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Abstract—Many mobile applications (i.e., apps) include UI
widgets to use or collect users’ sensitive data. Thus, to identify
suspicious sensitive data usage such as UI-permission mis-
match, it is crucial to understand the intentions of UI widgets.
However, many UI widgets leverage icons of specific shapes
(object icons) and icons embedded with text (text icons) to
express their intentions, posing challenges for existing detection
techniques that analyze only textual data to identify sensitive UI
widgets. In this work, we propose a novel app analysis frame-
work, ICONINTENT, that synergistically combines program
analysis and icon classification to identify sensitive UI widgets
in Android apps. ICONINTENT automatically associates UI
widgets and icons via static analysis on app’s UI layout files and
code, and then adapts computer vision techniques to classify
the associated icons into eight categories of sensitive data. Our
evaluations of ICONINTENT on 150 apps from Google Play
show that ICONINTENT can detect 248 sensitive UI widgets in
97 apps, achieving a precision of 82.4%. When combined with
SUPOR, the state-of-the-art sensitive UI widget identification
technique based on text analysis, SUPOR +ICONINTENT can
detect 487 sensitive UI widgets (101.2% improvement over SU-
POR only), and reduces suspicious permissions to be inspected
by 50.7% (129.4% improvement over SUPOR only).

I. INTRODUCTION

Mobile apps are playing an increasingly important part in

our daily life [1], [2]. Despite the capabilities to meet users’

needs, the increasingly access to users’ sensitive data, such

as location and finance information [3]–[5], raises privacy

concerns. Prior works on smartphone privacy protection

focus on analyzing mobile apps’ code to detect information

leaks of the sensitive data managed by the framework

APIs, such as device identifiers (e.g., IMEI), location, and

contact [6]–[8]. But this line of works are limited because

they cannot address sensitive user inputs, where apps express

their intentions to use or collect users’ sensitive data. Many

apps today include UI widgets such as buttons and text

boxes, which expect users’ consensus to use their sensitive

data (e.g., pressing a button), or users’ input of sensitive data

(e.g., filling financial information in a text box).

It is crucial to understand the intentions of UI widgets
by analyzing apps’ UIs, for the app stores to inspect sus-

picious permissions (i.e., UI-permission mismatches [9]),

for lawyers or managers to write more precise privacy

policies [10], and for developers to better inform users

about sensitive data usages. For example, given an app that

(a) (b) (c)

Figure 1: UIs containing icons that indicate the uses of
sensitive data in mobile apps
requests a permission (e.g., microphone), an inspection of

the app’s UIs can determine that the permission is suspicious

if this permission cannot be justified by the text and / or

icons on any UI widget. Recent works have made progress

in detecting disclosure of sensitive user inputs [9], [11], [12]

by analyzing textual data in the UIs. However, UI widgets’

intentions can also be expressed via images, especially icons

of specific shapes (object icons). For example, the icons in

Figure 1 indicate that the app will access users’ contacts

(Figure 1a) and GPS data (Figure 1b).

Understanding the intentions of icons is a challenging

problem. First, there are numerous types of icons in mo-

bile apps. Icons representing the same intention can have

different styles and can be shown in different scales and

angles. Due to small screens of smartphones, icons are

often not co-located with texts that explain their intents.

As exemplified by Figure 1b, Google Map uses the icon

shown in red square to center the map to the user’s current

location, without any text around the button. Second, some

icons are embedded with text, referred to as text icons. For

example, the third button from the top shown in Figure 1c

indicates that the app will access users’ GPS data. The

diversified colors and opacities in fonts and backgrounds

(e.g., ghost button [13]) make it difficult to directly apply

Optical Character Recognition (OCR) [14], which works

best for icons having black texts and white backgrounds.

To address this problem, we propose a novel framework,

ICONINTENT, that synergistically combines program analy-
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sis and icon classification to associate icons with UI widgets

and classify the intentions of icons (both object icons

and text icons) into eight pre-defined sensitive user input

categories (including Camera, Contacts, Email, Location,

Phone, Photo, SMS, and Microphone). The classified icons

can be directly used to detect the mismatch of UI intentions

and permissions. We target Android since they are the most

popular mobile platform with the most users, but the general

research is applicable to other mobile platforms such as iOS.

Our proposed framework is based on three key insights.

First, while UIs contain unstructured information, the

association between icons and UI widgets can be inferred

from the structured information in UI layout files and app’s

code. This inspires us to develop static analysis techniques

on UI layout files and app’s code to infer such associations.

Second, mobile apps are expected to have an intuitive UI

where most usage scenarios of an app should be evident to

average users, so icons indicating the same type of sensitive

user input should have similar looks. This inspires us to

develop object icon classification techniques to detect similar

icons based on the sensitive icons collected from interactive

widgets. Third, in order for users to easily recognize the

objects or text in icons, the colors / opacity between the

foreground and the backgrounds must be contrasted. This

inspires us to develop icon mutation techniques to amplify

and normalize this contrast, making icons easier to be

recognized by the icon classification techniques.

ICONINTENT consists of three modules: icon-widget as-

sociation module, icon mutation module, and icon classifica-

tion module. The icon-widget association module provides

a UI layout analysis technique to identify the associations

between icons and UI widgets defined in the UI layout

files. This module further provides a dataflow analysis

technique that analyzes the program code to identify such

associations. The icon mutation analysis module extracts

icons from an app, and produces mutated icons for each

of the extracted icon. The icon classification module adapts

SIFT [15], a state-of-the-art image feature engineering tech-

nique, with our novel key-location increasing and relative
one-to-one matching techniques to enhance its effectiveness

in classifying icons. Additionally, this module adapts OCR

techniques to extract text from the icons, and then classifies

the icons using the edit-distance based similarity between

the extracted text and the keywords in each category.

We evaluate the effectiveness of ICONINTENT using a

dataset of 150 Android apps that collect sensitive data. We

manually labeled 5,791 icons from the apps as ground truth.

