
ThreatKG: An AI-Powered System for Automated Open-Source
Cyber Threat Intelligence Gathering and Management

Peng Gao
Virginia Tech

Blacksburg, VA, USA
penggao@vt.edu

Xiaoyuan Liu
University of California, Berkeley

Berkeley, CA, USA
xiaoyuanliu@berkeley.edu

Edward Choi
University of California, Berkeley

Berkeley, CA, USA
edwardc1028@berkeley.edu

Sibo Ma
University of California, Berkeley

Berkeley, CA, USA
siboma@berkeley.edu

Xinyu Yang
Virginia Tech

Blacksburg, VA, USA
xinyuyang@vt.edu

Dawn Song
University of California, Berkeley

Berkeley, CA, USA
dawnsong@berkeley.edu

Abstract
Open-source cyber threat intelligence (OSCTI) has become essential
for keeping up with the rapidly changing threat landscape. However,
current OSCTI gathering and management solutions mainly focus
on structured Indicators of Compromise (IOC) feeds, which are low-
level and isolated, providing only a narrow view of potential threats.
Meanwhile, the extensive and interconnected knowledge found in the
unstructured text of numerous OSCTI reports (e.g., security articles,
threat reports) available publicly is still largely underexplored.

To bridge the gap, we propose THREATKG, an automated sys-
tem for OSCTI gathering and management. THREATKG efficiently
collects a large number of OSCTI reports from multiple sources,
leverages specialized AI-based techniques to extract high-quality
knowledge about various threat entities and their relationships, and
constructs and continuously updates a threat knowledge graph by
integrating new OSCTI data. THREATKG features a modular and
extensible design, allowing for the addition of components to accom-
modate diverse OSCTI report structures and knowledge types. Our
extensive evaluations demonstrate THREATKG’s practical effective-
ness in enhancing threat knowledge gathering and management.

CCS Concepts
• Security and privacy → Vulnerability management; Intrusion
detection systems.

Keywords
threat intelligence; threat knowledge graph; security information
extraction; deep learning

ACM Reference Format:
Peng Gao, Xiaoyuan Liu, Edward Choi, Sibo Ma, Xinyu Yang, and Dawn
Song. 2024. THREATKG: An AI-Powered System for Automated Open-
Source Cyber Threat Intelligence Gathering and Management. In Proceed-
ings of the 1st ACM Workshop on Large AI Systems and Models with Privacy
and Safety Analysis (LAMPS ’24), October 14–18, 2024, Salt Lake City, UT,

The first two authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

LAMPS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1209-8/24/10
https://doi.org/10.1145/3689217.3690613

USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3689217.
3690613

1 Introduction
Despite the dramatic growth in expenses on operational security, we
are still witnessing numerous targeted cyber attacks. These sophisti-
cated attacks leverage various types of exploits and vulnerabilities to
penetrate into the system and steal valuable data. Many high-profile
businesses were plagued with huge losses [3, 6]. To counter these
attacks, it is crucial to always remain aware of the fast-evolving
cyber threat landscape and gain up-to-date knowledge about the dan-
gerous threats. For this reason, security researchers and practitioners
actively gather and summarize knowledge about cyber threats from
past incidents and share the knowledge to the public. Providing a
form of evidence-based knowledge, such open-source cyber threat
intelligence (OSCTI) [37] has the potential to empower various
downstream defensive solutions and has received wide attention.

However, existing OSCTI gathering and management solutions
are inadequate for the increasing complexity and diversity of cy-
ber threats. They mainly focus on collecting and disseminating
structured Indicator of Compromise (IOC) feeds [38]. IOCs are
forensic artifacts of intrusions such as hashes of malware samples,
names of malicious files/processes, and IP addresses and domains of
command-and-control (C&C) servers. Some examples of platforms
that share IOCs are PhishTank [19] and OpenPhish [18] for phishing
URLs and Abuse.ch [9] for malware names and hashes. However,
these low-level and disconnected IOCs are unable to reveal the com-
plete threat scenario, such as how the threat unfolds into multiple
steps, which is common in most sophisticated attacks nowadays [30].
Defensive solutions that rely on these IOCs are easy to evade when
the attacker changes her tools and their signatures [37].

In contrast, a large number of unstructured OSCTI reports have
been overlooked, These reports are composed and shared by secu-
rity researchers and practitioners on public websites to summarize
threat behaviors in natural language text. Some examples of OS-
CTI reports are threat encyclopedia pages [14, 24], security articles
and blogs [5, 21], security news [23], etc. These reports contain not
only IOCs, but also other types of threat knowledge entities, such as
threat actors, adversary tactics, techniques, and procedures (TTPs).
Moreover, these reports contain the semantic relationships between
entities that indicate their interactions (e.g., the read relationship
between two IOCs /bin/tar and /etc/passwd implies the attacker

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3689217.3690613
https://doi.org/10.1145/3689217.3690613
https://doi.org/10.1145/3689217.3690613

LAMPS ’24, October 14–18, 2024, Salt Lake City, UT, USA Peng Gao, Xiaoyuan Liu, Edward Choi, Sibo Ma, Xinyu Yang, and Dawn Song

(a) Semi-structured threat encyclopedia report (b) Unstructured security article

Fig. 1: Example OSCTI reports that contain rich threat knowledge. (a) Semi-structured report snippet [7] from the Trend Micro threat
encyclopedia. The report describes the ransomware, Ransom.Win32.LOCKBIT.YEBGW. (b) Unstructured report snippet [4] from
the Securelist blog. The report describes the CozyDuke threat actor.

gathers user credentials into an archive file to be sent out). These
relationships provide a form of connected knowledge with more con-
text about cyber threats, which is critical to uncovering multi-step
threat behaviors. Studies have shown that defenses based on such
connected knowledge (e.g., IOC interactions [30]) are more robust,
as they capture the threat behaviors that are aligned to the adversary
goals and are harder to change. However, existing solutions lack the
ability to automatically extract such comprehensive knowledge from
natural language OSCTI text.
Goal and challenges. We aim to design and build a new system for
gathering and managing OSCTI that can (1) automatically extract
high-quality knowledge from a large number of unstructured OSCTI
reports from various sources, and (2) store and organize such knowl-
edge in a unified knowledge base that can provide comprehensive
views of different threats. The key challenge is three-fold:

(1) Unified knowledge representation: To model the threats com-
prehensively, the system needs to cover a wide range of entity and
relation types. Moreover, OSCTI reports collected from different
sources have heterogeneous formats: some reports have structured
fields and some reports are mainly composed of text, as shown in
Fig. 1. Also, not all reports from a source are relevant to threats;
some of them may be about advertisements or product promotions,
as reported in [38]. Therefore, the system needs to handle such diver-
sity, filter out irrelevant reports, and unify the gathered knowledge.

(2) Accurate knowledge extraction: Accurately extracting threat
knowledge from natural language text is a challenging task. This
is because of the presence of many nuances specific to the secu-
rity context, such as special characters (e.g., dots, underscores) in
IOCs. These nuances limit the performance of most off-the-shelf
natural language processing (NLP) tools for information extraction.
Moreover, collecting large annotated corpora is critical for training
knowledge extraction models. A key challenge for the threat knowl-
edge extraction domain is the lack of labeled datasets that encompass
the diverse range of entity and relation types that we focus on.

(3) Efficient knowledge management: New OSCTI reports are
being released every day that contain fresh threat knowledge. The

system needs to continuously collect the latest reports from multiple
OSCTI sources, gather new knowledge, and integrate the knowledge
to update its knowledge base. The system also needs to be extensible
to incorporate new OSCTI sources and report formats.

Contributions. We propose THREATKG (∼26K lines of code), a
system for automated OSCTI gathering and management. THREATKG
collects a large number of OSCTI reports from various sources, fil-
ters out irrelevant reports and extracts high-fidelity threat knowledge
using AI-based techniques, constructs a threat knowledge graph, and
updates the knowledge graph by continuously ingesting new data.

To model the threats comprehensively, THREATKG employs a
hierarchical threat knowledge ontology that covers a wide range of
entities. The relations between these entities provide information
about both detailed threat behaviors and high-level threat contexts.
To handle diverse OSCTI report formats and generalize well to new
formats and knowledge, THREATKG separates the knowledge extrac-
tion process into source-dependent parsing and source-independent
extraction. To deeply understand the semantic meaning and connec-
tions between targeted entities, THREATKG employs specialized
deep learning-based techniques to handle the nuances and accurately
extract the knowledge. We further leverage data programming tech-
niques [43] to programmatically build synthetic annotations to train
these models. THREATKG employs an extensible system architec-
ture to continuously gather new knowledge in a timely manner. The
architecture coordinates all individual components in a modular way,
enabling efficient parallelization. Existing components can be turned
off or updated, and new components can be easily added following
the common interface. This allows THREATKG to incorporate new
OSCTI sources or knowledge types.

To demonstrate the use cases of the threat knowledge graph, we
develop two applications: (1) a graphical user interface application
for visualizing, exploring, and searching the knowledge graph (demo
video [26]); (2) a question answering system to facilitate threat
knowledge acquisition using natural language (demo video [27]).

ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence

Gathering and Management LAMPS ’24, October 14–18, 2024, Salt Lake City, UT, USA

ThreatKG

 Database

Neo4j

Other DBMS

or

Porter

Direct Porter

Grouping
Porter

...

Parser

Source 1
Parser

Source 2
Parser

...

Checker

Nonempty
Checker

Non-ads
Checker

Crawler

Source 1
Crawler
Source 2
Crawler

...

Phase I: OSCTI

Report Collection

Extractor

Entity
Extractor

Relation
Extractor

Connector

Neo4j
Connector

Log
Connector
RDBMS

Connector

Phase II: Threat Knowledge Extraction Phase III: Threat Knowledge Graph Construction

Knowledge
Fusion

Entity
Merging
Relation

Deduction

Frontend GUI

IOCs: ...

badactors: ...

malwares: ...

techniques: ...

tools: ...

mitigations: ...

relations: ...

...

Data Representations:
author: ...

publisher: ...

discovered_date: ...

affected_systems: ...

ref_cve: ...

risk_level: ...

description: ...

...

Threat Knowledge Graph

Threat Analysis

Threat Hunting

process x access ***
process y access ***
process x send to ip *
process z access ***

Downstream Security Applications

Threat Search (via
GUI)

Trojan ***

...

Unified Threat

Knowledge Representation

Unified Threat

Knowledge Representation (enriched)

OSCTI Report
Collected OSCTI

Reports
ThreatKG GUI

OSCTI Reports

Webpage PDF

...

Fig. 2: Architecture of THREATKG. Arrows between system components indicate data flows.

2 System Overview
Fig. 2 illustrates the architecture of THREATKG, which consists
of three phases: (1) OSCTI report collection, (2) threat knowledge
extraction, and (3) threat knowledge graph construction. Each phase
consists of one or several processing steps (e.g., Parser, Extractor).
In Phase I, THREATKG collects OSCTI reports from a wide range of
sources (Crawler). In Phase II, THREATKG aggregates multi-page
report files (Porter), parses the reports (Parser), filters out non-threat
reports (Checker), and extracts threat knowledge (Extractor). In
Phase III, THREATKG constructs a TKG and stores it in the database.
THREATKG is fully automated. It collects new reports periodically
and incrementally, and extracts new knowledge from them. It then
integrates the new knowledge into the threat knowledge graph.

Fig. 1a shows a report snippet from the Trend Micro threat ency-
clopedia [7] that describes the Ransom.Win32.LOCKBIT.YEBGW

ransomware. The report has a semi-structured format, with some
structured fields that provide attributes of the malware (e.g., aliases
and platform) and some natural language text that provides detailed
behaviors (e.g., dropping a file). Fig. 1b shows a report snippet from
the Securelist blog [4] that describes the Office Monkeys dropper
used by the CozyDuke threat actor. It primarily contains natural lan-
guage text. We can observe that OSCTI reports have diverse formats
and contain rich threat knowledge. We annotated representative enti-
ties and relations in the report snippets. Some entity-relation triplets
reveal specific threat behavior steps, such as <OfficeMonkeys (Short

Flash Movie).exe, launch, player.exe>. The text may also indicate
the sequential order of some steps, such as “...first...then...” in Fig. 1b.
Some triplets provide high-level threat contexts, such as the Cozy-

Duke actor uses the Office Monkeys (Short Flash Movie).exe drop-
per file to perform the attack. These relations may not be explicitly
expressed by words in the text. We take care of the extration of the
temporal order using dependency parsing and the relations that are
not explicitly expressed by words using neural relation extraction.

3 Report Collection & Ontology
3.1 OSCTI Report Crawlers
We have developed a robust multi-threaded crawler framework that
manages crawlers to collect OSCTI reports from various security

websites, given in Table VIII (Appendix). These websites include
threat encyclopedias [14, 24], enterprise security blogs [5, 21], in-
fluential personal security blogs [20], security news [23], etc. They
provide a rich source of threat knowledge, covering different types
of threats such as malware, vulnerabilities, and attack campaigns.

Our crawler framework can handle the specific layout structure of
each website and collect report URLs for fetching the content. It can
deal with both static pages and dynamically generated content (e.g.,
“View More” in [5]). The framework schedules periodic execution
and reboot after failure for each crawler, ensuring robustness and re-
liability. To improve the crawling efficiency, the framework employs
a multi-threaded design that allows parallel execution of multiple
crawlers, as well as fetching multiple reports for each crawler. With
THREATKG’s extensible architecture, new OSCTI sources can be
easily added by adding a corresponding crawler and a parser.

To expand the knowledge coverage, we additionally collected OS-
CTI reports from APTnotes [11], a repository of publicly-available
reports related to malicious campaigns/activities/software that have
been associated with vendor-defined APT groups. These reports are
in PDF format and are typically longer and more detailed than the
security webpages, which provide complementary threat knowledge.

These OSCTI sources provide different kinds of threat knowl-
edge, which we categorize into three broad types: malware reports,
vulnerability reports, and attack reports.
• Malware reports and vulnerability reports are semi-structured

reports that contain knowledge about malware or vulnerabilities.
They are collected from threat encyclopedias, such as [14, 24].
These reports usually have a title indicating the name of the mal-
ware/vulnerability entity, followed by structured fields indicating
the attributes of the entity and a natural language description of the
behaviors of the entity. Fig. 1a shows an example malware report
snippet on the Ransom.Win32.LOCKBIT.YEBGW ransomware.

• Attack reports are unstructured reports that contain knowledge
about attack campaigns. They are collected from security blogs
and news, such as [5, 20, 21, 23]. These reports mainly contain
natural language text describing the context and behaviors of
attack campaigns. Fig. 1b shows an example attack report snippet
on the CozyDuke APT attack. CozyDuke is the name of the threat
actor/group that is responsible for the attack.

LAMPS ’24, October 14–18, 2024, Salt Lake City, UT, USA Peng Gao, Xiaoyuan Liu, Edward Choi, Sibo Ma, Xinyu Yang, and Dawn Song

3.2 Hierarchical Threat Knowledge Ontology
To model the threats comprehensively, we enumerate key knowl-
edge pieces in our collected reports and design a hierarchical threat
knowledge ontology. Our ontology (shown in Fig. 3) consists of three
layers and covers various entities and relations for both low-level
threat behaviors and high-level threat contexts.

The report context layer contains report-level knowledge. We
create an entity for each report and associate it with attributes such
as title, URL, publication date, etc. These entities help threat analysts
connect other entities (e.g., malware, IOCs, TTPs) from the same
report and form a comprehensive view of the threat. Threat analysts
can also follow the URL attribute to view the original report and
obtain more context. Moreover, we create entities for the specific
authors and CTI vendors who write and create the reports.

The threat behavior layer contains knowledge about low-level
threat behaviors, which are represented by IOCs and their relations.
Previous studies [30, 44] have shown that these relations reveal how
the threat progresses through connected steps. This knowledge can
help identify system call events (e.g., process reading a file) that
belong to the attack sequence. For example, in Fig. 1b, two filename
IOCs, Office Monkeys (Short Flash Movie).exe and player.exe, have
a launch relation. Therefore, we consider various types of IOCs and
their interaction verbs (e.g., read, write, open, send) as their relations
in the threat behavior layer. Example IOC types are filename, filepath,
IP, URL, domain, registry, and MD5/SHA1/SHA256 hashes.

The threat context layer provides high-level contexts essential
for a comprehensive understanding. This layer includes various
entities, including: (1) malware, (2) vulnerabilities, (3) threat ac-
tors (e.g., CozyDuke APT actor [4]), (4) tactics and techniques
(e.g., spearphishing link [16]), (5) vulnerable software (e.g., Mi-

crosoft Word), (6) security-related tools (e.g., Mimikatz), and (7)
mitigations (e.g., data backup), These entities have different types
of relations among them. We use TYPE_ENT to denote an entity
placeholder of the type “TYPE”. Some examples of entity-relation
triplets in this layer are <ACTOR_ENT, use, MALWARE_ENT>,
<ACTOR_ENT, use, TOOL_ENT>, and <SOFTWARE_ENT, has,
VULNERABILITY_ENT>.

Entities in different layers can be related. For example, enti-
ties in the threat behavior layer and the threat context layer that
are extracted from the same report are related to the report entity
through a reported_in relation. In Fig. 1a, the malware entity Ran-

som.Win32.LOCKBIT.YEBGW is related to several filepath IOC
entities through an add relation (after we perform coreference res-
olution). In Fig. 1b, the threat actor entity CozyDuke is related to
the filename IOC entity Office Monkeys (Short Flash Movie).exe

through a use relation. Entities can also have attributes in the form
of key-value pairs (e.g., type of a malware, version of a vulnerable
software). The three layers of ontology collectively model the threats
from multiple dimensions and in different granularities.

