
A Knowledge Base Question Answering System for

Cyber Threat Knowledge Acquisition

Zhengjie Ji

KTH Royal Institute of Technology

zj@kth.se

Edward Choi

University of California, Berkeley

edwardc1028@berkeley.edu

Peng Gao

Virginia Tech

penggao@vt.edu

Abstract—Open-source cyber threat intelligence (OSCTI) pro-
vides a form of evidence-based knowledge about cyber threats,
enabling businesses to gain visibility into the fast-evolving threat
landscape. Despite the pressing need for high-fidelity threat
knowledge, existing cyber threat knowledge acquisition systems
have primarily focused on providing low-level, isolated indica-
tors. These systems have ignored the rich higher-level threat
knowledge entities and their relationships presented in OSCTI
reports, and do not provide a flexible and intuitive way for
threat analysts to acquire the desired knowledge. To bridge
the gap, we propose THREATQA, a system that facilitates
cyber threat knowledge acquisition via knowledge base question
answering. Particularly, THREATQA uses a combination of AI-
based techniques to (1) automatically harvest comprehensive
knowledge about trending threats from massive OSCTI reports
from various sources and construct a large threat knowledge
base, and (2) intelligently respond to an input natural language
threat knowledge acquisition question by fetching the answer
from the threat knowledge base via question answering.

I. INTRODUCTION

Sophisticated cyber attacks have plagued many high-profile

businesses [1]. To gain visibility into the fast-evolving threat

landscape, open-source cyber threat intelligence (OSCTI) [2]

has emerged as an important source of threat knowledge and

has received growing attention. OSCTI provides a form of

evidence-based knowledge about threats in a number of reports

in various forms (e.g., threat reports, security articles, security

news [3], [4]). Despite the pressing need for high-quality threat

knowledge, existing threat knowledge acquisition systems [5]–

[7] have primarily focused on providing simple Indicators

of Compromise (IOCs, e.g., signatures of artifacts, malicious

file names, IP addresses) extracted from OSCTI reports [8].

Though able to provide low-level, isolated indicators, these

systems have ignored (i) higher-level entities (e.g., adversary

tactics, techniques, and procedures (TTPs) [9]) that are tied

to the attacker’s goals and thus are much harder to change,

and (ii) semantic relationships between indicators that are

critical to uncovering the complete, multi-step threat scenario.

As the volume of OSCTI sources increases day-by-day, it

becomes increasingly challenging for enterprise threat analysts

to manually maneuver through and correlate the myriad of

sources (e.g., tons of threat reports) to gain useful knowledge.

Towards this end, there is a pressing need for a new system

that can harvest and supply high-fidelity threat knowledge in

an intelligent, efficient, and principled way.

To leverage the rich threat knowledge provided by OSCTI,

we envision that the system maintains a threat knowledge base,

which automatically harvests and manages high-fidelity threat

knowledge from massive OSCTI reports. Furthermore, to

release threat analysts from the burden of manual and tedious

knowledge acquisition, the system needs to provide knowledge

to the user in a flexible and intuitive manner. Database man-

agement systems provide a way to search through the data via

issuing queries (e.g., SQL, Cypher). However, threat analysts

who are not familiar with the query syntaxes might experience

a steep learning curve, and the manual query construction

process is labor-intensive and error-prone. To enable flexible

and intuitive knowledge acquisition, we envision an intelligent

threat knowledge acquisition process through question answer-

ing (QA): the user asks natural-language questions on desired

attributes of threats, and the system returns the answer fetched

from the underlying threat knowledge base.

There are two major challenges for building such a system.

First, to comprehensively model the threats in the threat knowl-

edge base, the system needs to be able to extract knowledge

from massive OSCTI reports and cover a wide range of threat-

related entities and relations. However, OSCTI reports come

in diverse formats; some reports contain structured fields such

as lists and tables, and some reports primarily consist of

unstructured natural-language texts. Second, accurately ex-

tracting threat knowledge from unstructured OSCTI texts is

non-trivial, due to the presence of massive nuances particular

to the security context (e.g., special characters like dots and

underscores in IOCs). Second, to train AI-based QA models,

a large dataset that contains a diverse set of question-answer

pairs is needed. However, there is no existing QA dataset

available for the cyber threat knowledge acquisition domain.

