
Querying Streaming System Monitoring Data for
Enterprise System Anomaly Detection

Peng Gao1 Xusheng Xiao2 Ding Li3 Kangkook Jee4 Haifeng Chen3 Sanjeev R. Kulkarni5 Prateek Mittal5

1UC Berkeley 2Case Western Reserve University 3NEC Labs America 4UT Dallas 5Princeton University
penggao@berkeley.edu xusheng.xiao@case.edu {dingli,haifeng}@nec-labs.com kangkook.jee@utdallas.edu {kulkarni,pmittal}@princeton.edu

Abstract—The need for countering Advanced Persistent Threat
(APT) attacks has led to the solutions that ubiquitously monitor
system activities in each enterprise host, and perform timely
abnormal system behavior detection over the stream of monitor-
ing data. However, existing stream-based solutions lack explicit
language constructs for expressing anomaly models that capture
abnormal system behaviors, thus facing challenges in incorpo-
rating expert knowledge to perform timely anomaly detection over
the large-scale monitoring data. To address these limitations, we
build SAQL, a novel stream-based query system that takes as
input, a real-time event feed aggregated from multiple hosts
in an enterprise, and provides an anomaly query engine that
queries the event feed to identify abnormal behaviors based on
the specified anomaly models. SAQL provides a domain-specific
query language, Stream-based Anomaly Query Language (SAQL),
that uniquely integrates critical primitives for expressing major
types of anomaly models. In the demo, we aim to show the
complete usage scenario of SAQL by (1) performing an APT
attack in a controlled environment, and (2) using SAQL to detect
the abnormal behaviors in real time by querying the collected
stream of system monitoring data that contains the attack traces.
The audience will have the option to interact with the system and
detect the attack footprints in real time via issuing queries and
checking the query results through a command-line UI.

I. INTRODUCTION

Advanced cyber attacks and data breaches plague even the

most protected businesses [7], [5]. Similar attacks, especially

in the form of Advanced Persistent Threats (APTs), are being

commonly observed. These attacks consist of a sequence of
steps across many hosts that exploit different types of vulner-

abilities to compromise security. To counter these attacks, ap-

proaches based on ubiquitous system monitoring have emerged

as an important solution for monitoring system activities and
actively detecting possible abnormal system behaviors [13],

[15], [10], [9]. System monitoring observes system calls at

the kernel level to collect system-level events that record

interactions among system entities (e.g., processes, files, and

network connections). Collection of system monitoring data

enables security analysts to detect abnormal system behaviors

by continuously searching for anomalies from the streaming
data [8], [14].

Fighting against advanced attacks such as APTs is a time-

critical mission. As such, there is a strong need for a real-
time anomaly detection system that can find a “needle in a

haystack” from system monitoring data for preventing addi-

tional damage and performing system recovery. However, there

are two major challenges for building such system to support

effective and timely anomaly detection: (1) Expert Knowledge

Incorporation: Advanced attacks typically involve multiple

steps exploiting various types of vulnerabilities. Besides, mod-

els derived from data have been increasingly used in detecting

various types of abnormal behaviors [14]. System adminis-

trators, security analysts, and data scientists have extensive

domain knowledge about the enterprise, including the expected

system behaviors. Fighting against such attacks requires the

system to provide a unified interface for expressing a broad

range of anomaly models while incorporating the domain
knowledge from experts; (2) Timely Big-Data Analytics: Sys-

tem monitoring produces huge amount of daily logs (∼50GB

for 100 hosts per day) [13], [15]. This requires the system to

provide efficient real-time data analytics.

Unfortunately, none of the existing systems [11], [12], [6],

[1] provide a comprehensive solution that addresses both of

these inherent challenges. Existing anomaly detection systems

focus on building models for specific anomalies based on

extracted features, rather than providing a unified interface for

expressing a broad range of anomaly models via incorporating

the expert knowledge. Existing stream-based query systems

are designed to work with general-purpose data streams,

and lack explicit language constructs for expressing various

anomaly models for our particular problem domain. Further-

more, to support multiple concurrent queries that access differ-

ent attributes of the data, these systems have to make multiple

copies of the data for the queries, and thus is not efficient in

handling the big data collected from system monitoring.