4 Threat Knowledge Extraction
4.1 Report Parsing and Relevance Checking
The crawlers collect the OSCTI reports and the porters aggregate
them into multi-page files. Each OSCTI source has a specific struc-
ture, so we use different parsers to parse them (i.e., parsers are
source-dependent). The parsers convert each report into a unified

Threat Behavior Layer

Threat Context Layer

Report Context Layer

Filename Filepath IP URL DomainRegistry Hashes

Malware Vulnerability

Threat Actor

Tactic, Technique

Vulnerable SoftwareSecurity Tool

Mitigation

Report

Vulnerability Report

Malware Report

Attack Report

Author

Intra-IOC relations (e.g. Filename write IP)

Source relation (e.g. reported by)

Behavior linking relations

(e.g. Malware have Filename)

CTI Vendor
Threat Type

Blog Tags

Content Date ...

...

Entity Properties

Entity Properties

Report Attribute Relations

(e.g. provided by)

Relations for interaction between threat concepts

(e.g. Threat Actor use Maleware)

Fig. 3: Hierarchical threat knowledge ontology

threat knowledge representation (UTKR), which is a JSON schema.
We create this schema by iterating through OSCTI reports and adding
fields for new types of knowledge. It has fields such as title, author,
and placeholders for entities and relations. The parsers also parse the
unstructured text blocks and put them into the UTKRs. The extrac-
tors then enrich the UTKRs by extracting more entities and relations
from the unstructured text. Having a unified representation increases
the system’s modularity and extensibility; new components can be
easily added as long as they work with the same schema design.

There could be irrelevant reports that do not contribute knowledge
to model cyber threats, such as empty pages, advertisements, and
product promotions. To filter out these reports, THREATKG employs
a set of checkers that operate on the UTKRs produced by the parsers.
Empty web pages can be easily filtered out. For ads and other irrele-
vant reports, we model the relevance checking process as a binary
classification task and construct AI-based checkers. We engineer a
set of useful features, including: (1) Keyword count and density: We
count the number and proportion of keywords in the report title and
body. We use a list of keywords from MITRE ATT&CK [16], such
as threat actors, malware, tools, techniques, etc.; (2) IOC count and
density: We extract IOCs using regex rules [13]. We only consider
the report body, as most of the titles do not contain IOCs; (3) Report
length: We measure the number of words in the report. We observe
that a longer report is more likely to contain threat behaviors; (4)
TF-IDF values: We calculate the TF-IDF (term frequency–inverse
document frequency) value for each token in the report to prioritize
frequent, unique tokens. We train various machine learning mod-
els (e.g., SVM, Random Forest, XGBoost, LightGBM) using these
features and compare their performance in Section 7.1.

4.2 Threat Entity Extraction
The extractors are source-independent; every extractor extracts the
targeted knowledge from the text in all reports, and the extraction
does not depend on the specific layout structure of each source. By
decoupling the knowledge extraction process into source-dependent
parsing and source-independent extraction, THREATKG can easily

ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence

Gathering and Management LAMPS ’24, October 14–18, 2024, Salt Lake City, UT, USA

incorporate new OSCTI sources (via adding crawlers and parsers)
and new knowledge entities and relations (via adding extractors).

For IOCs, we construct a set of regex rules [13] that cover a wide
range of IOC types. THREATKG incorporates these rules in a rule-
based IOC extractor. For other types of entities that are hard to define
using rules, THREATKG employs a deep learning-based extractor to
perform neural named entity recognition (NER). NER is an infor-
mation extraction task that aims to identify and categorize named
entities in text into pre-defined classes. Deep learning-based ap-
proaches have an advantage over conventional methods like Hidden
Markov Model, as they do not require manual feature engineering
and can better capture the semantic meaning and hidden patterns of
text, resulting in more accurate extraction.

Compared to general text, OSCTI text has many nuances that are
specific to the security context, such as dots, underscores, spaces,
and slashes in IOCs. These nuances can cause errors in most basic
NLP modules (e.g., sentence segmentation, tokenization), and affect
the extraction techniques that rely on these modules. To deal with
these nuances, we substitute the IOCs with meaningful words that fit
the natural language context (e.g., word “FILE” for a file IOC token)
before applying neural NER, and replace them with the original
IOCs after extracting other entities.

To perform neural NER on OSCTI text, we construct a Bidirec-
tional LSTM-CRF (BiLSTM-CRF) model [35] for our deep learning-
based entity extractor. (1) First, we tokenize each input sentence
and convert each token into an embedding vector using one-hot
encoding. (2) Then, we feed the embeddings to the bidirectional
LSTM (BiLSTM) layer, which has two LSTM networks that pro-
cess the input sentence from both directions. LSTM (Long-Short
Term Memory) [32] is known for its capability to capture long-range
dependencies of tokens. However, a single LSTM can only access
information from the past context. For tasks like NER, it is impor-
tant to understand the context of a token from both past and future
contexts. Therefore, we use another LSTM, which processes the
information in a reverse order. The BiLSTM acts as a deep feature
extractor that captures the sequential relationships among the input
tokens. (3) The outputs from the BiLSTM are passed to a linear layer,
which maps the features extracted by the BiLSTM from the feature
space to the tag space. After mapping, the outputs are passed to a
Conditional Random Field (CRF) layer, which predicts the optimal,
joint tags for the whole sentence.

To prepare the training corpus, we use the BIO format to label
tokens with entity tags. The BIO format uses three types of prefixes:
(i) B- prefix, for a token at the start of an entity chunk, (ii) I- prefix,
for a token within a chunk, and (iii) O- prefix, for a token outside a
chunk. Some examples of tags are B-BADACTOR (for threat actor),
B-MALWARE, B-TOOL, B-TECHNIQUE, B-MITIGATION, etc.

4.3 Threat Relation Extraction

Dependency parsing-based relation extraction. As discussed in
Section 2, some relations are directly associated with verbs that
describe the interaction between two entities (e.g., the drop relation
between the malware entity and an IOC in Fig. 1a, the launch re-
lation between the IOCs Office Monkeys (Short Flash Movie).exe

and player.exe in Fig. 1b). Some other relations are not explicitly

indicated by any words in the text (e.g., the use relation between
CozyDuke and Office Monkeys (Short Flash Movie).exe in Fig. 1b).

For the first type, we design a dependency parsing-based relation
extractor to identify the verbs that express the interaction between
two entities. We adopt dependency parsing [34] to analyze the gram-
matical structure of a sentence and constructs a dependency tree.
Then, we use a set of dependency grammar rules [30] to extract the
subject-verb-object relations between the extracted entities. We also
extract the temporal order of the interaction steps by looking for
specific tokens (e.g., “first”, “then”), if present.

Neural relation extraction. For the second type, the dependency
parsing-based approach will not work, as these relations do not have
explicit verbs in the text. Instead, we model the relation extraction
as a multi-class classification task: given a sentence that contains
two entities recognized by our entity extractors, we determine the
relation class between them. The entities include the IOCs recog-
nized by our IOC rules and the other entities recognized by our
BiLSTM-CRF model. Some examples of relation classes are USE

(i.e., using something to achieve a goal), CREATE (i.e., creating or
making something that did not exist before), BREAK (i.e., stopping
or preventing something from happening), FIND (i.e., finding or
locating something), and ALIAS (i.e., two entities being synonyms).
A complete list of relation classes in given in Table IX (Appendix).
In general, two entities could have a relation when they co-occur
within a certain distance. These entities could co-occur in the same
sentence or in different sentences. In our current implementation, we
focus on entities that co-occur in the same sentence, as they are more
likely to produce high-quality relations based on our observations.

To perform neural relation extraction (RE) on OSCTI text, we
construct a Piecewise Convolutional Neural Networks model with
selective attention mechanism (PCNN-ATT) for our deep learning-
based relation extractor. The Piecewise Convolutional Neural Net-
works (PCNN) model [47] is a variation of the Convolutional Neural
Networks (CNN) model that is widely used for image and text clas-
sification tasks. However, PCNN is specially designed for relation
extraction: it splits a sentence into three parts by the two entities
and applies piecewise max pooling to each part, instead of using a
single max pooling to merge features as in CNN. This way, PCNN
can capture the structural information about the sentence and the
two entities, and identify the important tokens between them that in-
dicate the relation. We convert the sentences into embedding vectors
using word embeddings from GoogleNews-vectors-negative300 [1],
position embeddings, and part-of-speech embeddings (indicating the
roles of the words). Moreover, we use an attention laye on top of the
PCNN output to make the model focus on the tokens that are more
relevant for relation extraction.

Before extracting relations, THREATKG performs coreference
resolution [36] to find all the expressions (e.g., pronouns) in the text
that refer to the same entity. Fig. 1 shows some examples of entity
coreferences indicated by the arrows. This way, the relation extractor
can use the information from the resolved entities and the extracted
triplets can form a comprehensive view of threat knowledge.

