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Abstract—Modern targeted attacks such as Advanced Persis-
tent Threats use multiple hosts as stepping stones and move
laterally across them to gain deeper access to the network.
However, existing defenses lack end-to-end information flow
visibility across hosts and cannot block cross-host attack traffic
in real time. In this paper, we propose P4CONTROL, a network
defense system that precisely confines end-to-end information
flows in a network and prevents cross-host attacks at line rate.
P4CONTROL introduces a novel in-network decentralized infor-
mation flow control (DIFC) mechanism and is the first work
that enforces DIFC at the network level at network line rate.
This is achieved through: (1) an in-network primitive based
on programmable switches for tracking inter-host information
flows and enforcing line-rate DIFC policies; (2) a lightweight
eBPF-based primitive deployed on hosts for tracking intra-host
information flows. P4CONTROL also provides an expressive
policy framework for specifying DIFC policies against different
attack scenarios. We conduct extensive evaluations to show
that P4CONTROL can effectively prevent cross-host attacks in
real time, while maintaining line-rate network performance
and imposing minimal overhead on the network and host
machines. It is also noteworthy that P4CONTROL can facilitate
the realization of a zero trust architecture through its fine-
grained least-privilege network access control.

1. Introduction

Despite the dramatic growth in expenses on operational
network security, we are still witnessing a rapid increase in
targeted cyber attacks, such as Advanced Persistent Threats
(APTs). These sophisticated attacks often exploit multiple
hosts in a network and laterally move to the target to access
unauthorized resources or exfiltrate sensitive data [1]. As
a result, many high-profile businesses were plagued with
huge losses [2]. These cross-host attacks pose significant
challenges to existing defenses, which lack the necessary
context to correlate attack activities on different hosts and
prevent attacks from damaging the network in real time.

Existing defenses treat inter-host information flows and
intra-host information flows in isolation. Hence, they lack
end-to-end information flow visibility across multiple hosts
in a network. Network-level defenses, such as firewalls [3]
and network intrusion detection systems (NIDSes) [4], have

visibility into inter-host information flows between two hosts
in the form of network flows (i.e., a sequence of packets
sent from a source to a destination [5]). However, they are
unable to connect network flows to reveal cross-host attack
activities due to lack of host-level visibility on intermedi-
ate hosts. On the other hand, host-level defenses capture
intra-host information flows only. Many studies along this
line employ system call monitoring to track information
flows between system entities (e.g., processes, files) within
a host for forensic investigation [6]–[10]. However, they
are unable to track attack activities beyond a single host
due to inadequate network-level visibility. Although a few
studies along this line proposed to associate system calls
across hosts [11]–[14], these solutions mostly operate in
post-compromise settings using historical system audit logs.
In summary, none of the existing defenses are able to block
cross-host attack traffic in real time when the connection is
established on the fly.

Consider a representative enterprise network scenario
(see Fig. 1a). Attackers can bypass the firewall to access
sensitive data on the protected host, Server1, by laterally
moving across four hosts with multiple inter-host informa-
tion flows and intra-host information flows.

Goal and challenges. To that end, the overarching goal of
this work is to design and build a new network defense
system that (1) enables end-to-end information flow visibil-
ity across hosts, and (2) leverages such visibility to enforce
security decisions in real time to prevent cross-host attacks.
The key challenge to achieving this goal is three-fold:

First, to enable end-to-end visibility, an effective defense
must accurately correlate information flows both within
and between hosts in a cross-host attack. Furthermore, the
defense must also precisely confine the information flow
among entities (e.g., hosts, packets, processes, and files)
and enforce authorized accesses. While decentralized infor-
mation flow control (DIFC) [15] provides the needed fine-
grained control of information flow, existing DIFC systems
have only focused on operating systems (OSes) [16]–[19],
distributed systems [19], [20], and cloud computing [21],
[22]. None of them have enforced DIFC at the network level.

Second, enforcing DIFC at the network level is highly
challenging due to the huge volume of traffic in enterprise
networks. An effective defense must be able to correlate



information flows and enforce DIFC policies on the fly,
without imposing significant overhead on the network per-
formance. The defense must be seamlessly integrated with
the existing network infrastructure and must not affect the
line-rate processing of large amounts of benign traffic.

Third, human analysts with domain knowledge are cru-
cial for defenses [10]. An effective defense must hide the
complexity of low-level DIFC enforcement and allow the
network administrator to tailor the defenses for different
attacks, through a flexible and expressive policy interface.

Contributions. We propose P4CONTROL, a network de-
fense system that precisely confines end-to-end information
flows and prevents cross-host attacks in real time when
the connection is established on the fly. P4CONTROL in-
troduces a novel in-network DIFC mechanism for precise
information confinement and line-rate DIFC policy enforce-
ment. The mechanism includes a secure network-level DIFC
model with a category system and an in-network DIFC en-
forcement approach enabled by programmable switches and
eBPF. P4CONTROL also provides a flexible and expressive
policy framework to specify a wide range of DIFC policies.

P4CONTROL creates DIFC labels for network entities
(e.g., hosts and packets) and system entities (e.g., processes
and files) and propagates these labels along intra-host and
inter-host flows between the entities. These labels can en-
code different categories, secrecy and integrity levels, etc.
P4CONTROL then enforces DIFC policies specified by the
network administrator on labeled flows in the network data
plane at line rate. In addition, P4CONTROL provides (1)
safe mechanisms to declassify secret data to authorized
readers or endorse data as high integrity, and (2) a tainting
mechanism for fine-grained tracking of the propagation path
of a sensitive file in the network to limit its reachability. Our
network-level DIFC model formalizes these operations.

P4CONTROL uniquely leverages the emerging pro-
grammable switches and eBPF to realize the DIFC model
in the data plane. Programmable switches offer data-plane
programmability through P4 [23] and guarantee customized
Tbps line-rate packet processing. This enables P4CONTROL
to process labeled network traffic and enforce line-rate DIFC
policies. To address the key challenge of limited switch
memory and minimize the network overhead, P4CONTROL
employs a secure-yet-practical in-network DIFC enforce-
ment approach with tailored techniques to label network
traffic, match DIFC policies, enforce per-flow decisions, and
enable declassification/endorsement controls.

To propagate DIFC labels within each host and from/to
the network, we develop a lightweight host agent based on
the eBPF technology [24]. Our host agent is lightweight and
readily deployable without any kernel modifications. This
differentiates our approach from previous DIFC works [17],
[18], [25], which require extensive OS kernel modifications
to track intra-host information flows. Our host agent enables
lightweight DIFC label persistence by attaching carefully
defined eBPF hooks in the kernel to capture the complete
chain of intra-host system events and accurately propagate
DIFC labels, with minimal overhead on the host machine.

While programmable switches enable in-network DIFC,
it is challenging for network administrators to directly pro-
gram the data plane using P4, which is low-level and can be
error-prone [26]. To unlock the powerful in-network DIFC
context, we design Network Control Language (NETCL),
an expressive domain-specific language that enables the
network administrator to specify DIFC policies that match
cross-host flows and trigger a wide range of defense actions,
including preventing data exfiltration, detecting unautho-
rized access, declassifying information, and limiting the
reachability of sensitive files and the spread of malware.
NETCL policies follow a priority-based enforcement similar
to the traditional firewall policies. To further enhance the de-
fense agility against attacker’s possibly changing strategies,
P4CONTROL employs an efficient compilation mechanism
that supports dynamical update of NETCL policies at run-
time without interrupting network traffic.

Evaluation. We extensively evaluated P4CONTROL’s de-
fense effectiveness and coverage, scalability, system ca-
pacity, and system overhead, and compared with firewall
(iptables [3]), NIDS (Snort [4]), and SDN-based IFC solu-
tions (PivotWall [25]). We deploy P4CONTROL on both a
physical testbed (with a Tofino programmable switch [27])
and representative large enterprise topologies constructed
using a packet-level simulation, and use synthetic and real-
world enterprise traces. The evaluation results demonstrate
that: (1) P4CONTROL successfully prevents a wide range
of stealthy cross-host attacks that all evade firewall and
NIDS, while adding only a negligible ∼110 ns overhead to
the packet processing time. (2) P4CONTROL successfully
prevents real-world enterprise cross-host attacks from the
DARPA OpTC dataset [28] and the LANL Unified Host and
Network dataset [29], while achieving 99.9 Gbps throughput
on the 100 Gbps (per-port) programmable switch, incurring
minimal overhead on benign traffic. (3) P4CONTROL is
robust against control plane attacks and achieves robust per-
formance even with an attack strength of 1 million packet-
s/second, compared to PivotWall, which fails to install 99%
of legitimate connections. (4) The eBPF-based agent adds an
overhead of 1-7 ms to the total time of the monitored system
calls, imposing minimal overhead on the host performance.

Clearly, these results demonstrate that P4CONTROL out-
performs existing defenses in combating cross-host attacks
by a significant margin. P4CONTROL’s in-network DIFC
approach based on programmable switches and eBPF offers
robust defensive effectiveness and wide attack coverage,
maintains line-rate performance, and imposes minimal over-
head on the network and host machines. We open-source the
prototype of P4CONTROL at [30].

