
Computer Networks 237 (2023) 110047

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

SmartSBD: Smart shared bottleneck detection for efficient multipath
congestion control over heterogeneous networks
Enhuan Dong a,b,c, Peng Gao d, Yuan Yang e,b,f,∗, Mingwei Xu a,e,c,∗, Xiaoming Fu g, Jiahai Yang a,b,c

a Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing 100084, China
b Beijing National Research Center for Information Science and Technology (BNRist), Beijing 100084, China
c Quan Cheng Laboratory, Jinan 250103, China
d Department of Computer Science, Virginia Tech, VA 24060, USA
e Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
f Peng Cheng Laboratory, Shenzhen 518066, China
g Institute of Computer Science, University of Goettingen, Goettingen 37077, Germany

A R T I C L E I N F O

Keywords:
Multipath TCP
Congestion control
Shared bottleneck detection

A B S T R A C T

Multipath TCP (MPTCP) has been widely adopted in today’s mobile devices. However, two types of congestion
control algorithms, uncoupled congestion control (Uncoupled CC) and coupled congestion control (Coupled CC),
cannot achieve both bottleneck friendliness and throughput maximization for both of the MPTCP subflow
bottleneck sharing scenarios, shared bottleneck (SB) scenario and non-shared bottleneck (NSB) scenario,
leading to performance degradation in practice. In this work, we seek to enable efficient MPTCP congestion
control, by alternating between Uncoupled CC algorithms and Coupled CC algorithms via smartly detecting
whether the two MPTCP subflows share the same bottleneck link. We propose SmartSBD, the first learning-
based data-driven approach for shared bottleneck detection, which is accurate, adaptable, and easy-to-deploy.
SmartSBD is based on the key insight that the properties of subflows that share the same bottleneck often
have similar trends of variation or similar values. In the training phase, SmartSBD collects system logs when
MPTCP is running in real-world heterogeneous networks, extracts features, and trains a binary classifier. In
the runtime phase, SmartSBD makes periodic predictions on the bottleneck sharing condition of live MPTCP
subflows, and uses the prediction results to alternate between Coupled CC and Uncoupled CC. Our evaluations
demonstrate that SmartSBD outperforms existing approaches.
1. Introduction

Nowadays, a large number of mobile devices (e.g., smartphones and
tablets) have two wireless interfaces, making it possible for mobile
clients to access the Internet in multiple ways simultaneously [3].
To fully leverage this valuable feature, multipath TCP (MPTCP) has
been developed and is currently under standardization by the Internet
Engineering Task Force (IETF) [4]. Compared with regular TCP, MPTCP
is able to employ multiple interfaces for one connection concurrently,
achieving a higher throughput and a more robust connection. MPTCP
has been adopted in a variety of industrial solutions, such as iOS [5],
Huawei Link Turbo [6], and RHEL8 [7]. In the research community,
numerous studies have been conducted on the multipath transport
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TCP connections. Such an issue can be termed fairness [1], or TCP-fairness [2] in existing works. However, we use the ‘‘bottleneck friendliness’’ (or simply
‘‘friendliness’’) in this paper because it is more accurate and implies the issue is multipath-specific.

protocols [1,2,8–13]. As such, we can expect the growing popularity
and a wide adoption of this type of technology in mobile devices in
the near future. In this paper, we focus on the use case of MPTCP
where two endpoints of MPTCP connections consist of a mobile device
with two wireless interfaces and a normal server, which means each
path between two endpoints is an Internet path with a wireless access
link. It is a prominent use case of MPTCP [3], and the condition of the
paths employed by MPTCP can be quite heterogeneous because of the
different types of wireless links [14]. The heterogeneous networks in this
paper consist of the heterogeneous paths formed by an Internet wired
path with a wireless access link.

Congestion control (CC) plays a critical role in designing multipath
transport protocols, given the objectives of throughput maximization
and friendliness.1 For MPTCP, a natural means is Uncoupled CC, which
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Table 1
Goals of two types of congestion control (CC) algorithms in two bottleneck sharing
cenarios: shared bottleneck (SB) and non-shared bottleneck (NSB).

Uncoupled CC Coupled CC

SB NSB SB NSB

Throughput maximization Yes Yes Yes No
Bottleneck friendliness No Yes Yes Yes

enables each subflow of one MPTCP connection to use a TCP CC algo-
ithm (normally, the standard TCP CC algorithm [15]) independently.
hus, each subflow competes for bandwidth as one TCP connection
oes, resulting in a high throughput. Unfortunately, Uncoupled CC
annot achieve friendliness in certain situations, i.e., when two sub-
lows of one MPTCP connection shares a common bottleneck link.
his is because both subflows are aggressive, and the MPTCP con-
ection will obtain more throughput than other TCP connections at
he bottleneck link. To address the issue, researchers propose Coupled
C algorithms [8–12], which make each subflow less aggressive, forc-

ng the entire MPTCP connection to compete for bandwidth similar
o one TCP connection. Nevertheless, Coupled CC algorithms fail to

maximize throughput when there is no shared bottleneck between the
two subflows. An MPTCP connection with two subflows (created by
two interfaces or two ports with the same interface), should achieve
as much throughput as two single-path TCP connections do, if the
two subflows do not share the same bottleneck. However, Coupled
C algorithms distribute the ability to compete for bandwidth to the

ndividual subflows of one MPTCP connection, making each subflow
ess aggressive than a single-path TCP connection. Therefore, in such
cenario, Coupled CC algorithms cannot obtain as much throughput as
wo single-path TCP connections do (maximum throughput). As such,
either of Uncoupled and Coupled CC algorithms can ensure bottleneck

friendliness and throughput maximization together for both shared
bottleneck (SB) scenario and non-shared bottleneck (NSB) scenario, as
summarized in Table 1. For example, Ferlin et al. [1] show that Coupled
C in NSB scenario can induce a throughput reduction of up to 40%
ompared with Uncoupled CC.

In this work, we seek to enable both bottleneck friendliness and
hroughput maximization in MPTCP CC. Ideally, a two-path MPTCP

connection should achieve as much throughput as two single-path TCP
connections do, if the paths do not have the same bottleneck. On the
other hand, an MPTCP connection should not harm other regular TCP
flows when the two subflows share the same bottleneck.

Intrinsically, the reason why existing Coupled CC algorithms choose
to be always conservative is that, MPTCP does not know whether
the two subflows share the same bottleneck [8]. Thus, the key is to
accurately detect whether the current scenario is SB or NSB. With such
knowledge, smart CC algorithms that achieve both throughput maxi-
mization and bottleneck friendliness can be developed. For instance,
one can simply use Coupled CC in SB scenario and use Uncoupled CC
n NSB scenario. In this paper, we design and implement SmartSBD, a

first-of-its-kind solution that enables efficient MPTCP CC achieving both
bottleneck friendliness and throughput maximization via smart shared
bottleneck detection, which periodically alternates between Uncoupled
CC algorithms and Coupled CC algorithms according to current scenario
detected.

Contributions and Novelty: We propose SmartSBD, a first-of-its-
kind solution that enables efficient MPTCP CC achieving both bot-
tleneck friendliness and throughput maximization via smart shared
bottleneck detection. We list the contributions and novelty here and
then detail them in the rest of this section.

1. We carefully select and develop the machine learning scheme
that is suitable for shared bottleneck detection from end-hosts.
Different from the customized rule-based approach employed in
existing works [1,2,16], we propose a data-driven approach to
detect shared bottlenecks accurately, i.e., let the data determine
2

what information to use when detecting sharing bottlenecks.
2. We develop and implement a deployable MPTCP CC scheme
based on shared bottleneck detection results. As lots of ex-
isting works [1,2,16–33] have deployment issues, we propose
SmartSBD as a pure end-host solution that only requires the
standard MPTCP to modify the sender CC and does not need any
modifications in networks.

3. We evaluate SmartSBD through comprehensive experiments, and
SmartSBD conforms to our design.

SmartSBD is suitable for shared bottleneck detection from end-
hosts: Since a bottleneck link influences the properties of subflows
running through it, the properties of subflows that share the same
bottleneck link often have similar trends of variation or similar values.
As the end-hosts utilize subflow state variables to describe subflow
properties, we first consider how to extract and exploit helpful in-
formation included in the subflow state variables to detect shared
bottlenecks. However, it is challenging to solve that problem from end-
hosts, since the information that the end-hosts can obtain is limited
without the help of networks, not all subflow state variables are useful,
and even if we know some subflow state variables are useful, how to use
them is still an open issue. Though existing works [1,2,16] follow the
customized rule-based approach, it is still a daunting task to manually
define the rules that can lead to highly accurate shared bottleneck
detection. Our insight is to let the data make decisions. We use a data-
driven approach, which can smartly select more important information from
the subflow state variables. Since supervised learning includes an offline
training phase, which could provide decision basis for online runtime
phases, we choose to use supervised learning algorithms as a first step
towards smart shared bottleneck detection and leave other solutions
(e.g., online learning) to future work.

In particular, SmartSBD consists of a training phase and a runtime
phase. In the training phase, SmartSBD first collects operating sys-
tem logs from real-world network environments in which MPTCP is
running. Next, SmartSBD parses the logs and extracts discriminative
features that estimate the similarity of MPTCP subflows from various
aspects (e.g., latency trend). Then, SmartSBD trains a classifier based on
the extracted features and ground-truth instance labels (SB or NSB). To
improve model accuracy, reduce overfitting, and reduce model training
time, SmartSBD removes irrelevant features via feature selection based
on mutual information [34]. Our demonstration in the paper shows that
not only RTT trends but also congestion state trends can be used to
detect shared bottlenecks. Finally, SmartSBD performs model selection
and hyperparameter tuning to select the best model. In the runtime
phase, SmartSBD extracts features from a live MPTCP connection, and
uses the trained classifier to make periodic predictions on the bottle-
neck sharing condition of its subflows. The prediction results are then
used by SmartSBD to alternate between Coupled CC (for SB prediction)
and Uncoupled CC (for NSB prediction).

