
VFIX: Facilitating Software Maintenance of Smart
Contracts via Automatically Fixing Vulnerabilities

Pengcheng Fang 2, Peng Gao 3, Yun Peng 4, Qingzhao Zhang 5, Tao Xie 6, Dawn Song 7

Prateek Mittal 8, Sanjeev Kulkarni 8, Zhuotao Liu 9, Xusheng Xiao 1*
1Arizona State University, 2Case Western Reserve University, 3Virginia Polytechnic Institute and State University

4The Chinese University of Hong Kong, 5Shanghai Jiaotong University 6Peking University
7University of California, Berkeley, 8Princeton University 9Tsinghua University

Email: xusheng.xiao@asu.edu

Abstract—The increased adoption of smart contracts in many
industries has made them an attractive target for cybercriminals,
leading to millions of dollars in losses. Thus, continuously fixing
newly found vulnerabilities of smart contracts becomes a routine
software maintenance task for running smart contracts. However,
fixing the vulnerabilities that are specific to the smart contract
domain requires security knowledge that many developers lack.
Without effective tool support, this task can be very costly in
terms of manual labor.

To fill this critical need, in this paper, we propose VFIX,
which automatically generates security patches for vulnerable
smart contracts. In particular, VFIX provides a novel program
analysis framework that can incorporate different fix patterns
for fixing various types of vulnerabilities. To address the unique
challenges in accurately fixing smart contract vulnerabilities,
VFIX innovatively combines template-based repair with a set
of static program analysis techniques specially designed for
smart contracts. Specifically, given an input smart contract,
VFIX conducts ensemble identification based on multiple static
verification tools to identify vulnerabilities for an automatic fix.
Then, VFIX generates patches using template-based fix patterns,
and conducts static program analysis (e.g., program dependency
computation, pointer analysis) for smart contracts to accurately
infer and populate the parameter values for the fix templates.
Finally, VFIX performs static verification to ensure that the
patched contract is free of vulnerabilities. Our evaluations on 144
real smart contracts containing different types of vulnerabilities
show that VFIX can successfully fix 94% of the vulnerabilities and
preserve the expected normal behaviors of the smart contracts.

I. INTRODUCTION

As a paradigmatic application of blockchain [1], smart
contracts enable the creation of decentralized general-purpose
applications and have received wide adoption [2], [3], [4], [5].
However, it is challenging to create smart contracts without
security vulnerabilities, partly due to the lack of security
knowledge by developers in the new ecosystem of smart
contract languages (e.g., Solidity [6]) and platforms (e.g.,
permissionless blockchains such as Ethereum [2], [7]). Over
the past few years, the blockchain community has witnessed a
number of critical vulnerabilities in smart contracts being ex-
ploited by attackers, leading to millions of dollars in losses [8],
[9], [10], [11], [12], [13]. For example, the reentrancy attack
on TheDAO contract [14] in 2016 resulted in $50M worth of
Ether being stolen [12], [15].

*Corresponding Author

Despite considerable research efforts [16], [17], [18], [19],
[20], [21], [22] of tool support for detecting vulnerabilities in
smart contracts, fixing these vulnerabilities is highly critical,
yet lacking of effective tool support, for two main reasons.
First, new vulnerabilities are continuously being discovered
with the rapid development of smart contracts, and thus
fixing new vulnerabilities and redeploy fixed smart contracts
with upgradable support [23] becomes a routine maintenance
task to improve the security of smart contracts. However,
this maintenance task requires security knowledge that many
developers lack and is in a dire need of effective automated
tool support. Second, manually fixing a smart contract is often
challenging and error-prone (see Section II-C). For example,
the best practice to avoid reentrancy vulnerability is to ensure
all internal state changes are performed before the external call
is executed (i.e., the Checks-Effects-Interactions pattern) [24],
[15]. Hence, the patch for reentrancy vulnerability requires
(1) reordering multiple statements to ensure that all updates to
contract state variables occur before the external call, and (2)
creating temporary variables to store the values of these state
variables for eliminating data dependencies on the external call
(see Figure 1).

