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ABSTRACT

Machine learning (ML) models can expose the private information
of training data when confronted with privacy attacks. Specifically,
a malicious user with black-box access to a ML-as-a-service plat-
form can reconstruct the training data (i.e., model inversion attacks)
or infer the membership information (i.e., membership inference at-
tacks) simply by querying the ML model. Despite the pressing need
for effective defenses against privacy attacks with black-box access,
existing approaches have mostly focused on enhancing the robust-
ness of the ML model via modifying the model training process
or the model prediction process. These defenses can compromise
model utility and require the cooperation of the underlying AI plat-
form (i.e., platform-dependent). These constraints largely limit the
real-world applicability of existing defenses.

Despite the prevalent focus on improving the model’s robust-
ness, none of the existing works have focused on the continuous
protection of already deployed ML models from privacy attacks
by detecting privacy leakage in real-time. This defensive task be-
comes increasingly important given the vast deployment of ML-
as-a-service platforms these days. To bridge the gap, we propose
PrivMon, a new stream-based system for real-time privacy attack
detection for ML models. To facilitate wide applicability and practi-
cality, PrivMon defends black-box ML models against a wide range
of privacy attacks in a platform-agnostic fashion: PrivMon only pas-
sively monitors model queries without requiring the cooperation of
the model owner or the AI platform. Specifically, PrivMon takes as
input a stream of ML model queries and provides an efficient attack
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detection engine that continuously monitors the stream to detect
the privacy attack in real-time, by identifying self-similar malicious
queries. We show empirically and theoretically that PrivMon can
detect a wide range of realistic privacy attacks within a practical
time frame and successfully mitigate the attack success rate. Code
is available at https://github.com/ruoxi-jia-group/privmon.
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1 INTRODUCTION

Machine learning (ML) has seen unprecedented advancement in
a wide range of tasks. However, ML models trained on privacy-
sensitive datasets (e.g., medical records [22], face images [48]) can
divulge private information through their predictions. Specifically,
by simply querying the model through a ML-as-a-service (MLaaS)
API [14, 26], an adversary can re-generate a victim’s appearance or
deduce a victim’s medical condition, which leads to privacy leakage.

Membership inference attacks (MFAs) and model inversion at-
tacks (MIAs) are standard privacy attacks in the machine learning
privacy literature. Both types of attacks exploit the access to a tar-
get ML model to infer sensitive aspects about its training data. In
particular, MFAs aim to infer whether a victim’s data is used for
training the target model, whereas MIAs attempt to reconstruct
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the training data. Early techniques for both attacks require compre-
hensive knowledge about the target model (e.g., a neural network’s
architecture and parameters) or assume that the attacker can query
the model to receive the predicted confidence (e.g., the input face
image corresponds to Alice with 90% probability). These two threat
models, known as white-box and black-box confidence-based, are
often not feasible in real-world settings. The reason is that many
real-world MLaaS platforms may neither reveal the inner workings
of their models for the sake of intellectual property protection nor
provide confidence information for input queries. Instead, these
MLaaS platforms only provide predicted labels for input queries,
which allows them to maintain their functionality while also pre-
venting the aforementioned attacks from taking effect.

Unfortunately, recent studies have shown that MFAs and MIAs
are also carried out in the label-only black-box setting, where the at-
tacker can successfully infer private training data by only receiving

predicted labels from the input queries. Remarkably, the performance
of these label-only attacks is on par with and sometimes even better
than white-box and confidence-based ones [9, 19]. For example, a
label-only MFA can identify the membership with 89.2% accuracy
on the CIFAR100 dataset whereas confidence-based MFAs achieve
83%−88% accuracy [9]; label-onlyMIAs can reconstruct face images
of private identities with a success rate of 75.7% [19] on the CelebA
dataset, only 7% behind the state-of-the-art white-box attack. Given
the effectiveness of the label-only attacks and the practical signif-
icance of the underlying threat model, there is an urgent need to
mitigate such attacks.

Despite the threat of privacy attacks under the label-only set-
ting, no approach has been specially designed to defend against
such attacks in a non-intrusive way. Existing privacy attack defense
mechanisms mostly require the cooperation of the underlying AI
platform to modify the training procedure to increase the model’s
robustness, or the prediction procedure to perturb the predictions.
Example defenses include implementing differentially private train-
ing algorithms [1, 2, 4, 21, 40, 43], adding various regularizers to
the training objective [34, 38, 44], and injecting noise into predicted
confidence scores during the prediction process [17]. However,
these approaches incur significant model accuracy loss and many
of them are not designed for label-only settings. Furthermore, these
defenses all incur intrusive platform modifications which may be
hard to achieve in practice. These limitations greatly undermine
the practicality of current defenses.

Contributions. To bridge the gap, in this work, we propose Priv-
Mon, a stream-based system for real-time, platform-agnostic pri-
vacy attack detection for MLmodels. PrivMon is designed to detect
different types of label-only privacy attacks in a real-time online
fashion, in comparison to most existing works that focus on increas-
ing the model robustness offline. Furthermore, PrivMon operates
in the most realistic setting: it is designed to protect black-box ML
models in a platform-agnostic fashion, without requiring any mod-
ifications to the underlying AI platform and without undermining
model accuracies and utilities. PrivMon continuously monitors a
stream of queries to the ML model under protection and detects
malicious queries that are part of a privacy attack campaign. Next,
we describe our key insights in detecting malicious model queries.

PrivMon is inspired by our key observation of label-only pri-
vacy attacks: despite the possible variations in attack goals (MFAs
or MIAs) and techniques, existing label-only privacy attacks all
share the commonality that they ultimately generate a sequence
of similar queries. In particular, label-only MFAs are based on
the insight that a model’s prediction on a training point is more
robust to input perturbations than at a non-training point. Hence,
these attacks repeatedly query the target model with small per-
turbations or transformations of an input query (e.g., adversarial
examples, random noise, translation, and rotation) to evaluate the
robustness. Additionally, label-only MIAs iteratively form an image
reconstruction, which results in a sequence of queries that share
similar semantics. On the other hand, benign queries often exhibit
natural variations of the real world and are much less similar than
malicious ones. Hence, a simple yet effective idea to detect ma-
licious queries is to define the similarity score of a query as the
average distance between the query and its 𝐾 most similar past
queries, and then mark the query as malicious if the score is high.

However, the task of constructing such a detection system in
the real world is non-trivial. There are three main challenges. (1)
Which similarity metric is most suitable for privacy attack detec-

tion? The level of distinguishability between malicious and benign
queries highly depends on the choice of similarity metric. In partic-
ular, directly using the distance in the pixel space (like the recent
work [27]) as a similarity metric would inevitably result in a failure
in detecting privacy attacks. Particularly, the transformations (e.g.,
rotation) used to generate MFA queries can cause a large change in
the pixel space, making them indistinguishable from benign queries.
In addition, MIAs iteratively optimize a reconstructed image by
making a sequence of small modifications in the latent space of
a pre-trained neural network generator but there is no guarantee
that the small changes in the latent space would result in a small
change in the pixel space due to the large Lipschitz constant of
neural-network-based generators. Hence, MIAs would also be diffi-
cult to detect with the pixel-level distance. (2) Given a sequence of

queries including benign and malicious queries, how to compute the

similarity score of each query? An intuitive approach is to find the
𝐾 nearest neighbors (KNN) of each query. However, KNN is only
acceptable for a small number of queries due to its complexity of
𝒪(𝑑𝑁 +𝑁 log(𝑁 )), where 𝑁 is the total number of queries and 𝑑 is
the dimension of the input. Given the high number of queries that
need to be processed by an MLasS platform in real-time, the low
efficiency of such an approach makes it difficult to meet the real-
time processing requirement. (3) How to handle the infinite query

stream? To effectively identify the queries that are most similar to
a given query sample, the system should record all prior queries
and find the most similar ones among them. Nevertheless, since
the queries received by an MLasS platform can be considered an
infinite query stream, storing all of them is infeasible.

PrivMon proposes three key designs to deal with the aforemen-
tioned challenges: (1) PrivMon leverages neural features extracted
from a deep neural network instead of pixel-level information. This
design choice is inspired by a study in the computer vision com-
munity [47] that the distance between neural features extracted
from two images is well correlated with the perceptual similarity
between two images. Neural features of an image contain infor-
mation relevant to differentiating between classes, and therefore,
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unlike pixel values, neural features tend to be stable to the trans-
formations in MFAs and small latent space modifications in MIAs
(Section 4.2). (2) Instead of relying on the naive KNN algorithm,
which has a high computational complexity to calculate the distance
between neural features, PrivMon innovatively adopts principles
from locality-sensitive hashing (LSH) to create a unique encoding
scheme for neural features and search the 𝐾 similar neural features
by computing the approximate similarity score. This significantly
reduces the computational complexity, making it feasible to process
a large number of queries in real-time (Section 4.3). (3) To address
the challenge of handling the infinite query stream, PrivMon lever-
ages a sliding window mechanism to record a limited number of
historical queries for calculating the score for the current query
(Section 4.4). We further provide a formal theoretical analysis of
the optimal window size and the attack infeasibility (Section 4.5).

We evaluate the efficacy of PrivMon against four state-of-the-
art label-only black-box privacy attacks, including both MFAs and
MIAs. We experiment on models trained in a range of datasets that
cover standard object detection, street sign recognition, and face
recognition tasks. While MFAs are based on adversarial examples
and MIAs typically take 4K-5K and 55K queries, respectively, to
reach the optimal attack performance, PrivMon detects these at-
tacks after the first 2 queries. Moreover, PrivMon demonstrates
remarkable performance in identifying queries associated with an
attack (e.g., the Area Under Curve (AUC) Score of 87 − 95% for
transformation-based MFAs and 69 − 92% for MIAs, and near 100%
for the boundary-based MFAs). By rejecting these detected attack
queries, PrivMon effectively mitigates privacy attacks (e.g., result-
ing in an attack success rate close to that of using random queries.)
We also investigate possible ways to adaptively attack PrivMon
and show that there are simple extensions to PrivMon that make
adaptive attacks either suffer from limited attack performance or
result in an overly long period to complete an attack.

In summary, this paper makes the following contributions:

• We proposed the design of PrivMon, the first stream-based
system for real-time platform-agnostic privacy attack detec-
tion for black-box ML models.