The results show that ICONINTENT detects 248 sensitive

UI widgets (achieving 82.4% precision) from 97 apps, indi-

cating that both sensitive icons and sensitive UI widgets are

common. We also evaluate the effectiveness of ICONINTENT

in complementing SUPOR [9], the state-of-the-art sensitive

UI widget detection technique based on text analysis. The

results show that SUPOR +ICONINTENT identifies 487 sensi-

tive UI widgets, which achieves 101.2% improvement over

242 sensitive UI widgets identified by SUPOR. Also, we

evaluate the effectiveness in reducing the inspection effort

of suspicious permissions: if an identified intention of a UI

widget matches a requested permission, then the permis-

sion is considered not suspicious. The results show that

SUPOR +ICONINTENT reduces suspicious permissions to

be inspected by 50.7%, compared with 22.1% identified by

SUPOR, achieving 129.4% improvement. We further evaluate

the effectiveness of icon classification techniques on the

5,791 icons. The results show that ICONINTENT effectively

identifies object icons with the average F-score of 87.7%,

compared with 48.6% of off-the-shelf SIFT. ICONINTENT

identifies text icons with the average F-score of 89.8%,

compared with 36.6% of off-the-shelf OCR.
This paper makes the following major contributions:

• We are the first to investigate the intents of icons in

mobile apps’ UIs, and study their uses in UI widgets.

• We propose a novel framework, ICONINTENT, that

synergistically combines program analysis and icon
classification to associate icons with the corresponding

UI widgets and classify the intents of the icons into

eight pre-defined sensitive categories.

• We conduct evaluations on 150 market apps. The results

show that ICONINTENT effectively detects sensitive UI

widgets (82.4% in precision) and reduces 50.7% of the

suspicious permissions detected by SUPOR.

II. BACKGROUND AND MOTIVATING EXAMPLES

A. Android UI Rendering
An Android app usually consists of multiple activities,

where each activity provides the window to draw the UI [16].

A UI is defined by a layout, which consists of UI widgets

(e.g., buttons and image views) and layout models (e.g.,

linear layout) that describe how to arrange UI widgets. The

UI framework provides a declarative language based on

XML for developers to define UI layouts.
Example UI with a Sensitive Icon. Figure 2 shows

a simplified UI layout file from Animated Weather and

its rendered UI. This UI layout file contains three UI

widgets: an image view widget (ImageView), a text box that

accepts user inputs (EditText), and a button (Button). They

are aligned horizontally based on the LinearLayout at Line

1. Figure 3 shows the code snippet of the corresponding

activity for the layout file. Line 3 indicates the activity class

SearchForm uses the layout file identified by the resource id

R.layout.search. Line 4 first finds the ImageView widget using

the API findViewById with the resource id R.id.img, which

refers to the ImageView widget with the attribute android:id="

@+id/img". Line 4 then binds the event handler onClick to the

click event of the widget via setOnClickListener. The handler

onClick simply calls startAsincSearc (Line 5), which in turn

calls ManagerOfLocation.findPosition (Line 9) that retrieves

users’ current location.
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1 <LinearLayout android:orientation="horizontal">
2 <ImageView android:id="@+id/img" android:src="@drawable/

loc" .../>
3 <EditText android:id="@+id/TxtCity" ... />
4 <Button android:text="@string/search" .../>
5 </LinearLayout>

(a) UI layout file (search.xml)

(b) Rendered UI

Figure 2: Simplified layout file for a search UI
1 public class SearchForm extends Activity {
2 public void onCreate(Bundle savedInstanceState) {
3 setContentView(R.layout.search); // bound to layout

file search.xml in Fig. 2
4 ((ImageView) findViewById(R.id.img)).

setOnClickListener(new OnClickListener() {
5 public void onClick(View v) {startAsincSearch();} })

;
6 ... } // bound to OnClick handler
7 private void startAsincSearch() {
8 ...
9 ManagerOfLocation.findPosition(); // use GPS data

10 . .. } }

Figure 3: Simplified UI Handler for Animated Weather
In the rendered UI (Figure 2b), the ImageView widget

shows the icon loc.png specified by the resource id drawable

/loc, which indicates to use users’ current locations. Note

that the UI does not have descriptive texts to explain the

intention of the icon (i.e., retrieving users’ current location).

Such UI design indicates that for widely used icons, the UI

assumes the users’ knowledge in the semantics of the icon.

This motivates us to collect a set of commonly used sensitive

icons, and propose icon classification techniques that detect

sensitive icons based on the collected icons.

Example UI with a Sensitive Text Icon. Figure 1c shows

a UI from Favorite.Me. This UI has four buttons that use

stylish text icons. The third icon from the top is embedded

with the text “View Current Location”, indicating the use

of a user’s GPS data. When a user clicks on the icon, the

app retrieves users’ current location. Existing works [9],

[11], [12] that analyze texts in the UIs face challenges in

identifying this sensitive UI widget, since no sensitive texts

can be extracted from the UI. This motivates us to adapt

OCR techniques to extract texts from text icons, and perform

text classification to identify sensitive UI widgets.

B. App Icon Varieties

To make apps’ UI unique and stylish in the small

screen, app icons have different combinations of colors and

transparencies in texts, backgrounds, and object shapes. As

such, icons in Android apps are usually small, diversified,

and partially or totally transparent. Figure 4 shows seven

sensitive icons that pose different challenges for the icon

classification technique and the OCR technique: (1) the SMS

icon in Figure 4a and location icon in Figure 4b are too

small; (2) the SMS icon in Figure 4c and the contact icon

in Figure 4d have low contrast between the colors of the

texts/objects and the background; (3) the Email icon in

Figure 4e shows the text in bright color and the background

in dark color, while OCR performs better with deep color

texts in bright color backgrounds; (4) the Photo icon in

Figure 4f is a ghost button, which uses transparencies to

hide the background color. (5) the Camera icon in Figure 4g

is an icon with low color contrast and uses transparency and

shadow to show contrast.