SmartSBD is deployable:
To make SmartSBD deployable, we develop it as a pure end-host solution

that only requires the standard MPTCP to modify the sender and does
not need any modifications in networks. Further, SmartSBD only requires
modifications of MPTCP CC, because it does not need any modifications
to other behavior of MPTCP, e.g., the patterns of sending packets or the
definitions of header option fields. Moreover, since the CC is usually
modularly implemented for transport layer protocols to support mul-
tiple CC algorithms, SmartSBD can be lightly implemented as an MPTCP
CC module. Many existing works [1,2,16–33] suffer from deployment
issues, and we detail them in Section 6.

We have implemented SmartSBD: ∼1200 lines of Python code
or the training phase, and ∼1800 lines of C code in the MPTCP
inux network protocol stack [35], as an MPTCP CC module, for the
untime phase. To the best of our knowledge, SmartSBD is the first

learning-based data-driven solution for shared bottleneck detection for

efficient MPTCP CC, and the runtime phase is completely implemented
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Fig. 1. The architecture of SmartSBD. SmartSBD collects system logs from real-world heterogeneous networks in which MPTCP is running. Each log entry indicates which MPTCP
connection it belongs to (𝐶𝑖 denotes the 𝑖th MPTCP connection), which subflow it belongs to (𝑆𝐹𝑗 denotes the 𝑗th subflow), when it was logged (timestamp, 𝑇𝑆), which state
variable is modified (𝑆), and the new value of the state variable (𝑉 ). After that, SmartSBD extracts discriminative features (𝐹𝑖𝑗 denotes the 𝑗th feature of the 𝑖th MPTCP connection)
for each labeled MPTCP connection instance (𝐿𝑖 denotes the label). The extracted features are then passed to feature selection and model training.
in the Linux MPTCP protocol stack. Note that it is still an open issue
to implement existing data-driven MPTCP CC schemes [31–33] into
operating system TCP/IP protocol stack (see Section 6.3).

SmartSBD conforms to our design: We demonstrate the practical
efficacy of SmartSBD through a series of evaluations.

1. We evaluate the core of SmartSBD (i.e., the trained classifier).
Compared with existing approaches [1,2,16], SmartSBD
achieves 47.5% (over [1]), 70.6% (over [2]), and 111.7% (over
[16]) improvement in average accuracy (Section 5.1).

2. As it is reported that the performance of machine learning clas-
sifiers can drop sharply if they work on unseen datasets [36], we
evaluate SmartSBD classifier on different unseen path conditions.
The results show that it still obtains overall mean accuracy of
0.861 (Section 5.2).

3. To evaluate if SmartSBD could meet our design goals, i.e., achiev-
ing both bottleneck friendliness and throughput maximization,
we compare it with existing MPTCP CC algorithms. The results
show that SmartSBD achieves 15.3%–123.7% throughput im-
provement in NSB scenario (Section 5.3.1) and keeps bottleneck
friendliness in SB scenario (Section 5.3.2). Moreover, SmartSBD
outperforms SBD [1], the existing scheme with accuracy clos-
est to SmartSBD, in terms of adaptability to bottleneck shift
(Section 5.3.3).

4. Finally, we evaluate the CPU overhead of SmartSBD. The results
show that the overhead is minuscule (Section 5.4).

The rest of our paper is structured as follows. Section 2 shows the
architecture of SmartSBD system. Section 3 presents the components of
SmartSBD in detail. Section 4 introduces how SmartSBD is implemented.
Evaluations are shown in Section 5. Section 7 discusses several issues
about SmartSBD. Section 6 introduces related work. Section 8 concludes
the paper.

2. SmartSBD Overview

SmartSBD is a learning-based data-driven approach that enables effi-
cient MPTCP CC achieving both bottleneck friendliness and throughput
maximization via smart shared bottleneck detection. SmartSBD consists
of two phases: an offline training phase and an online runtime phase. In
the offline training phase, SmartSBD creates SB and NSB scenarios, runs
MPTCP in them, obtains labeled datasets, and trains a classifier. In the
online runtime phase, the classifier is used to detect shared bottlenecks.

Fig. 1 shows the overall architecture of SmartSBD, presenting more
details. In the offline training phase: (1) SmartSBD collects system logs
3

from real-world heterogeneous networks in which MPTCP is running,
in both SB and NSB scenarios (built in advance by creating different
bottlenecks), to trace three state variables of each MPTCP subflow
(Section 3.1); (2) for each MPTCP connection, SmartSBD parses system
logs, extracts discriminative features, and assigns a ground-truth label
(SB or NSB) based on whether the logs are collected from SB or
NSB scenario (Section 3.2); (3) SmartSBD ranks all features based on
estimated mutual information [34] and removes irrelevant features
with low ranks (Section 3.3); (4) to obtain the best model, SmartSBD
performs model selection and hyperparameter tuning from a set of
model candidates (Section 3.4).

In the online runtime phase, the monitor module records state
variables and periodically extracts features from both live subflows.
The trained classifier then makes predictions periodically based on the
features. If the subflows are predicted to share the same bottleneck
link, SmartSBD adopts Coupled CC for MPTCP CC. Otherwise, SmartSBD
adopts Uncoupled CC (Section 3.5).

SmartSBD is a data-driven solution, and thus its classifier differs
for different datasets used in the training phase. Before being used,
SmartSBD needs its users to train classifiers first. In this paper, con-
tent providers are considered to be the deployers of SmartSBD, since
they are the most direct users of SmartSBD, and care most about the
network transport behavior. In recent years, many transport-related
proposals [37–39] require their users to train before deployment, and
their most likely users are the content providers. SmartSBD has the
similar requirement. If content providers want to have a high-accuracy
classifier with universal adaptability, they need to collect datasets that
cover many path conditions. However, our learning-based data-driven
approach is able to generate a high-accuracy classifier with size-limited
datasets over different unseen path conditions (see Section 5.2). If the
content providers want to obtain more specialized classifiers, they can
group flows from the users with the same network attributes (e.g.,
subnet, ISP, city), collect the data from each group, and generate a
specialized classifier for each group. Such group-based deployment
method has been adopted in many existing studies [40–43]. Like these
works, SmartSBD also only requires the modifications at the sender, so
the content providers can also deploy SmartSBD following the group-
ing way. How to deploy SmartSBD is relevant to the user scale and
distribution of a content provider, which is beyond the scope of this
paper.

In this paper, we mainly consider the shared bottleneck detection
problem of two-subflow MPTCP, and the reasons are two-fold. First,
the shared bottleneck detection problem of two-subflow MPTCP is a

basis for the problem of MPTCP with 3 or more subflows. In Section 7,
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Fig. 2. Network setups in data collection component. The wireless access links in
these network setups are real, so they have wireless characteristics, e.g., random loss.

we show that SmartSBD can be employed as a tool to solve that prob-
lem of MPTCP with 3+ subflows. Second, currently deployed MPTCP
mainly works with two subflows. Today’s mobile devices are commonly
equipped with two interfaces (e.g., all generations of iPhone), and
each MPTCP connection usually creates two subflows through the two
interfaces respectively.

3. Design of SmartSBD

SmartSBD consists of five components: (1) data collection, (2) fea-
ture extraction, (3) feature selection, (4) model selection and tuning,
(5) runtime detection and congestion control. The data collection com-
ponent collects system logs from real-world heterogeneous networks in
both SB and NSB scenarios to trace three state variables of each MPTCP
subflow (Section 3.1); The feature extraction component parses system
logs, extracts discriminative features (Section 3.2); The feature selec-
tion component ranks all features and removes irrelevant features with
low ranks (Section 3.3); The model selection and tuning component
provides the best model from a set of model candidates (Section 3.4);
The runtime detection and congestion control component records state
variables and periodically extracts features from both live subflows,
makes predictions based on the features, predicts whether the subflows
share the same bottleneck link and adopts Coupled CC or Uncoupled CC
based on the prediction results.

In this section, we describe each component of SmartSBD in de-
tail. We also present an example as a demonstration for applying
SmartSBD. The SmartSBD classifiers obtained in the example also rep-
resent SmartSBD to be implemented and evaluated in Sections 4 and 5.
It is worth to note that since we collect datasets over heterogeneous
networks in the example, the SmartSBD classifiers implemented and
evaluated in our paper are generated for heterogeneous networks.

3.1. Data collection

Network Setup: To deploy SmartSBD, content providers need to collect
data and train a SmartSBD classifier first. As shown in Fig. 2(a), content
providers need to choose some of their servers as Data Collection (DC)
Servers. Data collection can be done while their APP users require
content. DC Servers need to have the ability to record the information
of MPTCP connections. We have slightly modified MPTCP v0.94 [35]
based on printk function, to enable DC Servers to record customized
log entries into system log files. Note that we consider the clients
with WiFi and cellular interfaces, making the paths used by MPTCP
connections heterogeneous and making the setup conforming to the
prominent use case of MPTCP [3]. As the bottleneck links mainly affect
the behavior of CC [44,45], and they can be shared or non-shared for
a two-subflow connection, the network setups shown in Fig. 2 support
creating different types of bottleneck scenarios (SB or NSB).