• We implemented a functioning prototype of PrivMon and
evaluated it against different privacy attacks with various
configurations. The results show that PrivMon can effec-
tively detect all these attacks.

• We designed three advanced adaptive attack strategies in
which the attacker knows our system design to further eval-
uate PrivMon’s robustness. We find that even faced with
advanced techniques, PrivMon can still mitigate the attack
success rates.

2 BACKGROUND AND RELATEDWORK

At a high level, the goal of privacy attacks is to expose information
about private training data through access to a target model. The
access could be white-box or black-box. In thewhite-box setting, the
adversary has complete knowledge of the target model, whereas,
in the black-box setting, the adversary is only allowed to make
prediction queries against the model. The black-box attacks can
be further categorized into confidence-based and label-only access.
In confidence-based attacks, the adversary receives a confidence

vector corresponding to the probabilities of the queried input being
classified into each possible label class; by contrast, in label-only
attacks, the adversary only receives the most likely label for the
input query. We will discuss the existing model inversion and mem-
bership inference attack techniques for all these different access
settings. In addition, we will also review existing defenses.

2.1 Model Inversion Attacks

Model inversion attacks (MIAs) aim at recovering representative
training data corresponding to a given output of the target ML
model. For instance, an MIA against a face recognition model at-
tempts to recover a representative face image for a given target
identity. The key idea behind existing attacks is to solve an opti-
mization problem that seeks an input maximizing the likelihood of
producing the given model output.

The first MIA technique was proposed in the context of ge-
netic privacy [13], where the goal was to reconstruct individual
genetic markers from access to a personalized medicine model. The
proposed attack works for white-box and black-box access but is
limited to linear regression and low-dimensional discrete input
space. Fredrickson et al. [12] made the first attempt to recover high-
dimensional continuous-valued input (e.g., face images), whose
idea is to replace exhaustive search with gradient-based search.
In particular, a private input is reconstructed iteratively; at each
iteration, one calculates the gradient of the likelihood of producing
a certain output with respect to the input and then uses the gradient
to update the input. This technique demonstrates promising results
on simple networks and gray-scale images but becomes completely
ineffective for deep networks and RGB images. To address this
limitation, most recent works on MIAs [7, 48] leverage generative
adversarial networks (GANs) and public data to learn a latent space
that produces meaningful images and then solve the optimization
problem over the latent space of the GAN instead of the original in-
put space. The proposed techniques in these works need white-box
access to the target model. Recently, Kahla et al. [19] introduced
a label-only MIA that can reconstruct an input image only based
on the knowledge of the corresponding label prediction. To do so,
they randomly generate samples on a sphere around the current
input and then leverage the label predictions for these samples to
estimate the gradient to further solve the optimization problem.

2.2 Membership Inference Attacks

The goal of membership inference attacks (MFAs) is to infer whether
or not a given sample is used for training a target model. While only
recovering the information aboutmembership in a training set, such
attacks still trigger privacy concerns. For example, the knowledge
of whether a person’s data is used for training a model predicting
the dosage for a certain disease can help infer whether the person
has that disease. The key idea to enable MFAs is to leverage the
overfitting property of ML models—they tend to exhibit different
prediction behaviors for training data and those unseen during
training.

The first MFA was proposed in [38] under a black-box setting,
where authors used a machine learning model (referred to as an
attack model) to infer membership of a target sample based on
the target model’s prediction confidence vector on that sample. To
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train the attack model, the authors assumed the knowledge of a
target model architecture and training data distribution. Follow-
up works [16, 29, 33, 37, 39] introduced various techniques to im-
prove the attack performance and further relaxed assumptions
made in [38], such as having knowledge of the target model struc-
ture or getting a dataset from the same distribution as the target
model’s training data, to make the attack setting more realistic.
Recent studies [9, 30] started to investigate MFAs with label-only
access to the target model, which can be categorized into two types:
the boundary-based attack and the data-augmentation-based at-
tack. The general idea is based on the observation that if an input
query is a member of the training set, it is further away from the
decision boundary than a non-member query. Therefore, both stud-
ies [9, 30] first estimate the distance from the decision boundary
with the adversarial example generation techniques such as “Hop-
SkipJump” [5] and “QEBA” [28], then decide the membership based
on the distance to the decision boundary. Note that the process
of finding the decision boundary is iterative. Specifically, starting
from the target point, one estimates the gradient, uses it to update
the point, and repeats these two steps until the point crosses the
decision boundary. For the data-augmentation-based attack, the
intuition is that the model prediction for a member query is often
more stable to transformations such as rotation and translation if
the model is trained on those augmentations, and thus one can infer
the membership of a query based on the variations of model outputs
under input transformations [9]. Specifically, the adversary queries
a shadow model with different transformations for a given query
to obtain the corresponding labels. The adversary then trains an
attack model to learn the association between the labels pertaining
to different transformations of a query and the membership of the
query. Then, for a given target input, the attacker queries the target
model with the transformations and then feeds the received labels
to the attack model to determine the membership of the target
input.

2.3 Existing Defenses and Limitations

Defenses against privacy attacks. Since successful MFAs rely on
overfitting—the model exhibits disparate behaviors on member and
non-member inputs—empirical defenses against MFAs are based
on reducing overfitting by means of adding 𝐿2 regularization [38]
or adversarial regularization [34]. Differential private (DP) train-
ing [1, 2, 4, 21, 40, 43] is another common defense strategy that
provides provable privacy guarantees. A DP training algorithm, by
definition, produces similar outputs whether or not a training point
is included in the training, which precisely aligns with the goal of
preventing membership inference. DP training clips the gradient at
each iteration and adds noise proportional to the clipping threshold.
Despite the formal privacy guarantees, it leads to a low-accuracy
model due to the noise injection. In addition, DP-trained models
suffer even more severe privacy-utility trade-off when confronted
with MIAs, as observed in past works [13, 43, 48]. This is because
there might be many inputs (e.g., face images) corresponding to
the same output (e.g., identity) in the training set; while DP train-
ing hides the presence of a single training point, MIAs can still
utilize the association between the input and output learned from
the rest of points to reconstruct the input. To effectively defend

against MIAs, Wang et al. [44] proposed to employ information
bottleneck training to limit the private information memorized in
the learned feature representation. The techniques above aim to
address the root cause of vulnerability to privacy attacks and thus
can potentially lead to better privacy regardless of the attacker’s ac-
cess to the target model (white-box or black-box confidence-based
or black-box label-only).

On the other hand, if it is desired to specifically protect against
confidence-based attacks, then one can also add noise to the model’s
prediction scores [17, 36] or reduce their dispersion [46]. But over-
all, while there is fruitful research on privacy defenses, the common

limitation is that they all require modifying the training algorithm or

the model output. Hence, initiating these defenses crucially relies on

the cooperation of the ML system operators. At the same time, they

suffer from severe utility degradation, limiting their applicability.

Comparison with similarity-based evasion attack detection.

Evasion attacks are a well-studied type of security threat for ma-
chine learning models. In these attacks, an adversary adds well-
crafted perturbation to a test input so that a trained model misclassi-
fies the test point. Unlike privacy attacks, the goal of evasion attacks
is to compromise the functionality of a machine learning model,
instead of divulging private training data. Evasion attacks have
been developed for both white-box and black-box settings. Recent
works Blacklight [27] and Stateful Detection [6] were proposed to
defend against black-box evasion attacks. Despite the difference in
defense objectives, their core idea is to detect evasion attacks via
similarity among queries. However, their techniques will face signif-
icant limitations if applied to detecting privacy attacks. In particular,
Blacklight [27] calculates the similarity scores based on pixel-space
information; therefore, it fails to accurately detect MFAs that rely
on transformations (e.g., translation and rotation) and MIAs as they
produce queries that have large pixel-space distance to each other.

Stateful Detection [6] trains an encoder with the training dataset
of the target model to extract features and calculate the feature dis-
tance to all previous queries to find 𝐾 nearest neighbors. However,
two significant drawbacks restrict its practicality. First, it assumes
the knowledge of target training data distribution to train the en-
coder. However, we are considering the practical setting where the
model owner does not share sensitive training data distribution
even with the defender. Moreover, it performs 𝐾 nearest neigh-
bor search on entire prior samples, which incurs large runtime
and memory. Therefore, it is not applicable to real-time MLaaS
operations at scale, as also noted in [27]. Figure 5 and Table 6 in Ap-
pendix B clearly demonstrate the limitation of the KNN approach.
Therefore, it is imperative to develop a well-curated real-time system

to defend against label-only privacy attacks. We provide a further
comparison with Blacklight in Section 5, and a method that exploits
features from a neural network with KNN search (Feature KNN) in
Appendix B.

3 THREAT MODEL

We consider privacy attacks against black-box MLmodels, where an
adversary can query the target model and access its output. The vast
majority of existing attacks utilize confidence scores returned by
the target model. However, if the model only displays the predicted
label, not the confidence scores, these score-based attacks can be
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easily countered. Moreover, ML models deployed in user-facing
products do not need to reveal the confidence score associated with
each class. Hence, in this paper, we focus on label-only threat model
in which the adversary only receives hard labels when querying
ML models. Next, we describe our threat model in detail.

Attacker. An attacker can perform both the MIAs and MFAs
against the target model. We denote a target model by 𝐹 : R𝑑in →
R |𝒴 | , where |𝒴 | is the cardinality of the label space 𝒴 , and 𝑑in is
the dimension of the model input. In MIAs, the attacker aims to
reconstruct a representative image 𝑥 ∈ R𝑑 from a given target
label 𝑦 ∈ 𝒴 . An MIA is successful if the recovered image 𝑥 can be
recognized as the target label 𝑦 by a human expert. To scale up
evaluation, a classifier is often used in place of a human expert to
judge whether the recovered image contains correct semantics. In
MFAs, the attacker aims to infer whether a given target input 𝑥
is in the dataset used for training the target model 𝐹 . An MFA is
successful if it can distinguish members from non-members well.
In both label-only MIAs and MFAs, the attacker makes a sequence
of queries to launch the attack [9, 19, 29], which are referred to as
malicious queries hereinafter.