To address these challenges, we build SAQL [9], a stream-

based query system that enables security analysts to perform

real-time abnormal system behavior detection via querying

the stream of system monitoring data. SAQL takes as input

a real-time event feed aggregated from multiple hosts in an

enterprise, and provides an anomaly query engine that queries

the event feed to identify abnormal system behaviors based

on the specified anomaly models. To facilitate the task of

expert knowledge incorporation, SAQL provides a domain-

specific query language, Stream-based Anomaly Query Lan-
guage (SAQL), that uniquely integrates a series of critical

primitives for expressing a broad range of anomaly mod-

els. In particular, SAQL provides (1) the syntax of event

patterns for specifying relevant system activities and their

relationships, which facilitates the specification of rule-based
anomaly models; (2) the constructs for sliding windows and

stateful computation that allow stateful anomaly models to be

computed in each sliding window over the data stream. These

1774

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00167

Fig. 1: The architecture of SAQL

constructs facilitate the specification of time-series anomaly
models, invariant-based anomaly models, and outlier-based
anomaly models, which lack support from existing stream-

based query systems. To facilitate the task of efficiently han-

dling concurrent queries, SAQL employs a master-dependent-

query scheme that groups semantically compatible queries to

minimize the data copies of the stream. Our anomaly query

engine leverages the domain-specific characteristics of the

system monitoring data and the semantics of the queries to

efficiently schedule the execution.

We have deployed the SAQL system in NEC Labs America

comprising 150 hosts and made a demo video [4]. In our demo,

we aim to show the complete usage scenario of SAQL. To

achieve this goal, we perform an APT attack in a controlled

environment (for protecting the normal business) that exploits

multiple vulnerabilities in the system and exfiltrates sensitive

data from database server. The system monitoring data that

contains the attack traces is collected by our data collection

agents and sent to the central server, forming an event stream.

We constructed a set of SAQL queries in advanced for detect-

ing the attack behaviors and deployed them over the stream.

These SAQL queries will continuously monitor the stream and

report the alerts in real time as we perform the attack. To easily

reproduce the attack data for showcasing different queries, we

additionally store the data in databases and have built a stream

replayer to replay the data from databases as a data stream. The

audience will have the option to interact with the system and

detect the attack footprints via issuing queries and checking

the query results through a command-line UI.

II. THE SAQL SYSTEM ARCHITECTURE

Figure 1 shows the architecture of the SAQL system. SAQL

takes an input query from the user that specifies certain attack

behaviors to be detected, executes the query by checking

the specified behaviors against the system event stream, and

reports the detection alerts once there exist matches.

A. Data Collection

System monitoring records kernel-level interactions among

system entities as system events. Each of the recorded event

occurs on a particular host at a particular time, thus exhibiting

strong spatial and temporal properties. Following the estab-

lished convention [13], [15], [9], [10], in our data model,

we consider system entities as files, processes, and network

connections. We consider a system event as the interaction

between two system entities represented as 〈subject, opera-
tion, object〉 (SVO). Subjects are processes originating from

software applications (e.g., Firefox), and objects can be files,

processes, and network connections. We categorize system

events into three types according to their objects, namely file
events, process events, and network events.

We build data collection agents based on mature system

monitoring frameworks: auditd for Linux, ETW for Windows,

and DTrace for MacOS. Our agents are deployed across

servers, desktops, and laptops in the enterprise to collect

system auditing events from kernels. The collected events

with critical security-related attributes (e.g., file name, process

executable name, PID, IP, port; more details in [9]) are sent

to the central server, forming an event stream.

B. SAQL Query Language
We build the SAQL language using ANTLR 4. Our language

uniquely integrates a series of critical primitives for concisely

expressing four major types of anomaly models.
1) Rule-based Anomaly Model: SAQL provides explicit

constructs to specify system entities/events, attribute con-

straints, and event temporal/attribute relationships. This facili-

tates the specification of rule-based anomaly models to detect

known attack behaviors or enforce enterprise-wide security

policies. Query 1 shows a SAQL query that detects the data

exfiltration from database server: the attacker leverages OSQL

utility (osql.exe) to dump the database content (backup1.dmp

) and then runs a malware (sbblv.exe) to send the dump

back to his host (XXX.129). Four event patterns are declared

(Lines 2-5) with a global constraints (Line 1), a temporal

relationship (Line 6), and an implicit attribute relationship

(Lines 3-4 specify the same f1 in both events). Desired

attributes of matched events are returned (Line 7) with context-

aware syntax shortcuts adopted (i.e., p1 → p1.exe_name).

1 agentid = xxx // SQL database server (obfuscated)
2 proc p1["%cmd.exe"] start proc p2["%osql.exe"] as evt1
3 proc p3["%sqlservr.exe"] write file f1["%backup1.dmp"] as

evt2
4 proc p4["%sbblv.exe"] read file f1 as evt3
5 proc p4 read || write ip i1[dstip="XXX.129"] as evt4
6 with evt1 -> evt2 -> evt3 -> evt4
7 return distinct p1, p2, p3, f1, p4, i1 // p1 -> p1.exe_name

, i1 -> i1.dstip, f1 -> f1.name

Query 1: A rule-based SAQL query

1775

2) Time-Series Anomaly Model: SAQL provides explicit

constructs for sliding windows and stateful computation that

allow stateful anomaly models to be computed in each sliding

window over the stream. These constructs lay the foundation

for specifying advanced anomaly models (i.e., time-series

anomaly models, invariant-based anomaly models), which lack

support from existing stream-based query systems [11], [12],

[6], [1]. Query 2 shows a SAQL query that specifies a time-

series anomaly model to monitor the network usage of each

application and raises an alert when the network usage is

abnormally high. It specifies a 10-minute sliding window (Line

1), collects the amount of data sent through network within

each window (Lines 2-4), and computes the moving average

to detect spikes of network data transfers (Line 5). In the

query, ss[0] represents the state of the current window while

ss[1] and ss[2] represent the states of the two past windows

respectively (ss[2] occurs earlier than ss[1]).