To bridge the gap, we build THREATQA, an AI-based

system for cyber threat knowledge acquisition via question

answering. THREATQA takes as as input a natural-language

question on attributes of certain threats, and returns the

answer by fetching the corresponding knowledge from the

underlying threat knowledge base. To harvest and store threat

knowledge, THREATQA was built upon our prior efforts on

automated construction of a threat knowledge graph from

massive OSCTI reports [10], which covers a wide range

of threat-related entities and relations. On top of the threat

knowledge base, THREATQA adopts a three-stage, AI-based

pipeline for knowledge base question answering (KBQA). In

3158

2022 IEEE 38th International Conference on Data Engineering (ICDE)

2375-026X/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDE53745.2022.00287

20
22

 IE
EE

 3
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
78

-1
-6

65
4-

08
83

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
53

74
5.

20
22

.0
02

87

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 23,2022 at 17:36:05 UTC from IEEE Xplore. Restrictions apply.

NL Question

ThreatQA

Threat Analyst Threat Knowledge

Answer

Threat Knowledge Gathering & Management

OSCTI Reports

Collection &

Filtering

Threat Knowledge

Ontology

Construction

Threat Knowledge

Extraction

Threat Knowledge

Base Construction

Knowledge Base Question Answering

Rule-Based IOC

Recognition

Entity Matching

Stage 1: Entity Linking

Neural Network-

Based Intent

Recognition Template-Based

Query Synthesis

Stage 2: Attribute

Association

CRF-Based Entity

Recognition

Neural Network-

Based Entity

Recognition

Attribute Mapping

Stage 3: Query Synthesis

Execute

Query

OSCTI Report

Crawlers

Threat Knowledge Base

Fig. 1: The architecture of THREATQA

Stage 1, THREATQA performs entity linking by recognizing

entity mention in the input question and linking it to the

entity in the threat knowledge base. In Stage 2, THREATQA

performs attribute association by first recognizing the intent

of the question and then mapping the intent to the asked

entity attribute/relation in the threat knowledge base. In Stage

3, THREATQA performs template-based query synthesis to

synthesize a database query using the recognized entity infor-

mation and the mapped attribute information. The synthesized

query is then executed over the threat knowledge base to

retrieve the answer. In addition, THREATQA provides a web

UI for constructing questions and getting answers.

To the best of our knowledge, THREATQA is the first system

that facilitates cyber threat knowledge acquisition via KBQA.

Demo video: https://youtu.be/lNAZYgjm7xE

II. THREATQA ARCHITECTURE

Figure 1 shows the system architecture. THREATQA col-

lects OSCTI reports from various sources, uses AI-based tech-

niques to extract high-fidelity threat knowledge as entities and

relations based on a threat knowledge ontology, and constructs

a threat knowledge base containing the entity-relation triplets.

On top of the threat knowledge base, the QA pipeline consists

of three stages: (1) recognizing the entity mention in the input

question and linking it to the entity in the threat knowledge

base; (2) recognizing the intent of the question and mapping it

to the asked attribute/relation of the linked entity in the threat

knowledge base; (3) synthesizing a database query by filling

in a query template and executing the synthesized query over

the threat knowledge base to retrieve the answer.

A. Threat Knowledge Base Construction

THREATQA leverages our prior work, SECURITYKG,

for automated construction of a threat knowledge base

(graph) [10]. Briefly speaking, SECURITYKG maintains robust

and multi-threaded crawlers for 40+ major security websites

(covering threat encyclopedias [3], security blogs [4], etc.).

In addition, SECURITYKG maintains a set of (i) checkers to

screen out OSCTI reports that are irrelevant to cyber threats,

(ii) source-dependent parsers to handle the diverse formats of

OSCTI reports and parse structured fields, and (iii) source-

independent extractors to extract entities and relations from

unstructured texts. Specifically, SECURITYKG uses regular

expression rules to extract IOCs and Conditional Random

Field (CRF) [11] model to extract other types of entities, and a

dependency parsing-based NLP pipeline proposed in our other

work [12] to extract relations between entities.