Defender. We assume that the defender can access all queries
before they receive responses from the target model. The defender
aims at detecting whether a given query is malicious or benign. If
the query is deemed benign, the defender returns the corresponding
output from the target model. Otherwise, the defender rejects the
malicious query or returns random output to mitigate the attack.
Moreover, we assume that the defender has limited resources and
thus prefers a defense strategy that is memory and computation
efficient.

4 THE PRIVMON SYSTEM

4.1 System Overview

To overcome the limitations in existing platform-dependent de-
fenses and bridge the gap, we propose PrivMon, a stream-based
system for real-time platform-agnostic privacy attack detection for
ML models. Leveraging a stream-based architecture, PrivMon con-
tinuously monitors the sequence of queries made to the deployed
ML model and detects both label-only MIAs and MFAs in real-time
by identifying malicious queries. To facilitate wide applicability
and practicality, PrivMon operates in a black-box setting and does
not require prior knowledge of the ML model being protected, and
is agnostic to the underlying AI platform.

Figure 1 shows the architecture of PrivMon, which consists
of two main components: the buffer component and the detector
component. PrivMon takes as input a real-time stream of queries
made to the ML model being protected and buffers the queries
sequentially in a queue (i.e., the buffer component). PrivMon then
provides an efficient attack detection engine (i.e., the detection
component) that leverages the buffered queries to detect malicious
queries. The detection leverages the key observation that malicious
queries from a label-only privacy attack tend to be semantically
similar, while benign queries are usually dissimilar.

Specifically, for an input query, PrivMon calculates the similar-
ity between the query and the past queries, which is defined as the
average distance between the current query and its top-𝐾 nearest

Figure 1: The architecture of PrivMon.

neighbors. If the average distance is smaller than a threshold 𝑇 ,
PrivMon considers the current query as malicious and rejects the
query before it is sent to the ML model. Depending on the configu-
ration, PrivMon can either return a fake or random prediction to
the user who made the query or warns the user with an alert.

Key innovations. To accurately identify self-similar malicious
queries and efficiently detect privacy leakage, PrivMon has three
key innovations. First, to better capture the semantic meanings
of a query, PrivMon maps the query into a neural feature in the
hidden space using a deep neural network, such that queries that
are semantically similar will have neural features that are close
(Section 4.2). Second, to overcome the computation challenge of
efficiently searching for 𝐾-nearest neighbors in past queries, Priv-
Mon utilizes locality-sensitive hashing (LSH) to encode the neural
features. It then selectively sorts past queries, specifically targeting
those with hash codes that collide with the current query (Sec-
tion 4.3). Third, to further reduce the space and time complexity of
processing a large number of queries, PrivMon leverages a sliding
window to only maintain the most recent queries for efficient LSH
search (Section 4.4).

Detection algorithm. Algorithm 1 shows the overall privacy
attack detection algorithm employed by PrivMon. For a new input
query, PrivMon extracts a neural feature vector (Line 2). Then,
PrivMon calculates the hash code for the neural feature vector (Line
3). Next, PrivMon retrieves the 𝐾-nearest neighbors approximately

using LSH (Line 4). Finally, PrivMon compares the average distance
between the current query and the𝐾-nearest neighborswith a given
threshold (Line 8). If the distance is below the threshold, PrivMon
will mark the query as malicious (Lines 9-12). To reduce space and
time complexity, PrivMonmaintains a sliding window and updates
the queries in the window by inserting new queries and evicting
old queries (Lines 5-7).

4.2 Neural Query Similarity

PrivMon relies on the key insight that label-only privacy attacks
heavily rely on an iterative self-similar query generating process to
make a successful attack. However, as some malicious queries can
be transformed (e.g., via rotation, or translation) by an adversary,
a detection system lacking a robust similarity metric cannot accu-
rately identify the malicious query. To achieve reliable detection
performance, a robust similarity metric is necessary.

We found that the perceptual distance metric originally proposed
by Zhang et al. [47] is worth considering since it can accurately iden-
tify perturbed queries through the lens of neural features extracted
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Algorithm 1: Privacy Attack Detection Algorithm
In :current query 𝑥 ;

past queries buffered in the sliding window
𝑋 = {𝑥𝑖 : 𝑖 = 1, . . . , 𝑛};
hashes of past queries
ℋ(𝑋 ) = {ℋ(𝑥1 ),ℋ(𝑥2 ), . . . ,ℋ(𝑥𝑛 ) };
a pre-trained deep neural network (p-DNN) 𝜙 ;
the number of hash functions 𝑅;
a family of hash functions ℋ = {ℎ𝑖 : 𝑖 = 1, . . . , 𝑅};
sliding window size 𝑤;
system threshold𝑇 ;
the number of nearest neighbors 𝐾 .

Out :Decision→ {0, 1}, 0 if 𝑥 is benign, 1 if 𝑥 is malicious.
1 while True do

2 Extract neural feature vectors 𝜙 (𝑥 ) for a given 𝑥 from a
p-DNN 𝜙

3 Computeℋ(𝜙 (𝑥 ) ) = {ℎ1 (𝜙 (𝑥 ) ), · · ·ℎ𝑅 (𝜙 (𝑥 ) } // compute

the hash value with a set of hash functions

4 Insert ℋ(𝜙 (𝑥 ) ) into a set ℋ(𝑋 )
5 if 𝑐𝑎𝑟𝑑 (𝑋 ) > 𝑤 then

6 Deleteℋ(𝑥1 ) from ℋ(𝑋 ) where 1 denotes the oldest
query

7 Find nearest (d′1, . . . , d′𝐾 ) fromℋ(𝜙 (𝑥 ) ) toℋ(𝑋 ) via LHS
// search 𝐾 nearest indices with the corresponding

distances d′ w.r.t 𝑥

8 Calculate 𝐷𝑎𝑣𝑔 = 1
𝐾

∑𝐾
𝑖=1 (𝑑 ′𝑖 ) // calculate the mean

distance

9 if 𝐷𝑎𝑣𝑔 > 𝑇 then

10 Decision = 0
11 else

12 Decision = 1

from a deep neural network. The perceptual distance measures how
similar two images are. The study proposed that the 𝑙2 distance
between neural feature vectors extracted from a well-trained neural
network highly correlates to human perception. This distance first
maps two input queries to corresponding neural feature vectors,
and then calculates the Euclidean distance between the features.
Formally, the perceptual distance between two images 𝑥1 and 𝑥2
can be expressed as

d(𝑥1, 𝑥2) ≜ ∥𝜙 (𝑥1) − 𝜙 (𝑥2)∥2, (1)

where 𝜙 : 𝒳 → Φmaps an input 𝑥 ∈ 𝒳 to the normalized, flattened
internal activations of some trained neural network, 𝑑 represents
the dimension of the internal activations and 𝜙 (𝑥) ∈ Φ,Φ ⊆ R𝑑 .

While the perceptual distance metric has been widely used in the
computer vision community, our work is the first to study the feasi-
bility of this metric in the context of privacy attack detection. The
empirical studies in [47] show that the 𝑙2-norm defined on the acti-
vations from AlexNet [24] pre-trained with the ImageNet dataset
correlates most strongly with human’s perception of similarity. In
addition, it is preferable to use a model with a minimum number
of parameters to extract neural feature vectors due to efficiency
concerns. Hence, PrivMon currently leverages AlexNet to extract
the neural feature for each query.

In Figure 7, we show that the 𝑙2 distance computed over the
input pixel-level information (i.e., without being mapped through a
deep neural network) is insufficient to detect malicious queries. On

the other hand, neural distances can clearly identify the malicious
query if we set the threshold to an appropriate value. This result
demonstrates the robustness of the neural distance metric.

4.3 Approximate Nearest Neighbor Search

To determine whether an input query is malicious or not, PrivMon
searches through the buffered past queries to check if there exist
other perceptually similar malicious queries. This can be achieved
with 𝐾-nearest neighbors (KNN) search.

KNN search. The KNN search looks for the top-𝐾 closest neigh-
bors to the input query. Formally, given a current query point 𝑥
and the set of past queries 𝐷 , the set of 𝐾-nearest neighbors of 𝑥
can be defined as 𝑆𝑥 ⊆ 𝐷 such that |𝑆𝑥 | = 𝐾 and for all 𝑥 ′ ∈ 𝐷 \ 𝑆𝑥 ,
d(𝑥, 𝑥 ′) ≥ max

𝑥 ′′∈𝑆𝑥
d(𝑥, 𝑥 ′′), where d defines a distance metric.

To perform the KNN search for any new query, one needs to
sort the entire set of past queries, which is expensive when the
set of past queries is large and the dimension of 𝑥 is high. Indeed,
KNN search reaches computation complexity 𝒪(𝑁𝑑 + 𝑁 log(𝑁 )),
where 𝑁 is the number of past queries and 𝑑 is the dimension of the
internal activations. In our case, the underlyingMLmodel processes
millions of queries per day. This scale makes the exact KNN search
method impractical for a real-time detection system.

LSH search. To overcome the computation challenge and improve
efficiency, our idea is to avoid sorting the entire history for each
new query by leveraging locality-sensitive hashing (LSH) as an
approximate KNN search method. LSH is a class of hash functions
that generate similar hash codes for similar queries with high prob-
ability. We give the formal definition as follows.

Definition 4.1. A family of hash functionsH = {ℎ : R𝑑 → {0, 1}}
is (𝑟1, 𝑟2, 𝑝1, 𝑝2)-sensitive for (R𝑑 , d) if for any 𝑥1, 𝑥2 ∈ R𝑑 we have

• if d(𝑥1, 𝑥2) ≤ 𝑟1 then 𝑃𝑟H [ℎ(𝑥1) = ℎ(𝑥2)] ≥ 𝑝1,
• if d(𝑥1, 𝑥2) > 𝑟2 then 𝑃𝑟H [ℎ(𝑥1) = ℎ(𝑥2)] ≤ 𝑝2 .

