) and T .state := inited

55 non-blocking wait until ProtNSB.MerkleProof(Certid
T) returns Merkid

T
56 update SMerk.Add(Merkid

T)

57 Upon Receive RInitedTrans(Certid
T) public: Southbound

58 assert Certid
T has the valid form of Cert([T̃ , inited, sid, T]; SigD

sid)

59 (_, _, SCert, SMerk) := Data[sid]; abort if not found
60 abort if the CertiT corresponding to Certid

T is not in SCert

61 assert T̃ is correctly associated with the wrapper T
62 get tsopen := ProtNSB.BlockHeight()

63 compute CertoT := Cert([T̃ , open, sid, T , tsopen]; SigV
sid)

64 call ProtCLI.OpenTrans(CertoT) to request opening for T
65 call ProtNSB.AddAction(CertoT) to prove CertoT is sent
66 update SCert.Add(CertoT) and T .state := open
67 non-blocking wait until ProtNSB.MerkleProof(CertoT) returns MerkoT
68 update SMerk.Add(MerkoT)
69 Upon Receive OpenTrans(CertoT) public: Northbound
70 assert CertoT has valid form of Cert([T̃ , open, sid, T , tsopen]; SigD

sid)

71 (_, _, SCert, SMerk) := Data[sid]; abort if not found
72 abort if the Certid

T corresponding to CertoT is not in SCert

73 assert tsopen is within a bounded range with ProtNSB.BlockHeight()

74 compute Certod
T := Cert([T̃ , open, sid, T , tsopen]; SigD

sid, SigV
sid)

75 call ProtBC.Exec(T̃) to trigger on-chain execution
76 call ProtCLI.OpenedTrans(Certod

T) to acknowledge request
77 call ProtNSB.AddAction(Certod

T) to prove Certod
T is sent

78 update SCert.Add(Certod
T) and T .state := opened

79 non-blocking wait until ProtNSB.MerkleProof(Certod
T) returns Merkod

T

80 update SMerk.Add(Merkod
T)

81 Upon Receive OpenedTrans(Certod
T) public: Southbound

82 ast. Certod
T has valid form of Cert([T̃ , open, sid, T , tsopen]; SigV

sid, SigD
sid)

83 (_, _, SCert, _) := Data[sid]; abort if not found
84 abort if the CertoT corresponding to Certod

T is not in SCert

85 update SCert.Add(Certod
T) and T .state := opened

86 Upon Receive CloseTrans(CT
closed) public: Bidirectional

87 assert CT
closed has valid form of Cert([T̃ , closed, sid, T , tsclosed], SigD

sid)

88 assert T̃ is finalized on its destination blockchain and obtain Merk
c1
T

89 assert tsclosed is within a bounded margin with ProtNSB.BlockHeight()
90 (_, _, SCert, SMerk) := Data[sid]; abort if not found
91 compute CertcT := Cert([T̃ , closed, sid, T , tsclosed], SigD

sid, SigV
sid)

92 call ProtCLI.ClosedTrans(CertcT) to acknowledged request
93 update SCert.Add(CertcT), SMerk.Add(Merk

c1
T) and T .state := closed

94 Upon Receive ClosedTrans(CertcT) public: Bidirectional
95 ast. CertcT has valid form of Cert([T̃ , closed, sid, T , tsclosed], SigV

sid, SigD
sid)

96 (_, _, SCert, _) := Data[sid]; abort if not found
97 abort if Cert([T̃ , closed, sid, T , tsclosed], SigV

sid) is not in SCert

98 update SCert.Add(CertcT) and T .state := closed
99 Daemon Redeem(sid) private:

100 # Invoke the insurance contract periodically
101 (GT , cid, SCert, SMerk) := Data[sid]; abort if not found
102 for each unclaimed T ∈ GT :
103 get the CertT from SCert

⋃
SMerk with the most advanced state

104 call ProtISC.InsuranceClaim(cid, CertT) to claim insurance

Fig. 6: Protocol description of of ProtVES. Gray background denotes non-blocking operations triggered by status updates on
ProtNSB. Handlers annotated with northbound and southbound process transactions originated from ProtVES and ProtCLI, respectively.
Handlers annotated with bidirectional are shared by all transactions.

TxRoot: Rx StateRoot: Ry

TxHash: 0x3…

Value A

StatusRoot

Blockchain X

BlockID: 2019

StateRoot: Ry

TxRoot: RxValue B

Blockchain X The NSB

… … … …

Fig. 7: The complete on-chain proof (denoted by Merkc
T) to

prove that the state of a transaction is eligible to be promoted
as closed. The left-side part is the finalization proof (denoted
by Merkc1

T) for the transaction collected from its destination
blockchain; the right-side part is the blockchain status proof
(denoted by Merkc2

T) collected from the NSB.

closed, as shown in Figure 7; (ii) if the resulting state of T̃

is used by its downstream transactions, Merkc1
T is necessary

to ensure that those downstream transactions indeed use the
genuine state.