Bottleneck Creation: In the training phase, SmartSBD requires labeled
datasets, i.e., each instance in the datasets has to be labeled by SB or
NSB. In order to collect data with ground-truth labels, SB and NSB
scenarios need to be created. For SB scenario, if the DC Server is
4

rented from cloud platforms, SB can be created by limiting the DC
Server’s bandwidth through the console of the cloud platforms, and if
the DC Server is located in a content provider’s private networks, DC
Server’s bandwidth can be limited by configuring the switch that the DC
Server connects to. Choose a small value for the DC Server’s configured
bandwidth to make it lower than the summed bandwidth of the WiFi
and 4G links of the Client, and then the two subflows run through SB.
Similarly, for NSB scenario, the content provider’s APP can throttle
WiFi and 4G links to some values with relevant system tools (tc or
Wonder Shaper [46] for Linux) and the content provider can configure
the DC Server’s bandwidth larger than the summed bandwidth of the
WiFi and 4G links. Then, the two subflows run through NSB links.

Bottleneck Validation: Although similar methods are applied in ex-
isting studies [1] to create bottlenecks, we argue that the bottleneck
link(s) can still be different from what we expect. Let us consider the
network setup shown in Fig. 2(a). When we try to construct SB scenario,
we set the DC Server’s bandwidth to some value. If the summed
available bandwidth of Net:A and Net:B for our MPTCP connection is
less than that value, the bottleneck links are still non-shared. For the
NSB scenario, we configure WiFi and 4G links to two values, and if the
available bandwidth of Net:C is less than the sum of the two values,
the bottlenecks of both subflows are still the same one.

In order to mitigate the bottleneck mismatch problem, we introduce
our method to validate whether the bottlenecks are configured as we
expect. Our method to the bottleneck validation is: for SB scenario, the
achieved throughput of the MPTCP connection has to be larger than
𝛼 ⋅ 𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑇 (0 < 𝛼 < 1); for NSB scenario, the achieved throughput of
each subflow has to be larger than 𝛼 ⋅𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑇 . During data collection,
the content provider needs to collect data from the same group of users
many times under the same link configuration. We use the maximum
achievable throughput of each subflow/connection in all transmissions
for NSB/SB scenario in each group as the 𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑇 . Only the validated
MPTCP connections are included into our datasets.

State Variable Tracking: The path heterogeneity can be captured by
subflow state variables. Since each subflow runs on a network path,
the path condition impacts the subflow state variables. Thus, the state
variables from different subflows are impacted by path heterogeneity.
We keep record of three state variables (with timestamps) of each
subflow:

1. RTT samples: When the subflow sender receives a new ACK
packet, it obtains a new RTT sample.

2. Congestion state: The implementation of TCP CC in Linux em-
ploys a state machine to hold and change between multiple
states to recover lost packets [47]. The implementation of
MPTCP subflow inherits the congestion state machine [35]. A
subflow can be in four states: Open, Disorder, Recovery,
and Loss. The former two can be regarded as ‘‘uncongested’’
states and the latter two can be viewed as ‘‘congested’’ states.

3. ACK numbers of all ACK packets.

When the sender receives new samples of these state variables or
it finds one of them is changing, SmartSBD records a log entry into
system log files. These state variables estimate the similarity of MPTCP
subflows from various aspects: (1) the RTT trends of subflows sharing
the same bottleneck link may be similar, because their packets are
both in the same queue at the bottleneck link and the queue delay
introduced by the bottleneck link would be similar for the RTT samples
of the two subflows; (2) the subflows that share the same bottleneck
link may lose packets at almost the same time, and the congestion
state can be regarded as a loss indicator; (3) the throughputs achieved
by the subflows sharing the same bottleneck link may be similar, and
ACK numbers can be used to estimate the throughput obtained by each
subflow [48,49].

The state variables directly describing bottleneck link properties are
quite limited at end hosts. Some other studies [49] also utilize conges-
tion window (cwnd) size to extract features. We intentionally do not
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Table 2
Information of Datasets. For each dataset, the # of samples in SB or NSB scenario is 500.
DC server location BG server location SB bandwidth NSB bandwidths (WiFi, 4G) Run time for each sample

Shanghai Beijing 8 Mbps 7 Mbps, 3 Mbps 20 s
Guangzhou Shanghai 8 Mbps 7 Mbps, 3 Mbps 20 s
Silicon Valley Shanghai 8 Mbps 7 Mbps, 3 Mbps 30 s
Frankfurt Shanghai 8 Mbps 7 Mbps, 3 Mbps 30 s
Fig. 3. RTT samples of the two subflows in all datasets. Subflow 1 runs on the 4G
link, and subflow 2 runs on the WiFi link. The diamonds show mean values. The ends
of the whiskers are set following the definition of Tukey boxplot [51] and we omit
outliers.

use it because congestion window is influenced by the path properties
(including bottleneck link properties) and CC algorithm both. We think
the state variables that can directly show bottleneck link properties
would be more helpful and the reached throughput (estimated from
the ACK numbers) is better than the expected throughput (estimated
from cwnd).

Data Collection for Our Demonstration Example: We set up our
data collection infrastructure and collect data from real-world hetero-
geneous networks. Fig. 2(b) shows the setup for our demonstration
example. The DC Server and background server (BG Server) are rented
from public cloud platforms. The DC Client is a PC residing at a
lab in Beijing. It can access a cellular network (4G LTE provided by
China Mobile) and a public WiFi AP (provided by the lab) with a USB
cellular modem and a USB WiFi modem respectively. Through the two
interfaces, the DC Client can build a two-subflow MPTCP connection
with the same server. Since each subflow runs on a different path, the
heterogeneity of the paths impacts the connection. The network setup
in Fig. 2(b) conforming to the prominent use case of MPTCP [3]. The
DC Client establishes an MPTCP connection with the DC Server, which
has two subflows, and, in the meanwhile, builds two TCP connections
with the BG Server as background traffic running through WiFi and 4G
links respectively. The MPTCP connection employs the standard MPTCP
CC, LIA [8,9], and the TCP connections use the standard TCP CC, which
we refer to Reno [15] in the paper.

All hosts run Ubuntu 16.04. The DC Client employs a stable release
of the MPTCP Linux kernel v0.94 [35]. The DC Server runs our
modified MPTCP to trace state variables into system logs. We use iPerf
3 [50] to create all MPTCP/TCP connections. The target bandwidths of
the two background TCP connections between the DC Client and BG
Server are limited to 1.5 Mbps and 3.5 Mbps. As shown in Table 2, the
bandwidths of the bottleneck links are set to 1.5-8 Mbps, so we set the
target bandwidths of background connections to the values of a similar
order of magnitude. As for the bottleneck validation, we used 𝛼 = 0.8
during the data collection, which filtered out ∼30% logs.

In our demonstration example, we would like to see whether our
approach is powerful enough to build a classifier based on the datasets
with very different path conditions. To this end, we deploy the DC
Server in multiple locations to get such datasets: Shanghai and
Guangzhou in Huawei Cloud [52], and Silicon Valley and Frankfurt
in Alibaba Cloud [53]. Table 2 shows information of our datasets.
We collect four datasets, and we use the DC Server locations as their
names (e.g., Shanghai dataset). The network path conditions of these
5

datasets are quite heterogeneous. For example, Fig. 3 shows the boxplot
of two paths’ RTT samples in all datasets. As can be seen, RTTs are
quite diverse in all datasets. Even in the same dataset, the RTTs of
different paths are also very different. Specifically, the median RTT of
subflow 1 is ∼2.5X than that of subflow 2 in Shanghai dataset. Existing
studies [1,2] show that if the variance between the RTTs from different
paths becomes larger, the SB/NSB detection would be more difficult.

3.2. Feature extraction

We extract features that estimate the similarity between the two
subflows. We use the traces after the two subflows have just entered
States Recovery or Loss within a period of time (T ) to compute
features for each instance, because before that the subflows are not
limited by any links. As for the choice of T, we employ 50 times
the larger value of the minimum RTTs of the two subflows. Since the
features are extracted in T during the training phase, our final trained
model can also make classification every T. It is worth to note that such
time period is much shorter than that is used in [1], which is about 175
times the larger value of the minimum RTTs of the two subflows (3.5 s
for 20 ms RTT).

For each subflow of an MPTCP connection, we extract three time
series from the traced three state variables. We extract an RTT time
series directly from RTT samples. The congestion state is printed when
the subflow sender changes it. We use ‘‘1’’ to represent ‘‘congested’’,
and ‘‘0’’ to represent ‘‘uncongested’’. Then, we extract a binarized
congestion state time series. As for ACK numbers, we compute a new
achieved throughput sample from each new ACK through dividing
the new acknowledged data amount (the difference between the ACK
numbers of the new ACK packet and the previous one) by the inter-
arrival time between the new and previous ACK packets. Moreover,
we use the exponentially-weighted moving average (EWMA) to smooth
the throughput samples, because these samples change quickly and
dramatically over time. Using EWMA is also a common technique to
smooth throughput samples [48,49], or relevant estimates (e.g., ACK
inter-arrival time).

We consider three metrics to characterize the similarity or relevance
of these time series: (1) standard deviation (SD), (2) euclidean distance
(ED), and (3) dynamic time warping distance (DTWD) [54]. Before
we compute these metrics, we need to resample the time series with
equidistant time intervals first. Computing these metrics based on
resampled time series is reasonable for SD, and required for ED and
DTWD. We employ the smaller value of the minimum RTTs of the two
subflows as the time interval for resampled time series. Since the RTT
and achieved throughput are changing and we only know their samples
when we receive ACK packets, we leverage linear interpolation to
obtain resampled RTT time series and achieved throughput time series.
Different from these two series, we know the values of congestion state
at any time during T. So the resampled congestion state can be directly
obtained without linear interpolation.