1 proc p write ip i as evt #time(10 min)
2 state[3] ss {
3 avg_amount := avg(evt.amount)
4 } group by p
5 alert (ss[0].avg_amount > (ss[0].avg_amount + ss[1].

avg_amount + ss[2].avg_amount) / 3) && (ss[0].
avg_amount > 10000)

6 return p, ss[0].avg_amount, ss[1].avg_amount, ss[2].
avg_amount

Query 2: A time-series SAQL query

3) Invariant-based Anomaly Model: SAQL provides ex-

plicit constructs for learning invariants of system behaviors

under normal operations and using the learned invariants to

detect later violations. This facilitates the specification of

invariant-based anomaly models. Query 3 shows a SAQL query

that specifies a 10-second sliding window (Line 1), maintains

a set of child processes spawned by the Apache process (Lines

2-4), uses the first ten windows to train the invariant (Lines

5-8), and detects unseen child processes spawned by Apache

(Line 9).

1 proc p1["%apache.exe"] start proc p2 as evt #time(10 s)
2 state ss {
3 set_proc := set(p2.exe_name)
4 } group by p1
5 invariant[10][offline] {
6 a := empty_set // invariant init
7 a = a union ss.set_proc //invariant update
8 }
9 alert |ss.set_proc diff a| > 0

10 return p1, ss.set_proc

Query 3: An invariant-based SAQL query

4) Outlier-based Anomaly Model: SAQL provides explicit

constructs for grouping system behaviors together to detect

outliers. This facilitates the specification of outlier-based

anomaly models. Query 4 shows a SAQL query that specifies

a 10-minute sliding window (Line 2), computes the amount

of data sent through network by the sqlservr.exe process for

each outgoing IP address (Lines 3-5), and identifies the outliers

using DBSCAN clustering (Lines 6-7) to detect the suspicious

IP that triggers the database dump. Note that Line 6 specifies

which information of the state forms a comparison point and

Windows ClientMail Server DB ServerFirewall

Internet

Windows DC

c1
c2

c3

c4

c5

Attacker

Fig. 2: Demonstration setup for the APT attack

Fig. 3: Command-line UI of the SAQL system

how the “distance” among these points should be computed

("ed" represents Euclidean Distance).

1 agentid = xxx // SQL database server (obfuscated)
2 proc p["%sqlservr.exe"] read || write ip i as evt #time(10

min)
3 state ss {
4 amt := sum(evt.amount)
5 } group by i.dstip
6 cluster(points=all(ss.amt), distance="ed", method="DBSCAN

(100000, 5)")
7 alert cluster.outlier && ss.amt > 1000000
8 return i.dstip, ss.amt

Query 4: An outlier-based SAQL query

C. SAQL Query Execution Engine

We build the SAQL system upon Siddhi CEP [6] so that our

system can leverage Siddhi’s mature mechanisms to manage

the event stream. Given an input SAQL query, the multievent

matcher matches the events in the stream against the event

patterns specified in the query. If the query involves stateful

computation, the state maintainer maintains the states of

each sliding window computed from the matched events. To

efficiently handle the execution of multiple concurrent queries,

the concurrent query scheduler employs a master-dependent-

query scheme. In the scheme, concurrent queries are divided

into groups based their semantic compatibilities, with each

group having a master query and several dependent queries.

The scheme enforces that the queries in a group will share

a single copy of the stream data for execution. Only master

queries have direct access to the data stream, and the execution

of the dependent queries leverages the intermediate execution

results of their master query. In this way, unnecessary data

copies of the stream can be significantly reduced. The error

reporter reports the errors during the query execution. Alerts

are generated when the alert conditions specified in the query

are matched by the event stream.