Although various existing techniques for automated pro-
gram repair [25], [26], [27], [28], [29] can automatically gener-
ate patches to fix the given program’s bugs, these techniques
are often not applicable to effectively fix vulnerabilities for
smart contracts for two main reasons. First, applying existing
repair techniques to repair contract vulnerabilities typically
requires a comprehensive test suite to assure that all detected
vulnerabilities are fixed and no side effects are introduced
by the generated patch. Previous works [30] show that it is
highly difficult to create a comprehensive test suite that can
defend against all types of exploits. Second, applying existing
search-based repair techniques [31], [26], [27], [28], [29], [32],
[33] (being mainstream ones) to fix contract vulnerabilities
fails to generate patches for some important types of contract
vulnerabilities. These techniques explore the search space of
repairs based on syntactic mutators, by leveraging search
algorithms such as genetic programming or random search.
However, the strategies of these techniques are mostly adding
conditional checks or replacing a statement with another
existing statement, which is insufficient for fixing contract

1	mapping	(address	=>	uint)	userBalances;
2	mapping	(address	=>	uint)	lastPaymentDate;
...
3	function	refund	()	public	{
4 	 	 	 	 require(userBalances[msg.sender]	>	0);
5	+ 	 	 	var	balance	=	userBalances[msg.sender]	;
6	+ 	 	 	userBalances[msg.sender]	=	0;
7	+ 	 	 	lastPaymentDate[msg.sender]	=	now;
8	+ 	 	 	msg.sender.call.value(balance);
9	- 	 	 	msg.sender.call.value(userBalances[msg.sender]);
10	- 	 	 userBalances[msg.sender]	=	0
11	- 	 	 lastPaymentDate[msg.sender]	=	now;
12	}

Fig. 1: Example patch for Reentrancy vulnerability
vulnerabilities that require temporary variable creations and
statement reordering (e.g., fixing reentrancy vulnerabilities).
Although one can simply adapt these techniques to include
more complex fixing strategies, doing so tend to (1) result in
an exponential expansion of the search space [31], [34], [35],
inducing patch-generation ineffectiveness.

To effectively fix vulnerabilities for facilitating software
maintenance of smart contracts, in this paper, we propose
VFIX, that (1) automatically detects vulnerabilities in a smart
contract, (2) applies patches to multiple detected vulnerabili-
ties, and (3) verifies the patched contract before the contract
deployment. In particular, VFIX is built upon our novel static
program analysis infrastructure that is specially optimized for
Solidity, which can automatically fix different vulnerabilities
with an extensible set of fix strategies.

VFIX is powered by three key designs. First, to avoid
wasting later high cost of searching for patches of detected
vulnerabilities being false positives or not amenable for
automatic fix (e.g., handling external method calls without
source code), VFIX synergistically combines multiple static
verification tools [18], [36], [37] with post-processing. In
particular, VFIX first applies these static verification tools
to detect vulnerability candidates and adopts majority voting
to determine which candidates are more likely to be real
vulnerabilities rather than false-positive ones. VFIX then con-
ducts post-processing to extract the required information from
the reported vulnerabilities (e.g., identifying the types of the
data dependencies for reentrancy vulnerabilities) and filter out
candidates that are not amenable for automatic fix.

Second, to address the space explosion during the search
for target patches and preserve expected contract behaviors,
VFIX generates patches using template-based fix patterns [38].
We leverage the template-based approach as it can generate
complex patches and fix multiple vulnerabilities efficiently.
VFIX further conducts static program analysis to accurately
infer variable values from the contract program under analysis
without the need for searching a huge repair space. Most smart
contracts restrain the uses of references in the language level
(e.g., Solidity limits references to specific types), enabling
our static analysis techniques to compute precise program
dependencies for generating complex patches such as moving
statements without violating data dependency constraints (Sec-
tion IV-B1). Particularly, our program analysis allows VFIX to

support fix patterns with different performance overheads. For
example, VFIX supports both adding global locks and moving
statements to fix reentrancy vulnerabilities, and prefers moving
statements as the resulting program requires much less gas cost
(5 v.s. 25000).

Third, VFIX reapplies the static verification techniques used
to detect the vulnerabilities on the patched smart contract,
and further verifies that the detected security vulnerabilities
are eliminated in the patched smart contract. As most static
verification techniques employ sound program analysis, they
produce false positives but no false negatives. Thus, by com-
bining template-based fix patterns with static verification, not
only VFIX can guarantee that the patched smart contract pre-
serves the expected contract behaviors, the static verification
techniques also can ensure the elimination of the patched
vulnerabilities.