In particular, if the distance between 𝑥1 and 𝑥2 is smaller than
𝑟1, a hash function ℎ will map 𝑥1 and 𝑥2 to the same hash with the
probability ≥ 𝑝1. This demonstrates that LSH can hash two similar
neural features into the same hash code with high probability. A
locality-sensitive family will be useful if the inequalities 𝑝1 > 𝑝2
and 𝑟1 < 𝑟2 hold. Here, we use the random projection technique to
generate hash code [18]. The intuition behind this technique is that
if we have one random hyperplane defined by a normal unit vector
𝑟 , then we can generate the corresponding hash code based on
the position of the query relative to the hyperplane. For example,
if we have one data point 𝑥 = (𝑥 (1) , 𝑥 (2) ) in 2D space, we can
draw a random line defined by a norm unit vector 𝑟 = (𝑟 (1) , 𝑟 (2) ).
Then, we can calculate the dot product between 𝑥 and 𝑟 . Taking
the sign of the result, we can define a binary hash code for the
given data point 𝑥 . Formally, given an input 𝑥 and the hyperplane
associated with a normal unit vector 𝑟 , we let ℎ(𝑥) = sign(𝑥 · 𝑟 ),
where sign(·) function returns 1 if the argument is positive and 0
otherwise. Geometrically, we can think of whether ℎ(𝑥) is 1 or 0
depending on the angle between the input 𝑥 and the normal vector
𝑟 . Using more hash functions (i.e., hyperplanes) can generate more
hash codes for a given data point, which enlarges the gap between
𝑝1 and 𝑝2.
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We propose to perform LSH on extracted neural features. Specif-
ically, we calculate the hash code for the neural features of an
incoming query and only sort the past queries whose neural fea-
tures correspond to the same hash codes as the incoming query.
With this approach, we can circumvent the need of sorting the
entire past queries, thereby significantly improving computational
efficiency over KNN search by reducing to sublinear complexity
𝒪(𝑑𝑁 𝜌 log1/𝑝2 (𝑁 )), where 𝜌 =

1/𝑝1
1/𝑝2 [10].

4.4 Stream-Based System Architecture

Stream processing is a data management technique for rapid real-
time processing of continuous data streams. Stream-based architec-
tures obtain data from a publish-subscribe service, process the data,
and return the result. To enable real-time privacy attack detection,
PrivMon employs a stream-based system architecture to manage
input queries, extract neural features, and perform LSH search to
identify malicious queries in real-time.

Sliding window for query buffering. Since the input queries
can be viewed as an infinite stream of data, it is impractical to store
all past queries. To further reduce the space and time complexity,
PrivMon leverages a sliding window to buffer the most recent
queries and uses them as candidates for LSH search.

Specifically, we first initiate a buffer window of size𝑤 (e.g., 5𝐾
queries). Then we collect queries from the query stream and store
these queries in the buffer window. When the buffer window is
full (i.e., the number of queries is equal to the window size𝑤 ), we
slide the window forward to free space for buffering future queries.
Window size and sliding step (i.e., how far to slide forward) are two
deciding factors for the effectiveness of the sliding window.

• Window size: Intuitively, the more historical information
we have, the more likely we are able to detect malicious
queries. At the same time, more historical informationmeans
more storage occupation and lower processing time, because
the current query will be compared with all preserved past
queries. In Section 5, we show we can accurately detect
most malicious queries of all sequential attacks with small
window sizes (e.g., 100 queries). Moreover, we evaluate the
system’s performance across varying window sizes, with the
summarized results presented in Table 13.
However, for adaptive attacks like a parallel attack (Section
5.5), in which the attacker launches attacks on multiple tar-
gets, a larger window is required to cover as many malicious
queries for one target as possible. Based on extensive ex-
periments in Section 5.5, we give a recommended window
size, 5𝐾 , which can well balance detection effectiveness and
system performance.

• Sliding step: The selection of the sliding step depends on
different scenarios. If the LSH algorithm supports removing
samples (e.g., IndexLSH [18]), when the buffer window is full
and we receive a new query, we can just remove the oldest
query and add the new one. In this case, the sliding step is 1
(the overlapping size is𝑤 − 1). This approach will keep the
buffer window to a constant size.
On the other hand, if the LSH algorithm does not support
removing samples (e.g., IVFIndex with DirectMap of type
Array [18]), we have to create a new window and discard

the old one. In this case, choosing a good overlapping size
matters. Similar to the window size, the larger the overlap-
ping part (the smaller the sliding step), the more information
we can preserve. The larger overlapping size means more
frequent buffer window renewal and hence more overhead.
PrivMon currently leverages IndexLSH with sliding step 1.
We leave the exploration of other LSH algorithms to future
work.

Enabling LSH search over the stream. Since we maintain a
buffer of window size 𝑤 , we are able to perform the LSH search
within the buffer. As LSH search is an approximate search approach,
it would achieve high efficiency by sacrificing search accuracy
to some extent. To achieve a higher accuracy without increasing
overhead, we propose a two-level scheduling. Specifically, for an
incoming query, we use LSH to calculate its hash code and assign it
to the corresponding bucket; the hash codes of neighboring queries
in the buffer should collide with that of the incoming query. Then,
we use the exact KNN algorithm to find the 𝐾 nearest neighbors
from the same bucket. The combination of these two steps allows
us to achieve high efficiency while preserving stable accuracy for
the stream.

4.5 Formal Analysis

We will present a formal analysis showing the strength of protec-
tion provided by PrivMon. In particular, we analyze at worst case
how many malicious queries would fall into the same window for
any given window size, a desired attack completion time, and the
total number of queries needed to enable a successful attack. Note
that if only a single malicious query fell into the same window,
the nearest neighbor search would be ineffective; and the more
malicious queries an attack issues, the higher chance that the attack
gets detected by the nearest neighbor search. We show that for
reasonable choices of attack completion time and window sizes
that remain computationally efficient, there must be a large number
of malicious queries falling into the same window, thereby enabling
effective detection via nearest neighbor search.

Proposition 4.2 (Attack Infeasibility Analysis). Let 𝑆 be a
detection system with a sliding window of size 𝑤 that processes 𝑄

number of queries per day. Consider an attacker which requires at

least ℳ number of malicious queries for a successful deployment of

an attack within 𝑇 days. Then, there exists a window in which there

are at least

⌈
𝑤⌈
𝑄 ·𝑇
ℳ

⌉ ⌉ number of malicious queries.

We can now apply the result of Proposition 4.2 to the real case
scenario. Let 𝑆 be our detection system with a window size𝑤 = 5𝐾
that can process 𝑄 = 1𝑀 queries per day. Consider an attacker per-
forming the MFA [29] attack on our system. For a successful attack,
the attacker will need to query the target model with |ℳ| = 50𝐾
malicious points within a reasonable time, say 𝑇 = 30 days. By
Proposition 4.2, we calculate that there exists at least one window
in which there are at least 9 malicious queries. However, we note
that our detection system is highly effective and it can accurately de-
tect malicious queries. Specifically, for any MFA attack, as shown in
Table 11, PrivMon is able to detect malicious queries via K-nearest
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neighbor search even with only 2 initial malicious queries. There-
fore, the attacker would need to decrease the number of malicious
queries within a single window to at most 1 to avoid detection. This
however would increase attack time to at least𝑇 = 250 days, which
deems the attack highly impractical.

5 EVALUATION

5.1 Experimental Setup

In this section, we evaluate PrivMon on a variety of label-only
privacy attacks. We expatiate the defense settings, datasets, and
system evaluation metrics employed. To demonstrate the perfor-
mance of our defense algorithm, we incorporate datasets and model
architectures from previous literature [9, 19, 29] and further extend
with more comprehensive attack scenarios.

Attacks. We consider four state-of-the-art label-only privacy at-
tacks: (1) “HopSkipJump”-based MFA (HSJA) [30], which discovers
the membership of a target point based on the distance of the point
to the decision boundary of the target classifier: non-training points
are observed to be closer to the decision boundary than training
points. Computing this distance is exactly the problem of finding
the smallest adversarial perturbation, which can be done using
label-only access to a classifier. HSJA leverages the HopSkipJump
algorithm proposed in [5] to find the smallest perturbation. (2)
“Query-Efficient Boundary”-based MFA (QEBA) [30] shares the
same idea as HSJA of using the smallest adversarial perturbation
to discern membership information. However, it utilizes the QEBA
algorithm proposed in [28] to more efficiently calculate the adver-
sarial perturbation. (3) Data augmentation-based MFA (DA) [9]
that generates malicious queries by transforming a target point via
translation and rotation and evaluates the target model’s robustness
to transformation. (4) BREPMI [19] is the most recent label-only
MIA. It requests the model’s predicted labels over a sphere and then
estimates the direction to reach a target class’s centroid.

We consider 200 target points with 50 and 150 iterations for
HJSA and QEBA respectively, 100 target points for BREPMI with
1000 iterations, and 1000 target points for DA. In the case of trans-
formations for DA, we employ either translation (denoted as 𝑑) or
rotation (denoted as 𝑟 ). Specifically, we opt to use a rotation mag-
nitude of 𝑟 = 5 and a translation magnitude of 𝑑 = 1. With these
parameters, we generate 𝑁 = 2𝑟 + 1 rotated images by a magnitude
±𝑟 and 𝑁 = 4𝑑 + 1 translated images with a pixel bound of 𝑑 (such
that |𝑖 | + | 𝑗 | = 𝑑) where horizontal and vertical shifts of ±𝑖 and
± 𝑗 , respectively, were applied. The average number of queries for
each attack and the number of target samples are summarized in
Table 12.

We would like to clarify that we empirically choose a single
threshold throughout our experiments. We provide the results of
threshold selection in Figure 6 which can be found in Appendix C.

Defense. Our system uses a universal threshold 𝑇 as 350 over
different attacks and for different datasets. Additionally, we utilize
the window size 𝑤 as 5𝐾 throughout all experiments. The selec-
tion of window size is solely dependent on the defender’s budget,
considering the trade-off between the storage and time complexity.
We present an ablation study of the window size selections in Ap-
pendix D. Moreover, we choose 𝑅 = 2048 to generate a hash code

for each data and set 𝐾 = 2 for searching approximate 𝐾-nearest
neighbors. Our perceptual model is based on AlexNet [24] which is
pre-trained on ImageNet dataset [11].

Baselines. It is worth noting that there is no direct baseline to com-

pare with since this is the first work aiming at detecting privacy attacks

for black-box hard-label-output machine learning models. However,
we consider the following two baselines. The first baseline is the
state-of-the-art but was originally designed for detecting evasion
attacks but shares a similar idea of identifying similar queries. The
second baseline was designed to understand the advantage of neural
features over the input pixels for similarity comparison. We further
present a comparison with the KNN search in the Appendix.