Our preliminary study on 300 text icons extracted from

apps in Google Play shows that directly applying existing

OCR techniques can infer semantic information from less

than 10% of the studied icons [17]. This further motivates us

to perform image mutations on the icons such as converting

the transparency differences to color differences, and apply

the icon classification technique on the mutated icons.

III. APPROACH

A. Overview

Figure 5 shows the overview of ICONINTENT. ICONIN-

TENT consists of three modules: icon-widget association,

icon mutation, and icon classification. ICONINTENT accepts

an app APK file as input and outputs the identified sensitive

UI widgets with the associated icons, where each icon is

annotated with the corresponding categories of sensitive

data. The icon-widget association module performs static

analysis on the UI layout files and the code to identify

the associations between UI widgets and the icons. The

icon mutation module extracts the icons from the resources,

and performs image mutations on the extracted icons to

generate a set of mutated icons. The icon classification

module accepts the mutated icons as input, and classifies

icons into eight categories of sensitive data.

B. Icon-Widget Association

ICONINTENT performs static analysis on both the UI

layout files and the code to identify the associations between

icons and UI widgets. We next formally define Android’s UI

layouts and our static analysis.

UI layouts and UI widgets. We first formally define UI

layouts and their IDs.

Definition 1 (UI Layout): A UI layout is a tree L(W,E),
where each node w ∈ W denotes a UI element and each

edge e(a, b) ∈ E denotes a parent-child relationship from a
to b. L is uniquely identified by the layout ID L.id.

Figure 2a shows a UI layout loaded from search.xml,

and its layout ID can be referenced in the code via R.

layout.search. In this layout, there are four UI elements:

a LinearLayout, an ImageView, an EditText, and a Button. The

LinearLayout is the parent of the other three UI elements.

Based on these definitions, we next define UI widgets.

Definition 2 (UI Widget): In a UI layout L(W,E), a UI

widget w ∈W is a type of UI element that can interact with

the user (e.g., a button). w is uniquely identified by a pair

〈L.id, w.id〉, where w.id represents the element ID of w.
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(a) (b) (c) (d) (e) (f) (g)

Figure 4: Icon varieties in mobile apps

Figure 5: Overview of ICONINTENT

In Figure 2a, all the UI elements except the LinearLayout

are UI widgets. In particular, the ID of the ImageView widget

is 〈R.layout.search,R.id.img〉. Based on the definitions of

UI layouts, we next formally define the binding from the UI

widgets in the layout to the variables in the code.

Variable Binding. The UI layout files are loaded into

activities at runtime via the layout-loading API calls, mainly

setContentView and Inflate. The layout ID is used as the

parameter to determine which layout file to load into an

activity. We next define the variable-layout binding.

Definition 3 (Variable-Layout Binding): A variable vL is

said to be bound to a UI layout L(W,E), represented as

vL � L if (1) a layout binding API is invoked with vL as

the receiver object and L.id as the parameter, or (2) vL is

an alias to another variable v′L that is bound to L.

Once a layout is bound to an activity, the UI widgets in

the layout can be bound to variables via invoking the widget-

binding APIs, mainly findViewByID, with the UI widget ID.

Definition 4 (Variable-Widget Binding): Given that

vL � L(W,E), a variable v is said to be bound to a UI

Widget w ∈W if (1) a widget binding API is invoked with

l as the receiver object , v as the return value, and w.id
as the parameter, or (2) v is an alias to another variable v′

that is bound to w.

In Figure 3, Line 3 loads the layout file with the ID R

.layout.search to the activity. Line 4 binds the ImageView

widget by invoking the API findViewById() with R.id.img as

the parameter to a temporary variable (omitted in Figure 3).

Icon Association. Following the definitions of UI layouts

and widgets, we define icons as follows.

Definition 5 (Icon): An icon c is a type of resource. It is

uniquely identified by c.id, which is the resource ID.

Icons can be associated with UI widgets via specifications

in layout files directly. In the layout files, icons are often

referred to using resource names in the android:src attributes

of UI widgets. These resource names (e.g., @drawable/loc

in Figure 2a) may be directly mapped to file names in

the resource folder (res/drawable/loc.png). Besides android

:src, icons can be associated using other attributes. Based

on our preliminary study on icons used in the top 10,000

1 <selector>
2 <item android:state_checked="true" android:drawable="

@drawable/btn_radio_to_on_mtrl_015" />
3 <item android:drawable="@drawable/

btn_radio_to_on_mtrl_000" />
4 </selector>

Figure 6: Example Resource XML File for Icons
1 void onCreate(Bundle savedInstance) {
2 View g = this.findViewById(R.id.button_esc); // FindView
3 ImageView h = (ImageView) g; // cast to ImageView
4 h.setImageResource(R.drawable.icon2); // change icon
5 ... }

Figure 7: Example OnCreate Event Handler
apps downloaded from Google Play, most of the icons

of interest are used in interactive UI widgets, with the

top frequent widgets being ImageView, Button, TextView, and

ImageButton; while the icons used in container and layout

widgets, such as ListView and LinearLayout, are typically

for beautifying backgrounds. In addition, icons specified in

the attribute android:background of UI widgets are mainly

used for beautifying backgrounds and not permission related.

Thus, our work focuses on analyzing the icons specified in

the android:src attributes.

Besides resource names for icons, the android:src at-

tributes can specify drawable objects, which are frequently

observed in check boxes or radio buttons. Drawable objects

manage several different images, organizing the images in

layers or showing different images based on the state of the

UI widgets that use the drawable objects. Figure 6 shows

the definition of a drawable object. This example XML file

specifies two icons via the attributes android:drawable in the

item elements, where the first icon will be shown if the

UI widget’s state is “checked” and the second icon will

be shown otherwise. Based on the android:src attribute, we

define the icon-widget association via UI layout files as:

Definition 6 (Icon-Widget Association (UI Layout)):
Given a layout L(W,E), an icon c is associated with a UI

widget w ∈W if (1) c.id is specified in the attribute w.src
where w.src represents the android:src attribute of w, or

(2) a drawable object d is specified in the attribute w.src
and c.id ∈ Dd, where Dd represents the set of resources

IDs contained in the drawable object d.