Significance of the work. P4CONTROL is the first work that
enforces DIFC at the network level at line rate. P4CONTROL
is also the first work that uses programmable data planes
to enforce complex secrecy and integrity policies at line
rate. P4CONTROL introduces a new paradigm of network-
level APT defenses using programmable data planes, which
differs from all existing system-level APT defenses based on
system audit logs and system provenance graphs (e.g., [6]–
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(b) Defense workflow of P4CONTROL

Fig. 1: (a) A real-world attack scenario: while the firewall can block any direct connections (indicated by the grey
dashed arrow) from the external network to a protected server, Server1, by exploiting intermediate hosts, the attacker
can successfully bypass the firewall and reach its final target with four inter-host information flows (indicated by the
red arrows) and multiple intra-host information flows (indicated by the orange arrows). (b) An illustration of the defense
workflow of P4CONTROL deployed in a network of programmable switches: P4CONTROL parses DIFC labels (indicated
in the yellow boxes) to precisely correlate and confine information flows across hosts and blocks cross-host attack traffic
in real time based on the priority-ordered DIFC policies.

[14]). P4CONTROL can be seamlessly integrated into the
existing network infrastructure with minimal modifications
and overhead, transforming it into a defense backbone.
P4CONTROL radically shifts from the traditional “castle-
and-moat” security model that relies on perimeter defenses
and implicit trust inside the network, and aligns with the
principles of zero trust. By precisely confining information
in a network with DIFC labels, P4CONTROL can facilitate
the realization of a zero trust architecture [31] through its
fine-grained least-privilege network access control.

2. Background and Motivating Example

Motivating example. Organizations face challenges in de-
fending their resources against cross-host attacks like APTs,
particularly as networks become larger and more com-
plex [1]. Consider an enterprise network (see Fig. 1a). Hosts
and servers across different departments are interconnected,
each protected by a perimeter firewall. Alice, a former devel-
oper, transitions to a new role in the Sales Department, while
retaining access to the Developer Department to complete
a project. Users like Alice (i.e., those with multi-domain
access) are common in enterprise networks.

An external attacker aims to compromise the integrity
of Server1 and exfiltrate data. To protect Server1, the
firewall is configured to only allow direct connections be-
tween Dev_Admin and Server1. If the attacker attempts to
directly connect to Server1 from the external network, the
attempt will be blocked (i.e., grey dashed arrow). However,
the attacker can target Alice’s dual access as a stepping
stone: (1) infiltrating Host1 by exploiting a zero-day vul-
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Fig. 2: Protocol independent switch architecture

nerability through spear-phishing; (2) pivoting connections
and gaining access to Alice, Dev_Admin, and Server1 in
sequence; (3) launching a ransomware attack (compromising
integrity) or data exfiltration (compromising confidentiality)
on Server1. The attack path consists of four inter-host flows
(i.e., red arrows) and multiple intra-host flows (i.e., orange
arrows). Since firewalls can only observe coarse-grained
information (e.g., IP addresses and port numbers) and use
such limited information to block direct communications
between two hosts, they miss such stepping-stone attacks.

Programmable data plane as a defense solution. Pro-
grammable switches have recently attracted increased at-
tention for their data-plane programmability that achieves
line-rate performance with low overhead, compared to the
software-defined networking (SDN) counterparts that of-
ten require extensive control-plane communications. These
switches can be programmed using P4 [23] for customizing
packet processing (thus also called P4 switches). As long as
a P4 program can be successfully compiled, the data plane
guarantees to process packets at Tbps line rate [27].
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Fig. 2 illustrates the switch architecture. P4 programs
specify the packet headers and the operations on these head-
ers. The programmable parser parses the user-defined packet
headers. These headers go through multiple hardware stages
with Arithmetic Logic Units (ALUs) and match/action ta-
bles, where match fields and types (e.g., exact/range/ternary
matching) can be specified. These stages use Static RAM
(SRAM) and Ternary CAM (TCAM) for match lookups.
While SRAM supports exact matching and persists data
across packets for stateful processing, TCAM supports wild-
card matches over header fields. Unfortunately, switching
ASICs only offer limited memory (e.g., hundreds of MB of
SRAM and tens of MB of TCAM) [27]. To guarantee line-
rate processing, P4 programs limit the operations in each
stage. When the packet header matches a table, it triggers an
action. The programmable deparser reassembles the packet
before it leaves the switch and gets forwarded.

Recent works proposed different implementations in-
side the programmable switch to defend against distributed
denial-of-service (DDoS) [32], [33], link flooding [34], [35],
covert channels [36], and BYOD security [37]. However,
none of these works have focused on cross-host attacks.
DIFC. Information flow control (IFC) monitors and reg-
ulates the movement of information within a system. In
classical centralized IFC [38]–[40], a central authority as-
signs predefined security labels to subjects (e.g., processes)
and objects (e.g., files) and enforces IFC policies. Only the
central authority can change labels or policies. Decentralized
IFC (DIFC) [15] is a generalization of the classical IFC and
offers more flexibility and autonomy. In DIFC, data owners
can set their own security policies and labels for their data,
and grant permissions to subjects to alter their labels.

While prior works have integrated DIFC with OS [16]–
[18] and extended it to Android [41] and distributed sys-
tems [19], [20], these implementations require substantial
modifications to the kernel or user-space application, which

is highly complex. Besides, their enforcement happens
within individual hosts rather than in the network. These
DIFC systems also incur a significant overhead on system
operations (e.g., 30-40% slower in the Flume system [16])
due to the low processing power of host systems, failing
to meet our line-rate requirement. While other works have
employed IFC in cloud environments [21], [22], these works
focus on the interactions between users and cloud providers,
which are distinct from network communications.

3. P4CONTROL System Overview

We present the overall architecture of P4CONTROL in
Fig. 3 and briefly describe its defense workflow below.

Initialization: (1) The network administrator specifies
NETCL policies for assigning DIFC labels (i.e., a set of
DIFC tags) to hosts and matching network flows. (2) The
programmable switch sends a control packet containing the
specified DIFC label to the corresponding eBPF-based host
agent. (3) The host agent initializes existing processes and
files in the host with the received DIFC label.

DIFC context persistence: (4) As an attacker enters
the host system, the host agent propagates the DIFC label
between system entities along with the attacker’s activities.
When the attacker pivots to another host, the host agent
propagates the DIFC label to the network by incorporating
the label into the outgoing network flow (in a customized
DIFC packet header). (5) The host agent on the receiver
host extracts the DIFC label from the network flow, merges
it with the label of the receiver process, and continues
propagating the updated label. This way, the host agents
maintain the DIFC context persistence across the network.

DIFC policy enforcement: (6) NETCL policies specified
by the network administrator are compiled into different in-
network policies, which are inserted into the programmable
switch’s match/action tables. (7) When a labeled network



flow arrives at the switch, the switch extracts DIFC tags
from the DIFC label and uses these tags to correlate all
previous flows. The switch then matches these tags against
the in-network policies to trigger the corresponding security
action (e.g., drop the flow) at line rate.

Fig. 1b illustrates how P4CONTROL counters the attack
scenario described in Section 2. After initialization, the pro-
cesses on Dev_Admin have the label {Dev,Secret} with
the tags Dev and Secret. When the attacker pivots from
the Sales Department to Dev_Admin, the {Sales} label
is propagated to the network flow, and the attacker process
on Dev_Admin then has the label {Sales,Dev,Secret},
indicating that the process has previous interactions with
entities that have the Sales tag. Subsequently, when the at-
tacker tries to connect to Server1, the programmable switch
detects the presence of the Sales tag in the network flow
and realizes that the flow traverses the Sales Department.
The switch then enforces the matched policy that has the
highest priority (i.e., the drop policy) to drop the traffic.
Threat model. Our threat model is similar to that of many
previous works on programmable switch-based network de-
fenses [32]–[37] and host-level auditing [6]–[14]. We as-
sume the presence of an attacker seeking to access or modify
unauthorized resources, exfiltrate confidential data, or spread
malware, either from within the network or externally, by
exploiting trust relationships among networked hosts. Our
trusted computing base includes programmable switches,
the control plane, and host agents. We assume that the OS
kernels are secure from compromise, and that the network
administrator specifies policies correctly especially regard-
ing declassification. We do not consider malicious adminis-
trators who can disable the host agent or tamper with DIFC
labels, or implicit flows like covert and timing channels.
Tamper-proof and tamper-evident auditing techniques [42],
[43] can be leveraged to further secure our host agents.

4. Network-Level DIFC Model

P4CONTROL implements a secure network-level DIFC
model with a category system to associate entities with
DIFC labels, a declassification and endorsement mechanism,
and a mechanism for fine-grained tracking of sensitive files.

4.1. Category System

Our category system associates different network entities
(e.g., hosts and packets) and system entities (e.g., processes
and files) with DIFC tags and DIFC labels. We extend
the Flume DIFC model [16], a host-level DIFC model,
to the network level and inherit its security guarantees.
As in Flume, P4CONTROL uses DIFC tags to govern the
flow of information between processes and files residing
on the same machine and processes residing on different
machines. Tags are assigned to both subjects (processes) and
objects (files). Directories are treated as files. A set of tags
form a DIFC label [40]. These tags and labels can encode
various categories (e.g., different enterprise departments)

and secrecy and integrity levels (e.g., top-secret, secret, and
unclassified) for entities to achieve enhanced multi-level
security, adhering to the principle of least privilege [44].