The threat knowledge base was constructed from 140K+

OSCTI reports and covers a wide range of entities, includ-

ing (1) IOCs (e.g., file name, file path, IP, URL, domain,

registry, hashes), (2) software products (e.g., Microsoft

Outlook), (3) security-related tools (e.g., Mimikatz), (4)

malware (e.g., WannaCry), (5) vulnerabilities (e.g., CVEs),

(6) threat actors (e.g., CozyDuke), (7) tactics and techniques

(e.g., spearphishing link), and (8) report-specific in-

formation (e.g., title, author). To persist the knowledge, the

system currently uses Neo4j database for its storage, with

nodes being entities and edges being relations. In total, the

knowledge base contains 339,601 nodes and 170,8702 edges.

B. Question Generation for QA Dataset Construction

Natural-language questions can generally be divided into

the following categories: factual questions, yes-no questions,

contrastive questions, inferential questions, and opinion ques-

tions [13]. Among them, factual questions are the basis of

other questions. Answers to many questions of other forms,

such as yes-no questions and multiple choices, can be derived

from answers to factual questions. Thus, THREATQA currently

mainly focuses on factual questions. Specifically, we adopt

a template-based approach to construct a large dataset of

question-answer pairs. This approach allows us to construct

a large dataset quickly while maintaining high quality, and

improve the dataset by revising the templates.

First, we define a set of question intents based on the infor-

mation (entities, attributes, relations) in the threat knowledge

base. The question intents encode the relationships between

the asked entity attributes/relations in the questions and the

answers, and serve as the basis for constructing seed question

templates later. The question intents also indicate the sentence

structures of the questions, which will help us perform attribute

3159

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 23,2022 at 17:36:05 UTC from IEEE Xplore. Restrictions apply.

association in the QA pipeline later. After defining question

intents, we construct seed question templates for all entity

categories (e.g., malware) and entity attribute types (e.g., risk

level of malware) in the threat knowledge base. Each seed

question template corresponds to one question intent, but each

question intent may correspond to multiple seed question

templates that query the same information. Each seed question

template contains at least one entity placeholder. Multi-hop

question templates contain two or more entity placeholders.

Once the seed question templates are constructed, more

question templates can be generated to increase variability in

the QA dataset. Specifically, we use Parrot [14], a transformer-

based utterance augmentation framework to paraphrase the

seed question templates. The framework takes a seed question

template as input and outputs several paraphrased questions

with the same meaning. The generated question templates are

semantically equivalent to and have the same question intent

as the original seed question template. With the generated

question templates, we can generate complete questions by

traversing the entities in the threat knowledge base and replac-

ing the placeholders in the question templates with the entity

names. The corresponding attribute values are the answers.

Our dataset in total contains 1M samples of 139 diferent

question templates. Each sample contains the following in-

formation: (1) question; (2) location and type of the entities;

(3) question intent. The train/validation/test split ratio is 8:1:1.

C. Entity Linking

This stage identifies the entities in the question and matches

them with the entities in the threat knowledge base.

First, THREATQA leverages rule-based patterns to extract

IOCs in the question. Then, THREATQA leverages a Condi-

tional Random Field (CRF) [11] model and a neural network

model (RoBERTa [15]) to identify the category information

and the location of other types of entities in the question. The

CRF model is designed for recognizing threat actors, malware,

tactics and techniques, etc., which was trained using the

MITRE ATT&CK [9] information and proposed in our prior

work [10]. The neural network model is used to identify other

types of entities (e.g., software products), and was trained on

our QA dataset for the named entity recognition task. The

hybrid entity recognition method allows THREATQA to have

high entity recognition coverage and accuracy.

After identifying the entities in the question and their cate-

gory information, for each entity-in-question, we traverse the

entities of the corresponding category (for pruning the search)

in the threat knowledge base and calculate their similarity (we

currently use Jaccard similarity, but other similarity metrics are

applicable). The entity-in-question is matched to the entity-in-

knowledge-base with the highest similarity. A similarity value

less than 0.5 indicates that the entity-in-question does not

appear in the knowledge base, and the match will be rejected.