In the watching service to ProtNSB, ProtVES performs fol-
lowing tasks. First, as described in § 5.1.2, NSB is treated as
a fallback communication medium for the off-chain channel.
Thus, ProtVES searches the sorted ActionMT to look for any
session-relevant certificates that have not been received via the
off-chain channel. Second, for each opened T whose closed at-
testation is still missing after ProtVES has sent Cclosed (indicating
slow or no reaction from ProtCLI), ProtVES tries to retrieve the
second part of Merkc

T from ProtNSB. The second proof, denoted
as Merkc2

T , is to prove that the Merkle roots referred in Merkc1
T

are correctly linked to a StatusRoot on a finalized NSB block
(see Figure 7). Once Merkc

T is fully constructed, the state of T is
promoted as closed. Finally, ProtVES may find a new set of trans-
actions that are eligible to be executed if their preconditions are
finalized due to any recently-closed transactions. If so, ProtVES

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3079315, IEEE
Transactions on Dependable and Secure Computing

11

1 Init: Data := ∅
2 Upon Receive CreateContract(GT):
3 generate the arbitration cod, denoted by contract, as follows
4 initialize three maps Tstate, Arevs and Fstake

5 for each T ∈ GT :
6 compute an internal identifier for T as tid := H(T)

7 initialize Tstate[tid] := [unknown, T , tsopen=0, tsclosed=0, stproof]

8 retrieve tid’s fund-reversion account, denoted as dst
9 initialize Arevs[tid] := [amt=0, dst]

10 compute an identifier for contract as cid := H(
−→
0 , contract)

11 initialize Data[cid] := [GT , Tstate, Arevs, Fstake]

12 send [cid, contract] to the requester for acknowledgment
13 Upon Receive StakeFund(cid):
14 (_, _, _, _, Fstake) := Data[cid]; abort if not found
15 update Fstake[msg.sender] := Fstake[msg.sender] + msg.value
16 Upon Receive InsuranceClaim(cid, Atte):
17 (GT , _, Tstate, _, _) := Data[cid]; abort if not found
18 compute tid := H(Atte.T); T := Tstate[tid] abort if not found
19 abort if T.state is more advanced the state enclosed by Cert
20 abort if T is unreachable based on current state of GT
21 if Atte is a certificate signed by both parties :
22 assert SigVerify(Atte) is true
23 if Atte is Certod

T : update T.state := opened; T.tsopen := Atte.tsopen

24 else : update T.state := closed; T.tsclosed := Atte.tsclosed

25 else : # Atte is in form of a Merkle proof
26 assert MerkleVerify(Atte) is true
27 if Atte is a MerkiT or Merkid

T or MerkoT :

28 retrieve the certificate CertiT or Certid
T or CertoT from Atte

29 assert the T̃ enclosed in Certid
T or CertoT is genuine

30 assert the tsopen enclosed in CertoT is genuine
31 update T.state := Atte.state

32 elif Atte is Merkod
T :

33 retrieve the certificate Certod
T from Atte

34 update T.state := opened and T.tsopen := Certod
T .tsopen

35 elif Atte is MerkcT :
36 update T.stproof based on Merk

c1
T if necessary

37 update T.tsclosed as the height of the block attaching Merk
c2
T

38 update T.state := closed
39 Upon Timeout SettleContract(cid): Internal Daemon
40 (GT , Tstate, Arevs, Fstake) := Data[cid]; abort if not found
41 for (tid, T) ∈ Tstate :
42 continue if T.state is not closed
43 update Arevs[tid].amt := T.T .meta.amt
44 if DeadlineVerify(T) = true : update T.state := correct
45 compute S := DirtyTrans(GT , Tstate) # non-empty if execution fails.
46 execute fund reversion for non-zero entries in Arevs if S is not empty
47 initialize a map resp to record which party to blame
48 for each (tid, T) ∈ S :
49 if T.state = closed | open | opened : resp[tid] := T.T .from
50 elif T.state = inited : resp[tid] := T.T .to
51 elif T.state = init : resp[tid] := D
52 else : resp[tid] := V
53 return any remaining funds in Fstake to corresponding senders
54 call Data.erase[cid] to stay silent afterwards

Fig. 8: ProtISC: the protocol realization of the ISC arbitrator.

processes them by either requesting initialization from ProtCLI

or calling SInitedTrans internally, depending on the originators
of those transactions.

5.2.4 ProtISC Invocation

All internally stored certificates and complete Merkle proofs are
acceptable by ProtISC to execute contract terms. However, for
any T , ProtVES should invoke ProtISC only using the attestation
with the most advanced state, since lower-ranked attestations
for T are effectively ignored by ProtISC (c.f., § 5.4).