Besides specified using XML, UI widgets may use dif-

ferent icons when certain events occur (e.g., switching

activities). Based on our preliminary study, on average each

app uses the image loading API setImageResource 7.4 times1.

We next define the icon-widget association via API calls.

1The other image-loading APIs setImageBitmap and setImageBitmap
are mainly used to load images through network or external storages but
not resources included in the app’s APK file.
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may alias(x, y)

Γ � newwid(y, x, w.id) : [yt �→ Γ(y)
⋃{wid}]

Γ � newwid(yi, x, w.id) : Γi(yi ∈ dom(Γ))

Γ � x = findV iewByID(w.id) :
⋃

i Γi

Figure 8: Transfer functions for findViewByID

Definition 7 (Icon-Widget Association (API Calls)):
Given that vL � L(W,E), w ∈ W and v � w, an icon

c is associated to a UI widget w if an image loading API

is invoked with v as the receiver object and c.id as the

parameter.

As shown in Figure 7, Lines 2 and 3 associate the

ImageView widget to variables g and h, and Line 4 indicates

that h will use the icon identified by R.drawable.icon2.

Static Analysis on UI Layout Files. We develop a static

analysis technique that leverages a XML parser to parse the

extracted UI layout files to build the formal UI layouts,

and inspects all the UI widgets in each layout to identify

the associations between the icons and the UI widgets.

Figure 2a shows an example UI layout file, where the layout

model LinearLayout is used to place three UI widgets. The

UI widget ImageView at Line 2 is associated with an icon

identified by the resource name @drawable/loc, which refers

to the icon loc.png in the res/drawable folder. By traversing

the UI tree from the root LinearLayout to its child node

ImageView, our analysis can infer the association between

the ImageView widget with id @id/img and the icon with the

resource name @drawable/loc.

The analysis technique identifies the resource names of

icons and the UI widgets. These resource names may be

directly mapped to file names in the resource folder, or XML

files that represents drawable objects as shown in Figure 6.

To handle drawable objects, our analysis further parses the

XML resource files and identifies all the resource names

from the attribute android:drawable in each XML element.

Static Analysis on App Code. To compute the icon-

widget associations, ICONINTENT provides a data flow

analysis technique that overapproximates the associations

between variables and the widget IDs and the associations

between variables and the icon IDs. Figures 8 and 9 show

the transfer functions of findViewByID and setImageResource

in the form of inference rules. The data flow value for

each variable is initialized as {⊥} and the join operator is

defined as set union. If the variable x may alias the variable

y, we simply union the data flow facts from x to y. We use

the environment Γ to denote data flow facts as a mapping

from each variable to widget IDs. Given the statement x =

findViewByID(w.id) where x is a variable and w.id is the

ID of w, we may infer the fact that x is bound to the

UI widget w whose widget ID is w.id (i.e., x � w and

Γ(x) = Γ(x)
⋃{w.id}). If another variable y is an alias of

x, then y is associated with the widget ID w.id as well (i.e.,

Γ(y) = Γ(y)
⋃{w.id}). The association between widget IDs

and variables can also be done via the API setID, which

may alias(x, y)

Σ � newrid(y, x, c.id) : [yt �→ Σ(y)
⋃{rid}]

Σ � newrid(yi, x, c.id) : Σ(yi ∈ dom(Σ))

Σ � x.setImageResource(c.id) :
⋃

i Σ

Figure 9: Transfer functions for setImageResource

follows the similar rules as findViewByID’s.
Our analysis also infers the association between image

resource IDs and variables that represent UI widgets. This

is done via using the similar transfer function as findViewByID

’s to analyze the API method setImageResource. We use the

environment Σ to denote data flow facts as a mapping from

each variable to its resource IDs. Consider the statement x

.setImageResource(c.id) where x is a variable bound to a

UI widget w (i.e., x � w) and c.id is the resource ID of

the icon c. Whenever we observe such API in the code, we

may infer the fact that x is associated with the icon c whose

resource ID is c.id (i.e., Σ(x) = Σ(x)
⋃{c.id}) and w is

associated with c since x� w. Similarly, if y may alias x,

then y is associated with c (i.e., Σ(y) = Σ(y)
⋃{c.id}).

Based on the analysis result, ICONINTENT can determine

which UI widgets are associated with a given icon. Specifi-

cally, if Σ(xt) does not contain ⊥, the UI widgets identified

by the widget IDs (i.e., Γ(xt)) are considered to be associ-

ated with the resource IDs Σ(xt). That is, we will have the

icon-widget associations {wt �→ it|wt ∈ Γ(xt), it ∈ Σ(xt)}.
Example Analysis. Consider the example shown in Fig-

ure 7. For the UI widget variable g, we have Γ(g) = {R.
id.button_esc}. Since g and h are aliases (Line 3), we have

Γ(h) = {R.id.button_esc}. Due to the setImageResource at

Line 4, we have Σ(g) = {R.drawable.icon2}, and Σ(h) = {R
.drawable.icon2}. Thus, we have the icon-widget association

{R.id.button_esc �→ {R.drawable.icon2}}.
C. Icon Mutation

This module extracts icons from the input APK file and

performs image mutations to produce a set of mutated

icons for each of the extracted icons. Motivated by the app

icon variety shown in Figure 4, ICONINTENT leverages five

commonly-used image mutation techniques [18], [19]. These

techniques mutate the colors and transparencies of images

in different ways, and can be combined together to produce

different mutated icons (thus producing 25 = 32 mutated

images for each icon). We next briefly describe the color

model used in digital images and the mutation techniques.
Image Mutation. A digital image is represented as a

rectangular grid of pixels with fixed rows and columns,

where a pixel represents a single color dot. A color in

the RGB color model [20] is expressed as an RGB triplet

〈r, g, b〉, where “r”, “g”, and “b” are the numeric values

that describe how much red, green, and blue are included

in the color, respectively. To express the opacity degree

of the color, the RGBA color model, 〈r, g, b, a〉, is used,

which provides an extra numeric value (“a”) besides the

RGB triplet used in the RGB model. Using the RGBA color
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Table I: Sensitive user-input categories and keywords
Category Keywords
Camera camera, retake

Contacts contact, group

Email email, mail

Location location, locate,
gps, map, place, address

Microphone microphone, micro,
karaoke, interview,
voice, audio

Phone phone, call

Photo photo

SMS sms, message

model, a digital image with m ∗n pixels can be represented

as a matrix M with m rows and n columns, where each

cell (i.e., a pixel) in the matrix is a RGBA tuple. Image

mutation techniques apply various transformations to mutate

the RGBA tuples in M to produce a mutated image. We next

describe the five mutation techniques.