Since SD quantifies the level of variation of a set of data, SD is a
proper metric to characterize the similarity for each resampled time
series. We use the ratio of the SD values to measure the difference
between the two subflows. In time series analysis, ED and DTWD
are two well-known metrics to quantify the similarity between time
series. They have lots of application scenarios: image processing [55],
IoT [56], stock price [57], etc. Although ED is much easier to compute,

DTWD is more robust to dilatations or shifts across the time dimension
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Table 3
All initial features that we extract from each sample. For all ratios, we use the value of the subflow running on WiFi path as the denominator. The rightmost two columns show
the mutual information and relevant ranking of all initial features in our example.

Initial features Abbreviation MI value Rank

Distances between
one-dimensional
time series

ED between subflow RTT time series RTT_ED 0.1694 3
ED between subflow congestion state time series CState_ED 0.1325 5
ED between subflow achieved throughput time series Thpt_ED 0 18
DTWD between subflow RTT time series RTT_DTWD 0.1830 2
DTWD between subflow congestion state time series CState_DTWD 0.1018 9
DTWD between subflow achieved throughput time series Thpt_DTWD 0.0049 17

Distances between
two-dimensional
time series

ED between subflow (RTT, congestion state) vector time series RTT_CState_ED 0.1281 7
ED between subflow (congestion state,achieved throughput) vector time series CState_Thpt_ED 0.0922 10
ED between subflow (RTT, achieved throughput) vector time series RTT_Thpt_ED 0.0476 15
DTWD between subflow (RTT, congestion state) vector time series RTT_CState_DTWD 0.1503 4
DTWD between subflow (congestion state,achieved throughput) vector time series CState_Thpt_DTWD 0.0852 12
DTWD between subflow (RTT, achieved throughput) vector time series RTT_Thpt_DTWD 0.0078 16

Distances between
three-dimensional
time series

ED between subflow (RTT, congestion state, achieved throughput) vector time series RTT_CState_Thpt_ED 0.0587 14
DTWD between subflow (RTT, congestion state, achieved throughput) RTT_CState_Thpt_DTWD 0.0616 13
vector time series

Other

The ratio of minimum RTT of subflows Min_RTT_Ratio 0.1320 6
The ratio of SD of subflow RTT time series RTT_SD_Ratio 0.2638 1
The ratio of SD of subflow congestion state time series CState_SD_Ratio 0.1164 8
The ratio of SD of subflow achieved throughput time series Thpt_SD_Ratio 0.0901 11
m
M
f

s
t
t

Fig. 4. A case to show DTWD would be useful for measuring the similarity between two
TT time series. Two data packets from different subflows of the same connection are
ueued at the bottleneck together, and almost simultaneously leave the same bottleneck
ink at T 1. We hope their RTT samples (circles in Fig. 4(b)) be aligned to each other
efore distance calculation.

han ED [58]. DTWD is widely used in automatic speech recognition,
peaker recognition, or online signature recognition applications [54].
omparing with ED, the main improvement of DTWD is that it com-
utes the best global alignment between two time series before distance
alculation. As the dilatations or shifts across the time dimension also
xist in the time series we are focusing on, DTWD is also suitable for
easuring the similarity in our problem.

Let us take RTT time series as an example. Consider the case shown
n Fig. 4. As shown in Fig. 4(a), RTT has four components, t1, t2, tb, and
tr. While tb is dominated by the queue length at the bottleneck link, t1,
t2, and tr can change over time because of the noise introduced by the
devices along the path.

To understand why DTWD helps measure such similarity, consider
the scenario that one data packet from subflow 1 and another data
packet from subflow 2 are queued at the bottleneck together and almost
simultaneously leave the same bottleneck link at T1. Their related ACK
packets would arrive at the sender at 𝑇1 + 𝑡2 + 𝑡𝑟 and 𝑇1 + 𝑡′2 + 𝑡′𝑟,
espectively. When we measure the similarity of both trends, we hope
hat the two RTT samples obtained from these two ACK packets are
ligned with each other, as shown in Fig. 4(b), because they both
ontain the information of the queuing delay of the bottleneck link at
he same moment. When 𝑡2 + 𝑡𝑟 = 𝑡′2 + 𝑡′𝑟, the two RTT samples are
ligned with each other automatically. ED is sufficient to measure the
imilarity between the time series that satisfy 𝑡2 + 𝑡𝑟 = 𝑡′2 + 𝑡′𝑟 for all
amples. However, when 𝑡2 + 𝑡𝑟 ≠ 𝑡′2 + 𝑡′𝑟 or the values of 𝑡2, 𝑡𝑟, 𝑡′2, and
′

6

𝑟 are influenced by the path noise, we need to first find a best global t
Fig. 5. Overall achieved throughput during T. subflow 1 runs on the 4G link, and
subflow 2 runs on the WiFi link.

alignment between two time series before distance calculation, which
makes DTWD more suitable.

Since the data point in a time series can be scalar or vector,
we combine the three one-dimensional time series into four multi-
dimensional time series, as shown in Table 3. We also use the ratio
of subflow minimum RTT as a feature since it is a basic property of a
subflow.

3.3. Feature selection

We have extracted the initial features that we think can be used to
estimate the similarity between subflows. However, we do not know
whether they are really all useful for our problem and relevant to the
target labels. In order to filter out irrelevant features, we score all the
initial features by calculating mutual information (MI) between each of
them and the target label. Since the target label is discrete and each fea-
ture is continuous, their MI is defined as 𝐼(𝑋, 𝑌 ) =

∑

𝑦 ∫ log 𝜇(𝑥,𝑦)
𝜇(𝑥)𝑝(𝑦)𝑑𝑥,

where Y is the target label, X is a single feature, 𝑝(⋅) is a probability
ass function, and 𝜇(⋅) is a probability density function. To estimate the
I, we employ the nearest-neighbor method proposed in [34]. Then we

ilter out the features with low ranks based on MI estimates.
We apply such method to our example, and the MI estimates are

hown in the Table 3. As we can see, all the features that involve
he achieved throughput have low ranks, and feature Thpt_ED is even
otally independent with the target label. We explore the reason why
he features related to the achieved throughput have low ranks. We
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Fig. 6. Grid search results (mean accuracy) of multiple supervised learning models for top X feature subsets.
suspect that maybe EWMA is not a suitable method to estimate aver-
age achieved throughput. To test our hypothesis, we compute overall
throughput for each instance during T based on the first and last ACK
numbers and their timestamps. The statistical result is shown in Fig. 5.
Compared with the overall throughputs achieved in SB scenario, the
overall throughputs achieved in NSB scenario have a smaller range of
variation. Through further exploration, we find that the default CC al-
gorithm, LIA, cannot make the two subflows share the same bottleneck
link evenly in SB scenario. The difference between the overall through-
puts of the two subflows can be quite large in SB scenario, which
differs from what we expect in Section 3.1. On the other hand, for
NSB scenario, the overall throughputs of the two subflows are mainly
influenced by the bottleneck bandwidths configured by us. Therefore,
the subflows’ achieved throughputs can be seriously impacted by an
MPTCP CC algorithm (in SB scenarios), or bottleneck bandwidths (in
NSB scenarios). Since we do not want our classifier to learn these
information, we decide not to use any of the features that involve the
achieved throughput.

3.4. Model selection and hyperparameter tuning

To train a good classifier, content providers need to select a classi-
fication model and tune its hyperparameters. Two kinds of approaches
can be applied to accomplish these tasks: manual approaches and
automated approaches. Manual approaches are more traditional. For
our problem, content providers can enumerate possible feature combi-
nations based on the feature ranking and compare model candidates
with multiple hyperparameters using Grid Search [59], a common
approach. Then they could select well-performed models according to
comparison results. Comparing with manual approaches, automated
approaches do not need human input, but the output of them may be
more complicated. In our paper, we employ a famous AutoML system,
auto-sklearn (AUTO) [60], which outputs an ensemble of up to 15 kinds
7

Table 4
Hyperparameter spaces of the learning models explored in Grid Search. Selected models
and parameters are underlined.

Learning model Hyperparam. Parameter space

Decision tree Max depth 1,2,. . . ,10,. . . 15
Random forest Max depth 1,2,. . . ,10,. . . 15
SVM with linear kernel C x-axis tick values of Fig. 6(d)

SVM with RBF kernel C x-axis tick values of Fig. 6(d)
(100 is selected)

𝛾 0.01, 0.05, 0.1, 0.25, 0.5, 1

Logistic regression Solvers Liblinear, lbfgs
C x-axis tick values of Fig. 6(d)

of models. Next, we will describe how we apply these approaches in our
example.

Grid Search: Following the feature ranking in Table 3, we construct 9
feature subsets with top ranked features. Then, we employ Grid Search
(specifically GridSearchCV in [59]) to compare the mean accuracy of
multiple classification models with different hyperparameters. Well-
known models like decision tree (DT) [61], random forest (RF) [62],
SVM [63,64], and logistic regression [65] are explored. Table 4 shows
the hyperparameters and their spaces considered in Grid Search. The
hyperparameters considered in the Table 4 are essential to the perfor-
mance of the models. The maximum depth for DT and RF, C for SVM
and logistic regression, and 𝛾 for SVM (RBF) are used to reduce the
risk of overfitting [59,61–65]. The overfitting means that the trained
model behaves well on the training data, but it does not generalize
on other data (e.g., test data). It is usually caused by high complexity
relative to the amount and noisiness of the training data. To avoid
overfitting, the mentioned hyperparameters should be carefully tuned
to make classifiers perform well. In addition, the solver used by the
logistic regression also directly impacts the performance [59,65].