D. Attribute Association

In the attribute association stage, THREATQA identifies

the intent of the input question and maps the intent to the

entity attribute type in the threat knowledge base. For intent

recognition, we model it as a multi-class classification problem

and trained a neural network-based intent classifier using our

QA dataset. The mapped attribute type represents the sub-

graph structure of the threat knowledge base and is used

to retrieve the answer (i.e., attribute value). Specifically, for

each entity attribute type, we design a Cypher query template,

which encodes the path between the entity in the threat

knowledge base and the target answer. Following are an

example question template, its corresponding question intent,

and the corresponding Cypher query template:

Question template:

What is the risk level of malware {MALWARE_NAME}?

Question intent:

Malware.risk_level

Cypher query template:

MATCH (var1:Malware) WHERE var1.name

="{MALWARE_NAME}" RETURN var1.risk_level

E. Query Synthesis

For an input question, once the contained entity and ques-

tion intent are recognized, such information can then be

used to fill in the corresponding Cypher query template to

synthesize a query for execution. A Cypher query template

may contain a single constraint in the WHERE clause, or a

combination of constraints combined with logical operations.

Such template-based approach ensures that the synthesized

query is grammatically correct and thus has high reliability,

which is particularly important for security-related purposes.

By executing the query, THREATQA then obtains the final

answer from the threat knowledge base.

F. Frontend UI Design

To facilitate the user (e.g., threat analysts) to interact with

THREATQA, we built a web UI using React and hosted the

system on a Flask server. After the user enters a question in

the input box, a request is sent to the server, which runs the

THREATQA pipeline. The server then sends the QA results

back to the UI, which are then displayed to the user. The

UI displays the details for intent classification, named entity

recognition, entity linking, synthesized Cypher query, and final

answer. For named entity recognition, the original question

is displayed, with recognized entity mentions colored in red

together with the entity types as subscript texts. For the

synthesized query, the user has the option to modify it to query

additional information from the threat knowledge base.

III. DEMONSTRATION OUTLINE

In our demonstration, we aim to show the complete us-

age scenario of THREATQA by inputting different questions

through its web UI and checking the displayed results.

Question 1. “What is the type of Downloader.Slime?” Here

we demonstrate the basic pipeline of the system. After the

user enters the question, the UI displays the results of each

QA processing stage. Specifically, the UI displays: (1) the

3160

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 23,2022 at 17:36:05 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: The web UI of THREATQA

question’s intent, with the recognized entities in the question

and their categories colored in red; (2) the entity linking result

and the similarity value for each candidate; (3) the synthesized

Cypher query and the final answer after query execution.

Question 2. “What is the risk level of W32.Wullik.Bamm?”

Details on the entity linking stage are highlighted. Jaccard

similarity is calculated between the entity in the question and

the entity in the knowledge base. The system accepts this

match as the similarity score is greater than 0.5.

Question 3. “What is the variant of Infostealer.Lemir.F?”

Through this question, we show how to edit the synthesized

Cypher query. The original question asks about the variant of

malware. By replacing the attribute type “variant” with other

attribute types (e.g., “discovered_date”) in the Cypher query,

the user can obtain more information about the malware.

Question 4. “What is the detailed behavior of Backdoor.

Lassrv?” Through this question, we show the QA pipeline of a

question that asks about the specific behaviors of the malware.

The returned answer consists of several sentences.

Question 5. “Which article reports the fancy bear and the

lazarus group?” Through this question, we show the QA

pipeline for a multi-hop question. This question asks about the

relationship between two entities. Through entity recognition,

the system recognizes the two threat actor entities in the

question. The intent classification component shows that the

question aims at finding the OSCTI reports that include both

threat actor entities. After matching the entities in the question

to the entities in the threat knowledge base, the system

fills the two entities in the corresponding question template,

synthesizes a question that contains a multi-hop search path

for the MATCH clause, and returns the final answer.

Our demo video gives a complete walk through of these

questions and features. To facilitate virtual demonstrations, the

audience can remotely access THREATQA’s web UI using a

browser to input questions. Furthermore, a virtual machine

with a functional instance of the system and the correct

environment configured will be provided. The audience can

download the virtual machine and run THREATQA locally.