In summary, our paper makes the following contributions:
• To support software maintenance of smart contracts in

eliminating detected vulnerabilities, we propose a novel
framework, named VFIX, that (1) leverages the synergy of
multiple static verification tools to detect vulnerabilities in
a smart contract, (2) generates source code patches for the
contract, and (3) performs static verification to ensure the
elimination of the vulnerabilities.

• We propose a novel set of program analysis techniques
that extract variable values from smart contracts to generate
patches based on the fix patterns for four major types of
vulnerabilities.

• We implement the prototype of VFIX to fix four ma-
jor types of vulnerabilities: Reentrancy, MissingInputVal-
idation, LockedEther, UnhandledException, and make the
source code publicly available at [39]. These four types
cover the majority of the vulnerability population from our
measurement study of vulnerable contracts in the wild.

• We conduct systematic evaluations on (1) 50 contracts
(20, 510 LOC) selected from a widely used dataset [40]
of smart contracts with injected vulnerabilities, and (2)
94 contracts (120, 894 LOC) selected among 4, 940 real
smart contracts with the largest number of transactions from
Etherscan [41]. The results show that the majority voting
scheme is highly precise in detecting vulnerabilities, and
VFIX changes 7.97 lines on average to successfully generate
patches for 565 out of 601 vulnerabilities, achieving a high
success rate (> 94%). Additionally, we crawl ∼ 125, 000
transactions from Etherscan [41] and replay these transac-
tions on both the original contracts and the patched con-
tracts. The results show that the patched contracts preserve
the original contract functionalities, and the increases of
the gas caused by the extra security checks are negligible
(∼ $0.000027).

II. BACKGROUND AND MOTIVATION STUDY

A. Smart Contract and Ethereum

The very first blockchain, Bitcoin [1], which supports lim-
ited scripting [42] for its transactions, can already run simple

2

2

1	mapping	(address	=>	uint)	userBalances;
2	...
3	function	deposit	()	payable	{
4 	 	 	 userBalances[msg.sender]	=	msg.value;
5	}
6	...
7	function	refund	()	public	{
8 	 	 	 require(userBalances[msg.sender]	>	0);
9 	 	 	 msg.sender.call.value(userBalances[msg.sender]);
10 	 userBalances[msg.sender]	=	0;
11 }

A:	Victim	contract

1	...
2	Victim	public	victim
3	...
4	function	attack	()	{
5 	 	 	 victim.deposit.value(msg.value)();
6 	 	 	 victim.refund();
7	}
8	...
9	function	()	payable	{
10 	 	 if	(victim.balance	>	msg.value)	{
11 	 	 	 	 victim.refund();
12 	 	 	}
13	} 	 	 	

B:	Attacker	contract

1

Fig. 2: An exploit of Reentrancy vulnerability

smart contracts such as freezing funds until a time stamp in
the future [42] and decentralized lotteries [43]. Ethereum [7]
and other blockchains (e.g., Hyperledger [44] and Corda [45])
support general-purpose computation for smart contracts, and
thus it is far less complicated to build a much wider range of
decentralized applications (Dapps). In Ethereum, the Ethereum
Virtual Machine (EVM) is a virtual machine designed as the
runtime environment for smart contracts.

B. Vulnerabilities in Smart Contracts

Recently, an increasing number of high-profile attacks re-
sulting in huge financial losses have been reported. We next
illustrate a list of representative vulnerabilities [46].

Reentrancy: In July 2016 [12], a fault in TheDAO contract
allowed an attacker to steal $50M. The root cause of the attack
is to re-enter a non-recursive function before its termination.
Figure 2 shows an exploit of the Reentrancy vulnerability.
First, the attack() function in the attacker contract is called,
causing to deposit some ethers in the victim contract and then
invoke the victim’s vulnerable refund() function. Then, the
refund() function sends the deposited ethers to the attacker
contract (Line 9 in A), also triggering the unnamed fallback
function in the attack contract (Line 9 in B). Next, the
fallback function again calls the refund() function in the victim
contract (Line 11 in B). Since the victim contract updates the
userBalances variable (Line 10 in A) after the ether transfer
call, userBalances remains unchanged when the attacker re-
enters the refund() function, and thus the balance check (Line
8 in A) can still be passed. As a consequence, the attacker is
able to repeatedly siphon off ethers from the victim contract
and exhaust its balance.