4.4 Data Programming
To train deep learning-based models for NER and RE, we need a
large annotated corpus. However, manually annotating such a corpus

LAMPS ’24, October 14–18, 2024, Salt Lake City, UT, USA Peng Gao, Xiaoyuan Liu, Edward Choi, Sibo Ma, Xinyu Yang, and Dawn Song

is costly: for NER, we need to tag each token in the text with a label
in the BIO format; for RE, we need to label each sentence in the text
with a relation class and the types and location spans of the entities
in the sentence. Unlike other information extraction domains that
have plenty of labeled datasets, there are no large annotated corpora
for the threat knowledge extraction domain. To reduce the cost of
obtaining supervision, we leverage data programming [43], which
synthesizes annotations programmatically using unsupervised mod-
eling of sources of weak supervision. Specifically, data programming
obtains the domain knowledge expressed by subject matter experts
through labeling functions (which could be noisy rules based on
heuristics), and then denoises and integrates these sources of weak
supervision to synthesize annotations. We use Snorkel [22], an open-
source implementation of data programming, to programmatically
create large training sets for our NER and RE tasks. Snorkel does not
need any labeled data for training (i.e., unsupervised): after we con-
struct labeling functions, it automatically learns and assigns weights
to the labeling functions and produces a single set of noise-aware
confidence-weighted labels for the input samples.

The most important step in synthesizing good annotations is to
define noisy but useful labeling functions, which we spent most of
our efforts on. To synthesize annotations for the NER task, we create
labeling functions based on our curated list of entity keywords. For
example, we construct the list of threat actors, malware, techniques,
and tools from MITRE ATT&CK [16]. To synthesize annotations
for the RE task, we create labeling functions based on distant super-
vision and checking the entity types and keywords existence.

Distant supervision [40] is a technique that uses an existing knowl-
edge base to generate training data. The idea is that if two entities
have a fact in the knowledge base, we can label any sentence that
contains them as a positive example for the relation that the fact
represents. This way, we can create a large number of (noisy) la-
beled sentences. For example, Freebase contains the fact that Barack
Obama and Michelle Obama are married. We use this fact to label
any sentence that has “Barack Obama” and “Michelle Obama” as
a positive example for our marriage relation. In our threat knowl-
edge extraction task, we use MITRE ATT&CK, which is a manually
curated knowledge base by security experts for cyber adversary be-
haviors and can be downloaded as a JSON file. For example, for a
sentence that has a threat actor entity and a malware entity, if the
two entities are in the MITRE ATT&CK and have the “use” relation
type, we label the sentence with the USE relation class.

We also create labeling functions based on heuristic rules that
assign relation labels based on the entity types and the presence of
keywords. For example, for the ALIAS relation, we verify that the
two entities belong to the same type and look for keywords such as
“alias” or “aka”. By leveraging data programming, we can generate
a large amount of training data with low human effort.

5 Extensible System Architecture

Threat knowledge graph construction. After the extractors enrich
the UTKRs, THREATKG constructs the threat knowledge graph
from them and stores it in the database for persistence. Storing
the UTKRs directly is inefficient and makes it hard for end users
(e.g., threat analysts) to understand and analyze them. Therefore,
THREATKG converts these intermediate representations to match the

threat knowledge ontology, which has clear and concise semantics
for entities and relations. This ontology is designed separately from
the UTKRs. THREATKG then integrates the transformed representa-
tions into the database using its connectors. Currently, THREATKG
uses Neo4j, the leading graph database, as its storage, where nodes
are entities and edges are relations. Each node has a category (e.g.,
malware or threat actor), a unique name (e.g., specific malware
name), and a set of attributes. THREATKG can easily support new
database backends by adding the corresponding connectors without
changing the previous components in its processing pipeline.

Modularity and extensibility. THREATKG adopts a modular de-
sign to make the system extensible, which enables multiple system
components in the same processing step to have the same input/out-
put interface. For example, THREATKG uses multiple crawlers to
collect OSCTI reports from various sources, and different porters to
import report data from various formats, such as HTML, PDF, and
compressed files. Moreover, THREATKG supports rich configuration
options: the system can be customized through a configuration file,
which defines the components to use and the parameters to pass to
them (e.g., threshold values for NER). With this design, existing
components can be easily replaced or added.

We parallelize the system components for the processing steps
(e.g., crawlers, parsers, checkers, extractors) to improve the system
efficiency. We define the formats of intermediate representations (i.e.,
UTKRs) and make them serializable between different processing
steps. These UTKRs are enriched as they pass through the pipeline.

Continuous updating. THREATKG is automated and continuously
running to provide the latest threat knowledge in a timely man-
ner. The threat knowledge graph is updated incrementally with new
reports being collected and new knowledge being extracted and
integrated. Different sources may use different identifiers for the
same entity. For example, “ZQuest” and “Z-Quest” refer to the same
adware. To ensure consistency, THREATKG combines knowledge
from multiple sources using knowledge fusion: THREATKG scans
all the entities and merges facts about the same entity by creating a
new entity as the result and moving all relations. A key challenge
is that entities with similar names may be different. For example,
“Petya” and “NotPetya” are two ransomware with names satisfy-
ing a substring relation but are different entities. To address this
challenge, THREATKG uses the contextual information stored with
the entity and only merges two entities when they have a similar
name (e.g., semantic similarity computed using word embeddings)
above a threshold, no conflicts in their attributes, and operate in a
similar environment (e.g., the same platform). By using contextual
information and avoiding conflicts, THREATKG minimizes the in-
formation loss in its knowledge fusion, while providing a consistent
and comprehensive view of entities from multiple sources.

6 Downstream Security Applications
Various security applications can be built upon the threat knowl-
edge graph to enhance the defenses. In this section, we present
two applications that we built to facilitate threat knowledge graph
visualization and exploration and threat knowledge acquisition.

ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence

Gathering and Management LAMPS ’24, October 14–18, 2024, Salt Lake City, UT, USA

6.1 GUI for Threat Visualization and Exploration
To facilitate threat search and threat knowledge graph exploration,
we built a GUI using React and Elasticsearch. The GUI interacts
with the threat knowledge graph stored in the Neo4j database and
provides various types of interactivity. As illustrated in our demo
video [26], the user can zoom in/out and drag the canvas to adjust
the view, click on a node or an edge to see the detailed information,
and search information by keywords (using Elasticsearch) or Cypher
queries (using Neo4j Cypher engine). Once the user drags a node,
the GUI responds to the node movements to prevent overlap through
an automatic graph layout using the Barnes-Hut algorithm [28],
which calculates the nodes’ approximated repulsive force based on
their distribution. The dragged nodes will lock in place but are still
draggable if selected. This feature helps the user create custom graph
layouts for visualization.

The GUI also supports convenient threat knowledge graph navi-
gation. The user can double-click on a node to expand or collapse
its neighboring nodes. If the neighboring nodes are not in the view,
they will appear when the node is double-clicked. If the neighboring
nodes or any downstream nodes are in the view, they will disappear
when the node is double-clicked again. The user can also adjust the
number of nodes and the maximum number of neighboring nodes
displayed for each node, and go back to the previous graphs dis-
played. Our GUI is not tied to the specific database backend, and
it can easily switch to a different database (e.g., RDF store) while
providing the same functionalities.

6.2 Question Answering System
We built a QA system (named THREATQA) on top of TKG to fa-
cilitate threat knowledge acquisition. The user can ask a natural
language question about the attributes or connections of a threat, and
THREATQA will return the answer from the TKG. THREATQA can
handle: (1) simple questions that ask for an entity’s attribute or re-
lated entities, such as “Which CVE ID is exploited by EternalBlue?”,
and (2) complex questions that require multi-hop reasoning, such as
“What common techniques are used by DarkVishnya and Chimera?”

The system follows a three-stage pipeline:
• Stage 1: Entity linking: To link the question to the TKG, THREATQA

first identifies the entities in the question using the neural NER ap-
proach described in Section 4.2. Then, for each entity, it searches
for the most similar entity in the TKG among the entities of the
same category. THREATQA links the entity in the question to the
entity in the TKG with the highest similarity.

• Stage 2: Question intent mapping: THREATQA uses a Roberta-
based intent classifier [39] to identify the question’s intent. Then,
it finds the attribute or relation in the TKG that matches the ques-
tion’s intent. The attribute or relation helps THREATQA to locate
a subgraph of the TKG that contains the answer.

• Stage 3: Query synthesis and answer retrieval: THREATQA adopts
a template-based approach to generate Cypher queries for different
types of questions. It has carefully designed query templates (one
example shown below) that encode the path between the entity in
the TKG and the target answer. It fills in the linked entities into
the query template that matches the asked attribute or relation.
Then, it executes the query over the TKG stored in the Neo4j

Table I: Statistics of our labeled ground-truth OSCTI dataset

Data Source Category # Reports

apt_notes APT Reports 15
kaspersky_threat Threat Encyclopedia 45
symantec_threat Threat Encyclopedia 45
attcybersecurity Enterprise Security Blog 12
crowdstrike Enterprise Security Blog 6
securelist Enterprise Security Blog 7
symantecthreatintelligence Enterprise Security Blog 11
Total: 141

database and retrieves the final answer. This approach ensures that
the query is grammatically correct and reliable.