Let Sp and Ip be the secrecy and integrity labels of
entity p, respectively, and let Lp = Sp ∪ Ip be its overall
label. Following Flume’s safe message rules, process p can
send a message to process q only if Sp ⊆ Sq (i.e., “no
read up, no write down” [38]) and Ip ⊇ Iq (i.e., “no read
down, no write up” [39]). To extend the label visibility from
a single host to the network, P4CONTROL incorporates the
labeling of network packets. When a message m is sent from
process p to process q, a label Lm is assigned to m. For the
message m to be delivered to q, it must satisfy the condition
Lp ⊆ Lm ⊆ Lq before delivery.

To comply with the safe message rules, processes must
change their labels before they can communicate with other
processes or files. For example, a process that carries a
Sales tag can only share data with processes having a
matching Sales tag. Note that in Flume [16], explicit label
change requires the prediction of communication patterns of
subject processes to adjust labels. However, this approach
is impractical in unpredictable environments and requires
significant effort to modify all applications’ code, limiting
the DIFC’s efficacy. Therefore, P4CONTROL adopts implicit
label change as in Asbestos [18], allowing implicit label
propagation between processes and files: If process p com-
municates with process q, then both of their labels merge
to update Lq (i.e., Lq = Lp ∪ Lq). If processes p and q are
on different machines, p appends its label to the outgoing
packets, which is then propagated to process q upon arrival.
For files, if a process p reads from an existing file f , it
initiates a flow from f to p, propagating f ’s label to p. This
confirms that p has accessed data tagged with Lf . When p
writes to a new file f , p specifies Lf for f , which includes
all tags in Lp. This design is vital in tracking long-going
attacks that involve data theft stored for future exfiltration.

4.2. Declassification and Endorsement

Our model supports decentralized privileges to declas-
sify (remove secrecy tags) or endorse (add integrity tags)
information. Each tag t has two associated capabilities: t+
allows a process to add tag t to its label, and t− allows
removing tag t. Let Cp be the set of capabilities that process
p has. Process p can add (or remove) tag t to its label only
if it has the capability t+ ∈ Cp (or t− ∈ Cp). For secrecy,
the capability t− allows a process to declassify information
associated with tag t. For integrity, the capability t+ allows a
process to endorse its state with an integrity level associated
with the tag t. As remote hosts are untrusted, they are
modeled as an untrusted process x with an empty label (i.e.,
Lx = {}). Therefore, to interact with the outside world, a
process must have the capability to reduce its label to {}.

4.3. Fine-Grained Tracking of Sensitive Files

The model we have described does not provide enough
granularity to track individual high-value files. When a sen-



sitive file is declassified, it is hard to regulate its accessibility
to unauthorized readers. To address this, we further enhance
our DIFC model with a special TrackerID tag and a taint-
ing mechanism for specific files. If a process reads a tagged
file, it inherits the TrackerID, which is then propagated
to other processes and to the network when the file data
is exported. This alerts the programmable switch that a file
with the TrackerID tag is being transmitted. This design
offers two significant benefits. First, TrackerID enables
fine-grained tracking and policy enforcement on specific
sensitive files. Second, we can monitor TrackerID to
create a provenance graph, which is useful for tracking
declassified sensitive files and forensic analysis.

5. In-Network DIFC Enforcement

P4CONTROL realizes the network-level DIFC model
in the data plane: P4CONTROL leverages eBPF to real-
ize the implicit label propagation within each host and
between hosts to maintain the DIFC context persistence.
P4CONTROL leverages programmable switches to further
regulate the label propagation between hosts by parsing
the DIFC label carried in the network flow and enforcing
line-rate DIFC policies. To minimize the network over-
head, P4CONTROL employs an in-network per-flow decision
mechanism that enforces DIFC policies at the flow granu-
larity, removing the need for labeling and matching every
packet in the flow. P4CONTROL also employs a multi-table
flow matching technique to support a large number of in-
network policies with limited switch memory.

5.1. In-Network Per-Flow Decision

To carry the DIFC label in network traffic, P4CONTROL
employs a customized network packet format (see Fig. 4).
We set the reserved bit in the IP fragment field (known as the
“evil” bit) to distinguish labeled packets from regular pack-
ets and use a DIFC packet header to carry DIFC tags. These
tags can be extracted by the programmable switch. Our
implementation considers a 32-byte DIFC packet header,
which supports 256 distinct tags (each bit represents a tag).
This indicates the number of categories and security levels
in the network that can be supported by the Tofino 1 switch
model (Tofino 1 model supports a maximum of 256-bit
matching keys within TCAM). It is noteworthy that this
capacity largely exceeds the U.S. Department of Defense
minimum access control requirement of 16 sensitivity clas-
sifications and 64 categories [45]. The latest switch models
(e.g., Tofino 2/3 [46], [47]) have 3× more resources than
Tofino 1 and can support a larger number of tags.
Per-flow decision. A naive way of carrying DIFC labels is
to label every packet in a network flow. However, this would
waste resources, as the same security decision applies to all
packets in the same network flow. To reduce the network
overhead, P4CONTROL employs an in-network per-flow de-
cision mechanism using stateful registers in programmable
switches. Rather than labeling every packet in a network

Ethernet IP (evil bit = 1) TCP/UDP DIFC Payload

Fig. 4: Headers of DIFC-labeled network packet

flow, P4CONTROL only adds the DIFC packet header to the
initial packets of a flow. The security decision for the flow
is then maintained in a match/action table (called ConnDec
table), which includes the flow’s 5-tuple key (IPsrc, Portsrc,
IPdst, Portdst, Protocol) and the decision value. Subse-
quent packets in the flow will match the corresponding entry
in the ConnDec table, and the same decision will be applied.

P4CONTROL employs different strategies to support
different network protocols. For TCP connections, the host
agent adds the DIFC packet header to the SYN packet during
the three-way handshake. This guarantees that the label is re-
ceived by the switch for successful connections. However, in
UDP connections, where packet delivery is not guaranteed,
the switch may not receive the packet that carries the label.
To address this, the host agent adds the DIFC packet header
to the first few UDP packets in a new connection. Once the
switch receives a packet with the DIFC packet header, it
crafts an ACK packet using the hardware packet generator
and sends it back to the sender host. This acknowledges
that the DIFC label has been received, allowing the host to
send the remaining packets without additional DIFC packet
headers. For ICMP, the host agent adds the DIFC packet
header to the request and reply ICMP packets.

Hardware decision buffering. An issue arises when relying
solely on the ConnDec table. Although match/action tables
can handle a large number of entries, the control plane
must be involved to add entries to ConnDec for every new
network flow. This means that the switch has to request the
control plane to install an entry after matching a new flow,
introducing a delay, known as round-trip time (RTT), from
when the switch matches a decision for a new flow to the
point where the entry is inserted into ConnDec. During this
time period, the remaining packets of the matched flow can
arrive at the switch before their entry is inserted.

To address this issue, we implement a hardware buffer
structure using stateful registers, which can be directly up-
dated by the switch’s data plane at line rate. When a new
network flow arrives, P4CONTROL matches the flow using
the DIFC label in the flow’s first packet, inserts an entry to
the buffer on the fly, and sends a request to the control plane
to update ConnDec. Each entry in the buffer stores the CRC
hash value of the flow’s 5-tuple key and the security deci-
sion. When the remaining data packets arrive at the switch,
P4CONTROL calculates their hash values and matches them
with the buffered decision until the corresponding entry is
inserted into ConnDec.

Note that hash collisions can happen. If a new network
flow, flow2, has a collision with an existing flow, flow1,
in the buffer, P4CONTROL evicts flow1’s entry to make
room for flow2. However, flow1’s entry might be evicted
before its corresponding entry is inserted into ConnDec. This
can happen if flow2 and flow1 arrive at the switch within a
very short time (i.e., RTT) and have the same hash key h. To



address this issue, P4CONTROL recirculates the remaining
packets of flow1 for a time exceeding the expected RTT to
ensure that flow1’s entry is inserted into ConnDec.

However, it is worth noting that such recirculation rarely
happens as flow2 and flow1 need to (1) have a collision,
and (2) arrive at the switch within RTT (typically in mil-
liseconds). Otherwise, flow1’s entry is already inserted into
ConnDec, and thus, the remaining packets of flow1 can
bypass the buffer checking, and its entry in the buffer can
be safely evicted. Our current implementation uses a buffer
with up to 232 entries, utilizing the output of CRC-32 hash
function as the key. The latest Tofino 2 hardware [46] has
more resources and can accommodate a buffer with up to
264 entries, further reducing the chance of collisions.

Mitigating flooding attacks. Although P4CONTROL’s in-
network defense effectively shields against cross-host at-
tacks, it remains critical to mitigate the potential risk of
exploitation posed by malicious hosts. For example, the
attacker can exhaust the stateful storage of the ConnDec
table by initiating many new connections. To counter this,
P4CONTROL employs a rate-limiting strategy that restricts
the number of requests from an IP address over a certain
period. P4CONTROL also periodically removes inactive con-
nections from ConnDec to avoid resource exhaustion.