• Image Scaling: This technique enlarges or shrinks the

image by changing the resolution (pixels per inch) of

image. A commonly used technique is to resample pixel

values using nearby pixels [21] for the scaled image.

• Grayscale Conversion: This technique converts an

image to another image in which the value of each

pixel just represents only the amount of light [18].

• Color Inversion: This technique inverts the colors of

each pixel in the image.

• Contrast Adjustment: This technique adjusts the con-

trast of colors in the image.

• Opacity Conversion: This technique converts the

transparency differences between the objects(/texts) and

the background to the color differences.

D. Icon Classification

The icon classification module classifies two types of

icons (i.e., object icons and text icons) into one of the eight

sensitive user-input category. We next describe the sensitive

user-input categories and the two techniques in detail.

1) Sensitive User-Input Categories: Table I shows eight

sensitive user-input categories and their keywords. The key-

words are used to search for training icons and identify text

icons. We choose these eight sensitive user-input categories

because the app functionality related to these categories

are popular, represent tangible sensitive resources that users

can understand, and have significant security and privacy

implications [9], [22], [23]. Furthermore, developers often

use these icons in the UI widgets that accept the user inputs.

2) Object Icon Classification: ICONINTENT leverages

object recognition to classify object icons based on a training

icon set labeled with sensitive user-input categories. Given

an icon as input, the technique recognizes whether the

training icon (deemed as the reference object) appears in

the input icon (deemed as the scene picture), and labels the

input icon using the sensitive user-input category that has

most recognized icons, or labels it as not sensitive if none

are recognized. Algorithm 1 shows this general process.

Algorithm 1: Object Icon Classification

Input: I as the input object icon, Category as the set of sensitive
user-input categories, M as the hashmap that stores the
mapping from the training icons to their corresponding
categories,

Output: Cout as the predicted category for I
1 Cout← null, CatCount←Map.Empty(); // CatCount

records how may icons are recognized in I for each
category

2 foreach c ∈ Category do
3 CatCount[c]← 0;
4 end
5 foreach k ∈M.keys() do
6 if Recog(k, I) then
7 CatCount[M [k]]← CatCount[M [k]] + 1;
8 end
9 end

10 foreach c ∈ Category do
11 if Cout == null or CatCount[c]) > CatCount[Cout])

then
12 Cout← c;
13 end
14 end
15 return Cout; // the category with most recognized icons

Classifying icons based on objects inside it brings new

challenges to object recognition techniques such as Scale-
Invariant-Feature-Transform (SIFT) [15], [24] in com-

puter vision. SIFT is a state-of-the-art technique for ob-

ject recognition from pictures. It extracts key locations

Figure 10: Rotation

that are invariant with respect

to image translation, scaling,

and rotation. They are often

image snippets with enough

details such as tree textures

and fur patterns. When doing

the matching, the key locations

are used as input to a nearest-neighbor indexing method that

identifies candidate object matches. Specifically, we already

use image mutation to resolve icon format and quality issues

such as transparent background and low contrast. However,

such adaptation is not sufficient, and we found that direct

adoption of SIFT is not be effective for the following two

reasons.

• Too Few Key Locations. Compared with common

objects such as animals and human faces in object

recognition, software icons typically consist of basic

shapes with smooth edges, such as lines, ovals and cir-

cles. Thus, SIFT cannot extract sufficient key Locations

from the icons, and too few key locations will lead to

inaccuracy in object recognition.

• Lower Tolerance for Changes. App icons have lower

tolerance of changes such as rotation and distortion. For

example, a cat is still a cat no matter how the image

is rotated. However, the icon in the left sub-figure of

Figure 10 no longer corresponds to “location” if it is

rotated upside-down, which becomes a liquid drop icon

(the right sub-figure) that is often used in weather apps.

On the other hand, certain extent of change tolerance
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is still helpful. The left sub-figure of Figure 10 still

represents location if rotated slightly anticlockwise.

To address these two challenges, we propose correspond-

ing techniques as follows.
Increasing Key Locations. To increase the number of key

locations, we first enlarge the icon images. If an image for

matching is smaller than 200×200, we automatically enlarge

it to 200×200. Second, we switch to FAST algorithm [25],

Figure 11: SIFT vs.
FAST

an alternative technique ex-

tracting many low quality key

locations instead of a few high

quality key locations (as in

SIFT). Figure 11 presents the

comparison of key locations

(as blue circles) extracted by

SIFT as shown in Column (a)

and FAST algorithms as shown

in Column (b). The low qual-

ity of key locations will be

addressed together with low

change tolerance in our Rela-
tive One-to-one Matching technique described as follows.

Relative One-to-One Matching. Standard object recog-

nition allows multiple key locations in the sample image to

be matched to one key location in the scene image, which

helps find smaller and blurred instances of the objects in

the scene image (e.g., a cat hiding in the grass). But this is

not suitable for icon classification, where change tolerance

is much lower. Furthermore, the usage of low-quality key

locations extracted by FAST algorithm further increases

noise in key locations. Thus, we propose a novel matching

technique that allows mapping a key location in the object

image to only one key location in the same area in the scene

image (e.g., a key location at the left-top corner of object

image can only be matched to one key location in the left-top

area of the scene image). We use a relative distance threshold

(percentage of image weights and heights) to determine the

size of the area. To achieve one-to-one mapping, we use a

greedy algorithm to match the key-location pairs with the

highest similarity, until no key locations left.
3) Text Icon Classification: ICONINTENT analyzes the

embedded texts of the icons to determine whether the texts

are similar to keywords in the sensitive user input categories

(Table I). Based on our preliminary studies on about 300 text

icons collected from top Google Play apps, more than 95%

of the text icons contain 1 to 3 words [17]. This indicates that

most of the text icons contain only short phrases or words.