1 // Cypher query template
2 % // Identify techniques used by a threat actor,

var1
3 % // Return: a list of techniques
4 MATCH (var1:Actor)-[rel:USE]->(var2:Technique)
5 WHERE ACTOR_NAME IN var1.name
6 RETURN var2.name

We built a GUI for THREATQA using React, as shown in our
demo video [27]. The GUI displays the results of each QA process-
ing stage: (1) the recognized question intent (“malware_type”), with
the entities in the question and their categories; (2) the entity linking
result (from the entity name “Downloader.Slime” in the question to
the malware node in the TKG); (3) the synthesized Cypher query
and the final answer (“trojan house”). The GUI also allows the user
to edit the Cypher query to investigate the malware further.

7 Evaluation
We built THREATKG (∼26K lines of code) upon several tools:
Python for the system architecture, BeautifulSoup and Selenium for
the crawlers, scikit-learn and Ray Tune (for hyperparameter opti-
mization) for the checkers, PyTorch for the extractors, Snorkel for
data programming, and Neo4j for the storage backend. We evaluate
our system on several aspects, such as the accuracy of the knowledge
extraction and the performance of the system. We aim to answer the
following key research questions:

(RQ1) How well can THREATKG identify and filter out OSCTI
reports that do not contain any cyber threat information?

(RQ2) How effectively can THREATKG extract threat knowledge
from the OSCTI text? How much does the data programming
technique enhance the extraction performance?

(RQ3) How does THREATKG compare with other baselines in
extracting various types of threat knowledge?

(RQ4) For the runtime performance, is THREATKG efficient enough
to be practical for a real-world deployment?

Evaluation setup. We deployed THREATKG on a server with an
AMD EPYC 7282 CPU (2.80GHz), an Nvidia GRID T4-16Q GPU
with 16GB RAM, and Ubuntu 20.04 as the operating system. To
evaluate the accuracy of THREATKG in extracting threat knowledge
from OSCTI reports, we created a ground-truth labeled dataset from
seven different OSCTI sources, namely: APTnotes attack reports,
two threat encyclopedias, and four enterprise security blogs. These
sources provide diverse and comprehensive OSCTI reports that cover
various types of threat knowledge. We manually labeled 141 reports

LAMPS ’24, October 14–18, 2024, Salt Lake City, UT, USA Peng Gao, Xiaoyuan Liu, Edward Choi, Sibo Ma, Xinyu Yang, and Dawn Song

Table II: Report checker performance (averaged for different classifiers)

Symantec Threat Intelligence Securelist Webroot
Training Procedure Accuracy F1 FPR FNR Accuracy F1 FPR FNR Accuracy F1 FPR FNR

Source-specific 93.33% 95.38% 21.21% 0.00% 81.14% 87.67% 53.62% 3.77% 78.33% 86.02% 64.10% 1.23%
Universal 94.29% 95.92% 13.64% 2.08% 80.04% 86.99% 54.35% 5.03% 73.75% 83.50% 76.92% 1.85%

Table III: Source-specific checker results

Symantec Threat Intelligence Securelist Webroot
Models Accuracy F1 FPR FNR Accuracy F1 FPR FNR Accuracy F1 FPR FNR

Logistic Regression 94.29% 96.00% 18.18% 0.00% 80.26% 87.18% 56.52% 3.77% 80.00% 87.10% 61.54% 0.00%
Random Forest 94.29% 96.00% 18.18% 0.00% 81.58% 88.33% 60.87% 0.00% 77.50% 85.71% 69.23% 0.00%
Linear SVM 94.29% 96.00% 18.18% 0.00% 80.26% 87.18% 56.52% 3.77% 80.00% 87.10% 61.54% 0.00%
Kernel SVM 88.57% 92.31% 36.36% 0.00% 82.89% 88.89% 52.17% 1.89% 80.00% 87.10% 61.54% 0.00%
LightGBM 94.29% 96.00% 18.18% 0.00% 82.89% 88.70% 47.83% 3.77% 77.50% 85.25% 61.54% 3.70%
XGBoost 94.29% 96.00% 18.18% 0.00% 78.95% 85.71% 47.83% 9.43% 75.00% 83.87% 69.23% 3.70%
Average 93.33% 95.38% 21.21% 0.00% 81.14% 87.67% 53.62% 3.77% 78.33% 86.02% 64.10% 1.23%

Table IV: Universal checker results

Symantec Threat Intelligence Securelist Webroot
Models Accuracy F1 FPR FNR Accuracy F1 FPR FNR Accuracy F1 FPR FNR

Logistic Regression 94.29% 95.83% 9.09% 4.17% 84.21% 89.09% 34.78% 7.55% 82.50% 88.52% 53.85% 0.00%
Random Forest 94.29% 96.00% 18.18% 0.00% 76.32% 85.48% 78.26% 0.00% 70.00% 81.82% 92.31% 0.00%
Linear SVM 97.14% 97.96% 9.09% 0.00% 85.53% 90.43% 43.48% 1.89% 72.50% 83.08% 84.62% 0.00%
Kernel SVM 97.14% 97.96% 9.09% 0.00% 72.37% 83.20% 86.96% 1.89% 75.00% 84.37% 76.92% 0.00%
LightGBM 91.43% 93.88% 18.18% 4.17% 82.89% 88.29% 39.13% 7.55% 70.00% 81.25% 84.62% 3.70%
XGBoost 91.43% 93.88% 18.18% 4.17% 78.95% 85.45% 43.48% 11.32% 72.50% 81.97% 69.23% 7.41%
Average 94.29% 95.92% 13.64% 2.08% 80.04% 86.99% 54.35% 5.03% 73.75% 83.50% 76.92% 1.85%

from these sources according to the ontology we defined. Table I
summarizes the statistics of our ground-truth OSCTI dataset. For the
entities, we used the BIO tagging scheme to mark their boundaries
and types. For the relations, we labeled both the relation verbs (if
any) and the relation classes between the entity pairs. We have 17
relation classes in total (shown in Table IX in Appendix), covering
major types of threat behaviors. Two of our authors performed the
labeling task independently and then cross-validated each other’s
results and resolved any disagreements.

7.1 RQ1: Accuracy of Irrelevant Report Filtering
To evaluate the checker performance, we created a dataset by ran-
domly selecting 755 reports from three different OSCTI sources:
Securelist [21], Symantec Threat Intelligence [5], and Webroot [25].
Out of these, 517 reports are relevant to cyber threats and 238 reports
are irrelevant to cyber threats (e.g., reports about advertisements,
security products, cybersecurity education).

OSCTI reports collected from different sources vary in their struc-
tures, writing styles, and topics. We wanted to examine how the
distributional shift in the training data affects the performance of
a classifier that predicts the relevance of a report to cyber threats.
We conducted two experiments. In the first experiment, we trained a
source-specific classifier for each source using only the data from
that source. We then evaluated the classifier on the same source data.
In the second experiment, we trained a universal classifier using the
data from all sources combined. We then evaluated the classifier on
each source data individually. We used six machine learning clas-
sifiers for both experiments: Logistic Regression, Random Forest,
Linear SVM, SVM with RBF Kernel, XGBoost, and LightGBM.

We split the data for each source into 70-10-20 for train/dev/test
sets. We merged the train/dev/test sets from all sources to form the
corresponding sets for the universal classifier.

Table II shows the results averaged for different models. Tables III
and IV contain the results for each individual model. We observe:
(1) For source-specific classifiers, the average F1 scores are above
86% and the average false negative rates (FNRs) are below 3.77%.
The false positive rates (FPRs) are higher. In our problem setting,
a high FPR is acceptable as long as the FNR can be sufficiently
low, because a high FNR means that many relevant reports (and
the contained threat knowledge) are filtered out, while a high FPR
just means that the system is conservative in filtering the reports.
Note that our goal is to extract as much information as possible
without overlooking threat-related articles. (2) The performance of
the universal classifier does not benefit from more training data,
and is worse than the source-specific classifiers for some sources
(e.g., Securelist and Webroot). This verifies the distributional shift
problem in different OSCTI sources that we conjectured previously.
Based on these observations, we recommend training classifiers for
different sources separately to get better checker performance.

7.2 RQ2: Accuracy of Knowledge Extraction
Numerous works have successfully used BiLSTM-CRF to extract
entities from natural language text, achieving excellent performance.
In this RQ, we primarily focus on evaluating the performance of our
relation extractor and the impact of data programming on this task.

Our labeled dataset shown in Table I contains 7308 relations.
We randomly picked 16 reports and constructed the test set using
the relations in them. In the remaining 125 reports, there are 1219

ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence

Gathering and Management LAMPS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table V: Relation extraction performance (aggregated)

Precision Recall Accuracy F1

W/O Data Programming 80% 78% 78% 79%
W/ Data Programming 85% 85% 85% 85%

“non-other” relations and 4615 OTHER relations (assigned when
none of the other relation types match). This dataset is imbalanced
and will negatively impact the trained model performance. Thus,
we under-sampled the OTHER relations to make the dataset more
balanced. After under-sampling, there are 1732 OTHER relations
left. To expand the dataset, we manually labeled 805 additional “non-
other” relations chosen from the same seven OSCTI sources. Finally,
we created train/dev split of 87.5% and 12.5% respectively from the
2024 “non-other” relations and 1732 OTHER relations. The aggre-
gated results for all relation classes are presented in Table V. The
model achieved an F1 score of 79%, which is reasonable considering
the difficulty of the multi-class classification task (17 classes) and
the limited size of the dataset (i.e., 2024 “non-other” relations that
we labeled).