5.2. In-Network Decentralized Privileges

We now describe how P4CONTROL realizes the decen-
tralized privileges capabilities. Note that P4CONTROL does
not focus on regulating communications within hosts, which
has been extensively studied in existing OS-level DIFC
works [16]–[18]. Hence, for intra-host communications,
P4CONTROL uses eBPF programs to implicitly propagate
labels by adding tags to the relevant BPF maps to satisfy
the safe message rules. This allows the information to flow
freely within a host according to the subject’s choice.

For inter-host communications, P4CONTROL supports
information declassification (or endorsement) controls by
removing (or adding) tags in packets. In existing OS-level
DIFC systems, processes on hosts are responsible for de-
classifying or endorsing tags [16]. However, this approach
can potentially overwhelm the hosts, especially for high-
traffic networks, where the CPU can become a performance
bottleneck when handling high-volume requests. Therefore,
P4CONTROL offloads the tag capabilities to the high-speed
programmable switches according to the defined NETCL
policies. For a network flow that passes through the switch,
the switch modifies the labeled packet header on the fly
by removing secrecy tags (for declassification) or adding
integrity tags (for endorsement).

The switch often needs to modify multiple tags at once.
For example, when a process exports data to the external
world, the label for the network flow, potentially containing
several tags, needs to be downgraded to an empty label
{}. To efficiently realize this, P4CONTROL uses bitmasks.
When an in-network policy is hit, the switch receives a
bitmask mask indicating which tags to modify (bit set to
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Fig. 5: In-network packet processing workflow

1). For declassification, the switch performs a bitwise AND
operation between the DIFC packet header and ∼mask to
clear secrecy tags. For endorsement, the switch performs a
bitwise OR operation with mask to add integrity tags.

5.3. In-Network Policy Enforcement

NETCL policies defined by the network administra-
tor are compiled into different in-network policies to be
executed in the switch. For example, one type of in-
network policy performs DIFC label pattern matching,
which matches the network flow by examining the specific
DIFC tags contained in the flow’s DIFC packet header. Other
types of policies include matching by the flow’s source and
destination hosts and matching by the TrackerID tag. To
store these in-network policies in a switch, a naive way
is to use a single large match/action table, similar to the
traditional firewall structure. However, this design is highly
inefficient as the policies that perform DIFC label pattern
matching require ternary matching, which is expensive for
DIFC packet headers of 32 bytes [48] and must be placed
in TCAM. Since TCAM has a much smaller capacity than
SRAM, placing all policies in a single table in TCAM would
quickly exhaust its capacity, resulting in only a few hundred
policies that can be stored.

To store these policies efficiently within limited switch
memory, P4CONTROL employs a multi-table flow matching
technique. Our idea is to place in-network policies in multi-
ple match/action tables in different types of memories based
on the type of matching. While policies that need DIFC label
pattern matching are placed in TCAM, the other policy types
that need exact matching are placed in the match/action
tables in SRAM. Our evaluation result in Section 7.3 shows
that this approach increases the policy storage capacity by
12× compared to the single-table design.
Priority-based enforcement. Inspired by the firewall policy
design, the network administrator can define the priority of
NETCL policies, and P4CONTROL maintains the priority
of each policy in its table entry. For example, in Fig. 1b,
the drop policy (order 1) has a higher priority than the
allow policy (order 2). If a network flow matches multiple
entries across different match/action tables, the switch will
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execute the one with the highest priority. If none of the
policies match, the network flow will be dropped by default,
resembling the default deny action of firewalls.
In-network packet processing workflow. As illustrated in
Fig. 5, labeled packets (which carry a DIFC packet header)
undergo initial matching against declassification/endorse-
ment policies for tag modifications, followed by matching
against in-network policies for a security decision. The
decision is then stored in the hardware buffer and the
ConnDec table in the data plane. Subsequent packets in the
network flow (which do not carry a DIFC packet header) are
processed against the pre-determined decision stored in the
data plane, ensuring quick handling of subsequent packets.

5.4. Lightweight eBPF-Based Host Agent

Our host agent persists DIFC context both within the
host and from/to the network with minimal overhead. En-
abled by eBPF (Extended Berkeley Packet Filter) [24], our
host agent is lightweight and readily deployable without any
kernel modifications. This differentiates our approach from
previous DIFC works [16]–[18], which require extensive
kernel modifications to track intra-host information flows.
eBPF is an emerging kernel technology that enables sand-
boxed programs to run in the kernel space without modifying
the kernel source code or loading additional modules. It
enhances the performance, security, and flexibility of the
kernel by allowing dynamic and event-driven programming.
Lightweight DIFC label persistence. Our host agent main-
tains lightweight label persistence by attaching carefully de-
fined eBPF hooks in the kernel to capture the complete chain
of intra-host events and accurately propagate DIFC labels.
This design makes our host agent compatible with a wide
range of kernel versions, facilitating deployment in large,
heterogeneous networks with various system configurations.
Fig. 6 illustrates these eBPF hook points. We create multiple
BPF maps to share data between these eBPF programs.

1 Monitoring incoming packets: The first hook moni-
tors incoming labeled packets and extracts DIFC labels. To
achieve high-performance packet processing, we leverage
the XDP (eXpress Data Path) [49] technology to directly
attach the eBPF program to the network device. When a
new packet arrives, a callback invokes the eBPF program.
If the “evil bit” of the packet is set, the eBPF program will

extract the label information and store the destination port in
a BPF map, inLabels (dport->[Label,TrackerID]).
Then, the eBPF program removes the DIFC packet header
and resets the “evil bit”, restoring its original form for
further kernel network stack processing. To identify which
process receives the labeled packet, the eBPF program mon-
itors processes that invoke a system call to receive a network
connection. When a process accepts a connection, the eBPF
program looks up the destination port in inLabels. If there
is a match, the eBPF program will extract the label infor-
mation and the process ID (PID) of the receiving process,
and store the information in another BPF map, pidLabels
(PID->[Label,TrackerID]).

2 Tracing intra-host flows: The second hook tracks
the propagation of DIFC labels between processes and files
during intra-host activities through a data provenance mech-
anism. This captures the chain of activities from the process
that initially receives the labeled network flow to the process
responsible for sending out network traffic. The eBPF pro-
gram monitors system calls related to process creation, and
extracts the PID and the parent PID of the newly created
process. Using the parent PID as a lookup key, the eBPF
program retrieves the associated label from pidLabels and
propagates it to the child PID and updates pidLabels. If a
process is terminated, the eBPF program will remove the
entry from pidLabels, ensuring that the same PID can
be reused. For file operations, the eBPF program maintains
a BPF map, fileLabels (Inode->[Label,TrackerID]),
that associates file inodes with their respective labels. When
a new file is created, it is assigned the same label as
the creating process, and fileLabels is updated. This
ensures that the file inherits the appropriate label and aligns
with the security context of the creating process. During a
file read, the eBPF program retrieves the file’s label from
fileLabels and uses it to update the label of the process
(by updating pidLabels) that performs the read operation.
When a file is deleted, the eBPF program removes the entry
from fileLabels so that the inode can be reused. Tracking
file activities helps identify attackers who may save stolen
information in files and exfiltrate it later.

3 Altering outgoing packets: The third hook mod-
ifies the outgoing packets by incorporating the propa-
gated DIFC labels. When a process invokes a system call
to send a network message, the eBPF program is trig-
gered to search for the PID in pidLabels. Once the
sending process is identified, the process’s label and the
source port are stored in a new BPF map, outLabels
(sport->[Label,TrackerID]). To match outgoing pack-
ets, we load the eBPF program into the TC (traffic control)
Egress. When a packet exits, the eBPF program checks
whether the packet’s source port has been marked in
outLabels. If a match is found, the eBPF program will
prepare the corresponding DIFC label in a DIFC packet
header and insert the header into the outgoing packet.

BPF maps persistence. As BPF maps reside in the kernel
space, they are not persistent across eBPF programs reload-
ing or system reboots. This can cause problems when the



attacker performs file activities. Though the file data persists
in the filesystem, the BPF maps can be lost, resulting in
inaccurate label propagation.

To keep BPF maps persistent across eBPF programs
reloading, our host agent mounts the eBPF virtual filesystem
to the kernel memory. This allows the eBPF programs to pin
their maps to the eBPF virtual filesystem by creating a file
descriptor that points to these BPF maps. This file descriptor
is linked to a specific pathname in the eBPF filesystem. As
a result, the kernel will retain the BPF maps even if the
referencing eBPF program is unloaded, as the corresponding
file descriptor will keep pointing to the BPF maps.

To further persist BPF maps across system reboots, our
host agent migrates the BPF maps to the permanent filesys-
tem on the host machine. When the host agent detects the
kernel_restart or kernel_power_off system events, it
immediately migrates the BPF maps to a backup file in the
permanent filesystem before the system reboots. After the
system reboots, the host agent repopulates the BPF maps
with the entries from the backup file. This repopulation
occurs only once before the host agent resumes its functions
upon reboot. Our host agent can also migrate BPF maps in
case of a system crash, by detecting abnormal terminations
of critical processes using the process_exit hooks.