We show the grid search results in Fig. 6. For DT and RF, the
mean accuracy becomes close to 90% when the maximum depth is
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higher than 6 (Figs. 6(a) and 6(b)). We tried to enlarge the number
of trees for RF, but the gain was not significant. For SVM (linear),
the maximum mean accuracy is only around 80% (Fig. 6(c)). For SVM
(RBF), we find 𝐶 = 100 and 𝛾 = 0.1 achieves the highest mean accuracy.

e fix one of them and change the other one to obtain the mean
ccuracy curves (Figs. 6(d) and 6(e)) for different feature subsets. The
esults of logistic regression are quite like the results of SVM (linear).
ts maximum mean accuracy is also only around 80% (Fig. 6(f)). We
ave tried both liblinear [64] and lbfgs [66] solvers and their results
re similar. The mean accuracy of the logistic regression model with
iblinear solver is shown in Fig. 6(f). Among the model candidates, the
VM (RBF) achieves the highest mean accuracy, which is about 92%.

As a result, DT, RF, and SVM (RBF) are more suitable for our
xample. The reasons are (1) these models can easily reach 90% mean
ccuracy, and (2) these non-linear models can learn the non-linear
ecision boundary and generalize well in our datasets. Moreover, we
ind that enlarging feature subset from top 8 to top 9 did not bring
bvious improvement, so we decide to use top 8 features for our demon-
tration example. For each learning model, we select the configuration
f hyperparameters that lead to the best mean accuracy, as shown in
able 4.

utoML: AUTO [60] does not require people to provide a search space
f models and hyperparameters. It automatically builds an ensemble
lassifier consisting of up to 15 types of models. With more time to
rain, the output of AUTO can be more accurate. We set the training
ime to 10 h and use 6 CPU cores (Intel Xeon E5-2603 v4 1.70 GHz) to
rain it for our example. AUTO is a little better than SVM (RBF). The
etailed results are shown in Table 5.

.5. Runtime phase

Fig. 1 depicts the runtime phase. SmartSBD works when all subflows
re in the congestion avoidance stage. SmartSBD has a monitor module
ecording state variables (with timestamps) of each subflow every T.

At the end of each T, the monitor module first computes the features
and invokes the classifier. Then, SmartSBD may change the MPTCP CC
algorithm to be used in the next T.

. Implementation

For the training phase, we have implemented SmartSBD with ∼1200
ines of Python code. We used the model implementations in
ython-sklearn [59] and python-autosklearn [60] to train

classifiers with all selected models (DT, RF, SVM and AUTO), config-
ured with tuned hyperparameters if applicable. We employ the python
class SelectKBest to select features, and we use the python classes,
DecisionTreeClassifier, RandomForestClassifier, SVC, and AutoSklearn-
Classifier, implemented in sklearn.tree, sklearn.ensemble, sklearn.svm,
and autosklearn.classification modules to train the selected models
respectively. The trained classifiers are saved in some files to be used
in the runtime phase.

For the runtime phase, we have implemented SmartSBD (DT) and
SmartSBD (RF) with ∼1800 lines of C code. The implementation of
MPTCP in the Linux kernel [35] supports a framework to realize a new
CC scheme as a Linux kernel module. Then, we implement SmartSBD
(DT) and SmartSBD (RF) as a new MPTCP CC Linux kernel module
in MPTCP v0.94 [35], which is based on Linux kernel v4.14. The
kernel module reads the classifiers from the mentioned files during
module loading, making classifier updates only require modifications
of these files without module recompilation. The monitor module of
SmartSBD is implemented based on two hook functions: pkts_acked
and set_state. SmartSBD makes classification every T. The classi-
fication logic is implemented in pkts_acked function. The CC logic
is implemented in cong_avoid, which adjusts congestion windows
8

according to the MPTCP CC algorithm currently used by SmartSBD. Our
implementation employs Reno [15] on each MPTCP subflow (termed
‘‘MP Reno’’) for Uncoupled CC, and LIA [9] for Coupled CC. We also tried
other alternatives, such as OLIA [10], but the results of the experiments
in Section 5.3 are similar, so we still use LIA, the only MPTCP CC
ocumented in an RFC [8], for Coupled CC.

We tried to implement the classifiers based on SVM or AUTO into
inux MPTCP, however, we have not found a method to support the ex-
onentiation of floating point numbers in Linux kernel modules, which
s required by SVM and AUTO classifiers. MPTCP CC schemes have to
e implemented as Linux kernel modules, but Linux kernel modules do
ot support the exponentiation of floating point numbers. Usually, to
upport the computation of decimal numbers in Linux kernel modules,
hese numbers are scaled up to save in some integer data types (e.g.,

int). Thanks to the scaling method, the four basic operations can be
supported, however, the exponentiation still cannot be done. Therefore,
we only brought SmartSBD (DT) and SmartSBD (RF) into the Linux
MPTCP implementation. Moreover, we also implemented SmartSBD
(DT) and SmartSBD (RF) into ns-3 [67] to support the evaluation
in Section 5.2.

5. Evaluation

In this section, we compare the performance of SmartSBD with
xisting schemes from multiple perspectives. First, we compare the
lassifier of SmartSBD with simulated existing shared bottleneck detec-
ion schemes [1,2,16] in Section 5.1 on real-world traces (the datasets
ollected in Section 3.1). Second, to evaluate the accuracy of SmartSBD
n different unseen path conditions, we build emulated networks (for
inux implementation) and simulated networks (for ns-3 implementa-
ion) with Mininet and ns-3 to assess SmartSBD in Section 5.2. Third,
e compare SmartSBD to other MPTCP CC with the network setup in
ig. 2(b) to show SmartSBD can achieve both throughput maximization

and bottleneck friendliness in Section 5.3. Finally, we evaluate the CPU
overhead of SmartSBD in Section 5.4.

5.1. Accuracy comparison on our demonstration example

As the implementations of existing schemes [1,2,16] are not avail-
able, we develope a simulation program to simulate them and obtain
their accuracies of our demonstration example. The datasets collected
in Section 3.1 include system logs from running MPTCP flows. Our
simulation program reads the logs, simulates the detection processes
of these schemes and outputs detection results.

Schemes Compared:

• SmartSBD: We employ stratified shuffle split cross-validation to
evaluate these classifiers. We repeat the shuffling & splitting 10
times for each model, and use 10% datasets as the test set for each
turn. For each dataset, we also calculate the mean accuracy of the
instances from the same dataset in the test set.

• DWC [2]: Loss and delay are adopted as signals to detect shared
bottlenecks. We simulate DWC following [2]. For each SB/NSB
sample, we run the DWC to compute the time ratio during which
the subflows are in the same set/different sets as the accuracy
results.

• SBD [1]: One-way delay is used as the signal to detect shared
bottlenecks. We simulate SBD following [1]. Since we know the
subflows are traversing bottleneck(s), we omit the inference in
SBD about whether the subflows are transiting the bottleneck(s).
The recommended thresholds used in [1] are also employed in
our simulations. We use ten observations in the last 3.5 s of each

sample to classify.



Computer Networks 237 (2023) 110047E. Dong et al.

a
w
b
l
i
p
s
a
d
s
t
T
i
u
s
a
S
t
w
i
d

Table 5
Mean accuracy comparison. The results of each SmartSBD scheme are computed according to the accuracy on the test set. On the contrary,
DWC, SBD and TON20’s accuracies are obtained from all instances.
Dataset Scheme Mean accuracy of both scenarios SB NSB

SH

SmartSBD (DT) 0.974 0.957 0.992
SmartSBD (RF) 0.981 0.966 0.996
SmartSBD (SVM) 0.977 0.976 0.979
SmartSBD (AUTO) 0.990 0.984 0.996
SBD 0.615 0.728 0.502
DWC 0.595 0.310 0.880
TON20 0.376 0.267 0.485

GZ

SmartSBD (DT) 0.955 0.939 0.971
SmartSBD (RF) 0.957 0.930 0.985
SmartSBD (SVM) 0.966 0.956 0.975
SmartSBD (AUTO) 0.968 0.960 0.976
SBD 0.732 0.750 0.714
DWC 0.625 0.480 0.770
TON20 0.454 0.461 0.447

SV

SmartSBD (DT) 0.807 0.794 0.819
SmartSBD (RF) 0.854 0.866 0.842
SmartSBD (SVM) 0.907 0.884 0.930
SmartSBD (AUTO) 0.933 0.930 0.935
SBD 0.635 0.820 0.450
DWC 0.535 0.160 0.910
TON20 0.473 0.154 0.793

FRA

SmartSBD (DT) 0.848 0.809 0.887
SmartSBD (RF) 0.884 0.864 0.904
SmartSBD (SVM) 0.900 0.850 0.950
SmartSBD (AUTO) 0.937 0.907 0.967
SBD 0.613 0.716 0.510
DWC 0.490 0.120 0.860
TON20 0.503 0.183 0.823

ALL

SmartSBD (DT) 0.896 0.875 0.917
SmartSBD (RF) 0.919 0.907 0.932
SmartSBD (SVM) 0.937 0.916 0.959
SmartSBD (AUTO) 0.957 0.945 0.969
SBD 0.649 0.754 0.544
DWC 0.561 0.268 0.855
TON20 0.452 0.266 0.637
t
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• TON20 [16]: Loss and ECN marks are adopted as signals to
detect shared bottlenecks. However, as stated in Sections 1 and 6,
ECN may not be enabled for the current Internet. Therefore, we
simulate TON20 following [16], except that we only use packet
loss signals. For each SB/NSB sample, we run the TON20 to
compute the time ratio during which the subflows are in the same
Final Judgement state set/other different sets as the accuracy
results.