Effectiveness of data programming. To address the data scarcity
issue, we applied data programming to generate more training in-
stances. We labeled 2049 additional “non-other” relations and used
all the 4615 OTHER relations from the 125 reports. We split the
resulting dataset into train/dev subsets with a ratio of 87.5% and
12.5%, respectively. We used the same test set as before, which was
manually labeled from 16 randomly selected reports. For correct
evaluation setup, the test set only includes manual labels and does
not include labels obtained via data programming.

The results in Table V show that data programming significantly
improved the relation extraction performance, from 79% F1 to 85%
F1. Moreover, the model performed better on the relation types
that had fewer training instances in the previous experiment. For
instance, the relation INJECT had an F1 score of 55% with 222
training instances in the previous experiment, but it increased to 72%
with 558 training instances after data programming. These results
confirm the effectiveness of data programming in creating more
training data to enhance the model.

7.3 RQ3: Comparison with Existing Security
Information Extraction Approaches

We compared THREATKG with two state-of-the-art security informa-
tion extraction approaches, TTPDrill [33] and EXTRACTOR [44].,
to further evaluate THREATKG ’s effectiveness in extracting threat
knowledge. We used the same 16 reports that we used for the test set
in Section 7.2, which covered a wide range of threat scenarios, such
as major OS platforms (Linux, Windows, IOS, and Android), well-
known APT campaigns (Stuxnet and Beapy), and common types of
cyber threats (malware and cryptojacking attacks). We ran TTPDrill
and EXTRACTOR on these reports, and used the same THREATKG
model that we trained in Section 7.2 for performance comparison.

Note that TTPDrill and EXTRACTOR are more limited than
THREATKG in the scope of threat knowledge extraction. TTPDrill
only extracts threat actions and maps them to TTP categories, while
EXTRACTOR only extracts subject-predicate-object triplets that
involve IOCs. THREATKG, on the other hand, can extract a wider

range of knowledge types, such as various entities (IOCs, threat
actors, malware, etc.), relations, and entity attributes, from various
OSCTI sources. Another important difference between TTPDrill and
EXTRACTOR and THREATKG is that TTPDrill and EXTRACTOR
only extract limited knowledge from a single OSCTI report, while
THREATKG can extract threat knowledge from a large number of
OSCTI reports from various sources and construct a threat knowl-
edge graph, through an automated system. This makes THREATKG
much more comprehensive in capturing the threat landscape

As the types of entities covered by TTPDrill and EXTRACTOR
are very limited, in our evaluations, we only compare the relations
extracted by TTPDrill and EXTRACTOR with THREATKG. The re-
sults are shown in Table VI. We can observe that: (1) EXTRACTOR
has a lower performance than THREATKG in relation extraction,
because EXTRACTOR can only extract relations between IOCs. (2)
TTPDrill suffers from a low precision, because it aims to extract
threat actions and map them to TTP categories, so it extracts many
phrases that may not be relevant to the relation types.

7.4 RQ4: Runtime Performance
We measured a single-process procedure for all OSCTI reports. The
evaluation took 87.3 hours to finish, reaching a processing through-
put of 24.7 reports per minute. With 11 articles added to the system
every day, the expected daily workload is less than 30 seconds. We
show a performance breakdown analysis in Table VII. We notice
that the extractors take most of the time and the dependency parsing
is the bottleneck. A potential reason is that the sentence-wise de-
pendency parsing for long content OSCTI report is time-consuming.
As evidence, the dependency parsing for the source apt_notes with
an average content length of 32503 characters takes 22.0 seconds
on average (88.5% of total processing time for that source). In con-
trast, for the source symantec_vulnerability with an average content
length of 332 characters, it takes 0.1 seconds on average (71.5%
of total processing time for that source). These results show that
THREATKG is efficient enough for real-world use cases.

8 Related Work
OSCTI services and platforms. Various platforms and services
have been created to manage OSCTI. Platforms like AlienVault OTX
[10], IBM X-Force [12], PhishTank [19], MISP [15], and OpenCTI
[17] allow users to contribute, share, or manage OSCTI. Unlike
these platforms that require user contribution, THREATKG gath-
ers and aggregates threat knowledge automatically using AI-based
techniques. There are also platforms, such as OpenPhish [18] and
Abuse.ch [9], that collect threat knowledge automatically. However,
they only focus on specific types of entities: ThreatMiner focuses on
low-level IOCs (e.g., IPs, domains, and URIs). OpenPhish focuses
on phishing URLs. Abuse.ch focuses on malware and botnets. In ad-
dition, several studies have been proposed to better analyze OSCTI
reports, such as understanding vulnerability reproducibility [42] and
measuring threat knowledge quality (e.g., consistency, accuracy, and
coverage) [29, 37]. Such research is orthogonal to THREATKG.

OSCTI formats and ontologies. There exist open standard formats
such as STIX [8] and OpenIOC [2] for exchanging threat intel-
ligence. They are schemas rather than the large knowlede graph
constructed by THREATKG that contains the actual knowledge. The

LAMPS ’24, October 14–18, 2024, Salt Lake City, UT, USA Peng Gao, Xiaoyuan Liu, Edward Choi, Sibo Ma, Xinyu Yang, and Dawn Song

Table VI: Relation extraction performance (-#false negatives, +#false positives) of TTPDrill, EXTRACTOR, and THREATKG

CTI reports # Words # Manually Labeled Relations TTPDrill EXTRACTOR THREATKG

hunting-for-linux-library-injection-with-osquery 1431 145 (-105, +341) (-128, +207) (-47, +47)
android-backdoor-disguised-as-a-kaspersky-mobile-security-app-65534 233 34 (-28, +130) (-28, +43) (-16, +16)
peer-peer-poisoning-attack-against-kelihosc-botnet 829 43 (-38, +214) (-31, +116) (-6, +6)
dragonfly-energy-companies-sabotage 1095 104 (-88, +619) (-84, +221) (-22, +22)
android-apps-coronavirus-covid19-malicious 388 30 (-24, +105) (-21, +59) (-7, +7)
new-versions-of-the-iexplorer-zeroday-emerge-targeting-defence-and-industri 317 40 (-33, +99) (-30, +55) (-15, +15)
Trojan.Win64.Shelma 17 2 (-0, +13) (-1, +1) (-0, +0)
analyzing-the-security-of-ebpf-maps 1066 105 (-89, +533) (-86, +217) (-31, +31)
security-vpn-ios-macos 400 12 (-9, +187) (-8, +112) (-2, +2)
duqu-next-stuxnet 502 49 (-44, +266) (-38, +89) (-18, +18)
Trojan-DDoS.Win32.Nesmed 12 4 (-4, +6) (-3, +1) (-2, +2)
inside-geinimi-android-trojan-chapter-one-encrypted-data-and-communication 655 11 (-11, +31) (-10, +56) (-1, +1)
beapy-cryptojacking-worm-china 1271 123 (-104, +508) (-102, +316) (-34, +34)
a-few-words-about-the-hlux-botnet-29806 51 11 (-11, +41) (-5, +11) (-2, +2)
google-cloud-platform-security-monitoring-with-usm-anywhere 542 47 (-37, +289) (-33, +129) (-11, +11)
Alienvault_Scanbox 400 28 (-22, +180) (-16, +85) (-6, +6)

Overall Precision 0.038 0.198 0.85
Overall Recall 0.199 0.305 0.85
Overall F-1 Score 0.063 0.217 0.85

Table VII: Runtime performance breakdown

Stage
Total
Processing
Time (h)

Percentage

Porter 0.54 0.6%
Checker 0.03 0.0%
Parser 1.45 1.7%

Extractor 85.26 97.7%

Content relevance
analysis

2.1%

Dependency parsing for
IOC relation extraction

83.1%

BiLSTM CRF entity
extraction recognition

6.0%

Potential
relation marking

0.9%

PCNN-ATT
relation extraction

5.7%

knowledge gathered by THREATKG can be easily converted into
these formats for distribution. MITRE ATT&CK [16] is a knowledge
base for cyber adversary behaviors based on real-world observations.
It is manually curated by security experts and does not focus on
automated knowledge extraction from OSCTI reports as done in
THREATKG. It also does not contain IOC relations. There are some
cyber ontologies [31, 41, 45, 46] that support reasoning, but most of
them only focus on sub-domains of threat knowledge, such as IDS
[41, 46] and malware behavior [31]. None of these works focus on
automated threat knowledge extraction from natural language text.