Missing Input Validation: If developers forget to assign
correct values to the arguments, EVM will execute the function
using the default values based on the argument types. This
mechanism makes smart contracts vulnerable to the attacks
on function arguments.

Locked Ether: In 2017, a vulnerable contract relies on another
library contract to withdraw its funds (using delegatecall).
Unfortunately, a user accidentally removed the library contract
from the blockchain (using the kill instruction), and thus the
funds in the wallet contract could not be extraced any more [9].

Unhandled Exception: In Solidity, there are multiple situa-
tions where an exception may be raised. Unhandled exceptions

0 2000 4000 6000 8000 10000 12000 14000 16000
num

Reentrancy

LockedEther

MissingInputValidation

TODAmount

TODReceiver

UnhandledException

UnrestrictedWrite

505

3158

13987

1360

1360

122

13024

Fig. 3: Vulnerabilities detected by Securify for 4,640 smart
contracts collected from Etherscan

can affect the security of smart contracts. In February 2016, a
vulnerable contract [8] forced the owner to ask the users not
to send ether to the owner because of an unhandled exception
in the call instruction.

Vulnerability Detection: To detect vulnerabilities in a smart
contract, existing research has proposed techniques based on
testing [47] and symbolic execution [16], [17]. Recently,
Securify [18], a verification-based solution, has shown its
superiority over previous techniques. The analysis in Securify
consists of two steps: (1) Securify symbolically analyzes the
contract’s dependency graph to derive precise semantic facts;
(2) Securify uses the derived facts to check the compliance and
violation patterns that capture sufficient conditions for proving
whether some security properties hold.

C. Motivation Study

As static-verification-based solutions for vulnerability de-
tection use different security properties to detect different
types of vulnerabilities, we need to study the prevalence of
vulnerabilities so that VFIX’s patch generation strategies can
target the most effective properties. While Securify produces
false positives, it is an abstract interpreter that provides
soundness guarantees over all possible executions, and thus
it can be used to estimate the trend with affordable manual
inspection. Figure 3 shows the vulnerability distribution ob-
tained by applying Securify on a set of 4, 640 smart contracts
(with the most transactions) collected from Etherscan. In
summary, there are 33, 516 vulnerabilities and each contract
contains 7.22 vulnerabilities on average. These results show
that vulnerabilities are commonly found in smart contracts
and multiple vulnerabilities may often exist in one contract,
making manual fixing labor intensive and error prone.

Based on the vulnerability distribution in Figure 3, we
select the types of vulnerabilities to include in VFIX’s fixing
scope. The most common types of vulnerabilities are Missing-
InputValidation and UnrestrictedWrite (count > 13, 000). As
MissingInputValidation can be fixed via source code transfor-
mation, VFIX includes it in its fixing scope. For Unrestricted-
Write, the security property used to detect the vulnerabilities

3

vFix
Phase II: Patch GenerationPhase I: Vulnerability Detection Phase III:

Verification

Vulnerable
Smart Contract

Static
Verification

Contract Parsing

Postprocess Detected
Vulnerabilities

Contract AST

Security Patch
Generation

Contract AST
Transformation

Contract Source
Code Generation

Patched Contract
Candidate

Static
Verification Patched ContractVulnerable

Smart Contract

Fig. 4: Overview of VFIX

is too strict, and most of the detected vulnerabilities are
false positives. Thus, VFIX excludes UnrestrictedWrite. TO-
DAmount and TODReceiver are caused by the indeterminism
of the transaction executing order [48], which depends on
the miner that mines the block. Such uncertainty is inherent
in blockchain execution platforms and cannot be fixed by
modifying the smart contract source code. Fixing them needs
to change the operational semantics of Ethereum, requiring
all the clients in the Ethereum network to upgrade. As doing
so is not a practical solution, we exclude these types of
vulnerabilities from VFIX’s fixing scope. Furthermore, we
include Reentrancy, LockedEther, and UnhandledException
types of vulnerabilities in VFIX’s fixing scope. These types
of vulnerabilities are commonly found in smart contracts and
their fixing strategies are different from each other, making
them good candidates to demonstrate the effectiveness of
VFIX in both simple and complex patches. The four types
of vulnerabilities that VFIX focuses on account for 53.0% of
the total vulnerabilities.