The mean accuracy results are shown in Table 5. SmartSBD achieves
n overall accuracy of 0.896–0.957 for different models. Compared
ith SBD, DWC and TON20, SmartSBD improves the overall accuracy
y 47.5%, 70.6% and 111.7% respectively on average. DWC only uses
oss signals to trigger group process. However, as we have shown
n Table 3, the distances between subflow congestion states are less
owerful than the distances between subflow RTTs. This means, if the
ubflows sharing the same bottleneck do not lose packets together in

short time, DWC would believe that the subflows are running on
istinct bottlenecks even if the distances between subflow RTT time
eries are very small. As a consequence, DWC tends to believe that
he subflows are running on distinct bottlenecks as can be seen in
able 5. Our datasets are collected from real-world networks, which

s more challenging and different from the ns-2 simulation networks
sed in [2]. SBD is better than DWC because it uses delay based
ignals instead of loss signals. As depicted in Table 3, delay signals
re much more powerful than loss signals. However, the accuracy of
BD in our simulations is much lower than that in [1]. The reasons are
wo-fold. First, wireless links are less reliable and more dynamic than
ired links [14]. SBD is only evaluated over the real wired networks

n [1]. Second, there is a greater difference between path RTTs in our
emonstration. For instance, the median RTT of subflow 1 is ∼2.5X
9

M

han that of subflow 2 in Shanghai dataset, however, SBD is only tested
ith similar RTT paths in [1]. The simulated TON20 only utilizes the

oss signals. Without the help of other signals, TON20 is not robust
nough on our datasets. As we have stated before, the two paths in
ur demonstration are quite diverse, and the results show that TON20
annot handle such situations. In conclusion, SmartSBD can smartly

select more important features and is more suitable for challenging and
complicated real-world heterogeneous environments.

5.2. Accuracy on different unseen path conditions

Our trained model’s universal adaptability is subject to the size of
the datasets used in the training phase. If the datasets could cover a
huge number of path conditions, the trained model would be more
general. However, we wonder whether our approach can train a high-
accuracy classifier with size-limited datasets (e.g., the datasets in our
demonstration example) for common but different path conditions
(different from those in our demonstration example). We generate 10
NSB/SB scenarios with Mininet [68] and ns-3 simulator [67]. Figs. 7(a)
and 7(b) show the topologies. Two Mininet/ns-3 hosts act as the server
and the client. We configure the bandwidths of Links 1–3 and the base
RTTs (the minimum RTT or the RTT without queuing delay) of the
two paths to create the path conditions we need. For the RTT config-
urations, only Links 2 and 3 are configured delay, while other links
(between devices including hosts and switches) are not configured, i.e.,

s. The parameters are presented in Table 6. To emulate/simulate
ifferent path conditions brought by heterogeneous paths, we configure
he parameters of the two paths with quite different values. Moreover,
he path conditions are different from those created in Section 3.1.

e install the linux implementation of SmartSBD on Mininet hosts for

ininet emulations and use the ns-3 implementation of SmartSBD on
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Fig. 7. The topology used in Section 5.2 and accuracy results.

Table 6
Path parameters in Section 5.2.

Cases Bandwidth (Mbps) Base RTT (ms)

Link 1 Link 2 Link 3 Path 1 Path 2

NSB1 10 30 50 100 40
NSB2 10 30 50 100 20
NSB3 10 30 50 40 40
NSB4 10 30 50 40 20
NSB5 10 30 50 20 20

SB1 50 30 10 40 20
SB2 50 30 10 20 20
SB3 50 10 30 100 20
SB4 50 10 30 40 20
SB5 50 10 30 40 40

s-3 hosts. Each experiment runs 60 s, and we repeat 10 times for each
ase. The results are shown in Fig. 7(c). Although the overall mean
ccuracy for all cases, 0.858, is less than those in Table 5, considering
he different unseen path conditions, our learning-based data-driven
pproach is still promising for shared bottleneck detection.

.3. Throughput maximization and bottleneck friendliness

We evaluate the performance and bottleneck friendliness of the
mplementations of SmartSBD (DT) and SmartSBD (RF) in the Linux
ernel. Since the results are similar, we only show those of SmartSBD
DT). We employ the network setup shown in Fig. 2(b) to create
eterogeneous networks.

.3.1. NSB scenarios (throughput maximization)
We still use the setup shown in Fig. 2(b) and the method described

n Section 3.1 to create the MPTCP flow and background flows. We
till deploy the DC Servers and BG Servers in four locations following
he demonstration example shown in Section 3.1. We configure the
andwidths of the two bottlenecks according to Table 2.

The throughput results are shown in Fig. 8. Note that the MP Reno
lso acts as the Uncoupled CC of SmartSBD, which is illustrated in
ection 4. As we have stated in Section 1, Uncoupled CC cannot ensure
ottleneck friendliness in the SB scenario, so it is not allowed to be
sed in practical deployments [8], where different subflows of one
PTCP connection may share the same bottleneck. In this subsection,
e create the NSB scenario so that the MP Reno can be considered for

he purpose of experiments instead of usage in real-world networks.
oth SmartSBD and MP Reno outperform Coupled CC algorithms: LIA,
10
OLIA, BALIA and MPCC. SmartSBD improves 15.3%–123.7% through-
put compared with Coupled CC algorithms. SmartSBD achieves similar
throughput as MP Reno thanks to its accurate detection. According
to the results in Table 5 and Fig. 8, we can also find that the more
accurate the detection is, the higher the throughput SmartSBD would
achieve. As seen in Fig. 8, MP Reno has a slightly higher throughput
than SmartSBD, but that does not mean MP Reno can be employed
in real-world networks. As we have mentioned in Section 1, in real-
world networks, the subflows of one MPTCP connection may have
the same bottleneck (SB scenario), and Uncoupled CC including MP
Reno will not keep the bottleneck friendliness in such scenario, thus
harming other flows. Therefore, Uncoupled CC is not allowed to be used
in practice [8]. Coupled CC algorithms always think that the subflows
may run through the same bottleneck, so they reduce the increment
of subflow congestion window for each ACK, then the whole MPTCP
connection becomes friendly with other TCP connections in the SB
scenario. However, in the NSB scenario, they would have much lower
throughput.

5.3.2. SB scenarios (bottleneck friendliness)
We use a slightly modified setup to introduce bandwidth compe-

tence at the SB bottleneck. The setup is based on what is shown in
Fig. 2(b) but we introduce a new client (BG Client) into the setup. The
BG Client is located at the same lab with the DC Client. When the DC
Client establishes an MPTCP connection with the DC Server, the BG
Client also generates a TCP connection with the DC Server. These two
connections would compete for the bandwidth at the SB bottleneck,
which is set to 16 Mbps.

The throughputs achieved by LIA, OLIA, and BALIA can be regarded
as benchmarks to measure the ability of SmartSBD to hold bottleneck
friendliness since they are tied to TCP standard AIMD mechanism and
have already shown excellent bottleneck friendliness in a vast number
of existing works [1,2,8–12]. Since using Uncoupled CC (MP Reno) in
SB scenario is known to be bottleneck unfriendly, we only compare
SmartSBD with Coupled CC algorithms. If SmartSBD is able to keep the
friendliness, it would achieve a similar throughput. The goal of all
CC algorithms in this subsection is not the highest throughput. Since
the two MPTCP subflows share the same bottleneck (SB scenarios)
and there is another TCP connection competing bandwidth at the
bottleneck, the bottleneck friendliness of the MPTCP CC algorithms
is embodied by not taking too much bandwidth at the bottleneck.
Fig. 9 shows SmartSBD gains only slightly higher bandwidth than
other benchmarks. Especially, SmartSBD only gets 8.1% more mean
bandwidth than the default MPTCP CC, LIA. If SmartSBD made mistakes
frequently, it would obtain much more bandwidth. As SmartSBD is
accurate in most of time, it holds the friendliness well. It is worth
noting that SmartSBD is more friendly than MPCC, an online-learning
MPTCP CC, derived from the PCC framework [45,69]. MPCC gains
18.1%–20.2% than other Coupled CC algorithms, more aggressive than
SmartSBD.

5.3.3. Shifting bottleneck scenarios
SmartSBD periodically makes decisions, which enables itself to

adapt to bottleneck shifts. We construct shifting bottleneck scenarios,
which continue 180 s. In the first 60 s and the last 60 s, we use the SB
setup described in Section 5.3.2. In the middle 60 s, we construct a NSB
scenario by limiting the bandwidths of the two bottlenecks following
Table 2. Since in our shifting bottleneck scenarios, subflows may run
through the same bottleneck, and using Uncoupled CC (MP Reno) in
SB scenario is known to be bottleneck unfriendly, we only compare
SmartSBD with Coupled CC algorithms in this subsection.