5.3 Execution Protocol by dApp Clients

ProtCLI specifies the protocol implemented by dApp clients.
ProtCLI defines a set of handlers to match ProtVES. In particular,
the InitedTrans and OpenedTrans match the SInitedTrans and
OpenTrans of ProtVES, respectively, to process Certid and Certod

sent by ProtVES when handling transactions originated from
ProtVES. The InitTrans and OpenTrans process Certi and Certo

sent by ProtVES when executing transactions originated from
ProtCLI. The CloseTrans and ClosedTrans of ProtCLI match their
counterparts in ProtVES to negotiate closing attestations.

For usability, HyperService imposes smaller requirements
on the watching daemons implemented by ProtCLI. Specially,
ProtCLI still proactively watches ProtNSB to have a fallback
communication medium with ProtVES. However, ProtCLI is
not required to proactively watch the status of underly-
ing blockchains or dynamically compute eligible transactions
whenever the execution status changes. We intentionally of-
fload such complexity on ProtVES to enable lightweight dApp
clients. ProtCLI, though, should (and is motivated to) check
the status of self-originated transactions in order to request
transaction closing.

5.4 Protocol Realization of the ISC

Figure 8 specifies the protocol realization of the ISC. The Cre-
ateContract handler is the entry point of requesting insurance
contract creation using ProtISC. It generates the arbitration code,
denoted as contract, based on the given dApp executable GT .
The contract internally uses Tstate to track the state of each
transaction in GT , which is updated when processing security
attestations in the InsuranceClaim handler. For clear presenta-

tion, Figure 8 extracts the state proof and fund reversion tuple
from T as dedicated variables stproof and Arevs. When the ProtISC

times out, it executes the contract terms based on its internal
state, after which its funds are depleted and the contract never
runs again. Below we explain several technical subtleties.

5.4.1 Insurance Claim

The InsuranceClaim handler processes security attestations
from ProtVES and ProtCLI. When receiving an attestation for a
transaction T , it first verifies that T is reachable based on the
current state of the GT , i.e., all its upstream transactions are
finalized. Thus, if a branch in GT is dynamically pruned because
of unsatisfied conditions (e.g., T7 in Figure 4), all transactions in
the branch are effectively skipped. InsuranceClaim only accept
dual-signed certificates (i.e., Certod and Certc) or complete
Merkle proofs. Processing dual-signed certificates is straight-
forward as they are explicitly agreed by both parties. However,
processing Merkle proof requires additional correctness checks.
First, when validating a Merkle proof Merki

T , Merkid
T or Merko

T ,
ProtISC retrieves the single-party signed certificate CertiT , Certid

T
or CertoT enclosed in the proof and performs the following
correctness check against the certificate. (i) The certificate must
be signed by the correct party, i.e., CertiT is signed by ProtVES,
Certid

T is signed by T ’s originator and CertoT is signed by the
destination of T . (ii) The enclosed on-chain transaction T̃ in
Certid

T and CertoT is correctly associated with T . The checking
logic is the same as the on used by ProtVES, which has been
explained in § 5.2.2. (iii) The enclosed tsopen in CertoT is genuine,
where the genuineness is defined as a bounded difference
between tsopen and the height of the NSB block that attaches
Merko

T .

5.4.2 Contract Term Settlement

ProtISC registers a callback SettleContract to execute contract
terms automatically upon timeout. ProtISC internally defines an
additional transaction state, called correct. The state of a closed
transaction is promoted to correct if its deadline constraint is
satisfied. Then, ProtISC computes the possible dirty transactions
in GT , which are the transactions that are eligible to be opened,
but with non-correct state. Thus, the execution succeeds only

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3079315, IEEE
Transactions on Dependable and Secure Computing

12

Correct
Closed /

Opened

No party to

blame

Open

Originator:

Violated deadline

Inited

Originator: Failed

to dispatch

Init

Dest: Failed to

request opening

dApp: Failed to

initialize

Unknown

VES: Failed to

proactively drive

Negative Branch Positive Branch

Fig. 9: The decision tree to decide the accountable party for a
dirty transaction.

if GT has no dirty transactions. Otherwise, ProtISC employs a
decision tree, shown in Figure 9, to decide the responsible party
for each dirty transaction. The decision tree is derived from
the execution steps taken by ProtVES and ProtCLI. In particular,
if a transaction T ’s state is closed, opened or open, then it is
T ’s originator to blame for either failing to fulfill the deadline
constraint or failing to dispatch T̃ for on-chain execution. If a
transaction T ’s state is inited, then it is T ’s destination party’s
responsibility for not proceeding with T even though Certid

T
has been provably sent. If a transaction T ’s state is init (only
transactions originated from dApp D can have init status), then
D (the originator) is the party to blame for not reacting on the
CertiT sent by V . Finally, if transaction T ’s state is unknown,
then V is held accountable for not proactively driving the
initialization of T , no matter which party originates T .