III. OVERVIEW

Figure 4 illustrates the architecture of VFIX. Given a smart
contract, VFIX generates source code patches for the detected
vulnerabilities. VFIX consists of three phases, as shown in
Figure 4. In Phase I, VFIX conducts static verification to
detect vulnerability candidates and then performs majority
voting and post-processing to identify the four types of
vulnerabilities. VFIX also generates an abstract syntax tree
(AST) from the contract’s source code. Both the AST and the
identified vulnerabilities are used by Phase II for security patch
generation. In Phase II, VFIX first locates the vulnerabilities in
the source code and obtains their context information via data-
flow analysis and type hierarchy analysis. Then, based on the
vulnerability types and the context information, VFIX trans-
forms the AST to generate patches. VFIX repeats this patching
process for each detected vulnerability until all vulnerabilities
are patched. Finally, VFIX converts the transformed AST
back to the source code and generates a patched contract. In
Phase III, VFIX conducts static verification on the patched
contract and checks whether the vulnerabilities are eliminated
successfully. If the patched contract passes the verification,
VFIX outputs the patched contract with the details of the
patches, such as the changed lines and the types of the targeted
vulnerabilities.

IV. DESIGN OF VFIX

A. Phase I: Vulnerability Detection
In this phase, VFIX first conducts static verification to detect

vulnerability candidates. Static verification tools [18], [16],
[17] adopt over-approximation analysis, which may produce
false-positive violations. To address this issue, VFIX combines
three static verification tools: Securify [18], Slither [36], and
Smartcheck [37] to detect vulnerabilities, and leverages the
majority voting mechanism to improve the detection accuracy.
As some of the detected vulnerabilities are not amenable for
automatic fix (e.g., handling external method calls without
source code), VFIX focuses on the detected vulnerabilities that
have severe security impacts based on our motivating study
(Section II) and are amenable for automatic fix:
• Reentrancy: These vulnerabilities can be detected by Slither

and Securify. However, for some detected vulnerabilities,
the return value of external function call is used to control
whether to update the state variables. As it is almost
impossible to verify the behavior of external function calls,
VFIX cannot generate a patch properly. Also, some updates
of the state variables depend on timestamps, and any patch
that moves the updates will cause semantics changes. Thus,
VFIX ignores the reentrancy vulnerabilities caused by exter-
nal function calls.

• MissingInputValidation: This type of vulnerability can be
detected by Securify. Except for function arguments of the
address type, function arguments of other data types (e.g.,
integers) can have a wide range of values and it requires
dynamic analysis to determine the runtime values. Thus,
VFIX only fixes the MissingInputValidation vulnerabilities
that concern about the address type arguments.

• LockedEther: This type of vulnerability can be detected by
both Slither, Securify, and Smartcheck. For some contracts,
developers use them as the library, which is not assumed to
receive ether. Thus, for these contracts, it is not reasonable
for them to have a function that can send out Ether. Thus,
VFIX will not fix the LockedEther violations for these
contracts.

• UnhandledException: This type of vulnerability can be
detected by Slither, Securify, and Smartcheck. When devel-
opers assign the return value of the Ether transfer function
send() to a variable, they often provide more code to
handle the exceptions. Thus, VFIX fixes the violations where
developer does not process the return value of send().

4

TABLE I: Summary of fix patterns
Type Level Fix Pattern

Reentrancy Method Lock [15], [22], Reorder statements [15]
MissingInputValidation Method Require check [49]

LockedEther Contract Withdraw function [50]
UnhandledException Statement Require check [51]

To identify these types of vulnerabilities that are amenable
for automatic fix, VFIX performs post-processing on the
reported vulnerabilities based on the syntactic analysis on
the AST and intra-procedural control and data flow analysis.
For example, for a reported reentrancy vulnerability, detecting
whether an external function call is used to control the
execution of a state variable update will require both control
and data flow analysis.

B. Phase II: Patch Generation

VFIX performs static program analysis to extract the context
information of the detected vulnerabilities, and supports fix
patterns in three granularity levels: statement level, method
level, and contract level. Table I summarizes the fix patterns
supported by VFIX. We can see that VFIX can support a wide
range of fix patterns, while existing work often supports one
or two patterns [15], [22]. For example, sGUARD [22] sup-
ports only adding locks for fixing reentrancy vulnerabilities,
while VFIX additionally supports the fix pattern by reordering
specific statements. Algorithm 1 shows the patch generation
algorithm of VFIX.