5.5. Distributed Multi-Switch Deployment

P4CONTROL leverages the distributed nature of net-
works to optimize the deployment of in-network policies in
the switches. A naive approach would install identical poli-
cies on every switch, which wastes space on switches that
would never match those policies. In contrast, P4CONTROL
places policies only on switches that are likely to see the
matching traffic. This is achieved by placing each policy in
the switch that is directly connected to the destination ad-
dress defined in the policy, similar to the setup of distributed
firewalls. Once a flow is matched and is allowed to pass, the
remaining switches only need to forward its packets, ensur-
ing strict security and consistency of policy enforcement. We
choose the destination address instead of the source address
because otherwise, an attacker could bypass the policies by
using different hosts. With this design, we can significantly
reduce the storage overhead and minimize the unnecessary
latency from re-matching the same flow.

P4CONTROL offers seamless integration into the exist-
ing network infrastructure that uses programmable switches,
eliminating the need for installing additional middleboxes
while offering minimal disruption to the network perfor-
mance. The central management of these switches by the
control plane ensures up-to-date policy installation and sim-
plifies maintenance. Coordinating a distributed defense as
a single entity in large infrastructures is complex. Network
segmentation [50] addresses this challenge by dividing the
network into distinct segments, each governed by its specific
set of policies. P4CONTROL can be a pivotal facilitator in
this design by configuring switches within each segment
to manage their respective DIFC tags and policies. This
configuration provides fine-grained control over individual

Primitive Actions 

A   ::=   label_host(ip, label) | label_file(ip, file_path) | 
             drop | allow | reroute(port) | modify(header) |
             alert | declassify(tags) | endorse(tags)
Expressions 

E   ::=   header_field | var
Predicates 

P   ::=   match(P && P) | E op E | !P 
Policies 

C   ::=   A | if P then C | (C|C) 
Operations
op ∈  {==, >=, <=, contains}

Fig. 7: Syntax of NETCL

segments, enhancing defense capabilities by accommodating
a larger number of DIFC tags in the network.

6. DIFC Policy Framework

P4CONTROL provides an expressive DIFC policy lan-
guage, named Network Control Language (NETCL), for
specifying diverse DIFC policies to counter different attack
scenarios. These policies are enforced in priority order and
can be dynamically updated at runtime. Despite multiple
domain-specific languages proposed for network manage-
ment [51], [52] and network security [32], [37], [53], [54],
none of them are designed for network-level DIFC policies.

6.1. Expressive Policy Syntax

Fig. 7 illustrates the syntax of NETCL, which is inspired
by previous works [32], [37] that adapt NetCore [52] (an
SDN programming language) for network defenses.

NETCL provides two labeling functions to initialize
DIFC labels: label_host(ip, label) assigns a label to a
specific host’s IP address, initializing all existing processes
and files with the host’s label; label_file(host_ip,
file_path) assigns a unique TrackerID to a file on a
host for fine-grained tracking of sensitive files. These func-
tions can be used during initial deployment or subsequent
stages when new hosts or files need labeling.

A NETCL policy consists of a flow-matching predicate
and an action. Various patterns are provided to match a
network flow based on the source and final destination
hosts on a cross-host path, the DIFC tags, etc. Expressions
(E ) can represent constants (var) such as IP addresses
and DIFC tags, as well as DIFC or IP packet header
fields (header_field) such as dst_ip and pkt_label.
TrackerID can be represented by the location of the
tagged file (i.e., file_path@host_ip). Predicates (P )
are built over expressions with comparison operations (E
op E ), which are used to match network flows and trigger
actions. The keyword contains checks a subset of DIFC
tags in the DIFC packet header of a network flow.



NETCL provides multiple primitive security actions.
The drop action discards a flow at the switch. The allow
action forwards a flow based on the configured forwarding
table. The reroute(port) action redirects suspicious traf-
fic to a predefined destination, such as a logging server or
a deep packet inspection (DPI) system, for further scrutiny
or processing. The modify(header) action uses the pro-
grammable parser of the switch to modify the packet header.
For instance, P4CONTROL can reset specific packet headers
(e.g., IP options and TTL) which may be used as a covert
channel for data exfiltration. The alert action serves as a
detection mechanism, generating alerts to notify the network
administrator when a suspicious flow is detected.

NETCL also provides two privileged actions. The
declassify(tags) action removes specified tags, allowing
sensitive data declassification. The endorse(tags) action
adds designated tags, endorsing the flow’s integrity. Addi-
tionally, the endorsement action allows inserting tags for
flows originating from external addresses, where no host
agent is installed. This allows P4CONTROL to regulate in-
formation flows from external addresses within the network.

6.2. Efficient Policy Compilation

To enforce user-defined NETCL policies in the data
plane, P4CONTROL employs an efficient compiler to com-
pile and execute NETCL policies in the switch. The label
initialization statements are interpreted, and the switch uses
its hardware packet generator to send a control packet
containing the DIFC label to the respective host agent.

For NETCL matching policies, it is essential to de-
velop an efficient compilation strategy to counter the rapidly
changing behaviors of attackers. When the attacker changes
the strategies, the matching patterns must be updated accord-
ingly, and the updated policy must be quickly recompiled
and pushed to the switch. A naive compilation strategy
would compile a NETCL policy into a P4 program to run in
the switch. However, this approach would require reloading
the P4 program every time a policy changes, which would
interrupt the network traffic and cause significant disruption.

To improve defense agility, P4CONTROL employs an ef-
ficient compilation mechanism that supports dynamic update
of NETCL policies without interrupting traffic. Our idea is
to compile NETCL policies into the corresponding switch
configurations, which are a set of parameters that define a
switch’s operations, including match-action table entries for
packet header matching, associated actions, and policy prior-
ity levels. These switch configurations then insert in-network
policies into their respective match/action tables within the
switch. Note that in this design, we still need to create a P4
program to specify all the logic to parse customized packet
headers and define match/action tables. However, this P4
program does not contain specific match/action rules, and
needs to be compiled by the P4 compiler (different from
the NETCL compiler) and loaded into the switch only once.
After the compilation, the switch configurations are passed
to the switch daemon in the control plane. Whenever the
NETCL policies change, the NETCL compiler generates
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Fig. 8: Preventing data exfiltration

new switch configurations, and the switch daemon updates
the match/action tables by adding or removing in-network
policies accordingly. This mechanism allows the control
plane to seamlessly add or remove in-network policies.

6.3. NETCL Policy Examples

We now present examples of NETCL policies against
various attack scenarios to show NETCL’s expressiveness.
Scenario 1: Preventing data exfiltration. Fig. 8 illustrates
a real-world data leakage incident against a hospital net-
work [55]. The attacker first compromises Host1’s web
browser to get into the internal network, aiming to exfil-
trate sensitive data from Host2. The network has a picture
archiving and communication system (PACS) server that is
less secure and allows widespread data sharing. The firewall
blocks direct connections from Host1 to Host2 and from
Host2 to the external network. To bypass the firewall, the
attacker uses the PACS server as a stepping stone to reach
Host2 and then moves the data from Host2 to PACS and
ultimately to the external network.

1 # In i t i a l i ze labels
2 label_host( ip=Host1, label={Host1})
3 label_host( ip=Host2, label={Host2, Top_Secret} )
4 label_host( ip=PACS, label={PACS})
5

6 # Drop network flows containing Top_Secret data
7 i f match(pkt_label contains Top_Secret &&

dst_ip==external_network) then drop
8

9 # Allow t ra f f i c between hosts and PACS server
10 i f match( src_ip==Host1 && dst_ip==PACS) then allow
11 i f match( src_ip==PACS && dst_ip==Host2) then allow
12 i f match( src_ip==Host2 && dst_ip==PACS) then allow
13

14 . . . # Other policies that allow benign t ra f f i c
15 # DROP ALL ( default deny)

Listing 1: Preventing exfiltration of top-secret data

Listing 1 shows the NETCL policies. We omit additional
policies that allow benign traffic. Network flows that do
not match any policies are dropped by default. Using DIFC
labels and a matching policy, we can protect Host2’s data
with the Top_Secret tag from being leaked, regardless of
intermediate hosts. For example, when the attacker attempts
to export the secret data from PACS to the external network,
P4CONTROL detects the presence of the Top_Secret tag
in the network flow and blocks the flow (Line 7).
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Scenario 2: Preventing unauthorized access. Access con-
trol is essential in enterprise networks. However, existing so-
lutions fall short of defending against insider threats across
hosts. This scenario showcases how we can leverage our in-
network endorsement mechanism to prevent unauthorized
access. Fig. 9 illustrates an enterprise network where each
department is protected by a firewall, only Alice can access
both the sales and developer resources, and only Dev_Admin
has permission to access the Servers’ Floor. Alice, as an
insider attacker, can abuse her permissions and use a zero-
day vulnerability to compromise Dev_Admin to gain further
access to the Servers’ Floor.