• Blacklight: The first baseline is the state-of-the-art evasion
detection system proposed by [27]. We re-purpose it for
privacy attack detection.

• Input LSH: The second baseline is when a defender does
not use deep features and instead relies on input pixels with
LSH.

Datasets. We consider the CIFAR10 and CIFAR100 datasets [23]
to evaluate our proposed MFAs. Furthermore, we assess the per-
formance of HSJA and QEBA-based MFAs on the GTSRB dataset
[42]. It is important to note that we exclude the GTSRB dataset for
DA evaluation due to its poor attack performance. For BREPMI,
we follow the prior literature and consider the two face datasets,
namely, CelebA [31] and FaceScrub [35]. The details about each
dataset are described in Tables 7 and 8 in Appendix F.

Evaluation metrics. If PrivMon detects a malicious query, the
system will reject the query to prevent the attack completion and
the attacker will stop sending the subsequent malicious queries.
We use the following metrics to evaluate our system performance.

• Detection Success Rate (DSR). The DSR describes the de-
tection performance of an underlying system. In particular,
it represents the detection performance on a sequence of
malicious queries combined with benign queries. We use
the Area Under the ROC Curve (AUC) score to evaluate the
performance. As we consider two classes (i.e., benign or ma-
licious), the random guess performance is 0.5 (i.e., randomly
selecting between benign and malicious queries).

• Attack Success Rate (ASR). The ASR indicates the attack
performance. Many prior works mentioned in [3] on MFAs
usually report average-case success metrics (e.g., accuracy or
AUC score) to demonstrate the performance over all target
points (i.e., the fraction of the target point whose member-
ship information can be correctly inferred by an attack).
Similarly, the prior studies on MIAs [7, 19] also use the accu-
racy metric (i.e., the fraction of target classes for which an
attack can successfully reconstruct the corresponding fea-
tures) for evaluation. For MFAs, the random guess baseline’s
performance is 0.5 (i.e., randomly selecting between “mem-
ber” and “nonmember”). While, the random baseline’s ASR
for MIAs is 0, since for each target class random pixels are
generated as reconstructions. An ideal defense would reduce
the ASR of various attacks to the ASR of their corresponding
random baselines.
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• False Positive Rate (FPR). The FPR is the proportion of be-
nign queries incorrectly identified as malicious ones.

• CPU Usage: The percentage of CPU occupied by the system
running.

• Memory Usage: The memory occupied by the system run-
ning.

• Processing Time: The average processing time of one query.

5.2 System Effectiveness in Attack Detection

and Mitigation

5.2.1 Attack Detection. We commence our evaluation by assess-
ing the efficacy of PrivMon in detecting the whole sequence of
malicious queries interwoven with benign ones. We assume the
attacker is persistent and continues sending subsequent queries to
complete an attack even after being detected. Table 1 shows the
evaluation results of PrivMon and the two baselines for different
attacks on various datasets.

As demonstrated in Table 1, PrivMon exhibits superior perfor-
mance to all baselines across all attacks and datasets. For malicious
queries from HSJA and QEBA, all detection systems achieve high
detection performance (e.g., 0.995 ∼ 1.000) on both CIFAR10 and
CIFAR100 because of the high self-similarity between queries. The
superiority of our system is more pronounced in the case of DA
and BREPMI. For example, Blacklight’s DSR drops significantly to
around 0.501 ∼ 0.550, when faced against different types of DA. The
degradation in DSR performance for Input LSH in the face of DA is
less severe on both the CIFAR10 (e.g., 0.772 and 0.874) and CIFAR100
(e.g., 0.779 and 0.879) than Blacklight as this method takes advan-
tage of all input information for similarity search without sampling.
The query detection performances for BREPMI are generally lower
than those for HSJA and QEBA since BREPMI generates images
whose semantic distances are getting farther away from each other
during the optimization process. Nonetheless, our system can still
achieve the best DSR performances on both FaceScrub on CelebA
datasets, with 0.029 − 0.173 higher on FaceScrub and 0.151 − 0.398
higher on CelebA, compared to other baselines. Our results indicate
that Blacklight can solely attain performance levels akin to random
guessing for MIA queries. In addition, the substantial decrease in
performance from the FaceScrub dataset can be attributed to the
low quality of the malicious queries utilized during optimization,
compared with the CelebA dataset, consequently leading to a lower
attack success rate [19].

Takeaways. Our experimental results suggest that leveraging
pixel-level information (e.g., Blacklight, Input LSH) for similarity
search is effective for evasion-based MFAs since they are designed
to detect evasion attacks. However, these approaches fail to obtain
high DSR for other types of privacy attacks, including BREPMI and
DA, as their corresponding malicious queries have a large pixel-
level distance from one another. These results justify the use of neural
feature-based similarity measure.

5.2.2 Attack Mitigation. In this part, we scrutinize the real attack
and defense cases to evaluate whether PrivMon can effectively
reduce the ASR while maintaining a low false positive rate. In this
experiment, an adversary cannot proceed to complete the attack

and has to stop querying if PrivMon does not return a label to the
input query.

Table 1 shows the summarized evaluation results.We can observe
that PrivMon effectively mitigates the ASR for all types of privacy
attacks on diverse datasets. In particular, for HSJA and QEBA, all
methods attain high mitigation performance, thereby allowing the
attacker to achieve an ASR of around 0.500 (i.e., random guess). This
is because these attacks generate highly self-similar queries at the
input level. In the case of QEBA, the attacker has to access multiple
queries to the target model to receive a label and estimate the initial
gradient. Therefore, if we set 𝐾 = 2, PrivMon blocks the queries
from the attacker in an early stage. The number of malicious queries
our system has to accept before the initial detection, leveraging our
neural query similarity, is shown in Table 11.

The key advantage of PrivMon arises from considering queries
that are semantically similar but dissimilar in the input space. As
delineated in Table 1, PrivMon significantly diminishes the ASR of
DA to nearly 0.535 from 0.793 and to 0.500 from 0.808 on CIFAR10
with different augmentations. Similarly, PrivMon can lower the
ASR to 0.739 and 0.573 from 0.916 and 0.938 on CIFAR100, respec-
tively, while sustaining a lower false positive rate. The mitigation
performance from Blacklight is quite limited compared to that of
our system (0.784, 0.736 on CIFAR10, and 0.917, 0.885 on CIFAR100).
These results coincide with the results demonstrated in DSR in the
sense that Blacklight is inadequate at detecting malicious queries
related to DA. The reason is that malicious queries are semantically
similar but not similar in the input domain; therefore, the pixel-level
information sampled from an image is not sufficient to correctly
mark malicious queries. Similarly, Input LSH is also sensitive to
input variations, as suggested by the high FPR.

Regarding BREPMI in Table 1, all methods can achieve high miti-
gation performance. PrivMon can significantly reduce the attack’s
performance to nearly 10% from 65% and 89% on FaceScrub and
Celeba datasets, respectively, with a negligible false positive rate.
Themitigated ASR (10% and 12%) with PrivMon are higher than the
mitigated ASR (1% and 4%) on the FaceScrub and CelebA datasets
using Blacklight, respectively, with a comparable false positive rate.
However, it is worth mentioning that if the attacker achieves the
attack success rate near 10%, the attacker cannot derive meaningful
information from reconstructed images as shown in Figure 2. In Fig-
ure 2, the fourth column (reconstructed images without PrivMon)
to the fifth column (reconstructed images with PrivMon) illustrates
that PrivMon successfully precludes the attacker from rebuilding
privately meaningful information about the target identity.

These results may not be strongly correlated with the results
from DSR. This observation arises from the fact that in the initial
stages of the BREPMI, the malicious queries are very similar to one
another due to the small radius utilized in the gradient estimation
step, which subsequently leads to high mitigation performance for
other baselines. However, this advantage can be easily nullified if
the attacker simply excludes similar samples to evade protection
systems in the early stage. If the attacker can evade the detection
system for a few steps, it becomes increasingly challenging to detect
malicious queries because of the large distances between samples;
as shown in Table 1, Blacklight and Input LSH cannot achieve high
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Table 1: Detection and mitigation performance comparison.

Attack Type Dataset

Detection w/o

Defense

Mitigation

Random Input LSH Blacklight PrivMon Random Input LSH Blacklight PrivMon

DSR DSR DSR DSR ASR ASR ASR FPR ASR FPR ASR FPR

MFAs

HSJA CIFAR10 0.500 1.000 0.985 1.000 0.852 0.500 0.519 0.000 0.500 0.000 0.500 0.000

CIFAR100 0.500 0.999 0.995 1.000 0.955 0.500 0.586 0.006 0.500 0.000 0.500 0.000

GTSRB 0.500 0.999 0.993 0.999 0.924 0.500 0.538 0.007 0.500 0.000 0.500 0.018

QEBA CIFAR10 0.500 0.999 0.995 1.000 0.917 0.500 0.500 0.000 0.500 0.000 0.500 0.000

CIFAR100 0.500 1.000 0.995 1.000 0.966 0.500 0.610 0.004 0.500 0.000 0.509 0.000

GTSRB 0.500 0.999 0.993 0.999 0.965 0.500 0.504 0.001 0.500 0.000 0.500 0.004

DA (𝑑1) CIFAR10 0.500 0.772 0.502 0.882 0.793 0.500 0.582 0.147 0.784 0.019 0.535 0.019

CIFAR100 0.500 0.779 0.501 0.879 0.916 0.500 0.731 0.165 0.917 0.020 0.739 0.045

DA (𝑟5) CIFAR10 0.500 0.874 0.548 0.948 0.808 0.500 0.518 0.138 0.736 0.020 0.500 0.016

CIFAR100 0.500 0.879 0.558 0.951 0.938 0.500 0.759 0.153 0.885 0.021 0.573 0.038

MIAs
BREPMI FaceScrub 0.500 0.668 0.524 0.697 0.650 0.000 0.010 0.086 0.060 0.000 0.100 0.001

CelebA 0.500 0.775 0.528 0.926 0.890 0.000 0.040 0.005 0.120 0.000 0.120 0.000

Table 2: A comparative analysis of system overhead among

three systems.