Security information extraction. Several works have been pro-
posed to extract threat knowledge from text. iACE [38] extracts
IOCs from security articles using a graph mining technique. Chain-
Smith [49] further classifies the extracted IOCs into different attack
campaign stages (e.g., baiting, exploitation, installation, and C&C)
using neural networks. TTPDrill [33] extracts threat actions from
Symantec reports and maps them to pre-defined attack patterns. EX-
TRACTOR [44], ThreatRaptor [30], and HINTI [48] use various
NLP techniques to extract IOC entities and IOC relations. These
work focus extract only IOCs or IOC relations from a single OSCTI
report. In contrast, THREATKG extracts a wider range of entities
(e.g., threat actors, techniques, tools) and relations from multiple
reports to construct a threat knowledge graph.

9 Conclusion
We presented THREATKG, a system for automated open-source
cyber threat intelligence gathering and management. THREATKG
automatically constructs a threat knowledge graph from OSCTI
reports using AI-based techniques. In future work, we aim to ex-
plore other types of security applications that can be enabled by
THREATKG, such as intrusion detection and cyber threat hunting.

Acknowledgement. This work was supported in part by the 2021
Cisco Research Award and the Commonwealth Cyber Initiative
(CCI). Any opinions, findings, and conclusions made in this material
are those of the authors and do not necessarily reflect the views of
the funding agencies.

References
[1] [n. d.]. Word2Vec document. https://code.google.com/archive/p/word2vec/.
[2] 2013. The History of OpenIOC. https://www.fireeye.com/blog/threat-research/

2013/09/history-openioc.html.
[3] 2014. Target Data Breach Incident. http://www.nytimes.com/2014/02/27/business/

target-reports-on-fourth-quarter-earnings.html?_r=1.
[4] 2015. The CozyDuke APT. https://securelist.com/the-cozyduke-apt/69731/.
[5] 2017. Symantec Threat Intelligence. https://symantec-enterprise-blogs.security.

com/blogs/threat-intelligence.
[6] 2020. The Equifax Data Breach. https://www.ftc.gov/equifax-data-breach.
[7] 2021. Ransom.Win32.LOCKBIT.YEBGW. https://www.trendmicro.com/vinfo/

us/threat-encyclopedia/malware/ransom.win32.lockbit.yebgw.
[8] 2021. Structured Threat Information eXpression. http://stixproject.github.io/.
[9] 2022. Abuse.ch. https://abuse.ch/.

[10] 2022. AlienVault OTX. https://otx.alienvault.com/.
[11] 2022. APTnotes. https://github.com/aptnotes/data.
[12] 2022. IBM X-Force Exchange. https://exchange.xforce.ibmcloud.com/.
[13] 2022. ioc-parser. https://github.com/armbues/ioc_parser.
[14] 2022. Kaspersky Threat Encyclopedia. https://threats.kaspersky.com/.
[15] 2022. MISP - Open Source Threat Intelligence Platform & Open Standards For

Threat Information Sharing. https://www.misp-project.org/.
[16] 2022. MITRE ATT&CK. https://attack.mitre.org.
[17] 2022. OpenCTI. https://www.opencti.io/en/.
[18] 2022. OpenPhish. https://openphish.com/.
[19] 2022. PhishTank. https://www.phishtank.com/.
[20] 2022. Schneier on Security. https://www.schneier.com/.
[21] 2022. SecureList. https://securelist.com/.
[22] 2022. Snorkel. https://snorkel.org.
[23] 2022. Sophos News. https://news.sophos.com/en-us/.
[24] 2022. Trend Micro Threat Encyclopedia. https://www.trendmicro.com/vinfo/us/

threat-encyclopedia/.
[25] 2023. Webroot. https://www.webroot.com/blog/.
[26] 2024. Demo Video of Our GUI Application for Threat Knowledge Graph Explo-

ration. https://youtu.be/wR4TdK7uc_U.

https://code.google.com/archive/p/word2vec/
https://www.fireeye.com/blog/threat-research/2013/09/history-openioc.html
https://www.fireeye.com/blog/threat-research/2013/09/history-openioc.html
http://www.nytimes.com/2014/02/27/business/target-reports-on-fourth-quarter-earnings.html?_r=1
http://www.nytimes.com/2014/02/27/business/target-reports-on-fourth-quarter-earnings.html?_r=1
https://securelist.com/the-cozyduke-apt/69731/
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence
https://www.ftc.gov/equifax-data-breach
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/ransom.win32.lockbit.yebgw
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/ransom.win32.lockbit.yebgw
http://stixproject.github.io/
https://abuse.ch/
https://otx.alienvault.com/
https://github.com/aptnotes/data
https://exchange.xforce.ibmcloud.com/
https://github.com/armbues/ioc_parser
https://threats.kaspersky.com/
https://www.misp-project.org/
https://attack.mitre.org
https://www.opencti.io/en/
https://openphish.com/
https://www.phishtank.com/
https://www.schneier.com/
https://securelist.com/
https://snorkel.org
https://news.sophos.com/en-us/
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/
https://www.webroot.com/blog/
https://youtu.be/wR4TdK7uc_U

ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence

Gathering and Management LAMPS ’24, October 14–18, 2024, Salt Lake City, UT, USA

[27] 2024. Demo Video of Our QA System for Threat Knowledge Acquisition. https:
//youtu.be/6IDPQGMwgvM.

[28] Josh Barnes and Piet Hut. 1986. A hierarchical O(N log N) force-calculation
algorithm. nature (1986).

[29] Ying Dong, Wenbo Guo, Yueqi Chen, Xinyu Xing, Yuqing Zhang, and Gang Wang.
2019. Towards the detection of inconsistencies in public security vulnerability
reports. In 28th USENIX Security Symposium (USENIX Security). 869–885.

[30] Peng Gao, Fei Shao, Xiaoyuan Liu, Xusheng Xiao, Zheng Qin, Fengyuan Xu,
Prateek Mittal, Sanjeev R Kulkarni, and Dawn Song. 2021. Enabling efficient cy-
ber threat hunting with cyber threat intelligence. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE). 193–204.

[31] André Grégio, Rodrigo Bonacin, Olga Nabuco, Vitor Monte Afonso, Paulo Lício
De Geus, and Mario Jino. 2014. Ontology for Malware Behavior: A Core Model
Proposal. In 2014 IEEE 23rd International WETICE Conference (WETICE). 453–
458.

[32] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735–1780.

[33] Ghaith Husari, Ehab Al-Shaer, Mohiuddin Ahmed, Bill Chu, and Xi Niu. 2017.
Ttpdrill: Automatic and accurate extraction of threat actions from unstructured text
of cti sources. In Proceedings of the 33rd Annual Computer Security Applications
Conference (ACSAC). 103–115.

[34] Dan Jurafsky. 2000. Speech & language processing. Pearson Education India.
[35] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,

and Chris Dyer. 2016. Neural Architectures for Named Entity Recognition. In
Proceedings of the 2016 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies (NAACL).
260–270.

[36] Kenton Lee, Luheng He, Mike Lewis, and Luke Zettlemoyer. 2017. End-to-end
Neural Coreference Resolution. In The 2017 Conference on Empirical Methods in
Natural Language Processing (EMNLP). 188–197.

[37] Vector Guo Li, Matthew Dunn, Paul Pearce, Damon McCoy, Geoffrey M Voelker,
and Stefan Savage. 2019. Reading the tea leaves: A comparative analysis of threat
intelligence. In 28th USENIX Security Symposium (USENIX Security). 851–867.

[38] Xiaojing Liao, Kan Yuan, XiaoFeng Wang, Zhou Li, Luyi Xing, and Raheem
Beyah. 2016. Acing the ioc game: Toward automatic discovery and analysis of
open-source cyber threat intelligence. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS). 755–766.

[39] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[40] Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. 2009. Distant supervision
for relation extraction without labeled data. In Proceedings of the Joint Conference
of the 47th Annual Meeting of the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP (ACL). 1003–1011.

[41] Sumit More, Mary Matthews, Anupam Joshi, and Tim Finin. 2012. A Knowledge-
Based Approach to Intrusion Detection Modeling. In 2012 IEEE Symposium on
Security and Privacy Workshops (S&P Workshop). 75–81.

[42] Dongliang Mu, Alejandro Cuevas, Limin Yang, Hang Hu, Xinyu Xing, Bing
Mao, and Gang Wang. 2018. Understanding the reproducibility of crowd-reported
security vulnerabilities. In 27th USENIX Security Symposium (USENIX Security).

[43] Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christopher
Ré. 2016. Data programming: Creating large training sets, quickly. In Advances
in neural information processing systems (NeurIPS). 3567–3575.

[44] Kiavash Satvat, Rigel Gjomemo, and VN Venkatakrishnan. 2021. EXTRACTOR:
Extracting attack behavior from threat reports. In 2021 IEEE European Symposium
on Security and Privacy (EuroS&P). 598–615.

[45] Zareen Syed, Ankur Padia, Tim Finin, Lisa Mathews, and Anupam Joshi. 2016.
UCO: A unified cybersecurity ontology. UMBC Student Collection (2016).