5.5 Specification of ProtNSB and ProtBC

ProtBC specifies the protocol realization of a general-purpose
blockchain where a set of consensus nodes run a secure pro-
tocol to agree upon the public global state. In this paper, we
regard ProtBC as a conceptual party trusted for correctness
and availability, i.e., ProtBC guarantees to correctly perform any
predefined computation (e.g., Turing-complete smart contract
programs) and is always available to handle user requests de-
spite unbounded response latency. ProtNSB specifies the protocol
realization of the NSB. ProtNSB is an extended version of ProtBC

with additional capabilities. Due to space constraint, we defer
the detailed protocol description of ProtBC and ProtNSB to our
technical report [24].

5.6 Security Theorems

To rigorously prove the security properties of UIP, we first
present the cryptography abstraction of the UIP in form of an
ideal functionality FUIP. The ideal functionality articulates the
correctness and security properties that UIP wishes to attain
by assuming a trusted entity. Then we prove that ProtUIP, our
the decentralized real-world protocol containing the aforemen-
tioned preliminary protocols, securely realizes FUIP using the
UC framework [25], i.e., ProtUIP achieves the same functionality
and security properties as FUIP without assuming any trusted
authorities. The detailed proof is available in [1].

5.7 Hyperconnecting Federated / Centralized Platforms

As discussed in § 2.3, Web3.0 should also include federated
or centralized platforms that are able to publish verifiable state
and the published state has the concept of finality. Thanks to the
infrastructural abstraction used in HyperService (although the
abstraction is originally designed to interoperate heterogeneous
blockchains), extending HyperService to include these non-
decentralized state publishers is promising. First, in USM, a
state publisher can be represented as a new abstract entity
publisher with publicly callable interfaces whose internal im-
plementation logic is possibly proprietary (and therefore could
be confidential). Because of such opacity, a publisher needs to
provide an auxiliary proof for any output state of an interface so

that the state is qualified to be used in HSL programs (recall that
the HSL compiler performs verifiability check when compiling
HSL programs (§ 4.3)). Second, if any inputs are taken by
the interface to compute output state, the inputs should be
also attached to the output state proof. This is because the
requests to execute a contract interface are currently driven
by blockchain transactions so that all inputs to the interface
are persistent on blockchains. When this transaction-centric
model is not applicable to some state publishers, the linkability
between inputs and outputs is broken. Thus, attaching inputs
to output state proofs reestablishes the linkability, allowing
UIP to verify that the downstream operations (could be either
blockchain transactions or requests sent to state publishers) use
the correct state resulting from upstream operations.

6 IMPLEMENTATION AND EXPERIMENTS

In this section, we present the implementation of a HyperSer-
vice prototype and report experiment results on the prototype.
At the time of writing, the total development effort [26] includes
(i) ∼2,400 lines of Java code and ∼3,300 lines of ANTLR [27]
grammar code for building the HSL programming framework,
(ii) ∼41,000 lines of code, mainly in Go and Python, for imple-
menting the UIP protocol; and ∼15,000 lines of code, mainly in
Go, for implementing the NSB; and (iii) ∼1,000 lines of code,
in Solidity, Vyper, Go and HSL, for writing cross-chain dApps
running on HyperService.

6.1 Platform Implementation

To demonstrate the interoperability and programmability
across heterogeneous blockchains on HyperService, our current
prototype incorporates Ethereum, the flagship public block-
chain, and a permissioned blockchain built atop the Tender-
mint [28] consensus engine, a commonly cited cornerstone for
building enterprise blockchains. We implement the necessary
accounts (wallets), the smart contract environment, and the on-
chain storage to deliver the permissioned blockchain with full
programmability. The NSB is also built atop Tendermint with
full support for its claimed capabilities, such as action staking
and Merkle proof retrieval.

For the programming framework, we implement a HSL
compiler that takes HSL programs and contracts written in
Solidity, Vyper, and Go as input, and produces TDGs. We
implement the multi-lang frontend and the HSL frontend using
ANTLR [27], which parse the input HSL program and contracts,
build an intermediate representation of the HSL program, and
convert the types of contract entities into our unified types.
We also implement the validation component that analyzes the
intermediate representation to validate the entities, operations,
and dependencies specified in the HSL program.

Our experience with the prototype implementation is that
the effort for horizontally scaling HyperService to incorporate a
new blockchain is lightweight: it requires no protocol change to
both UIP and the blockchain itself. We simply need to add
an extra parser to the multi-lang front end to support the
programming language used by the blockchain (if this language
is new to HyperService), and meanwhile VESes extend their
visibility to this blockchain. The HyperService consortium is
continuously working on on-boarding additional blockchains,
both permissioned and permissionless.