1 # In i t i a l i ze labels
2 label_host( ip=Sales_Dept, label={Sales})
3 label_host( ip=Alice , label={Alice , Sales})
4 label_host( ip=Dev_Admin, label={Dev_Admin})
5

6 # Endorse network flows (add tag) from Dev_Admin
7 i f match( src_ip==Dev_Admin && dst_ip==Servers_Floor)

then endorse( {P})
8

9 # Only allow network flows with the integr i ty tag P
10 i f match( src_ip==Sales_Dept && dst_ip==Servers_Floor)

then drop
11 i f match(pkt_label contains P &&

dst_ip==Servers_Floor) then allow
12

13 . . . # Other policies that allow benign t ra f f i c
14 # DROP ALL ( default deny)

Listing 2: Endorsing users to access protected resources

Listing 2 shows how we can prevent unauthorized insid-
ers from accessing the Servers’ Floor while only endorsing
Dev_Admin for access. We only allow Dev_Admin to access
the servers, by adding the tag P to flows originating from
Dev_Admin (Line 7) and checking the presence of the
tag P (Line 11). Even if Alice exploits a vulnerability in
Dev_Admin ( 2 ) to acquire the needed tag, the policy at
Line 10 will detect the Sales tag in the network flow and
block Alice from connecting to the servers ( 3 ).
Scenario 3: Fine-grained tracking of sensitive informa-
tion. Fig. 10 illustrates the situation where fine-grained
tracking is needed to further restrict the propagation of
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declassified files. A protected file on Server1 is declassified
to Dev_Admin for sharing within the company’s internal
network. However, Alice may profit from gaining early
access to confidential information and leaking the file to the
external network without the permission of the company.

1 #In i t i a l i ze labels and TrackerID for the sensitive f i l e
2 label_file ( ip=Server1, f i l e =/server1 / sensit ive_fi le )
3 label_host( ip=Server1, label={Server1, Top_Secret} )
4 label_host( ip=Dev_Admin, label={Dev_Admin})
5 label_host( ip=Alice , label={Alice , Sales})
6

7 #Declassify Top_Secret (remove tag) data to Dev_Admin
8 i f match( src_ip==Server1 && dst_ip==Dev_Admin) then

declassify ( {Top_Secret} )
9

10 # Prevent the tainted f i l e from leaving the network
11 i f match( tracker_id==/server1 / sensitive_file@Server1

&& dst_ip==external_network) then drop
12

13 # Prevent Top_Secret data from leaving Server1
14 i f match(pkt_label contains Top_Secret && dst_ip==any)

then drop
15

16 . . . # Other policies that allow benign t ra f f i c
17 # DROP ALL ( default deny)

Listing 3: Preventing exfiltration of declassified information

Listing 3 shows how we can track the propaga-
tion of sensitive information and prevent the information
from being leaked to the external network. We assign a
unique TrackerID tag to the sensitive file being tracked
(Line 2). Top_Secret files are protected and cannot
leave Server1 without explicit declassification (Line 14).
When P4CONTROL declassifies this file for Dev_Admin,
it removes the Top_Secret tag (Line 8) but retains the
TrackerID with the network flow ( 1 ). After Alice ac-
quires a copy of the file ( 2 ) and attempts to leak it, the
TrackerID persists with her outgoing network flow ( 3 ),
enabling P4CONTROL to block the flow (Line 11).

7. Evaluation

In this section, we aim to answer several key re-
search questions on the defensive effectiveness and cover-
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age, scalability, system capacity, and system overhead of
P4CONTROL, through extensive evaluations.

(RQ1) How effective is P4CONTROL in defending against
various types of cross-host attacks?

(RQ2) How well does P4CONTROL scale with real-world
workloads and network topologies?

(RQ3) What is the capacity of P4CONTROL and how does
P4CONTROL impact the network performance and
the host performance?

(RQ4) How does P4CONTROL compare with existing
SDN-based defenses?

(RQ5) How does P4CONTROL’s distributed deployment
further optimize its efficiency and scalability?

Implementation and deployment. We implemented a pro-
totype of P4CONTROL in ∼3,200 lines of P4, C, and Python
code. This includes the NETCL compiler, eBPF programs,
switch program, and switch control plane functions. We
deployed P4CONTROL on a testbed of a physical Wedge
100BF-32X Tofino P4 switch with 32×100 Gbps ports. The
testbed setting is similar to that of existing P4 security
works [33], [36]. Our experiments run on three Dell R420
servers, each equipped with an Intel Xeon E5-2430 CPU
running at 2.20 GHz, 64 GB RAM, and Ubuntu 20.04.

TABLE I: Network topologies
Topology # Hosts # Switches Details

Example enterprise 8 4 Our example enterprise topology (Fig. 11a)
Cisco 14 8 Cisco enterprise network (Fig. 11b)

Stanford 56 25 Stanford backbone network (Fig. 11c)

We set up these three servers to act as the protected,
intermediate, and attacker hosts, respectively. Additionally,
we deployed P4CONTROL in three representative enter-
prise topologies, including our example enterprise topology,
Cisco enterprise network [54], and Standford backbone net-
work [56] (see Table I and Fig. 11). The topologies are con-
structed using a packet-level simulation in Mininet, which
is integrated with a software P4 switch (i.e., bmv2 [57]) that
emulates the behavior of physical switches.

7.1. RQ1: Defense Effectiveness and Coverage

We compare P4CONTROL with two real-world network
defense solutions: a firewall (e.g., iptables [3]) and an NIDS
(e.g., Snort [4]). We configure these defenses to restrict the
protected host from initiating or accepting connections from
the external network (i.e., the attacker host), while the inter-
mediate host is allowed to communicate with the other two
hosts. This mirrors realistic enterprise setups where defenses
shield vital resources from the attacker, with less restrictive
policies on other devices for easier access. To quantify
the network performance, we measure the TCP congestion
window using iperf3, which reflects the overall throughput.
We also measure P4CONTROL’s impact on benign traffic by
comparing the flow completion time (FCT) under the typical
forwarding switch (our baseline) and P4CONTROL defense.
Background traffic is generated using the Distributed Inter-
net Traffic Generator (D-ITG) [58].

We conduct nine attacks, categorized into two groups:
a stealthy insider attacker exfiltrating sensitive information
(S1), and an external APT attacker accessing unauthorized
resources (S2). In S1, we mimic an insider attacker residing
in the protected host and use netcat to transmit a stolen file
to the intermediate host. To exfiltrate the file to the attacker
host, we use the Data Exfiltration Toolkit (DET) [59] with
seven different communication channels, including different
protocols and real-world applications (TCP, UDP, DNS,
ICMP, HTTP, Twitter, and Gmail). In S2, we use Metasploit
from the attacker host to exploit a vulnerability [60] in
the intermediate host, escalating privileges and establishing
a connection to the protected host. We repeat the attack
with the socat tool, which relays the attacker’s traffic to the
protected host from the intermediate host.

Since the protected host and the attacker host do not
communicate directly, both firewall and NIDS fail to block
any attack. With P4CONTROL, we label the protected
host and the attacker host and create a NETCL policy to
block communications between the two hosts. As shown in
Fig. 12a, P4CONTROL blocks all nine attacks (i.e., conges-
tion window at 0), ensuring security while maintaining a
congestion window of benign traffic similar to the baseline.
Also, we observe no significant difference in the cumulative
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Fig. 12: P4CONTROL blocks all stealthy cross-host attacks
while imposing minimal overhead on benign traffic

distribution function (CDF) of the FCT of the benign traffic
between P4CONTROL and the baseline in Fig. 12b, showing
that the defense has a negligible impact on benign traffic.

7.2. RQ2: Scalability in Real-World Scenarios

Scalability with real-world enterprise workloads. We
evaluate the scalability of P4CONTROL using the Los
Alamos National Laboratory (LANL) Unified Host and Net-
work dataset [29] and the DARPA Operationally Transparent
Cyber (OpTC) dataset [28]. The LANL dataset contains be-
nign activities from 17,500 hosts. The DARPA OpTC dataset
contains both benign and APT activities (initial compromise,
lateral movements, privilege escalations, etc.) across 1,000
hosts. Notably, in LANL, up to 80% of daily network flows
in enterprises use TCP protocol, emphasizing the need for
efficient defenses that do not impact the sending rate. Also,
attackers typically pivot to infect more machines. In DARPA
OpTC, an attacker pivoted across 14 hosts beyond its initial
comprise, necessitating the need to limit the attacker’s reach-
ability. Importantly, a very small portion of these enterprise
events are associated with attackers’ activities (e.g., only
0.0016% in DARPA OpTC), requiring controls that do not
interfere with benign traffic.

We use D-ITG to replay the two workloads to the
physical switch and observe network performance during
a “no-defense” baseline and under P4CONTROL. As LANL
lacks malicious traces, we simulate real cross-host malicious
flows (similar to S1 and S2 scenarios) for a comprehensive
evaluation. We label the initial victim hosts with a V tag and
the final target hosts with a protected tag. To block the
multi-hop malicious access, we create the NETCL policy:
if match(pkt_label contains V && dst_ip== target ) then drop.