[46] J. Undercofer, Anupam Joshi, Tim Finin, and John Pinkston. 2003. A Target-
Centric Ontology for Intrusion Detection. Workshop on Ontologies in Distributed
Systems (2003).

[47] Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao. 2015. Distant supervision
for relation extraction via piecewise convolutional neural networks. Proceedings
of the 2015 conference on empirical methods in natural language processing
(EMNLP) (2015), 1753–1762.

[48] Jun Zhao, Qiben Yan, Xudong Liu, Bo Li, and Guangsheng Zuo. 2020. Cyber
Threat Intelligence Modeling Based on Heterogeneous Graph Convolutional Net-
work. In 23rd International Symposium on Research in Attacks, Intrusions and
Defenses (RAID). 241–256.

[49] Ziyun Zhu and Tudor Dumitras. 2018. ChainSmith: Automatically Learning the
Semantics of Malicious Campaigns by Mining Threat Intelligence Reports. In
2018 IEEE European Symposium on Security and Privacy (EuroS&P). 458–472.

https://youtu.be/6IDPQGMwgvM
https://youtu.be/6IDPQGMwgvM

LAMPS ’24, October 14–18, 2024, Salt Lake City, UT, USA Peng Gao, Xiaoyuan Liu, Edward Choi, Sibo Ma, Xinyu Yang, and Dawn Song

Table VIII: List of OSCTI sources

OSCTI Source Number of Reports Type URL

apt_notes 539 APT Reports https://github.com/aptnotes/data
attcybersecurity 244 Enterprise Security Blog https://cybersecurity.att.com
ciscoumbrella 478 Enterprise Security Blog https://umbrella.cisco.com
cloudflare 1,791 Enterprise Security Blog https://blog.cloudflare.com
crowdstrike 942 Enterprise Security Blog https://www.crowdstrike.com
csoonline 1,258 Enterprise Security Blog https://www.csoonline.com/
darknet 2,107 Enterprise Security Blog https://www.darknet.org.uk
fireeye 209 Enterprise Security Blog https://www.fireeye.com
forcepoint 1,190 Enterprise Security Blog https://www.forcepoint.com
hotforsecurity 9,496 Enterprise Security Blog https://hotforsecurity.bitdefender.com
kasperskydaily 3,350 Enterprise Security Blog https://www.kaspersky.com
krebsonsecurity 2,129 Personal Security Blog https://krebsonsecurity.com
malwarebytes 3,382 Enterprise Security Blog https://blog.malwarebytes.com
mcafee 6,295 Enterprise Security Blog https://www.mcafee.com
nakedsecurity 14,653 Enterprise Security Blog https://nakedsecurity.sophos.com
nccgroup 520 Enterprise Security Blog https://research.nccgroup.com
paloalto 3,284 Enterprise Security Blog https://blog.paloaltonetworks.com
recordedfuture 1,537 Enterprise Security Blog https://www.recordedfuture.com
rsa 71 Enterprise Security Blog https://www.rsa.com
securelist 5,630 Enterprise Security Blog https://securelist.com
shneieronsecurity 8,110 Personal Security Blog https://www.schneier.com
sophos 1,822 Enterprise Security Blog https://news.sophos.com
spiderlabs 1,401 Enterprise Security Blog https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/
symantecthreatintelligence 177 Enterprise Security Blog https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/
thehackernews 8,432 Enterprise Security Blog https://thehackernews.com
threatpost 5,427 Enterprise Security Blog https://threatpost.com/
trendmicro 2,393 Enterprise Security Blog https://blog.trendmicro.com
trendmicrosecurityintelligence 4,001 Enterprise Security Blog https://blog.trendmicro.com/trendlabs-security-intelligence
trustwave 571 Enterprise Security Blog https://www.trustwave.com/en-us/resources/blogs/trustwave-blog/
unit42_paloalto 645 Enterprise Security Blog https://unit42.paloaltonetworks.com/
webroot 1,438 Enterprise Security Blog https://www.webroot.com
welivesecurity 5,780 Enterprise Security Blog https://www.welivesecurity.com
zscaler 770 Enterprise Security Blog https://www.zscaler.com
malwarebytes 163 Threat Encyclopedia https://blog.malwarebytes.com
symantec_threats 37,588 Threat Encyclopedia http://asb-sngweb.symantec.com
symantec_vulnerabilities 7,431 Threat Encyclopedia http://asb-sngweb.symantec.com
kaspersky_threat 1,430 Threat Encyclopedia https://threats.kaspersky.com/en
kaspersky_vulnerability 1,968 Threat Encyclopedia https://threats.kaspersky.com/en
trendmicro_malware 534 Threat Encyclopedia https://www.trendmicro.com
trendmicro_spam 396 Threat Encyclopedia https://www.trendmicro.com
fsecure 4,083 Threat Encyclopedia https://www.f-secure.com

Table IX: List of relation classes that THREATKG covers

No Relation Class Explanation Indicator Verbs

1 use A bad actor, malware, or technique uses something to finish a goal. The action is general, without much detail. use, take, utilize, employ
2 execute An actor executes a specific tool, program, function, etc. perform, parse, execute, conduct, run, calculate, carry out, call, initiate, launch
3 enable A tool/technique enables one thing means this tool/technique makes this thing possible. tunnel, allow, rely, provide, sign, attribute, harden,activate
4 own One thing owns something means such thing contains something or is composed by something. compose, include, consist, contain, inside
5 inject Typically “foo injects bar” means a bad actor foo inserts something malicious, bar into the targets. save, load, attack, install, write, embed, upload, inject, deploy, infect
6 alter “foo alters bar” means foo modifies or changes something bar on the targets to achieve some malicious goals. change, define, affect, compromise, change, configure, tamper, redirect
7 get The subject obtains some information, data, etc. decrypt, retrieve, extract, download, obtain, send, receive, steal, access
8 keep To make something consistent by remaining or storing something. persist, maintain, remain, store, host
9 spread To duplicate and send one thing (typically malware) from one place to other places. spread, circulate, distribute, release, share, duplicate, propagate
10 hide Foo hides bar means foo makes bar unseeable or undetectable. encrypt, hide, obfuscate
11 relate One thing has some relations or communications with another thing. link, match, relate, associate, communicate, connect, alias
12 create To generate or make something that did not exist before. compute, craft, create,build
13 update Neutral word, typically means to update a program to a new version, or update the state. modify, recreate, restructure
14 break Foo breaks bar means foo stops or prevents bar delete, block, destroy, stop, circumvent, bypass, drop
15 find To discover or locate the desired things from the whole dataset. select, find, search, detect, look for, scan
16 mitigate Typically means to alleviate bad influence. mitigate, resolve, protect
17 aim A bad actor/malware aims at one thing means this thing is the target or victim. aim, target, attack, for

https://github.com/aptnotes/data
https://cybersecurity.att.com
https://umbrella.cisco.com
https://blog.cloudflare.com
https://www.crowdstrike.com
https://www.csoonline.com/
https://www.darknet.org.uk
https://www.fireeye.com
https://www.forcepoint.com
https://hotforsecurity.bitdefender.com
https://www.kaspersky.com
https://krebsonsecurity.com
https://blog.malwarebytes.com
https://www.mcafee.com
https://nakedsecurity.sophos.com
https://research.nccgroup.com
https://blog.paloaltonetworks.com
https://www.recordedfuture.com
https://www.rsa.com
https://securelist.com
https://www.schneier.com
https://news.sophos.com
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/
https://symantec-enterprise-blogs.security.com/blogs/threat-intelligence/
https://thehackernews.com
https://threatpost.com/
https://blog.trendmicro.com
https://blog.trendmicro.com/trendlabs-security-intelligence
https://www.trustwave.com/en-us/resources/blogs/trustwave-blog/
https://unit42.paloaltonetworks.com/
https://www.webroot.com
https://www.welivesecurity.com
https://www.zscaler.com
https://blog.malwarebytes.com
http://asb-sngweb.symantec.com
http://asb-sngweb.symantec.com
https://threats.kaspersky.com/en
https://threats.kaspersky.com/en
https://www.trendmicro.com
https://www.trendmicro.com
https://www.f-secure.com

	Abstract
	1 Introduction
	2 System Overview
	3 Report Collection & Ontology
	3.1 OSCTI Report Crawlers
	3.2 Hierarchical Threat Knowledge Ontology

	4 Threat Knowledge Extraction
	4.1 Report Parsing and Relevance Checking
	4.2 Threat Entity Extraction
	4.3 Threat Relation Extraction
	4.4 Data Programming

	5 Extensible System Architecture
	6 Downstream Security Applications
	6.1 GUI for Threat Visualization and Exploration
	6.2 Question Answering System

	7 Evaluation
	7.1 RQ1: Accuracy of Irrelevant Report Filtering
	7.2 RQ2: Accuracy of Knowledge Extraction
	7.3 RQ3: Comparison with Existing Security Information Extraction Approaches
	7.4 RQ4: Runtime Performance

	8 Related Work
	9 Conclusion
	References