1) Program Analysis Infrastructure: VFIX customized
static program analysis techniques to extract the necessary
context information for vulnerabilities in smart contracts,
including involved variables and their control and data de-
pendencies. We next describe the static program analysis
techniques employed by VFIX.

Intra-Procedural Data-flow Analysis: VFIX performs an
intra-procedural data-flow analysis to collect the program
points (i.e., statements) where a variable is created, read,
modified, and deleted [52], [53]. Our intra-procedural data-
flow analysis starts with building the method’s control flow
graph (CFG), where each statement is considered as a single
basic block for the convenience of dependency analysis. It is
worth mentioning that modifiers assigned to methods in smart
contracts can be executed both before and after the execution
of the method body and the parameters of methods can be
used in the modifiers. Thus, the control flow of a method
follows this sequence: modifier, method body, modifier. Once
the CFG is built, existing data-flow analysis is employed to
build the data-flow graph (DFG) for the method. Note that
fixing Reentrancy requires inter-procedural analysis, which is
achieved by combining the method summaries with the intra-
procedural analysis.

Pointer Analysis for Solidity: Pointer analysis is known
to be expensive and is required for precise analysis (e.g.,
flow-sensitivity analysis and context-sensitivity analysis). As
smart contract languages such as Solidity restrain the usage of
references, existing pointer analysis can be easily adapted for
obtaining accurate point-to information for the contracts. In

Algorithm 1: Security Patch Generation of VFIX

Input: ast as the AST of original source code, violations
as the detected vulnerabilities

Output: p ast as the patched AST
1: // Patching UnhandledException
2: for each vulnerability in

violations.UnhandledException do
3: call← vulnerability.line
4: validations← addCheck(call)
5: patch← patchGenerator(validations)
6: p ast← ASTTransformer(patch, ast)
7: // Patching Reentrancy
8: for each vulnerability in violations.Reentrancy do
9: call← vulnerability.line

10: func← locateFunc(ast, call)
11: func sums← scan(ast)
12: pointer info← pointerAnalysis(ast)
13: DFG← dataflowAnalysis(ast, func,

pointer info, func sums)
14: writes← findWritestoStorage(func, call)
15: dependences← dependencyAnalysis(DFG,writes,

call, func)
16: patch← patchGenerator(dependences, func)
17: p ast← ASTTransformer(patch, ast)
18: // Patching MissingInputValidation
19: for each vulnerability in

violations.MissingInputV alidation do
20: func← locateFunc(vulnerability.line)
21: unchecked parameters←

checkValidation(func.arguments)
22: validations←

addValidation(unchecked parameters)
23: patch← patchGenerator(validations)
24: p ast← ASTTransformer(patch, ast)
25: // Patching LockedEther
26: for each vulnerability in violations.LockedEther do
27: contract← locateContract(vulnerability.line)
28: if mustPatch(contract) == True then
29: owner ← findOwner(contract)
30: withdraw ← createWithdraw(owner)
31: patch← patchGenerator(withdraw)
32: p ast← ASTTransformer(patch, ast)

Solidity (≥v0.6.1), there are three locations where a variable
can be stored:

• memory: the variable in memory is not persistent and its
lifetime is limited to an external method call.

• storage: the variable in storage is persistent and its lifetime
is the same as the contract’s.

• calldata: this location is only available for external method
call parameters.

Solidity’s reference types include struct, array, and
mapping. Figure 5 shows an example contract to illustrate
reference creations. There are only two situations where a
variable of these types can be a reference: (1) assignments

5

Fig. 5: Reference creations in Solidity

from a variable in storage to a local variable in storage create a
reference (Line 6); (2) assignments from a variable in memory
to another variable in memory create a reference (Line 7).

To determine which pointer analysis algorithm to use, we
analyzed 6, 420 real-world smart contracts to find how often
the reference type is used in solidity programs. We scanned all
assignments among these contracts and checked if there are
variables that meet the definitions of reference types mentioned
above. In summary, we found 3, 210 reference variables among
199, 724 assignments in 6, 420 contracts. That is, on average,
only 1.6% of the assignments use reference types. Thus,
VFIX adapts a flow-insensitive and context-insensitive pointer
analysis by extending its point-to model to incorporate data
locations and reference creations as described above, and
computes the point-to information for each variable in a
contract [52].