Attack Type Metric

Memory Usage (MB) CPU Usage (%)

Throughput (#/Day)

Dataset 10K-mean 10K-std 10K-mean 10K-std

HSJA

CIFAR10

PrivMon 2690 12.6 26.3 1.0 2.74 M

Input LSH 2558 0.4 28.3 0.6 2.74 M

Blacklight 2455 3.3e-13 11.4 0.3 2.52 M

HSJA

GTSRB

PrivMon 2618 0.9 15.7 0.1 554 K

Input LSH 2554 1.5 18.2 0.5 908 K

Blacklight 2306 6.6e-13 11.3 0.2 2376 K

QEBA

CIFAR10

PrivMon 2686 0.6 28.5 1.0 2.24 M

Input LSH 2677 0.3 33.1 1.1 2.74 M

Blacklight 2455 6.6e-13 11.3 0.2 2.51 M

QEBA

GTSRB

PrivMon 2354 3.6 16.0 2.2 542 K

Input LSH 2575 18.0 18.4 0.5 870 K

Blacklight 2306 6.6e-13 11.2 0.1 2377 K

MIA

FaceScrub

PrivMon 2620 2.1 15.5 0.2 546 K

Input LSH 2562 0.7e-3 18.5 0.5 883 K

Blacklight 2363 24.8 11.4 0.2 2436 K

DA (𝑑1)

CIFAR10

PrivMon 2554 19.0 28.4 0.2 2.39 M

Input LSH 2540 17.0 31.5 1.1 2.97 M

Blacklight 2455 4.6 11.2 0.2 2.52 M

DA (𝑟5)

CIFAR10

PrivMon 2674 19.0 24.0 1.1 2.35 M

Input LSH 2680 18.9 28.4 0.2 3.12 M

Blacklight 2455 6.6e-13 11.0 0.2 2.52 M

DSR as ours. In Section 5.5, we consider the possibility of excluding
similar samples to evade our system.

Takeaways. In summary, PrivMon can effectively mitigate ASR
for all types of attacks on all datasets while preserving a low FPR.
The use of neural feature information is crucial in capturing se-
mantic similarities, particularly for queries that are dissimilar in
input space. Therefore, it is imperative to consider the robust metric

in privacy attack detection.

Ground Truths
W/O

PrivMon

Inverted Image

With
PrivMon

Figure 2: Selected examples of the impact of PrivMon on

model inversion attack image generation. As shown from the

fourth column, without PrivMon, an adversary can recon-

struct meaningful images. On the other hand, as described in

the fifth column, the adversary cannot achieve meaningful

information from the target model protected by PrivMon.

5.3 System Overhead

To extensively evaluate the overhead of PrivMon, we evaluate the
memory usage, CPU usage, and throughput of PrivMon with dif-
ferent metrics for detecting different types of attacks with different
datasets. We perform all the evaluations on a server with an Intel(R)
Xeon(R) Gold 5115 CPU @ 2.40GHz, an NVIDIA Tesla P40 GPU,
and 38GB memory. Detecting different datasets with the same
image size usually has the same system overhead, so we evaluate
datasets with different image sizes for each attack case. In the end,
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Figure 3: Runtime comparison between Blacklight and Priv-

Mon. Our system outperforms Blacklight in processing

speed.

we evaluate four attacks: BREPMI attack for the FaceScrub dataset,
HSJA and QEBA attack for CIFAR10 and GTSRB datasets, and DA
attack for the CIFAR10 dataset. Similar to Section 5.2, PrivMon and
two baselines are evaluated (the window size is 5K). The results are
shown in Table 2. In this experiment, we leverage 10K queries to
calculate the Memory Usage, CPU Usage, and Throughput.

We have the following observations: 1) PrivMon takes no more
than 3GB memory for all attacks and metrics. We believe such
memory occupation is negligible for modern servers. 2) PrivMon
occupies less than 29% of CPU for all evaluated scenarios, which is
only a small part. 3) PrivMon is able to process more than 540K
queries for 64x64 images and more than 2.2M queries for 32x32
images per day. 4) The standard deviation of our evaluation is rela-
tively small, which means our evaluation results are representative.

Runtime Comparison between PrivMon and Blacklight. We
additionally present runtime complexity comparison between Priv-
Mon and Blacklightwhen both systems receive around 1.2𝑀 queries.
Since Blacklight does not provide any technical query deletion
method, the runtime complexity will increase if the number of
queries increases. Considering the result in Figure 3, the number
of queries PrivMon can process for one day is much higher than
Blacklight as our system processed 1.2𝑀 queries within 11 hours,
but Blacklight took nearly 14 hours.

Takeaways. Thus, as mentioned in Section 2.3 and [27], the Fea-
ture KNN approach is not applicable in real-world MLasS, consid-
ering the high processing time, memory usage, and CPU usage.
The sliding window design and the support of neural LSH search
help PrivMon to manage the computation and memory efficiency.
Therefore, all components of PrivMon are closely related to improving

the system’s search robustness.

5.4 Video Data

Another limitation of Blacklight, as discussed in [27], is that it con-
siders a sequence of video frames as benign queries. Though it
might be a desirable behavior, however, this poses another question
in privacy attacks; what if an attacker can exploit a sequence of video
frames (semantically similar) as an alternative to data augmentations

to assess the membership information? As shown in Table 3, we em-
pirically demonstrated that attackers could exploit video frames to
achieve a highly successful attack (with accuracy ≈ 0.90). To protect
against this attack, a desirable system should mark the semantically

Table 3: Left: The attack success rate (ASR) of data

augmentation-basedMFA using different video datasets. Ran-

dom indicates the random guess performance (i.e., member

or nonmember), and ℳ1 and ℳ2 represent different model

architectures. Right: The detect success rate (DSR) on the

part of video frames.

Dataset

Random ℳ1 ℳ2

ASR ASR ASR

YouTubeFaces [45] 0.500 0.911 0.866

UCF101 [41] 0.500 0.912 0.880

Datasets

Blacklight PrivMon

DSR DSR

YouTubeFaces [45] 0.750 0.830

UCF101 [41] 0.698 0.930

Table 4: PrivMon performance on parallel DA attacks.

Dataset

[Parameter]

Original Window Size(5K) Adaptive Window Size(100K)

ASR FPR FNR ASR FPR FNR

CIFAR10
(𝑑1) 0.778 0.023 0.980 0.521 0.050 0.299

CIFAR10
(𝑟5) 0.811 0.0.017 0.927 0.500 0.057 0.088

CIFAR100
(𝑑1) 0.907 0.089 0.954 0.650 0.089 0.281

CIFAR100
(𝑟5) 0.905 0.040 0.898 0.578 0.098 0.086

similar queries as malicious. As can be observed through DSR in
Table 3, PrivMon achieves better malicious query detection perfor-
mance on a portion of video frames than Blacklight. The detailed
setup of the video experiments is demonstrated in Appendix E.

5.5 Adaptive Attacks

In this section, we present an evaluation of PrivMon’s effectiveness
against three advanced attackers possessing prior knowledge of
the target model and all related hyper-parameters.

5.5.1 Adaptive Attack Setup. In the adaptive attack evaluation,
due to the high computational complexity involved in generating
perceptually dissimilar images, we reduce the number of target
points and iterations for HSJA and BREPMI. Specifically, the number
of target points is reduced from 200 to 100 and from 100 to 50,
respectively. As QEBA is an efficient version of HSJA, we only
consider HSJA for MIA. In the case of DA, we increase the number
of data points from 1000 to 2500 to account for the parallel attack
scenario.

When generating the perceptually adversarial images, the at-
tacker needs a local classifier 𝐶 trained on the same data distribu-
tion. The advanced attacker leverages pre-trained ResNet50 [15]
and FaceNet as local classifiers for HSJA and BREPMI to generate
perceptually dissimilar queries, respectively, and considers differ-
ent attack budgets (e.g., 𝜖 ∈ [0.5, 1.0, 1.5, 2.0]) to evade our system.
Finally, the attacker also uses the same perceptual model as our
system.

5.5.2 Parallel Attacks. An advanced attacker of DA knows that
PrivMon is using the sliding window technique, the advanced DA
attacker sends a single malicious query per each window from
multiple target points simultaneously. Assuming that PrivMon’s
window size is 5𝐾 and PrivMon maintains 1 : 1 ratio between
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Table 5: PrivMon performance on two types of advanced attackers: 1) The attacker can exclude perceptually similar queries,

and 2) the attacker can generate perceptually dissimilar queries.

Attack Type Dataset

Random

w/o

Defense

PrivMon

case 1 case 2 (𝜖 = 0.5) case 2 (𝜖 = 1.0) case 2 (𝜖 = 1.5) case 2 (𝜖 = 2.0)

ASR ASR ASR FPR FNR ASR FPR FNR ASR FPR FNR ASR FPR FNR ASR FPR FNR

MFAs HSJA [9, 29]
CIFAR10 0.500 0.860 0.500 0.000 1.000 0.560 0.000 1.000 0.710 0.002 1.000 0.670 0.010 1.000 0.670 0.010 1.000

CIFAR100 0.500 0.970 0.500 0.000 1.000 0.500 0.000 1.000 0.810 0.020 1.000 0.760 0.020 1.000 0.760 0.020 1.000

MIAs BREPMI [19]
FaceScrub 0.002 0.700 0.160 0.000 1.000 0.140 0.000 1.000 0.140 0.020 1.000 0.140 0.050 1.000 0.120 0.060 1.000

CelebA 0.001 0.900 0.010 0.000 1.000 0.120 0.001 1.000 0.100 0.010 1.000 0.120 0.010 1.000 0.120 0.010 1.000

benign and malicious samples if the attacker sends a single mali-
cious query from 2.5𝐾 data points simultaneously, the next batch
of malicious queries for these data points will be considered benign
samples. Therefore, as shown in Table 4, PrivMon cannot effec-
tively mitigate the attack performance (e.g., high False Negative
Rate (FNR)). In this case, PrivMon can still mitigate the attacker’s
performance while maintaining the low false positive rate (< 0.1)
by increasing the window size (𝑤 = 100𝐾 ). If the attacker wants to
evade PrivMon more than the current window size, the attacker
has to spend much more time to complete the attack (e.g., 23 − 24
queries per each day, (27500/23) ≈ 1196 days). We also evaluate
the detection performance under the parallel attack scenario. In
Table 10 in Appendix B.3, we can see that PrivMon still achieves
the best performance for parallel adaptive attacks.