Therefore, keyword matching [9], [11], [12] can be adapted

to effectively classify the text icons. However, the extracted

texts from the icons are often not accurate, which may

include wrong characters (e.g., “lcafiion”), extra characters

(e.g., “llocation”), or miss some characters (e.g., “emai”).

Thus, it is unlikely for the words in the extracted texts to

exactly match a sensitive keyword.

To address these issues, we develop an edit-distance-based

algorithm to compute similarities between words in the ex-

tracted texts and the keywords, and identify the most similar
keyword based on the computed similarities; if the similarity

is over a pre-defined threshold, then we classify the icon

to the corresponding sensitive user input category. Our

algorithm adapts edit distance [26] with n-gram substring

generation, and relative length computation to compute the

similarity between the extracted text from a text icon and the

keywords in the sensitive user-input categories. Edit distance

is a widely used approach to quantify how dissimilar two

strings are by computing the minimum cost of operations

required to transform one string to another. However, edit

distances faces two problems Redundant Word and Multi
Keyword Matching during the classification.

Redundant Word. The extracted text usually contains

redundant words that do not express intentions in using

sensitive data. For example, for a text icon that contains

the text “enablegps” (extracted without spaces based on

OCR), the word “gps” indicates the intention to use users’

GPS data, which is sensitive, while the word “enable”

is redundant. Redundant words may also come from the

inaccurate character recognition of OCR. To address this

problem, we introduce n-gram substring generation [27].

Given a keyword k, we generate a sequence of substrings

from a word w where the length of each substring is within

[length(k) − 1, length(k) + 1]. We then compare each n-

gram with the keyword “gps” and find an exact match.

Keyword Similarity. Since keywords have different

lengths, in many cases the Levenshtein distance [26] does

not reflect the similarity as expected. For example, given a

word “locatl”, we compare it with two keywords “locate”

and “call”. The edit distance between “locatl” and “locate”

is 1. For the keyword “call”, we generate a n-gram list

which is {“loca”, “ocat”, “catl”}, and the edit distance

between “catl” and “call” is also 1. While they both have

the same distance, we know “locatl” is more similar to

“locate” rather than “call”. To address this issue, we propose

to measure the similarity by considering the keyword length

k: Simw,k = 1 − Ed
length(k) , where Ed is the original edit

distance and length(k) is the length of the keyword k.

IV. EVALUATION

We implemented ICONINTENT upon Gator [28]–[30]

for static analysis and upon OpenCV [31] and Asprise

OCR [14], [32] for icon classification. We evaluate ICON-

INTENT on 150 Android apps, and 5,791 manually labeled

icons from the apps. We seek to answer the following

research questions:

• RQ1: Is ICONINTENT effective on identifying sensitive

UI widgets?

• RQ2: How effective is our technique on detecting

suspicious permissions without GUI indication?
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Figure 12: Icons over sensitive categories

• RQ3: How effective are our techniques on associating

icons with UI widgets?

• RQ4: How effective is our technique on identifying

sensitive object icons?

• RQ5: How effective is our technique on identifying

sensitive text icons?

A. Dataset Construction

1) Training Dataset: Our classification technique of ob-

ject icons requires a training dataset with positive exam-

ples in each sensitive user-input category. We do not need

negative examples in our training set since our algorithm

determines an icon as sensitive if it is similar enough to

any positive examples in a sensitive category. To make

ICONINTENT more extensible, our training set must be

constructed within reasonable effort. We collect positive

examples from two sources. First, we use the name of

each sensitive category (e.g., camera) with the keyword

“icon” to search for representative icons from Google Image

Search, and downloaded the first 100 retrieved icons for each

category. Second, we used the keywords from each category

to search for icons in other apps (top 10,000 apps excluding

the 150 apps in our test dataset), and fetched the first 500

icons for each category. Then, we manually labeled these

icons to identify 776 unique sensitive icons used in the apps.

Combined with the icons from Google Image Search, our

training dataset has 1,576 icons as positive examples.

2) Test Dataset: We build our test dataset from the top

apps in the Google Play market. Since apps that have UI

widgets to collect sensitive user inputs are not distributed

evenly across app categories [9], [11], [12] and we have

to manually label all the apps in our test dataset to obtain

the ground truth, we choose as our test set the top 150

apps with appearances of sensitive keywords as mentioned

in Section III-D1 in their UI layout files. From the 150 apps,

we manually labeled 5,791 icons, in which we identified 539

sensitive object icons, and 49 sensitive text icons. Note that

during labeling we checked the context information of icons

to confirm whether they are related to a sensitive category.

The distribution of sensitive icons in our test dataset

on different sensitive user-input categories are presented in

Figure 12. From the chart, we can see that among 588

sensitive icons identified from our test dataset, icons from

Table II: Detected Sensitive Icons (SI) and Sensitive UI
Widgets (SW)

Category #Detected SIs #Apps #Detected #Apps
Object Text All with SIs SWs with SWs

Camera 148 1 149 47 65 35

Contacts 14 1 15 6 10 6

Email 44 5 49 16 25 12

Location 19 11 30 9 12 9

Microphone 75 3 78 26 65 19

Phone 20 1 21 6 38 4

Photo 41 12 53 13 19 13

SMS 125 11 136 23 24 10

All 486 44 530 135 248 97

all sensitive user-input categories exist. Specifically, camera,

SMS, and microphone are the top three categories on the

number of icons being used. The reason is that icons in these

categories are popular, consistent and easy-to-understand, so

they can be easily recognized by end users.

B. Evaluation Results

1) Identifying Sensitive UI Widgets (RQ1): To answer

RQ1, we consider two application scenarios in detecting

sensitive UI widgets: (1) using ICONINTENT alone and (2)

using ICONINTENT to complement SUPOR.