Inter-Procedural Analysis via Method Summary: To enable
inter-procedural analysis, for each method, VFIX builds a
method summary that computes the side effects of the state
variables, i.e., whether the state variables are modified in each
method. Method summaries (or called function summaries)
have been used to build inter-procedural program analysis in
a modular way [54], [55], [56], which can be easily combined
with other intra-procedural program analysis to enable inter-
procedural analysis.

Data Dependency Classification: Based on the inter-
procedural analysis, VFIX further classifies data dependency
into the following types:
• Flow Dependence or Read After Write (RAW): a statement
s2 is flow dependent on s1 if and only if s1 modifies a
resource that s2 reads and s1 precedes s2 in execution.

• Anti-Dependence or Write After Read (WAR): a statement s2
is antidependent on s1 if and only if s2 modifies a resource
that s1 reads and s1 precedes s2 in execution.

• Output Dependence or Write After Write (WAW): a statement
s2 is output dependent on s1 if and only if s1 and s2 modify
the same resource and s1 precedes s2 in execution.

• Input Dependence or Read After Read (RAR): a statement
s2 is input dependent on s1 if and only if s1 and s2 read
the same resource and s1 precedes s2 in execution.

The classification of the data dependency will later be used
by the fix patterns (e.g., fixing Reentrancy in Section IV-B3)
to guide the patch generation.

2) Fix Patterns in Statement Level: Vulnerabilities in this
level are usually caused by misuses of individual statements,
such as UnhandledException that forgets to check method
return values.

Fixing UnhandledException: The fix pattern (Lines 1-6 in
Algorithm 1) for this vulnerability is to check the return value
of each coin transfer function: send() and value(). The type of
their return values is boolean because they indicate whether
the transfers succeed. Transactions in which these transfers fail
must be reverted to notice the caller to ensure the coherence
between the contract states and the transactions. Thus, to
fix this vulnerability, VFIX adds a require() function call to
validate the return values of send() and value() (Line 4 in
Algorithm 1) and ensures that their executions are successful
before completing the whole transaction.

3) Fix Patterns in Method Level: Vulnerabilities in this
level are usually caused by missing parameter checks or miuse
some method calls in a method. The two types of vulnerabil-
ities in this level are Reentrancy and MissingInputValidation.

Fixing Reentrancy: The preferred fix pattern for Reentrancy
(Lines 8-17 in Algorithm 1) is to move all writes to storage
ahead so that there is no write to storage after an external
method call or a coin transfer call, such as the patch shown
in Figure 1. VFIX first identifies the method that has the
vulnerability (Lines 9-10), and computes the method summary,
the pointer information, and the DFG of the method (Lines 11-
13). VFIX then identifies the writes that result in the vulnera-
bility (Line 14), and further computes the data dependencies
that are used to move the writes (Line 15). In particular, if
any of these writes (represented as w) has data dependencies
to the variables used by the external calls (represented as
c), depending on the type of the dependencies, VFIX may
eliminate such dependencies without changing the semantics
before moving the writes ahead:
• For flow dependence from w to a statement s, VFIX creates

a temporary variable to store the value of the variables in
w before they are written and replace the same variables in
c with these temporary variables, so that w does not impact
c if w is moved ahead.

• For anti-dependence and output dependence from w to a
statement s, VFIX moves both w and s ahead if s is not the
external call.

• For input dependence from w to a statement s, VFIX simply
moves w ahead since there are no side effects in this type
of dependency.
However, when there is a anti-dependence or output depen-

dence from w to c, the data dependencies cannot be eliminated.
Because in this case the updates in w must wait for the
execution results of c so w cannot be moved ahead of c. In this
case, VFIX adopts another more expensive fix pattern, which
declares a new global bool value as a lock to limit the method
invocations [22]. This lock will not allow the unexpected
recall, if the previous call does not finish the execution. As
the modification of a global variable is much more expensive
than the declarations of local variables in smart contracts, we