We use the mean throughput for each second as the results, depicted
in Fig. 10. SmartSBD needs some time to make decisions (∼3 s for SH,
∼4 s for GZ, ∼11 s for SV, ∼16 s for FRA). The duration of decision
making is determined by T, which is 50 times the larger value of the
minimum RTTs of the two subflows, first introduced in Section 3.2.
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Fig. 8. Throughput of MPTCP flows in NSB scenarios (We omit the outliers.). The results are normalized to the means of SmartSBD. Compared with Coupled CC algorithms,
SmartSBD improves throughput in NSB scenarios. For all the boxplots in this paper, the ends of the whiskers are set according to the definition of Tukey boxplot [51], and the
diamonds show mean values.
Fig. 9. Throughput of MPTCP flows in SB scenarios (We omit the outliers.). The results are normalized to the means of SmartSBD. SmartSBD achieves only slightly higher
bandwidth than other algorithms, which indicates it keeps bottleneck friendliness in SB scenarios.
Fig. 10. Throughput of MPTCP flows in shifting bottleneck scenarios. SmartSBD achieves higher bandwidth in NSB phases and keeps bottleneck friendliness in SB phases. We use
he mean throughput for each second as the results.
M
t

5

r
v
o
n
u
o
c

t is worth to note that such time period is much shorter than that is
sed in [1], which is about 175 times the larger value of the minimum
TTs of the two subflows (3.5 s for 20 ms RTT). According to recent
easurement studies [70–72], more and more cloud datacenters are

uilt, and the end-to-end latencies have decreased from 100 ms to
0–25 ms. Moreover, [71,72] show that 53 countries can access the
loud with RTTs less than 20 ms, including most areas of Europe and
orth America, and two countries with large populations, China and

ndia. With the help of CDN techniques, the clients in these countries
sually access their local datacenters resulting in the mentioned small
TTs, and SmartSBD can make detection less than 1 s in such cases
minimum RTT less than 20 ms). In the evaluation, we rent servers
dentical to those used in the data collection phase, and these servers
re accidentally far from the client, leading to high RTTs, more than
00 ms on average. However, considering the help of widely deployed
DNs, most clients in the real world are much near the servers, re-
ulting in much less detection delay of SmartSBD. In NSB phase, after
he change of CC, SmartSBD achieves a notably higher throughput
ecause it finds out the two subflows are running through distinct
ottlenecks, and thus SmartSBD employs Uncoupled CC. In SB phase,
fter the change of CC, SmartSBD has a similar throughput as LIA,
11

ndicating it keeps bottleneck friendliness. Compared with SmartSBD,
PCC exhibits worse bottleneck friendliness in SB phases, while less
hroughput in NSB phase.

.4. CPU overhead

The CPU overhead introduced by SmartSBD consists of three parts:
ecording of state variables, feature computing and classification. State
ariable recording is triggered when the sender receives an ACK packet
r the congestion state of one subflow is changing. That overhead is
eglectable, because the existing sender TCP would also do some state
pdates and records at the same time. Then we focus on the overhead
f feature computing and classification. Our trained model makes
lassification every T. At the end of each T, SmartSBD first computes

features and then makes classification based on these features.
We consider two methods to estimate CPU overhead: (1) Linux

perf; (2) execution time printing. Linux perf is a sampling-based
tool providing a per-function breakdown of CPU cycles [73]. With
perf, we could obtain the percent of CPU used by feature computing
and classification. With printed execution time, we could know their
running time. We evaluate the CPU overhead for the experiments in

Section 5.3.
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Table 7
CPU overhead introduced by SmartSBD in each T.
CPU usage Mean Max. Execution time Mean Max.

Feature computing 0.023% 0.03% Feature computing 2.23 ms 4.41 ms
Classif. of DT 0.032% 0.04% Classif. of DT 4.47 ms 6.26 ms
Classif. of RF 0.035% 0.05% Classif. of RF 4.70 ms 7.36 ms
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The CPU overhead is shown in Table 7. As we can see, both feature
omputing and classification take no more than 0.05% CPU overhead,
hich is minuscule and similar to the CPU overhead of other functions

elevant to congestion control. The mean execution time of feature
omputing is 2.23 ms. The mean execution times of classification are
.47 ms and 4.70 ms for SmartSBD (DT) and SmartSBD (RF) respec-

tively. Since T is the 50 times the larger value of the minimum RTTs
of the two subflows and the RTT between end hosts is usually about a
few milliseconds to hundreds of milliseconds [14], the CPU overhead
of SmartSBD (DT) and SmartSBD (RF) is minuscule and acceptable. It
is worth to note that SmartSBD has less computation overhead than
other RL-based MPTCP CC schemes, e.g., DRL-CC, because SmartSBD
classifier is only invoked once in T while DRL-CC queries the agent

henever the subflow congestion window changes, and the calculation
f the SmartSBD classifier is less complex than the agent of DRL-CC.

. Related work

We classify the related works based on their orientation into three
ategories, as shown in Sections 6.1 to 6.3. Then, we further divide
he related works of one category into several groups. For each group,
e first briefly introduce their core ideas, then we indicate their draw-
acks. For all the schemes presented in this section, they either cannot
nsure bottleneck friendliness and throughput maximization together
or both SB scenario and NSB scenario, or have deployment issues.

.1. Shared bottleneck detection only based on the information from end-
osts

For the schemes of shared bottleneck detection only based on
he information from end-hosts, according to their design goals, we
ivide them into two groups: (1) For the MPTCP; (2) For multiple
onnections/flows.

or MPTCP: DWC proposed in [2] and SBD proposed in [1] detect
shared bottlenecks only based on the end-host information, and they
are designed for the MPTCP protocol. Hassayoun et al. [2] create a set
of rules to identify SB/NSB based on round trip time (RTT) and packet
oss, which are measured by the sender, i.e., the server. Ferlin et al. [1]
hink that RTT is not accurate enough, and they create rules based
n latency variations collected by cooperation between the sender and
eceiver. The detection of SBD is conducted by the receiver, which
eriodically makes decisions and feeds them back to the sender.

Although they can cooperate the MPTCP protocol, they still have
ome limitations. First, the accuracy of rules created by these ap-
roaches are highly dependent on particular network conditions. As
hown in Section 5, the accuracy of the approaches drops sharply,
rom 75% to 56% (Hassayoun et al. [2]) and from 90% to 65% (Ferlin
t al. [1]), respectively, when evaluated with real-world traces. These
esults imply that creating proper rules to identify SB/NSB with high
ccuracy is complicated even in one certain network environment, and
ransforming the rules to identify SB/NSB with high accuracy in a
ifferent network condition is hardly accomplishable. Second, which
ubflow properties (or state variables) have helpful information for the
hared bottleneck detection task is still an open issue and depends on
esearchers’ decisions. Third, they still suffer from deployment issues.
he approach proposed in [2] was only implemented in a simulator,
here a complicated state machine is introduced into the MPTCP sub-

low CC component. Meanwhile, the implementation of Linux MPTCP
12

A

ubflow also includes a CC state machine [35,47], and there is no
dentical state in the two state machines, so how to merge them is
nsolved. As for SBD, coordination between the sender and receiver [1]
akes the deployment difficult, and a dishonest receiver may incur
nfriendliness. Considering the client is usually the receiver in many
pplications, allowing a selfish client to make decisions can result in
nfriendliness. For example, the client can be customized to pursue
igher throughput by always feeding back the information that all
ubflows are running on distinct bottlenecks to make the server employ
he Uncoupled CC, even though the subflows are sharing the same
ottleneck.

or multiple flows: Though the above schemes focus on the problem of
hared bottleneck detection in one single connection of one single flow,
ome schemes detect shared bottlenecks across several connections or
lows [17–21]. They also create rules to detect shared bottlenecks, and
heir rules are based on the information of delay or packet loss events
hat can be collected from end-hosts. The schemes in [17,19–21] inject
robe packets following self-defined patterns, and the scheme in [18]
equires defining new TCP option fields in ACK packets.

Introducing these schemes into MPTCP has several drawbacks. First,
he subflow of standard MPTCP sends packets if it has been scheduled
ome packets and its congestion window does not limit. However, if
e implement the schemes of [17,19–21] into MPTCP, the subflow
ither has to send empty probe packets when there is no packet to
end, or delay the packets that should be sent in order to comply with
he patterns of sending probe packets. Such modifications are huge
ecause they may change the timing of sending packets or the content
f sending packets. These proposals present integration overhead that
ould hinder their wide spread adoption. Second, the scheme proposed
n [18] requires defining new TCP option fields in ACK packets. Such
rotocol modifications need a consensus of TCP/MPTCP community
ince the TCP option field is length limited and all options have to be
nderstood by all TCP/MPTCP implementations. Third, all these pro-
osals [17–21] only consider persistent shared/non-shared bottlenecks.
owever, bottleneck shifts should be considered for MPTCP CC. Finally,

hese proposals [17–21] assume the paths sharing the same bottleneck
ave a similar delay, which is unrealistic in real-world networks.

.2. Shared bottleneck detection based on the information from networks

For the schemes of shared bottleneck detection based on the infor-
ation from networks, according to their design goals, we divide them

nto two groups: (1) For the current Internet; (2) For the networks with
entralized authorities.

or the current Internet: Since the measurements of RTT and packet
oss events at end-hosts can be inaccurate, some researchers propose
o explicitly share more information from the current Internet to help
he end-hosts. Wei et al. [16] proposed a scheme including a ECN-
ased shared bottleneck detection method (TON20). TON20 utilizes
CN (Explicit Congestion Notification) [74] to detect shared bottle-
ecks. Their key idea is that the subflows that are ECN-marked at
he same time have a higher chance of sharing the same bottleneck.
ON20 requires all the devices, including endpoints along network
aths, to enable the ECN mechanism, i.e., all the forwarding devices
nd end hosts not only support the ECN mechanism but also activate
t via reasonable configurations. Moreover, a new research group, Path

ware Networking RG (Panrg) [22], has been established by Internet
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Research Task Force (IRTF) recently in order to share more network
information with end-hosts.

The main drawback of these schemes [16,22] is that they cannot
be assumed enabled on the current Internet. Although recent reports
show that many end hosts enable the ECN mechanism [75] and some
forwarding devices support it [76], to the best of our knowledge, on the
Internet, how to detect ECN-activated forwarding devices are deployed
is still an open issue, which makes people not know the exact number
and proportion of deployed ECN-activated forwarding devices. Thanks
to the huge benefits of the ECN mechanism, we believe that most
Internet paths will enable it in the future, but it may not be enabled
for the current Internet. As for the studies relevant to Panrg, they are
still preliminary and it would take quite a long time to deploy these
in-network schemes.