RQ 1.1: Using ICONINTENT Alone. In Table II, we

present the results of ICONINTENT on identifying sensitive

UI widgets from our test dataset. Columns 2-5 presents

the number of detected sensitive object icons, sensitive text

icons, all sensitive icons, and the number of apps containing

detected sensitive icons. Columns 6-7 presents the number

of associated sensitive UI widgets, and the number of apps

containing detected sensitive UI widgets. The last row of

the table shows the data combining all categories. Note that

since one app may have icons / UI widgets from different

categories, sum of the numbers in rows 2-9 of Column 5

and 7 is not equal to the number in Row 10.

From the table, we have the following observations.

First, ICONINTENT effectively detects most sensitive icons

(530 out of 588) from most apps (135 out of 138 apps

that contains sensitive icons) in our test dataset. Second,

ICONINTENT effectively associates the detected icons with

248 UI widgets from 97 apps. Such results indicate that not

only sensitive icons are common, but sensitive UI widgets

are also common, and ICONINTENT detects many sensitive

UI widgets from most apps in our test dataset. Third, icons

from different categories have different characteristics on the

association with UI widgets. For example, while 125 SMS

icons are detected, only 24 UI widgets from 10 apps are

associated with some icons. This shows that SMS icons are

often not directly associated with UI widgets. One possible

reason is that SMS icons such as text bubbles are often used

as static labels in chatting apps. By contrast, 20 Phone icons

are associated with 38 UI widgets, which shows that phone

icons are generally associated to UI widgets (e.g., buttons).

RQ 1.2: Combining with SUPOR. SUPOR is designed

to detect only sensitive input fields that accept textual

user inputs. Thus, to fairly evaluate effectiveness of our
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Figure 13: Effectiveness of our technique on identifica-
tion of sensitive UI widget when combined with SUPOR

technique, we make two improvements to make SUPOR

applicable to other UI widgets: (1) we expand the UI widgets

types to include buttons, radio buttons, check boxes, and

other commonly used UI widgets that accept user inputs; (2)

we leverage dex2jar [33] to convert dex bytecode in APK

files to Java bytecode, so that SUPOR can support custom

widgets. We will use “SUPOR” to refer to this improved

version of SUPOR in the rest of the section.

We applied SUPOR to the apps in our test dataset to

associate text labels with UI widgets. For each category, we

compare the UI widgets associated by SUPOR and by SUPOR

+ICONINTENT. To enable fair comparison, we fed into

SUPOR the keywords defined in Section III-D1 and collected

all the UI widgets associated with sensitive keywords in

sensitive text labels. The results are presented in Figure 13.

We can see that ICONINTENT can effectively complement

SUPOR. SUPOR identified 242 sensitive UI widgets, while

combining SUPOR and ICONINTENT can identify 487 sensi-

tive UI widgets, achieving 101.2% improvement. Involving

ICONINTENT can help SUPOR to identify 17.4% (Location)

to 3150% (Microphone) more sensitive UI widgets. Specif-

ically, ICONINTENT results in the most improvement in the

categories of Camera and Microphone where icons instead

of texts are used more often among apps. We also found

that UI widgets found by SUPOR are almost disjoint with

the UI widgets found by ICONINTENT, as only 3 UI widgets

are identified by both SUPOR and ICONINTENT. It indicates

that developers rarely add textual descriptions to icons for

UI widgets, saving space on mobile screens.

2) Detecting Suspicious Permissions (RQ2): To answer

RQ2, we studied the permissions requested by the subject

apps, and compared them with identified sensitive icons

to detect the suspicious requested permissions that are not

indicated in the user interface. Previous approaches such as

SUPOR [9] can achieve the same goal, but consider only

textual labels on the app’s GUI. Thus, we can check how

many more icon-permission matches ICONINTENT finds,

which reduces the suspicious permissions that require further

inspection. The results are shown in Table III. We consider

the six permissions that can be directly mapped to our

sensitive categories. Note that Email and Photo are not

listed as they cannot be easily mapped to permissions.

Table III: Suspicious Permissions Detected with SUPOR
and ICONINTENT

Permission All SUPOR SUPOR+ICONINTENT

CAMERA 31 27 (-12.9%) 9 (-71.0%)

CONTACTS 39 31 (-20.5%) 24 (-38.5%)

AUDIO 20 19 (-5.0%) 4 (-80.0%)

LOCATION 68 48 (-29.4%) 36 (-47.1%)

PHONECALL 27 21 (-22.2%) 16 (-40.7%)

SMS 28 20 (-28.6%) 16 (-42.9%)

TOTAL 213 166 (-22.1%) 105 (-50.7%)

Also, AUDIO permission is related to microphone icons,

and PHONECALL permission is related to phone icons.

Columns 2-4 show all sensitive permissions requested, the

suspicious permissions identified by SUPOR, and identified

by SUPOR +ICONINTENT, respectively.

From the table, we have two observations. First, ICON-

INTENT effectively reduces suspicious permission requests

from 166 to 105 (37%), so much fewer suspicious permis-

sion requests need to be inspected. Second, ICONINTENT

achieves different effectiveness on different categories. In

particular, ICONINTENT is most effective in CAMERA

(reducing 18 of 27) and AUDIO (reducing 15 of 16),

indicating that icons are dominantly used in these categories.

Note that this is not a fair comparison between SUPOR

and ICONINTENT, as we consider only the categories where

icons are commonly used. However, the result does show

that in these popular categories, considering only text is far

from sufficient, and applying ICONINTENT can significantly

reduce the suspicious permissions to be inspected.