6.2 Application Implementation

Besides the platform implementation, we also implement and
deploy three categories of cross-chain dApps on HyperService.
Financial Derivatives. Financial derivatives are among the
mostly cited blockchain applications. However, external data
feed, i.e., an oracle, is often required for financial instruc-

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3079315, IEEE
Transactions on Dependable and Secure Computing

13

Financial
Derivatives

CryptoAsset
Movement

Federated
Computing

Mean % Mean % Mean %
HSL Compilation 1.2317 ∼14 0.2995 ∼5 1.1417 ∼22
Session Creation 5.6910 ∼63 3.6640 ∼ 61 2.0320 ∼39

Action/Status Staking 1.0295 ∼11 1.0178 ∼17 1.0163 ∼19
Proof Retrieval 1.0214 ∼11 1.0167 ∼17 1.0192 ∼19

Total 8.9736 5.9980 5.2092

TABLE 3: End-to-end dApp execution latency on HyperService,
with profiling breakdown. All times are in seconds.

tions. Currently, oracles are either built atop trusted third-
party providers (e.g., Oraclize [29]), or using trusted hardware
enclaves [22]. HyperService, for the first time, realizes the pos-
sibility of using blockchains themselves as oracles. With the built-
in decentralization and correctness guarantees of blockchains,
HyperService fully avoids trusted parties while delivering gen-
uine data feed to smart contracts. In this application sector, we
implement a cross-chain cash-settled Option dApp in which
options can be natively traded on different blockchains (a
scaled-up version of the introductory example in § 3.3).
Cross-Chain Asset Movement. HyperService natively enables
cross-chain asset transfers without relying on any trusted en-
tities, such as exchanges. This primitive could power a wide
range of applications, such as a global payment network that
interconnects geographically distributed bank-backed consor-
tium blockchains [30], an initial coin offering in which tokens
can be sold in various cryptocurrencies, and a gaming platform
where players can freely trade and redeem their valuables (in
form of non-fungible tokens) across different games. In this
category, we implement an asset movement dApp with hybrid
operations where assets are moved among accounts and smart
contracts across different blockchains
Federated Computing. In a federated computing model, all
participants collectively work on an umbrella task by sub-
mitting their local computation results. In the scenario where
transparency and accountability are desired, blockchains are
perfect platforms for persisting both the results submitted by
each participant and the logic for aggregating those results.
In this application category, we implement a federated voting
system where delegates in different regions can submit their
votes to their regional blockchains, and the logic for computing
the final votes based on the regional votes is publicly visible on
another blockchain.

6.3 Experiments

We ran experiments with three blockchain testnets: one private
Ethereum testnet, one Tendermint-based blockchain, and the
NSB. Each of those testnets is deployed on a VM instance of a
public cloud on different continents. For experiment purposes,
dApp clients and VES nodes can be deployed either locally or
on Cloud.

6.3.1 End-to-End Latency

We evaluated all three applications mentioned in § 6.2 and
reported their end-to-end execution latency introduced by
HyperService in Table 3. The reported latency includes HSL
program compiling, dApp-VES session creation, and (batched)
NSB action staking and proof retrieval during the UIP protocol
exchange. All reported times include the networking latency
across the global Internet. Each datapoint is the average of more
than one hundred runs. We do not include the latency for actual
on-chain execution since the consensus efficiency of different
blockchains varies and is not controlled by HyperService. We
also do not include the time for ISC insurance claims in the
end-to-end latency because they can be done offline anytime
before the ISC expires.

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Batch Size

Cert. Size 200 Bytes

Cert. Size 250 Bytes

Cert. Size 500 Bytes

Fig. 10: The throughput of the NSB, measured as the total size
of committed certificates on the NSB per second.

These dApps show similar latency profiling breakdown,
where the session creation is the most time consuming phase
because it requires handshakes between the dApp client and
VES, and also includes the time for ISC deployment and
initialization. The CryptoAsset dApp has a much lower HSL
compilation latency since its operation only involves one smart
contract, whereas the rest two dApps import three contracts
written in Go, Vyper, and Solidity. In each dApp, all its NSB-
related operations (e.g., action/status staking and proof re-
trievals) are bundled and performed in a batch for experiment
purpose, even though all certificates required for ISC arbitration
have been received via off-chain channels. The sizes of actions
and proofs for three dApps are different since their executables
contain different number of transactions.

6.3.2 NSB Throughput and HyperService Capacity

The throughput of the NSB affects aggregated dApp capacity on
HyperService. In this section, we report the peak throughput
of the currently implemented NSB. We stress tested the NSB
by initiating up to 1000 dApp clients and VES nodes, which
concurrently dispatched action and status staking to the NSB.
We batched multiple certificate stakings by different clients into
a single NSB-transaction, so that the effective certificate-staking
throughput perceived by clients can exceed the consensus limit
of the NSB. Figure 10 plots the NSB throughput, measured as
the total size of committed certificates by all clients per second,
under different certificate and batch sizes. The results show that
as the batch size increases, regardless of the certificate sizes, the
NSB throughput converged to about 1000 kilobytes per second.
Given a certificate size, further enlarging the batch size cannot
boost throughput, whereas the failure rate of certificate staking
increases, indicating that the NSB is fully loaded.