1776

III. DEMONSTRATION OUTLINE

Demonstration Setup for The APT Attack. We deployed

SAQL in NEC Labs America comprising 150 hosts. The

purpose of our demo is to illustrate the complete usage

scenario of SAQL and showcase its superiority in enabling

timely abnormal system behavior detection. To achieve this

goal, we perform an APT attack in a controlled environment

(Figure 2) using known exploits. The APT attack consists of

five steps as follows:

c1 Initial Compromise: The attacker sends a crafted email

to the victim. The email contains an Excel file with a

malicious macro embedded.

c2 Malware Infection: The victim opens the Excel file through

the Outlook client and runs the macro, which downloads

and executes a malicious script (CVE-2008-0081 [2]) to

open a backdoor for the attacker.

c3 Privilege Escalation: The attacker enters the victim’s ma-

chine through the backdoor, scans the network ports to dis-

cover the IP address of the database, and runs the database

cracking tool (gsecdump.exe) to steal the credentials of

the database.

c4 Penetration into Database Server: Using the credentials,

the attacker penetrates into the database server and delivers

a VBScript to drop another malicious script, which creates

another backdoor.

c5 Data Exfiltration: With the access to the database server,

the attacker dumps the database content using osql.exe
and sends the data dump back to his host.

Construction of SAQL Queries. We constructed 8 SAQL

queries (more details in [3]) in advance for detecting the

attack behaviors. For each attack step, we construct a rule-

based SAQL query by leveraging the knowledge of the attack.

Furthermore, we construct three advanced anomaly queries,

assuming no knowledge of the attack details:

• We construct an invariant-based anomaly query to detect the

scenario where Excel executes a malicious script that it has

never executed before (i.e., step c2): The invariant contains

all unique processes started by Excel in the first 100 sliding

windows. New processes that deviate from the invariant are

reported as alerts.

• We construct a time-series anomaly query based on SMA to

detect the scenario where abnormally high volumes of data

are exchanged via network on the database server (i.e., step

c5): For every process on the database server, this query

detects the processes that transfer abnormally high volumes

of data to the network.

• We construct an outlier-based anomaly query to detect

processes that transfer high volumes of data to the network

(i.e., step c5): The query detects such processes through peer

comparison based on DBSCAN.

Demonstration Procedure. We start the demonstration

by constructing and executing the SAQL queries using a

command-line UI (Figure 3). As we perform the attack, the

Fig. 4: Stream replayer

SAQL queries will continuously monitor the stream and report

the alerts when the abnormal attack behaviors are detected.

To easily reproduce the streaming attack data for show-

casing different queries, we additionally store the data in

databases and have built a stream replayer to replay the data

from databases as a data stream. Our stream replayer has a

web-based UI (Figure 4) that lets us choose the hosts and the

start/end time to replay the system monitoring data.

IV. CONCLUSION

We have presented SAQL, a novel system for detecting ab-

normal system behaviors in enterprises via querying streaming

system monitoring data. SAQL provides an expressive domain-

specific language to express a wide range of anomaly models.

Acknowledgement. This work was supported in part by

DARPA N66001-15-C-4066. Any opinions, findings, and con-

clusions made in this material are those of the authors and do

not necessarily reflect the views of the funding agencies.

REFERENCES

[1] Apache Flink. https://flink.apache.org/.
[2] CVE-2008-0081. http://www.cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2008-0081.
[3] Demo SAQL queries. https://goo.gl/Xwrfsf.
[4] Demo video of SAQL. https://youtu.be/3S7D5jVoR2c.
[5] The Equifax data breach. https://www.ftc.gov/equifax-data-breach.
[6] Siddhi. https://github.com/wso2/siddhi.
[7] The Target data breach. https://goo.gl/2awnKE.
[8] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.

ACM computing surveys (CSUR), 41(3):15, 2009.
[9] P. Gao, X. Xiao, D. Li, Z. Li, K. Jee, Z. Wu, C. H. Kim, S. R.

Kulkarni, and P. Mittal. SAQL: A stream-based query system for real-
time abnormal system behavior detection. In USENIX Security, pages
639–656, 2018.

[10] P. Gao, X. Xiao, Z. Li, F. Xu, S. R. Kulkarni, and P. Mittal. AIQL:
Enabling efficient attack investigation from system monitoring data. In
USENIX ATC, pages 113–126, 2018.

[11] M. N. Garofalakis, J. Gehrke, and R. Rastogi, editors. Data stream
management - processing high-speed data streams. Springer, 2016.

[12] B. Hossbach and B. Seeger. Anomaly management using complex event
processing: Extending data base technology paper. In EDBT, pages 149–
154, 2013.

[13] S. T. King and P. M. Chen. Backtracking intrusions. In SOSP, pages
223–236, 2003.

[14] C. Kruegel, F. Valeur, and G. Vigna. Intrusion detection and correlation
- challenges and solutions, volume 14. Springer, 2005.

[15] Z. Xu, Z. Wu, Z. Li, K. Jee, J. Rhee, X. Xiao, F. Xu, H. Wang, and
G. Jiang. High fidelity data reduction for big data security dependency
analyses. In CCS, pages 504–516, 2016.

1777