For the networks with centralized authorities: Since it is hard to
detect shared bottlenecks only according to each end-host’s information
accurately, some SDN-based schemes are proposed [23–30]. Their ideas
are pretty similar: with the assistance of centralized controllers, MPTCP
subflow management can be improved. They make the SDN controller
tell end-hosts how many subflows each MPTCP connection can create,
how to generate the subflows to distribute them on disjoint paths,
how to use the built subflows, how to dynamically add or delete
subflows, etc. Moreover, they also propose new methods to support the
communication between the SDN controller and each end-host, because
existing SDN controllers do not provide any method to communicate
with end-hosts directly. The main drawback of these schemes is that
they can only be used on networks with centralized authorities, e.g.,
DN networks.

.3. Shared bottleneck-unaware MPTCP CC

For the MPTCP CC algorithms that do not rely on the shared
ottleneck detection, they can be described as two groups: Coupled CC
nd ML-based CC.

oupled CC for MPTCP: Several Coupled CC algorithms has been pro-
posed [8–12]. They are designed to conservatively adjust subflow CC
windows to avoid possible bottleneck unfriendliness, even though there
is no risk (i.e., NSB). Though they share the design goal of bottleneck
riendliness, their performance may differ in different scenarios, e.g.,
PCC is more unfriendly than other Coupled CC algorithms. As indi-

cated in Section 1, the main drawback of the Coupled CC algorithms
s that they fail to maximize throughput when there is no shared
ottleneck between two subflows (i.e., NSB).

achine Learning based MPTCP CC: Recently, machine learning
techniques have been applied to improve CC. Existing studies mainly
focus on TCP [37,38,40,41,45,48,69,77]. MPTCP CC has also been
revisited with machine learning techniques. MPCC is an online-learning
MPTCP CC, derived from the PCC framework [45,69]. We evaluate it in
Section 5.3. Reinforcement learning (RL) method has also been applied
to enhance MPTCP CC. DRL-CC [31], SmartCC [32] and MPLibra [33]
are based on RL and require at least one agent running on each
host/server to provide RL-based MPTCP CC service.

For these schemes, they either cannot solve the problem faced
by MPTCP CC, or have deployment issues. As shown in Section 5,
MPCC cannot keep bottleneck friendliness well in SB scenarios. As
for other RL-based schemes, commodity Linux-based devices cannot
support complex computations in the Linux kernel introduced by RL.
The agent of DRL-CC is implemented as a user-space process running
Tensorflow [78]. Every time a subflow congestion window changes, the
CC part in the kernel needs to query the agent, which may introduce
high overhead. The overhead of DRL-CC is not evaluated in [31].
DRL-CC is very complicated, integrating several machine learning tech-
niques, such as Deep Neural Network (DNN) and Long Short-Term
13

Memory (LSTM [79]), etc, and its implementation is not available
online. Some parts of DRL-CC (e.g., the state collection module) are
not introduced in detail in [31], making it hard to realize it correctly.
SmartCC and MPLibra have only been implemented in ns-3 [67], and
how to introduce their RL part into the Linux kernel MPTCP stack is
still an open issue. Moreover, SmartCC does not consider the bottleneck
friendliness issue (the TCP-friendliness issue in [32]).

7. Discussion

Extension to 3 + Subflows: We focus on the shared bottleneck detec-
tion problem of two-subflow MPTCP in previous sections, however, in
this section, we introduce a solution to solve that problem of MPTCP
with 3+ subflows based on SmartSBD. Let 𝑆 be the set of all subflows of
one MPTCP connection. At the end of each T, find a partition (𝑃 ) of 𝑆
that meets two requirements: (1) any two subflows selected from two
different subsets do not share the same bottleneck; (2) for all partitions
satisfied (1), 𝑃 has the maximum number of subsets. Then, for each
𝑠 ∈ 𝑃 , couple all the subflows in 𝑠 to use a Coupled CC algorithm, if
𝑠| > 1; let the subflow in 𝑠 use a Uncoupled CC algorithm, if |𝑠| = 1. In
his solution, SmartSBD can be used to test whether two subflows share
he same bottleneck.

ifferent MPTCP schedulers:We use the default MPTCP packet sched-
ler, LowRTT [80], in this paper. Though a prior study [81] has shown
hat LowRTT can interact adversely with the MPTCP CC, we have not
ound LowRTT has any notable influence on SmartSBD.

pplication of SmartSBD: Although some existing works focus on a
ore general problem of detecting the shared bottleneck link [17–
1], which means their solution may be used in different use cases,
martSBD is specifically designed for MPTCP, like [1,2]. According
o Section 3.3, SmartSBD requires two state variables (RTT samples
nd congestion state) of each subflow to conduct detection. The state
ariables are strongly associated with TCP flows or MPTCP subflows.
he RTT samples are obtained from new ACK packets, and the subflow
ongestion state is defined by the congestion state machine of Linux
CP/MPTCP implementation [35,47]. Moreover, the shared bottle-
eck detection problem of MPTCP CC requires the solution to detect
ottleneck shifts instead of persistent shared/non-shared bottleneck
cenarios. As shown in Section 5.3.3, SmartSBD supports shifting bot-
leneck detection. Therefore, SmartSBD is tightly coupled with the need
f MPTCP CC, passively collects state variables, and does not require
ther behavior modification. Besides MPTCP, SmartSBD can also be
ntroduced into a multipath extension of the emerging transport pro-
ocol, QUIC [82]. Multipath QUIC (MPQUIC) inherits CC from MPTCP
C [13,83], and each QUIC subflow also has the mentioned state
ariables. Maybe the detection method of SmartSBD can be applied to
ther shared bottleneck detection tasks unrelated to multipath trans-
ort. For example, the operators of CDNs or cloud platforms may adopt
martSBD so as to enhance the quality of their services transparently
rom users. However, this paper focuses on the shared bottleneck
etection problem in multipath transport like SBD or DWC.

Though the usage of SmartSBD needs cooperation with content
roviders, the performance gain is convincingly large. As indicated
n Section 5.3.1, SmartSBD can lead to up to 123.7% throughput
mprovement in NSB scenario, compared with existing MPTCP CC. We
hink the NSB scenario is more common than the SB scenario in prac-
ice. In recent years, many researchers have studied how to improve
he performance of transport protocols on wireless networks [84–
8], because wireless links are prone to be the transport bottleneck.
or the multihomed devices, if one wireless access link becomes a
ottleneck, the two paths do not share the same bottleneck (i.e., NSB
cenario). Thanks to SmartSBD, the aggregated throughput of two paths
s significantly improved in the NSB scenario, which could motivate
ontent providers to use SmartSBD. Additionally, though SmartSBD is
esigned for heterogeneous networks, and the demonstration is also
uilt for heterogeneous networks, it could be used in traditional wired
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networks. Actually, the two baseline schemes, SBD and DWC, were
only evaluated over wired networks [1,2], and Section 5 shows that
SmartSBD outperforms them. We believe SmartSBD can be applied over

ired networks.

etwork Setups in Real-world Heterogeneous Networks: The net-
work setups shown in Fig. 2 are used in the training phase of SmartSBD
and in Section 5. Compared with the network setups employed in other
papers [1,2,16], the network setups in Fig. 2 are different. In this paper,
we consider the prominent use case of MPTCP [3], which includes
different wireless links on different Internet paths, so both topologies
Figs. 2(a) and 2(b) have 4G and WiFi links. The network setups in
other papers do not include wireless links [1,2,16]. Specifically, (1) the
network setup used in [1] is constructed over NorNet [89], a real-world,
large-scale multi-homing testbed. The method Ferlin et al. used to
create bottlenecks is similar with ours: The links close to endpoints are
leveraged to create bottlenecks because they can be configured more
easily by the endpoints or researchers than other links. However, as
we have mentioned, their topology does not involve any wireless links.
(2) The network setups used in [2] are based on the ns-2 simulator.
The simulated topology does not have wireless links either. (3) The
network setups used in [16] are based on a self-built testbed and ns-
3 simulator. All the links are wired, and all the background traffic is
generated, while part background traffic in our paper and [1] is real
Internet traffic.

Besides collecting system logs from real-world heterogeneous net-
works, like what we have done in our demonstration example, we also
considered building simulation or emulation networks with manually
generated traffic to collect the data needed for training. However, all
the existing simulators or emulators may lack fidelity, so we choose to
build network setups in real-world heterogeneous networks to collect
the data. We believe such a requirement is worthwhile. If a high-
fidelity simulator/emulator is developed and widely used in the future
(Note that the simulator/emulator has to be able to provide almost real
wireless links and almost real background traffic.), we think the data
collection can be done with it instead of constructing network setups
in real-world networks.

8. Conclusion

In this paper, we propose SmartSBD, a first-of-its-kind solution that
enables efficient MPTCP CC achieving both bottleneck friendliness and
throughput maximization via smart shared bottleneck detection. Dif-
ferent from the customized rule-based approach employed in existing
works [1,2,16], SmartSBD is a data-driven approach to detect shared
bottlenecks accurately. Moreover, to make SmartSBD easy to deploy,
we propose SmartSBD as a pure end-host solution that only requires the
standard MPTCP to modify the sender CC and does not need any mod-
ifications in networks. We evaluate SmartSBD through comprehensive
experiments. Compared with existing approaches [1,2,16], SmartSBD
achieves at least 47.5% improvement in average accuracy. For unseen
path conditions, SmartSBD still obtains overall mean accuracy of 0.861.
Compared with existing MPTCP CC algorithms, SmartSBD achieves
15.3%–123.7% throughput improvement in NSB scenario and keeps
bottleneck friendliness in SB scenario. Moreover, SmartSBD outper-
forms SBD [1], the existing scheme with accuracy closest to SmartSBD,
in terms of adaptability to bottleneck shift. Last but not least, the CPU
overhead of SmartSBD is minuscule.
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