Takeaways. If the attacker wants to launch the parallel scenario,

the attacker has to spend a lot of time, even for a small window size

(𝑤 = 5𝐾). For example, in the case of BREPMI, the attacker has
to spend almost 514 days to complete just one attack, given the
processing capacity and the required number of queries.

5.5.3 Excluding Perceptually Similar Queries. In the second sce-
nario, an advanced attacker wants to evade PrivMon by consider-
ing PrivMon’s system design. Specifically, the attacker calculates
the neural distance between queries using the same strategy as ours
and excludes the perceptually similar samples to evade PrivMon.
The evaluation results are presented in case 1 of Table 5. We can
observe that the attacker can only achieve an accuracy of 16% and
10% for BREPMI on each dataset and obtain a performance close to
random guess (∼ 0.500) for HSJA on CIFAR10 and CIFAR100. The
reason is that if the attacker excludes perceptually similar samples,
the attacker can only rely on limited samples to estimate the gra-
dient direction in BREPMI, which leads to the failure of finding
the optimal point. Similarly, in HSJA, the initial queries are already
perceptually similar to each other, rendering the attacker unable to
proceed to the boundary step if they exclude perceptually similar
samples, ultimately leading to poor attack performance.

5.5.4 Generating Perceptually Dissimilar Queries. In the third sce-
nario, the most sophisticated attacker can use the perceptual ad-
versarial training method [25] to generate perceptually dissimilar
queries to bypass our system. As outlined in [25], the attacker can
generate the perceptual adversarial images as follows:

For a given input 𝑥 with a true label 𝑦, an advanced attacker
wants to generate a perceptual adversarial image 𝑥 with a budget 𝜖
to make a model 𝐶 : 𝜒 → 𝑌 misclassify:

𝐶 (𝑥) ≠ 𝑦, 𝑑 (𝑥, 𝑥) = ∥𝜙 (𝑥) − 𝜙 (𝑥)∥ ≤ 𝜖 (2)

max
�̃�

𝐿(𝐶 (𝑥,𝑦)) − 𝜆 ·𝑚𝑎𝑥 (0, ∥𝜙 (�̃� ) − 𝜙𝑥)∥ − 𝜖) (3)

The perceptual constraint cost is designed to be 0 as long as the
generated perceptual adversarial sample is within the perceptual
distance 𝜖 .

In this case, the highly skilled attacker generates perceptually
distinct queries whenever querying PrivMon is required. Concur-
rently, the attacker can rule out the samples that are perceptually
similar to the previous query history. In particular, for BREPMI, the
attacker generates multiple samples using the trained generator for
a given initial point and then transforms those samples into percep-
tual adversarial queries. Following that, the attacker excludes the
perceptually similar samples, considering the query history, and
repeats this process to estimate the gradient. In a similar manner,
for HSJA, the attacker produces perceptually dissimilar queries in
the binary, gradient estimation steps since each step requires mul-
tiple self-similar queries. At the same time, the attacker excludes
perceptually similar queries, considering the query history.

The results in case 2 from Table 5 show that the attacker gener-
ally achieves higher performance than 0.500 for MFA if the attack
budget used is greater than 1.0. For BREPMI, the attacker cannot
significantly improve the attack performance because the generated
samples are farther apart from each other and make it difficult to
be in the uniform sphere, resulting in poor gradient estimation. In
most of the cases, as we expected, the system has 𝐹𝑁𝑅 = 1.000
since the malicious samples are designed to evade PrivMon.

Takeaways. Skillful attackers who have knowledge of our system
design can attempt the parallel attack, exclude the perceptually sim-
ilar queries or generate perceptually dissimilar queries. However, in
most cases, PrivMon can still effectively mitigate the ASR or requires

the attack to spend a lot of time to complete the attack.

6 FURTHER DISCUSSION AND CONCLUSIONS

In this paper, we propose PrivMon, a platform-agnostic real-time
privacy attack detection system. Considering the existing chal-
lenges in the literature, we design three technical aspects. First,
we leverage neural feature information to accurately identify self-
similar malicious queries. Second, to enable the real-time search of
nearest neighbors, we leverage LSH to approximate the KNN search.
Furthermore, considering the large number of daily queries that our
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system receives, we discard the old queries by using a sliding win-
dow technique for practical storage and search time complexity, as
described in Section 4. Compared with current baselines, PrivMon
is effective and efficient in terms of performance (e.g., detection and
mitigation performances) and efficiency (e.g., CPU usage, memory
usage, and search time). Moreover, we consider the three advanced
attackers and show that PrivMon can either mitigate the attack
performance or require the attacker to spend near infeasible time to
complete the attack. Two recent works [6, 27] related to our paper
have their limitations to be effective in defending against label-only
privacy attacks.

Limitations of our system design. PrivMon currently only
focuses on image-related privacy risks and it leverages the neural
feature LSH as a search metric. However, both MIAs and MFAs
can occur in the natural language domain as well, and we leave
this for future research. Another limitation is that when multiple
benign users send similar benign samples within the window size,
PrivMon indeed rejects the benign queries from benign users since
the system marks it as a potential malicious attack (false positive).
However, we believe that this seldom happens since it is difficult to
have very similar benign queries (or the same benign queries) from
many benign users within the limited window size. We discuss
the potential solution to addressing this limitation in the following
design alternatives.

Design alternatives. Instead of storing all the sequential queries,
we can devise a selective-saving approach to preserve the statisti-
cally meaningful benign and malicious queries within the window
size. In particular, if some potential queries are self-similar (e.g.,
within a distance boundary) to one of the previous queries, we do
not have to save those queries because it is statistically overlapped.
Another design alternative would be dynamically changing the slid-
ing window size. If we fix the window size, we always need to search
over𝑤 queries. However, if we start from a much smaller window,
such as 2, and exponentially increase the sliding window size (when
there is no malicious query within the window size), we can have
a chance to detect malicious queries for a not-so-knowledgeable at-
tacker. The advantage of this design is that it can cover any parallel
attack, but the disadvantage is that it incurs higher computational
complexity if the attacker sends malicious queries very sparsely.
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A PROOF OF PROPOSITION 4.2

Q*T total queries processed for T days

M Queries when uniformly spread out with rate 
QT
M

Since each window has size w, there exists a window that can 
capture at least 

w
QT
M

window size w

a.

b.

c.

malicious queries.

Figure 4: M Malicious queries within T processing days with

a window size w.

Proof. Let 𝑆 be a detection system with a sliding window of size
𝑤 that processes𝑄 number of queries per day. Consider an attacker
which requires at leastℳ number of malicious queries for a suc-
cessful deployment of an attack within 𝑇 days. First, let’s observe
that the number of total queries processed by 𝑆 in𝑇 days equals𝑄 ·𝑇
(Fig. 4 a.). Then if theℳ malicious queries are uniformly placed,
then they occur with a rate of 𝑄 ·𝑇

𝑀
(Fig. 4 b.). Since our windows

size is𝑤 , then by the pigeonhole principle, we can guarantee that

there exists a window that has at least

⌈
𝑤⌈
𝑄 ·𝑇
ℳ

⌉ ⌉ number of malicious

queries (Fig. 4 c.). Q.E.D.

B ADDITIONAL INFORMATION AND

RESULTS FOR SECTION 5

B.1 Query Budgets for Privacy Attacks

We provide the number of malicious queries that an adversary
has to send to complete the various privacy attacks in Table 12.
Except for DA, the attacker has to send thousands of queries to
finish HSJA or QEBA for one target point. Moreover, the attacker
needs more than 55,000 queries to successfully reconstruct one
target attribute. We propose to use the sliding window technique
to improve efficiency, since if we have a reasonable window size,
we can still mitigate the attack performance, considering the large
amount of query budget.

We further present the number of queries PrivMon accepts to
detect a malicious query in Table 11. As described in the table, our
system only accepts at most 2 malicious queries to detect attacks
out of 4 − 5𝑘 (HSJA/QEBA), and 50 − 60𝑘(BREPMI) queries.

B.2 Comparison between PrivMon and Feature

KNN

To further investigate the system overhead of PrivMon and Feature
KNN, we draw line charts for the CPU usage, memory usage, and
average processing time of a single query as the number of queries
increases. The results are shown in Figure 5. From these figures,
we can observe that PrivMon has better performance than Feature
KNN for all these three metrics. That is because 1) Feature KNN

uses the traditional KNN algorithm, which is more computation-
intensive; 2) Feature KNN stores all previous queries; 3) the compu-
tation complexity of KNN is linear to the number of samples.

We summarize the results for detection and mitigation perfor-
mance in Table 6. As presented in the table, Feature KNN shows the
comparable (e.g., HSJA, QEBA, DA (𝑑1), MIAs) or slightly superior
performance (e.g., (DA (𝑟5))), in comparison to PrivMon. The rea-
son behind this is Feature KNN retains all previous queries, which
might lead to an increase in performance. However, it is important
to mention that Feature KNN has a significant limitation in terms
of efficiency since it stores all queries, which limits its applicability
in real-time systems.

B.3 DSR Comparison under DA with Parallel

Attacks

We continue our analysis of the DSR while taking into account
the parallel attack scenario. In this experiment, we employ 1K data
points while maintaining the same window size𝑤 = 5𝑘 , since we
present the experimental result with 2,500 data points in Table 4.
In this case, the defender only receives 2 − 3 queries that are se-
mantically related to one another within one window. According
to the results presented in Table 10, our system outperforms Input
LSH and Feature KNN by a margin of 0.17 to 0.28 for translation
and 0.06 to 0.26 for rotation.