3) Associating Icons with UI Widgets (RQ3): To answer

RQ3, we studied the number of UI widgets and their icons

associated by ICONINTENT. From the 5,791 icons in the

test dataset, ICONINTENT associated them with 5,408 UI

widgets. Specifically, UI analysis helped to associate 4,165

UI widgets, and icon-association analysis helped to associate

additional 1,243 UI widgets. Among the associated UI

widgets, 248 are associated with sensitive icons and are

thus sensitive UI widgets, while 53 are associated with

mistakenly classified icons so they are false positives. Note

that we will evaluate our icon classification techniques in

Sections IV-B4 and IV-B5, and we only include true posi-

tives in Figure 13. Among these 248 UI Widgets, 234 can

be detected with UI analysis and icon-association analysis

can help to identify additional 14 sensitive UI widgets.

4) Object Icon Classification (RQ4): The results of object

icon classification on the test dataset are presented in Ta-

ble IV. Columns 2-4 show the precision, recall, and F-score

of our technique for each icon category. We can observe that

ICONINTENT can achieve an average F-score of 87.7% (with

distance threshold as 0.3). Furthermore, we compare the

effectiveness (F-Score) of our techniques described in Sec-

tion III-D2 with that of default SIFT technique, and turning

off each of our techniques: without increasing key locations

and without change-aware matching. From the figure, we

can see that ICONINTENT’s F-score (87.7%) outperforms

those of SIFT (48.1%), without mutation (75.8%), without
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Table IV: Results for Object-Icon Classification
Setting P (%) R(%) F (%)

SIFT 43.0 54.5 48.1

Without Mutation 91.2 64.9 75.8

Without Increkey 63.7 90.0 74.6

Without ROM 76.0 89.4 82.2

ICONINTENT 88.2 87.3 87.7

Table V: Results for Text-Icon Identification
Setting P (%) R(%) F (%)

Without Mutation 91.7 22.9 36.6

ICONINTENT 89.8 89.8 89.8

key location increase (without Increkey, 74.6%), and without

Relative One-to-one Mapping (without ROM, 82.2%).

5) Text Icon Classification (RQ5): The results of text

icon classification are presented in Table V, which is of

the same format as Table IV. We can see that our text

icon classification results have few false positives and false

negatives, and the image mutation techniques can improve

the recall significantly. We set the threshold for text simi-

larity as 0.8 since it achieves the best results in terms of

precision, recall, and F-score. For false positives, there are

two types of misclassification. First, the OCR recognized

texts from some icons which do not contain any text, and the

extracted texts matched some sensitive keywords. Second,

there is one application breaking apart company English

logos, which confused our keyword matching algorithm. For

false negatives, there are three types of misclassification.

First, we missed some keywords. If we add particular

keywords, it will be solved. Second, when ICONINTENT

performed image mutations, ICONINTENT did not consider

the rotated images. We can implement a new image mutation

to get a better result. Third, OCR cannot recognize the

correct text from some blurred images.

C. Threats to Validity

The main internal threat comes from the mistakes we may

make during icon labeling. To reduce the threat, we check

the context of the icons when we cannot tell whether an icon

is related to a sensitive category. There are two main external

threats to validity. First, our experiment evaluates only the

apps with many sensitive UI widgets, but this is reasonable

because these apps are also the ones ICONINTENT will be

mainly applied to. Second, since the keywords we used as

queries are from eight sensitive categories, our evaluation

may be limited to apps collecting data in these categories.

This threat is unavoidable because the difference between

sensitive data and insensitive data must be defined in some

way. ICONINTENT can be easily extended to support other

categories of sensitive data, but more evaluations will be

required for those categories.

V. RELATED WORK

Computer Vision Techniques for Software Engineering
Tasks. REMAUI [34] applies computer vision techniques

for reverse engineering UIs of mobile apps. Sikuli [35],

[36] uses image recognition to identify and control UI

components for automating UI testing. WebDiff [37] and

XPERT [38] leverage computer vision techniques to detect

visual differences, assisting the task of detecting cross

browser rendering issues. Instead of detecting standard UI

elements and comparing visual appearances, our approach

uses computer vision techniques to find icons similar to

our collected icons and extract texts from icons, which are

combined with program analysis techniques to understand

association between icons and UI widgets.

UI Analysis of Mobile Apps. SUPOR [9], UIPicker [11],

and UiRef [12] are among the first works to analyze the

descriptive texts in apps’ UI for determining whether the cor-

responding user inputs contain sensitive data. AsDroid [39]

checks the compatibility of the descriptive texts and the

intentions represented by the sensitive APIs. PERUIM [41]

extracts the permission-UI mapping from an app based on

both dynamic and static analysis, helping users understand

the requested permissions. Liu et al. [42] propose an au-

tomatic approach for annotating mobile UI elements with

both structural semantics such as buttons or toolbars and

functional semantics such as add or search. In these works,

the security and privacy implications of icons remained

unexplored, and our approach opens up a new direction

in analyzing sensitive icons in UIs. Furthermore, our static

analysis associates UI widgets with variables in the code,

which cannot be inferred by just analyzing the UI.

Textual Analysis of Mobile Apps. WHYPER [22] and

AutoCog [43] adapt natural language processing techniques

for analyzing apps’ descriptions and infer the mapping

between sentences in app descriptions and permissions.

CHABADA [44] clusters app descriptions’ topics and iden-

tifies outliers in each cluster with respect to their API usage.

BidText [45] detects sensitive data disclosures by performing

bi-directional data flow analysis to detect variables that are

at the sink points and are correlated with sensitive text

labels. ICONINTENT complements these techniques to better

understand apps’ intentions.

VI. CONCLUSION AND FUTURE WORK

In this work2, we present a novel framework ICONINTENT

that performs program analysis techniques to associate icons

and UI widgets and adapts computer vision techniques to

classify the associated icons into eight sensitive categories

for Android apps. We have conducted evaluations on 150

market apps. The results show that ICONINTENT effectively

identifies sensitive UI widgets (248 UI widgets in 97 apps),

and reduces suspicious permissions to inspect. ICONINTENT

can be integrated with various privacy analysis tools, such

as GUILeak [10] to help developers trace information types

mentioned in privacy policies to icons. In future work, we

plan to adopt deep learning techniques to further improve

the accuracy in icon recognition.

2The work is supported in part by NSF grants CNS-1755772 and CNS-
1748109.
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