Given the above NSB throughput, the actual dApp capacity
of the HyperService platform further depends on how often the
communication between dApp clients and VESes falls back to
the NSB. In particular, each dApp-transaction spawns at most six
NSB-transactions (five action stakings and one status staking),
assuming that the off-chain channel is fully nonfunctional (zero
NSB transaction if otherwise). Thus, the lower bound of the
aggregate dApp capacity on HyperService, which would be
reached only if all off-chain channels among dApp clients and
VESes were simultaneously broken, is about 170000

s
transactions

per second (TPS), where s is the (average) size (in bytes) of a
certificate. This capacity and the TPS of most PoS production
blockchains are of the same magnitude. Further, considering
(i) the NSB is horizontally shardable at the granularity of each
underlying blockchain (§ 5.1.3) and (ii) not all transactions on
an underlying blockchain are cross-chain related, we anticipate
that the NSB will not become the bottleneck as HyperService
scales to support more blockchains in the future.

7 RELATED WORK

Blockchain interoperability is often considered as one of the
prerequisites for the massive adoption of blockchains. The

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3079315, IEEE
Transactions on Dependable and Secure Computing

14

recent academic proposals have mostly focused on moving to-
kens between two blockchains via trustless exchange protocol,
including side-chains [2, 5, 31], atomic cross-chain swaps [3, 7],
and cryptocurrency-backed assets [4]. However, programma-
bility, i.e., smart contracting across heterogeneous blockchains,
is largely ignored in those protocols.

In industry, Cosmos [32] and Polkadot [33] are two notable
projects that advocate blockchain interoperability. They share
the similar spirit: each of them has a consensus engine to build
blockchains (i.e., Tendermint [28] for Cosmos and Substrate [34]
for Polkadot), and a mainchain (i.e., the Hub in Cosmos and
RelayChain for Polkadot) to bridge individual blockchains.
Although we do share the similar vision of “an Internet of
blockchains”, we also notice two notable differences between
them and HyperService. First and foremost, the cross-chain
layer of Cosmos, powered by its Inter-blockchain Commu-
nication Protocol (IBC) [35], mainly focuses on preliminary
network-level communications. In contrast, HyperService pro-
poses a complete stack of designs with a unified program-
ming framework for writing cross-chain dApps and a provably
secure cryptography protocol to execute dApps. Further, at
the time of writing, the most recent development of Cosmos
and industry adoption are heading towards homogeneity where
only Tendermint-powered blockchains are interoperable [36].
This is in fundamental contrast with HyperService where the
blockchain heterogeneity is a first-class design requirement.
Polkadot proceeds relatively slower than Cosmos: Substrate is
still in early stage [34].

Existing blockchain platforms allow developers to write
contracts using new languages such as Solidity [37] and
Vyper [38] or a tailored version of the existing languages such as
Go, Javascript, and C++. Facebook recently released Move [39],
a programming language in their blockchain platform Libra,
which adopts the move semantics of Rust and C++ to pro-
hibit copying and implicitly discarding coins and allow only
move of the coins. To unify these heterogeneous programming
languages, we propose HSL that has a multi-lang front end to
parse those contacts and convert their types to unified types.
Although there exist domain-specific languages in a variety of
security-related fields that have a well-established corpus of
low level algorithms, such as secure overlay networks [40, 41],
network intrusions [42–44], and enterprise systems [45, 46],
these languages are explicitly designed to solve their domain-
specific problems, and cannot meet the needs of the unified
programming framework for writing cross-chain dApps.

8 CONCLUSION

In this paper, we provided the first generic and measurable
definition for Web3.0 based on our observations and analysis
of the blockchain infrastructure evolution. Within this defini-
tion, we articulate three key infrastructural enablers: individual
smart-contract capable blockchains, federated or centralized
state publishers, and interoperability platforms to hyperconnect
those isolated systems. Then, we presented HyperService, the
first interoperability platform usable in the era of Web3.0.
HyperService is powered by two innovative designs: HSL, a
programming framework for writing cross-chain dApps by uni-
fying smart contracts written in different languages, and UIP,
the universal blockchain interoperability protocol designed to
securely realize the complex operations defined in these dApps
on blockchains. We implemented a HyperService prototype in
over 62,000 lines of code to demonstrate its practicality, and
ran experiments on the prototype to report the end-to-end
execution latency for dApps, as well as the aggregate platform
throughput.

References

[1] Z. Liu, Y. Xiang, J. Shi, P. Gao, H. Wang, X. Xiao, B. Wen, and Y.-C.
Hu, “HyperService: Interoperability and Programmability across
Heterogeneous Blockchains,” in ACM CCS, 2019.

[2] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell,
A. Miller, A. Poelstra, J. Timón, and P. Wuille, “Enabling
Blockchain Innovations with Pegged Sidechains,” URL: tinyurl.
com/mj656p7, 2014.