By only appending DIFC labels to the SYN packet
in TCP flows, our in-network per-flow decision technique
effectively reduces the storage overhead of appending DIFC
packet headers (6.4% reduction for 500-byte data packets).
Additionally, P4CONTROL blocks all malicious network
flows from reaching the target hosts regardless of the number
of intermediate hosts compromised. As shown in Fig. 13, the
“no-defense” baseline and P4CONTROL have approximately
the same average FCTs across all flows in both datasets.
This confirms that P4CONTROL scales well with real-world
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Fig. 13: P4CONTROL imposes minimal overhead under
real-world enterprise workloads while blocking all attacks

workloads, provides an effective defense against real-world
cross-host attacks, and imposes minimal overhead on benign
traffic due to its data plane enforcement. Such observation
is consistent with our testbed experiments in Section 7.1.
Limiting attacker’s reachability. We analyze the reachabil-
ity of an external APT attacker, who aims to access Server1
and Server2 in our enterprise topology in Fig. 11a. As-
suming that all hosts are vulnerable, we assess the at-
tacker’s reachability to the servers by exploiting each host
and pivoting using varying step-counts, which refers to the
number of intermediate hosts used for pivoting. In one
setup, we configure the distributed firewalls as follows: only
hosts directly connected to switch S4 can access Server1,
only Dev_Admin can access Server2, and hosts on S4 are
blocked from those on S3, except for Alice. In another setup,
we run P4CONTROL and assign a unique label to each host.

We run a script that simulates an external attacker per-
forming APT steps (port scanning, exploiting hosts, esca-
lating privileges, pivoting, etc.). The script aims to infiltrate
hosts in the network and pivot towards the target servers,
until either reaching them or exhausting the allowed step-
counts. Table II shows that the distributed firewall can easily
detect attempts with step-count of 1, as they are direct
accesses. However, as the allowed step-count increases, the
number of hosts that can be exploited and ultimately reach
the servers increases. In contrast, P4CONTROL blocks all
attempts regardless of the number of intermediate hosts.
Attack routes coverage. To further evaluate P4CONTROL’s
attack routes coverage, we simulate an insider threat within
the three enterprise networks in Fig. 11. We select a target
machine and an insider attacker attempting to traverse the
network to reach the target. A firewall is configured to
restrict the target’s direct communications to a subset of
allowed hosts inside the network. We then run an attacker
script that probes all possible routes to the selected target
and records the number of successful accesses.

Table III shows (1) the number of potential attack routes
under different network sizes and allowed step-counts and
(2) attack routes coverage under different numbers of al-
lowed hosts. Out of all potential attack routes to a target, the
deployed firewall may only be able to block some of them.
Attack routes coverage refers to the proportion of attack
routes that are blocked. The more hosts that are allowed



TABLE II: Number of hosts that can reach Server1 and
Server2 with different step-counts in the example enter-
prise network in Fig. 11a

Defense system Step-count Server1 Server2

Distributed firewall
1 3 1
2 7 3
3 7 7

P4CONTROL
1 3 1
2 3 1
3 3 1

TABLE III: Number of attack routes in each network

Topology Step-count Total routes Allowed hosts Attack routes coverage
Distributed firewall P4CONTROL

Example
enterprise

6 5,040 1 85%
100%5 2,520 2 70%

4 840 3 57%
3 210 4 42%
2 42 5 28%

Cisco
5 154,440 2 84%

100%4 17,160 4 67%
3 1,716 6 53%
2 156 8 38%

Stanford
4 8,185,320 10 81%

100%3 157,410 20 63%
2 2,970 30 45%

direct access to the target, the lower the percentage of attack
routes the firewall will be able to block. This is common in
enterprise networks, where a single user’s access to multiple
domains increases the potential attack routes. In contrast,
P4CONTROL covers 100% of attack routes and limits the
target’s access to the allowed hosts only. This holds no
matter whether the attacker leverages the allowed host as
a stepping stone to reach the target or not. Notably, this
protection is achieved using only a single NETCL policy
that blocks the attacker’s label from reaching the target.
Maximum number of active connections. We leverage
the P4 compiler to assess the maximum number of active
connections that P4CONTROL can handle, as it rejects a
program if it consumes more memory than available re-
sources. By progressively increasing the number of active
connections, we find that P4CONTROL can support more
than 220K concurrent active connections. This surpasses the
number of active connections found in Facebook frontend
clusters, which ranges from 10K to 100K [61].

7.3. RQ3: System Capacity and Overhead

In-network policies and DIFC tags supported. We mea-
sure P4CONTROL’s capacity in handling various DIFC
packet header sizes and in-network policies within a single
switch, by progressively increasing the header size and
policy count until the P4 compiler rejects the program. With
a single flow matching table, P4CONTROL can maintain
less than 1K policies due to the limited TCAM size. In
contrast, our multi-table flow matching technique enables
P4CONTROL to maintain ∼12K unique policies, even with
the largest 32-byte DIFC packet header that supports 256
tags. Table IV shows the number of in-network policies as
the DIFC packet header size grows. For comparison, the

TABLE IV: Number of supported in-network policies with
different DIFC packet header sizes

DIFC packet header size # DIFC tags # In-network policies

1-byte 8 140K
2-byte 16 140K
4-byte 32 72K
8-byte 64 48K
10-byte 80 36K
16-byte 128 24K
32-byte 256 12K

Stanford backbone network requires ∼1,500 access control
list (ACL) policies [56]. This indicates that a single switch
deployment can accommodate many more policies than
those typically used in large real-world networks.

As for tags, the single switch capacity for 256 tags
largely exceeds the minimum access control requirement
(16 sensitivity classifications and 64 categories) by the U.S.
Department of Defense [45]. This can be further increased
through network segmentation as discussed in Section 5.5.
Additionally, the latest switch models (e.g., Tofino 2/3 [46],
[47]) have 3× more resources than our current model,
supporting a larger number of tags and in-network policies.
Switch resource utilization. Fig. 14 shows how the switch
resource utilization varies with the number of active connec-
tions, the tag size, and the number of policies. In the single-
switch deployment, with 220K active connections, 256-bit
tag size, and 12K policies, the resource utilization is 26%
SRAM, 25% TCAM, 5.7% VLIW, 2.1% meter ALU, and
8.9% hash units. When we reduce the tag size to 80 bits
while keeping the same number of active connections and
policies, the TCAM utilization decreases to 8.3%, while
other resources remain roughly unchanged. This indicates
that the tag size has a significant impact on the TCAM
utilization, as matching larger DIFC packet headers requires
more TCAM. We repeat the experiment but with 100K
active connections, and the SRAM utilization decreases to
14.1% while other resources remain unchanged. This indi-
cates that the more active connections the switch handles,
the more SRAM it requires for maintaining decisions of
established connections.

We further compare the resource utilization of single-
switch deployment and multi-switch deployment. We use
220K active connections, 256-bit tag size, and 12K policies,
and deploy P4CONTROL on three switches to distribute
the policies. As shown in Fig. 14, the TCAM utilization
noticeably drops from 25% to 8.5% on each switch, as only
4K policies are maintained within each switch.
Impact on network throughput and latency. We evaluate
the impact of P4CONTROL on the network throughput and
latency. We compare different P4CONTROL actions with a
forwarding baseline program (Fwd). We use the on-switch
hardware packet generator, which can generate 100 Gbps
(per-port) traffic for stress testing. As shown in Fig. 15,
P4CONTROL achieves a throughput of 99.9 Gbps, main-
taining the highest performance of our switch. Also, it intro-
duces a latency overhead of 100-110 ns when compared with
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Fig. 15: Throughput and latency under P4CONTROL com-
pared to the forwarding baseline

the baseline, which is negligible since the RTT in typical
enterprise networks is in the order of milliseconds [62].
Host agent overhead. We evaluate the host agent’s overhead
on a Linux server (kernel version 5.15.0) by measuring the
average additional latency of the eBPF programs over 10K
runs. For network ingress and egress eBPF programs, we
generate 10K labeled network flows with 10 packets each,
and measure the runtime of these two programs. Table V
shows that the host agent adds an overhead of 1-7 ms per
system call, which is negligible compared to the total run-
time of most system calls. Notably, for read/write operations,
the eBPF programs take a similar time as the actual system
call to record the label in the corresponding BPF map.
However, they execute after the system call returns, thereby
not blocking the completion of system call operations.

We further measure the storage overhead of maintaining
DIFC labels using BPF maps. For pidLabels, as there are
only 215 process IDs typically available in a Linux system,
our table consumes a size of 1.3 MB, which is negligible
considering the current abundant storage in systems. As
for fileLabels, the default setting in Linux allocates one
inode for every 16 KB of space. Therefore, in a 1 GB
filesystem, fileLabels consumes 2.6 MB to maintain the
labels for the inodes that can be assigned, which only takes
0.25% of the whole storage in the filesystem.

7.4. RQ4: Comparison with SDN-Based Solution

We compare P4CONTROL with PivotWall [25], an
OpenFlow SDN-based IFC approach. PivotWall propagates
taint tags between system entities within hosts. When two
hosts communicate, the sender host adds the taint tag to out-
going packets and sends “control messages” with the taint

TABLE V: Host agent overhead (in ms)

execve clone TC egress XDP ingress read write
System call time 466 266 59 36 8 9

P4CONTROL overhead +6 +5 +0.7 +0.3 +5 +6
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Fig. 16: Control plane saturation attack against an SDN-
based solution (PivotWall [25]) and P4CONTROL

information to the SDN controller. The controller maintains
a local graph of the taint propagation path. Upon receiving
the “control messages”, the controller matches the incoming
tainted network flow and the local graph with the policies.
Then, the controller installs the corresponding decision in
the switch. As PivotWall is not open-sourced, we implement
it as an SDN application. In our testbed, we set up a Flood-
light SDN controller on one server and configure another
one with OpenvSwitch for OpenFlow communication. We
use a third server to generate traffic for evaluation.