IV. RELATED WORK

Besides threat knowledge acquisition systems based on

OSCTI [5]–[7], research progress has been made to better

analyze OSCTI reports, including extracting IOCs [8], un-

derstanding vulnerability reproducibility [16], and measuring

threat intelligence quality [2]. THREATQA distinguishes from

all these works in the sense that it targets facilitating flexible

and intuitive cyber threat knowledge acquisition via knowledge

base question answering. In future work, we plan to connect

THREATQA to our system auditing-based threat protection

systems [12], [17]–[19] to enable intelligent and knowledge-

aware threat protection.

V. CONCLUSION

We have presented THREATQA, a novel system that facili-

tates cyber threat knowledge acquisition via KBQA.

Acknowledgement. This work was supported in part by Cisco

and the Commonwealth Cyber Initiative (CCI), an investment

in the advancement of cyber R&D, innovation, and workforce

development.

REFERENCES

[1] “The 15 biggest data breaches of the 21st cen-
tury,” https://www.csoonline.com/article/2130877/
the-biggest-data-breaches-of-the-21st-century.html.

[2] V. G. Li, M. Dunn, P. Pearce, D. McCoy, G. M. Voelker, and S. Savage,
“Reading the tea leaves: A comparative analysis of threat intelligence,”
in USENIX Security, 2019.

[3] “Trend micro threat encyclopedia,” https://www.trendmicro.com/vinfo/
us/threat-encyclopedia/.

[4] “SecureList,” https://securelist.com/.
[5] “ThreatMiner,” https://www.threatminer.org/.
[6] “ThreatCrowd,” https://www.threatcrowd.org/.
[7] “Alienvault otx,” https://otx.alienvault.com/.
[8] X. Liao, K. Yuan, X. Wang, Z. Li, L. Xing, and R. Beyah, “Acing the ioc

game: Toward automatic discovery and analysis of open-source cyber
threat intelligence,” in CCS, 2016.

[9] “Mitre att&ck,” https://attack.mitre.org.
[10] P. Gao, X. Liu, E. Choi, B. Soman, C. Mishra, K. Farris, and D. Song,

“A system for automated open-source threat intelligence gathering and
management,” in SIGMOD, 2021, demonstrations track.

[11] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional random
fields: probabilistic models for segmenting and labeling sequence data,”
in ICML, 2001.

[12] P. Gao, F. Shao, X. Liu, X. Xiao, Z. Qin, F. Xu, P. Mittal, S. R. Kulkarni,
and D. Song, “Enabling efficient cyber threat hunting with cyber threat
intelligence,” in ICDE, 2021.

[13] D. Jurafsky, Speech & language processing. Pearson Education India,
2000.

[14] “Parrot: Paraphrase generation for nlu.” https://github.com/
PrithivirajDamodaran/Parrot_Paraphraser.

[15] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[16] D. Mu, A. Cuevas, L. Yang, H. Hu, X. Xing, B. Mao, and G. Wang,
“Understanding the reproducibility of crowd-reported security vulnera-
bilities,” in USENIX Security, 2018.

[17] P. Gao, X. Xiao, Z. Li, F. Xu, S. R. Kulkarni, and P. Mittal, “AIQL:
Enabling efficient attack investigation from system monitoring data,” in
USENIX ATC, 2018.

[18] P. Gao, X. Xiao, D. Li, Z. Li, K. Jee, Z. Wu, C. H. Kim, S. R.
Kulkarni, and P. Mittal, “SAQL: A stream-based query system for real-
time abnormal system behavior detection,” in Proceedings of the 27th

USENIX Conference on Security Symposium, 2018, pp. 639–656.
[19] P. Fang, P. Gao, C. Liu, E. Ayday, K. Jee, T. Wang, Y. F. Ye, Z. Liu,

and X. Xiao, “Back-propagating system dependency impact for attack
investigation,” in USENIX Security, 2022.

3161

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 23,2022 at 17:36:05 UTC from IEEE Xplore. Restrictions apply.