[3] M. Herlihy, “Atomic Cross-Chain Swaps,” in ACM PODC, 2018.
[4] A. Zamyatin, D. Harz, J. Lind, P. Panayiotou, A. Ger-

vais, and W. Knottenbelt, “XCLAIM: Trustless, Interoperable,
Cryptocurrency-Backed Assets,” in IEEE Symposium on Security
and Privacy, 2019.

[5] P. Gazi, A. Kiayias, and D. Zindros, “Proof-of-stake Sidechains,”
in IEEE Symposium on Security & Privacy, 2019.

[6] G. Wood, “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum Project Yellow Paper, 2014.

[7] “Bitcoin Wiki: Atomic Cross-Chain Trading,” https://en.bitcoin.
it/wiki/Atomic_swap, Accessed on 2019.

[8] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and
B. Ford, “Enhancing Bitcoin Security and Performance with Strong
Consistency via Collective Signing,” in USENIX Security Sympo-
sium, 2016.

[9] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse, “Bitcoin-NG:
A Scalable Blockchain Protocol,” in USENIX NSDI, 2016.

[10] J. Wang and H. Wang, “Monoxide: Scale out blockchains with
asynchronous consensus zones,” in USENIX NSDI, 2019.

[11] M. Zamani, M. Movahedi, and M. Raykova, “RapidChain: Scaling
Blockchain via Full Sharding,” in ACM CCS, 2018.

[12] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “OmniLedger: A Secure, Scale-out, Decentralized Ledger
via Sharding,” in IEEE Symposium on Security and Privacy, 2018.

[13] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis,
“Chainspace: A Sharded Smart Contracts Platform,” NDSS, 2017.

[14] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The Blockchain Model of Cryptography and Privacy-preserving
Smart Contracts,” in IEEE Symposium on Security and Privacy, 2016.

[15] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. M. John-
son, A. Juels, A. Miller, and D. Song, “Ekiden: A Platform for
Confidentiality-Preserving, Trustworthy, and Performant Smart
Contract Execution,” in IEEE EuroS&P, 2019.

[16] J. Krupp and C. Rossow, “teEther: Gnawing at Ethereum to Au-
tomatically Exploit Smart Contracts,” in USENIX Security Sympo-
sium, 2018.

[17] L. Breidenbach, I. Cornell Tech, P. Daian, F. Tramer, and A. Juels,
“Enter the Hydra: Towards Principled Bug Bounties and Exploit-
Resistant Smart Contracts,” in 27th USENIX Security Symposium,
2018.

[18] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
Smart Contracts Smarter,” in ACM CCS, 2016.

[19] H. Wu, W. Zheng, A. Chiesa, R. A. Popa, and I. Stoica, “DIZK: A
Distributed Zero Knowledge Proof System,” in USENIX Security
Symposium, 2018.

[20] F. Zhang, D. Maram, H. Malvai, S. Goldfeder, and A. Juels,
“DECO: Liberating web data using decentralized oracles for TLS,”
in ACM SIGSAC CCS, 2020.

[21] L. Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System,” Communications of the ACM, 1978.

[22] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town
Crier: An Authenticated Data Feed for Smart Contracts,” in ACM
CCS, 2016.

[23] J. Garay, A. Kiayias, and N. Leonardos, “The Bitcoin Backbone
Protocol with Chains of Variable Difficulty,” in Annual International
Cryptology Conference, 2017.

[24] Z. Liu, Y. Xiang, J. Shi, P. Gao, H. Wang, X. Xiao, B. Wen, and Y.-C.
Hu, “HyperService: Interoperability and Programmability Across
Heterogeneous Blockchains,” Cryptology ePrint Archive, Report
2020/578, 2020, https://eprint.iacr.org/2020/578.

[25] R. Canetti, “Universally Composable Security: A New Paradigm
for Cryptographic Protocols,” in IEEE Symposium on Foundations of
Computer Science, 2001.

[26] “Open Source Code for HyperService by HyperService-
Consortium,” https://github.com/HyperService-Consortium,
2019.

[27] T. Parr, “Antlr,” https://www.antlr.org/, 2014.
[28] “Tendermint Core,” https://tendermint.com, Accessed on 2019.
[29] “Oraclize,” http://www.oraclize.it, Accessed on 2019.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3079315, IEEE
Transactions on Dependable and Secure Computing

15

[30] “J.P. Morgan: Blockchain and Distributed Ledger,” https://www.
jpmorgan.com/global/blockchain, Accessed on 2019.

[31] A. Kiayias and D. Zindros, “Proof-of-work Sidechains,” Cryptol-
ogy ePrint Archive, Report 2018/1048, Tech. Rep., 2018.