Precise information confinement. PivotWall relies solely
on the taint information of system entities and lacks pre-
cise information confinement. It also lacks safe controls to
declassify or endorse data. Furthermore, it uses a modified
Linux kernel to track information within hosts, which re-
quires intensive kernel changes. In contrast, P4CONTROL
supports a full DIFC model for precise information con-
finement via DIFC labels, and has mechanisms to safely
move data between different compartments. This level of
fine-grained control cannot be achieved in PivotWall with
coarse-grained tracking. In addition, P4CONTROL can be
seamlessly integrated with hosts using eBPF without kernel
modifications, largely simplifying the agent deployment.

Defense responsiveness. We compare the time taken by
each defense to install the decision after receiving a tainted
packet. With PivotWall, the “control messages” must be
routed to the control plane for matching, incurring a round-
trip delay before a decision is pushed to the switch. Our
measurement shows that this process takes between 8 ms to
3 seconds until a decision is pushed, depending on network
traffic and graph lookup time. In comparison, P4CONTROL
performs the flow matching in the data plane, achieving a
much smaller delay of less than 500 ns.

Control plane saturation attacks. Centralized SDN-based
solutions introduce a single point of failure, potentially
causing performance bottlenecks and security vulnerabil-
ities. We simulate an attacker that overwhelms the link
between the switch and the controller by initiating a large
number of connections. Fig. 16 shows how PivotWall’s



central controller struggles to process new connections when
the attack strength exceeds 100K tainted packets/s. At an
attack strength of 1M packets/s, 99% of the legitimate con-
nections are dropped, making PivotWall ineffective. Since
P4CONTROL examines packets entirely in the data plane,
it maintains a stable performance and installs 100% of the
connections during the attack.

7.5. RQ5: Distributed Storage Optimization

Our distributed multi-switch deployment significantly
reduces the storage overhead of in-network policies. Ap-
plied to our enterprise network in Fig. 11a, with 100 in-
network policies per host (amounting to 800 unique poli-
cies), P4CONTROL distributes the policies across the three
switches that are directly connected to the hosts. Such
distribution reduces each switch’s storage overhead by an
average of ∼66%. This allows for efficient utilization of the
switch resources and ensures consistent policy enforcement.
Also, by performing the policy matching on a single switch,
P4CONTROL only incurs an additional latency of ∼110 ns,
which is negligible, regardless of the number of switches
that a network flow traverses on its path to its destination.

8. Discussion

Limitations of host agent. While eBPF provides a secure
sandbox environment for running user-defined programs in
the kernel, there are still some potential vulnerabilities with
the current technology. By exploiting existing vulnerabilities
within eBPF through malicious code [63], an attacker could
execute arbitrary memory reads and writes, compromising
the integrity of our BPF maps. Fortunately, there have been
efforts to harden eBPF through improved safety verification
of eBPF programs [64] and fine-grained BPF privileges [65],
which can enhance the security of our host agent.
Robustness against integrity poisoning. NETCL policies
can prevent integrity poisoning attacks that target DIFC
systems. In such attacks, malicious hosts with low integrity
levels may attempt to connect to benign hosts with high
integrity levels, lowering their integrity and restricting their
access to high-integrity resources. Through NETCL policies,
the network administrator can assign appropriate integrity
levels to hosts or domains, block low-integrity network flows
from communicating with high-integrity hosts, and selec-
tively endorse valid flows only from hosts with access per-
missions. With flexibility and expressiveness of NETCL, the
network administrator can safeguard communications across
different integrity levels and block poisoning attempts.
Policy deployment in dynamic scenarios. P4CONTROL
reduces the switch resource utilization by distributing poli-
cies to multiple switches. However, this static deployment
can face challenges in dynamic network environments, such
as network topology changes or switch failures, which re-
quire policy reallocation. Moreover, the switch has limited
resources that must be shared with other data plane appli-
cations. The available resources may vary dynamically due

to policy updates and the loading/unloading of other appli-
cations, which further complicates the policy deployment.
P4CONTROL can benefit from an online policy deployment
strategy that dynamically reallocates policies while ensuring
enforcement consistency and balancing resource usage.
Zero trust architecture. Zero trust (ZT) is an evolving
set of security paradigms that assume no implicit trust of
any user account or asset based on their physical or net-
work location or ownership. Instead, ZT requires persistent
verification of every interaction with the least privileges
granted [31]. It is a radical shift from the traditional “castle-
and-moat” network security model that relies on perimeter
defenses and implicit trust inside the network. Motivated
by the U.S. White House issued Executive Order EO-
14028 [66] and Memo M-22-09 [67], ZT has recently gained
wide attention. P4CONTROL’s ability for fine-grained least-
privilege network access control via in-network DIFC aligns
with ZT principles.

P4CONTROL can be further extended to realize ZT goals
in enterprise networks. More types of complex security and
integrity policies that incorporate behavioral host attributes
can be designed. These attributes can be collected by our
eBPF-based host agent and analyzed by an intelligent data
plane that runs a machine learning model (e.g., decision
tree [68]). This behavioral analysis enables continuous as-
sessment of user and device profiles for adaptive access con-
trol. Being integrated into the existing network infrastruc-
ture with minimal modifications and overhead, P4CONTROL
transforms the network into a defense backbone, serving as
a valuable component for implementing a ZT architecture
in enterprise networks.

9. Related Work

Programmable switches. Recent works proposed to offload
networking tasks to the data plane [69], [70]. In addition,
many works leverage data plane programmability to develop
security primitives that run at line rate [32]–[37]. Unlike
P4CONTROL, none of these works focus on real-time pre-
vention of sophisticated cross-host attacks.
DIFC. In Section 2, we reviewed existing DIFC works in
detail, discussed their limitations, and explained why they
are unsuitable for our goal. P4CONTROL is the first work
that realizes DIFC at the network level at line rate.
System auditing. Prior works proposed to collect system
audit logs of system calls and construct system provenance
graphs to aid attack investigation. These works, such as [6]–
[9], proposed different techniques for comprehensive system
provenance analysis. Other works discussed cross-host at-
tacks by associating host-level provenance [11]–[14], which
primarily target post-attack forensic investigation instead of
real-time attack prevention. P4CONTROL differs from all
these system-level defenses in proposing a new paradigm
of network-level APT defenses using programmable data
planes with line-rate defense performance.

Recent works also proposed domain-specific languages
to query attack behaviors from system audit logs [10],



[71]–[73]. However, these languages are not designed for
network-level DIFC policies and are unable to express com-
plex secrecy and integrity policies either.
SDN. Recent works proposed SDN-based solutions to ex-
tend packets with taint tags derived from host-level in-
formation [25]. However, their centralized design incurs
high network latency and exposes additional attack vectors
to the control plane. P4CONTROL leverages data plane
programmability to address these issues, augmenting the
defense with line-rate performance and minimal overhead.

10. Conclusion and Future Work

We proposed P4CONTROL, a network defense system
for preventing cross-host attacks in real time. P4CONTROL
employs a novel in-network DIFC mechaism based on pro-
grammable switches and eBPF, and offers an expressive pol-
icy framework for specifying DIFC policies. P4CONTROL
is effective against various cross-host attacks while main-
taining line-rate performance with minimal overhead.

There are a few future directions that are worth explor-
ing. First, P4CONTROL’s DIFC enforcement scope can be
extended to include the confinement of information within
hosts. This can be achieved by extending the functionali-
ties of our host agent, similar to previous OS-level DIFC
systems, but with minimal kernel modifications and host
overhead offered by eBPF. Second, we can design a dynamic
multi-switch deployment strategy using online optimiza-
tions, which can optimize the policy deployment based on
available switch resources and adapt to dynamic network
changes. Third, we can extend P4CONTROL to implement
a zero trust architecture, with more complex secrecy and
integrity policies that incorporate behavioral host attributes.
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Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

This paper proposes P4CONTROL, a network defense
system capable of controlling flows and preventing cross-
host attacks in real time by leveraging programmable
switches and eBPF. P4CONTROL creates and propagates
DIFC labels of network flows and acts on labeled flows
in the data plane according to DIFC rules specified by
the network administrator. The authors demonstrate that
P4CONTROL is feasible for switch hardware, lightweight
on host agents, and effective for various cross-host attacks.

A.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Addresses a Long-Known Issue
• Provides a Valuable Step Forward in an Established

Field
• Establishes a New Research Direction

A.3. Reasons for Acceptance

1) This paper creates a new tool, P4CONTROL, which
enforces DIFC from the network at line rate using
programmable switches and eBPF. The approach fur-
ther enables practical DIFC enforcement by using new
networking architectures to implement it.

2) This paper presents a system that solves a well-
motivated problem. Technical details on enforcing
DIFC in the data plane are interesting and well written.

3) The proposed approach also establishes a new research
direction in using programmable data planes to enforce
complex integrity and security policies at line rate.
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