C ABLATION STUDY FOR UNIVERSAL

THRESHOLD SELECTION

We further explain how to select the universal threshold for all
our evaluations. We note that we use the same universal threshold
over all the experiments. We vary the threshold from 250 to 450 to
find an appropriate threshold. As shown in Figure 6, we consider
two factors: attack mitigation performance and false positive rate,
since the effective threshold should guarantee a high attack mit-
igation performance with a low false positive rate. When we set
the threshold as 350, we can achieve the maximum attack mitiga-
tion performance (BREPMIs nearly 10% accuracy, DA[MFA] nearly
0.500 AUC score, and HSJA[MFA] near 0.500 AUC score), while
preserving the reasonable False Positive Rate (<0.1). [DA: Data Aug-
mentation/ HSJA: HopSkipJumpAttack/ BREPMI: Model Inversion
Attack/ MFA: Membership inFerence Attack]

D ABLATION STUDY FOR SYSTEMWINDOW

SIZE

We compare the system performance against sequential DA attacks
for window sizes varying from 5K to 105K. We evaluated the system
performance (AUC score) and the system overhead (memory usage,
CPU usage on a single core, and throughput), shown in Table 13.
The results show that there is no significant increase in the system
overhead as the window size becomes larger. Also, we observe a
slight drop in system performance as the window size exceeds 45K.
This is because a large window size increases the possibility of sim-
ilar benign queries being included in the sliding window, thereby
increasing the false positive rate. We conclude that a window size
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Table 6: Detection and mitigation performance comparison between PrivMon and Feature KNN.

Attack Type Dataset

Detection w/o Mitigation

Random Feature KNN PrivMon Defense Random Feature KNN PrivMon

DSR DSR DSR ASR ASR ASR FPR ASR FPR

MFAs

HSJA CIFAR10 0.500 1.000 1.000 0.852 0.500 0.500 0.000 0.500 0.000

CIFAR100 0.500 1.000 1.000 0.955 0.500 0.500 0.000 0.500 0.000

QEBA CIFAR10 0.500 1.000 1.000 0.917 0.500 0.500 0.000 0.500 0.000

CIFAR100 0.500 1.000 1.000 0.966 0.500 0.500 0.000 0.509 0.000

DA (𝑑1) CIFAR10 0.500 0.884 0.882 0.793 0.500 0.509 0.053 0.535 0.019

CIFAR100 0.500 0.878 0.879 0.916 0.500 0.718 0.086 0.739 0.045

DA (𝑟5) CIFAR10 0.500 0.959 0.948 0.808 0.500 0.605 0.101 0.500 0.016

CIFAR100 0.500 0.957 0.951 0.938 0.500 0.718 0.086 0.573 0.038

MIAs
BREPMI FaceScrub 0.500 0.695 0.697 0.650 0.000 0.110 0.000 0.100 0.001

CelebA 0.500 0.923 0.926 0.890 0.000 0.130 0.000 0.120 0.000
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Figure 5: System overhead and efficiency comparison between PrivMon and Feature KNN.
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Figure 6: The False Positive Rate and Attack Success Rate for various privacy attacks on different datasets with the threshold

change. These two metrics indicate the system performance according to the corresponding threshold, so we use those metrics

to choose the universal threshold.

Table 7: Dataset Information for Membership Inference At-

tacks.

Dataset # Classes # Training data # Test data Input size

CIFAR10 [23] 10 50,000 10,000 32 × 32
CIFAR100 [23] 100 50,000 10,000 32 × 32
GTSRB [42] 43 39,209 12,630 64 × 64

between 5K and 45K would be a good choice on the trade-off be-
tween efficiency and performance. We apply a 5K window size for
the rest of our experiments for efficiency.

Table 8: Dataset Information for Model Inversion Attacks.

Dataset # Images # Total id # Public id # Private id # Target id

CelebA [32] 202,599 10,177 9,177 1,000 100
FaceScrub [35] 106,863 530 330 200 100

E EXPERIMENT SETUP ON VIDEO DATA

When we evaluate Table 3, we use two video datasets: YouTube-
Faces [45] and UCF101 [41].YouTubeFaces dataset consists of 3,425
videos of 1,595 identities and has been used for face recognition.
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Figure 7: Distances to the nearest neighbor. As shown in the figure, 𝑙2 distance makes malicious and benign queries entangled,

so it is difficult to correctly identify malicious queries. On the other hand, Neural distance provide a clear separation between

those queries to classify malicious one correctly.

Table 9: The attack mitigation performance of Feature KNN

with 𝐾 = 50 on DA. We present the attack success rate (ASR)

and the false positive rate (FPR).

K=50 Dataset

Feature KNN

ASR FPR

DA (𝑟5)
CIFAR10 0.500 0.474
CIFAR100 0.500 0.494

DA (𝑑1)
CIFAR10 0.500 0.444
CIFAR100 0.500 0.464

Table 10: The DSR of different approaches in detecting mali-

cious queries of (1K) parallel DA attacks.

Attack Type Dataset PrivMon Input LSH Feature KNN

DA (𝑑1) CIFAR10 0.84 0.67 0.56
CIFAR100 0.84 0.67 0.56

DA (𝑟5) CIFAR10 0.89 0.83 0.63
CIFAR100 0.89 0.82 0.63

Table 11: The number of queries our system has to accept

to first detect the malicious query. Our system only accept 1
malicious query and can detect the second malicious query

for iteration-based privacy attacks.

Attack Type Dataset Queries to Detect

MFA
HSJA

CIFAR10 2
CIFAR100 2

QEBA
CIFAR10 2
CIFAR100 2

MIA BREPMI
FaceScrub 258 [2]
CelebA 256 [2]

We extract video frames and crop the frames based on the work [8].
After this, we choose classes with more than two sub-classes to split
the data into the train and validation datasets. Then, we randomly

split the train data and validation data into the data for the origi-
nal purposes (i.e., training and validation) and the data for attack
(i.e., augmentation). To reduce the model complexity, we randomly
choose 50 classes out of the total number of classes.

UCF101 dataset contains 13,320 videos from 101 action categories
and has been exploited for human action recognition. We use the
entire class and split the dataset into train and validation sets. We
split each dataset into the data for model training and validation
and the data for the attack. Here, we sample the images that are
semantically similar to each other. Note that the images that belong
to the same class from YouTubeFaces datasets are intrinsically sim-
ilar because they indicate the same identity. However, UCF101 is
designed for action recognition, so it contains semantically dissimi-
lar images. Therefore, we need to sample the images with similar
semantic information to demonstrate the attack success rate.

For calculating the detection success rate (DSR), we need to
guarantee that there is no overlap among benign queries. However,
due to the nature of video datasets, it is difficult to sample a large
number of entirely distinct benign queries. Therefore, we consider
200 benign and 200 malicious samples in our experiments to calcu-
late the DSR. This metric will provide the system performance for
detecting semantically similar queries.

In addition, model 1 (i.e., ℳ1) consists of four convolutional
layers with two fully connected layers. We further consider the com-
plex model; model 2 (i.e.,ℳ2) is composed of twelve convolutional
layers with two fully connected layers.

F DATASET DESCRIPTION

We provide details about the datasets we evaluated. We make use
of the CIFAR10 and CIFAR100 [23], which consist of 10 classes and
100 classes with 60K images, respectively. The resolution for those
datasets is 32x32. Additionally, we take into account the GTSRB
dataset [42], which is composed of 43 classes with 64x64 resolution.

The aforementioned datasets do not contain the sensitive in-
formation to reconstruct for model inversion attacks. Therefore,
existing works have focused on reconstructing face images, such
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Table 12: The number of queries that an adversary has to send for various privacy attacks to complete the attacks. We take an

average over the number of target points to calculate the average number of queries. DA (𝑟5) denotes rotation-based MFA and

DA (𝑑1) indicates translation-based MFA.

Attack Type HSJA QEBA BREPMI BREPMI DA (𝑑1) DA (𝑟5)

Dataset CIFAR10 CIFAR100 CIFAR10 CIFAR100 CelebA FaceScrub CIFAR10, CIFAR100 CIFAR10, CIFAR100

Avg # of Queries 4232.76 3954.23 5040.1 4714.79 56780.29 57778.8 5 11

# of Target Samples 100 100 100 100 100 100 1000 1000

Table 13: Ablation study for the sliding window size of the stream-based system. For window size varies from 5K to 105K, we

evaluate the AUC score, memory usage (MB), CPU usage on a single core (%), and throughput (Millions/Day).

Window

Size

Attack Type

CIFAR10 (𝑑1) CIFAR10 (𝑟5) CIFAR100 (𝑑1) CIFAR100 (𝑟5)

AUC Mem CPU Thr AUC Mem CPU Thr AUC Mem CPU Thr AUC Mem CPU Thr

5K 0.929 2530 72.3 2.62 0.951 2530 77.1 2.63 0.881 2530 72.8 2.62 0.880 2530 77.0 2.63
25K 0.881 2530 72.8 2.62 0.948 2530 78.4 2.63 0.951 2530 72.8 2.63 0.950 2530 77.3 2.63
45K 0.877 2530 72.5 2.63 0.948 2530 77.6 2.63 0.948 2530 72.9 2.63 0.947 2530 78.1 2.62
65K 0.886 2530 73.1 2.63 0.947 2530 78.4 2.63 0.889 2530 73.4 2.63 0.951 2530 77.5 2.62
85K 0.887 2530 73.1 2.63 0.949 2530 78.0 2.63 0.885 2530 73.6 2.63 0.948 2530 78.9 2.63
105K 0.879 2530 73.5 2.64 0.936 2530 78.9 2.63 0.874 2530 73.6 2.64 0.950 2530 78.8 2.63

as CelebA [32] consisting of 10,177 identities with over 200K im-
ages and FaceScrub [35] which includes 530 identities with over
100K images, given an identity [7, 19, 48]. They leverage the public
data [20] to train GANs to reach the meaningful optimal point.
After dividing the total identities into public and private classes,
the public classes were used to train the GAN (which we will train
the target model). There are no identities that overlap between
the public and private domains. This indicates that the attacker is
completely unaware of the identities within the private domain.
Then, we execute the attack against the classifier trained on the
private domain. The detailed attack setting is described in [19].

G COMPARISON BETWEEN 𝑙2 AND NEURAL

DISTANCE

We provide the comparison results between 𝑙2 distance and neural
distance on different types of attacks (DA (𝑑1), DA (𝑟5), HSJA,
BREPMI). We sample 200 benign (from CIFAR100, and CelebA), and
malicious queries (from each attack), then calculate the distance to
the nearest neighbor. As described in Figure 7, if we leverage the
neural distance, we can find a separation between malicious queries
and benign queries. However, if we rely on 𝑙2 distance, we cannot
distinguish those queries. This indicates that neural distance can
provide a reliable nearest-neighbor search performance.
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