[32] “Cosmos,” https://cosmos.network, Accessed on 2019.
[33] “Polkadot,” https://polkadot.network, Accessed on 2019.
[34] “Substrate,” https://github.com/paritytech/substrate, Accessed

on 2019.
[35] “Standards for the Cosmos network & Interchain Ecosystem.”

https://github.com/cosmos/ics, Accessed on 2019.
[36] “Cosmos WhitePaper,” https://cosmos.network/resources/

whitepaper, 2019.
[37] “Solidity,” https://solidity.readthedocs.io/en/v0.5.6/, Accessed

on 2019.
[38] “Vyper,” https://github.com/ethereum/vyper, Accessed on 2019.
[39] S. Blackshear and et al, “Move: A language with programmable

resources,” The Libra Association, Tech. Rep., 2019.
[40] C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. M. Vahdat,

“Mace: Language support for building distributed systems,” in
ACM PLDI, 2007.

[41] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica, “Declarative
networking: Language, execution and optimization,” in SIGMOD,
2006.

[42] K. Borders, J. Springer, and M. Burnside, “Chimera: A Declarative
Language for Streaming Network Traffic Analysis,” in USENIX
Security Symposium, 2012.

[43] R. Sommer, M. Vallentin, L. De Carli, and V. Paxson, “Hilti: An
abstract execution environment for deep, stateful network traffic
analysis,” in IMC, 2014.

[44] M. Vallentin, V. Paxson, and R. Sommer, “VAST: A Unified Plat-
form for Interactive Network Forensics,” in USENIX NSDI, 2016.

[45] P. Gao, X. Xiao, Z. Li, K. Jee, F. Xu, S. R. Kulkarni, and P. Mit-
tal, “AIQL: Enabling Efficient Attack Investigation from System
Monitoring Data,” in USENIX ATC, 2018.

[46] P. Gao, X. Xiao, D. Li, Z. Li, K. Jee, Z. Wu, C. H. Kim, S. R. Kulkarni,
and P. Mittal, “SAQL: A Stream-based Query System for Real-
time Abnormal System Behavior Detection,” in USENIX Security
Symposium, 2018.

Zhuotao Liu received a Ph.D. from University of Illinois at Urbana-
Champaign and a B.S. from Shanghai Jiao Tong University. He is currently
an assistant professor of Institute for Network Sciences and Cyberspace,
Tsinghua University. Before joining Tsinghua, he was a technical lead
at Google, managing massive-scale software-defined datacenter net-
works. His research interests include network security & privacy, Block-
chain infrastructure, datacenter networking and systems security.

Xiangxi Yang is an undergraduate student in Beijing University of Posts
and Telecommunications, working on Blockchain Infrastructure.

Shi Jian is a master student in Case Western Reserve University, work-
ing on software engineering and programming languages.

Peng Gao is a Postdoctoral Researcher in Computer Science at UC
Berkeley. He received his Ph.D. in Electrical Engineering from Princeton
University in 2019. His research interest lies in security and privacy
issues in systems and networks. His work centers on creating scalable,
secure, and trustworthy systems to solve real-world problems.

Haoyu Wang is an associate Professor in the School of Computer
Science at Beijing University of Posts and Telecommunications (BUPT).
His research covers a wide range of topics in Software Analysis, Privacy
and Security, eCrime, Internet/System Measurement, and AI Security.
He received his PhD degree in Computer Science from Peking University
in 2016.

Xusheng Xiao is an Assistant Professor in the Department of Computer
and Data Sciences at Case Western Reserve University. He received his
Ph.D. degree from North Carolina State University. Before joining Case
Western Reserve University, he worked on software and system security
for NEC Labs America. His research interests are software engineering
and computer security.

Bihan Wen received the B.Eng. degree in electrical and electronic
engineering from Nanyang Technological University, Singapore, in 2012,
the M.S. and Ph.D. degrees in electrical and computer engineering from
University of Illinois at Urbana-Champaign, USA, in 2015 and 2018,
respectively. He is currently a Nanyang Assistant Professor with the
School of Electrical and Electronic Engineering, Nanyang Technological
University, Singapore. His research interests span areas of machine
learning, computational imaging, computer vision, image and video
processing, and big data applications.

Qi Li received the PhD degree from Tsinghua University. Now he is an
associate professor of Institute for Network Sciences and Cyberspace,
Tsinghua University. He has ever worked with ETH Zurich and the Uni-
versity of Texas at San Antonio. His research interests include network
and system security, particularly in Internet and cloud security, mobile
security, and big data security. He is currently an editorial board mem-
ber of IEEE TDSC and ACM DTRAP.

Yih-Chun Hu is an associate professor in the Department of Electri-
cal and Computer Engineering at the University of Illinois at Urbana-
Champaign, Yih-Chun received my B.S. Magna Cum Laude in 1997 in
Computer Science and Mathematics from the University of Washing-
ton. Yih-Chun’s current research interests are in network security and
wireless networks and have published papers in the areas of secure
Internet routing, DDoS-resiliant forwarding, secure routing in wireless
ad hoc networks, security and anonymity in peer-to-peer networks,
efficient cryptographic mechanisms for routing security, and the design
and evaluation of multihop wireless network routing protocols, including
Quality-of-Service mechanisms for ad hoc networks.