6

1 	function	transferFrom(address	src,	address	dst,	uint	wad) public returns	(bool) {
2 	 	 	 	 //validation	that	checks	wad
3 	 	 	 	 require(balanceOf[src]	>=	wad);
4 	 	 	 	 //validation	that	checks	src	and	dst
5 	 	 	 	 require(dst	!=	address(0x0));
6 	 	 	 	 require(src	!=	address(0x0));
7 	 	 	 	 ...
8 	 	 	 	 	return	true;
9	}

Fig. 6: Patch for MissingInputValidation vulnerability

Fig. 7: Withdraw() function inserted to patch LockedEther
vulnerability

find out that for each transaction, the global lock increases
the gas cost by ∼ 25000 for the function, while declaring
temporary variables and moving statements increase the gas
cost by only 5.

Fixing MissingInputValidation: The fix pattern for Missing-
InputValidation is to add conditional checks to validate the
method parameters at the beginning of method body (Lines
18-25 in Algorithm 1). To patch this vulnerability, VFIX first
identifies the method parameters that are not validated (Line
21 in Algorithm 1). To do so, VFIX checks whether the
parameters appear in any require() method, which is often
used in Solidity to perform validation. This checking can be
easily done by using the DFG of the method. VFIX inserts
validations for the other unchecked parameters:

• For those parameters whose type is address, VFIX adds a
common validation to check whether this address is 0x0
because an address with value 0x0 is invalid.

• For parameters whose type are integer, VFIX adds a safe
math library to prevent integer overflow and underflow when
doing calculations.

• For parameters whose type are bytes or self-defined, VFIX
may not add proper validations because it lacks contextual
information for VFIX to acquire sufficient information about
their valid ranges.

Consider the contract in Figure 6. The parameter wad is
validated by the highlighted statement (Line 6) and thus there
is no need for further validation. For the parameters src and
dst, VFIX adds a require() method to validate their values
(Lines 8-9).

4) Fix Patterns in Contract Level: Vulnerabilities in this
level are usually related to the properties of contracts instead
of a specific method or statement.

Fixing LockedEther: Our fix pattern for LockedEther is to add
a withdraw() function to enable the transferring of Ether (Lines
25-32 in Algorithm 1). While the major part of the method
is quite straightforward, VFIX needs to protect the contract

TABLE II: Vulnerabilities detected by each detector
Type Securify Slither Smartcheck Majority

Reentrancy 107 461 0 23
MissingInputValidation 979 0 0 131

LockedEther 184 100 43 137
UnhandledException 83 129 36 60

Total 1353 690 79 351

balances. Thus, VFIX adds two validations to constrain the
Ether transfer: (1) the transaction initiator who calls this
method must be the owner of the contract, (2) the amount
of balance transferred out cannot be larger than the total
balance of contract. An example of this withdraw() function
is shown in Figure 7. The validation of the balance is to insert
require(amount <= this.balance). However, the validation of
the owner requires further analysis of the type hierarchy for
the vulnerable contract. To identify the owner of a contract
(Line 29 in Algorithm 1), VFIX builds an inheritance graph of
the vulnerable contract and checks the contract constructors in
all of its parent contracts to see whether there is an owner field
with the initial value msg.sender. If it is found, VFIX uses it
to implement the owner validation. Otherwise, VFIX defines
a new owner field and assigns msg.sender as its initial value
in the constructor of the vulnerable contract. Then, based on
the type hierarchy for the vulnerable contract, VFIX inserts
the withdraw() method in the base contract for the vulnerable
contract (Line 30). This fix pattern can largely reduce the lines
of code inserted into the contracts and save gases required
when executing the patched contracts.

When all the identified vulnerabilities are patched, VFIX
converts its transformed AST back to source code and outputs
the patched contract to Phase III.

C. Phase III: Patch Verification
In this phase, VFIX reapplies the static verification tools to

ensure that the detected vulnerabilities are eliminated while
the expected behaviors are preserved in the patched contract.
Once a patched contract candidate is generated, VFIX applies
static verification again on the patched contract and checks
whether the vulnerabilities reported in Phase I are eliminated.
If the static verification tool no longer reports the same
vulnerabilities, the patched contract is considered to pass the
static verification.

V. EVALUATION

We implemented VFIX in JavaScript (∼5000 lines of code).
We adopted three state-of-the-art vulnerability tools, Secu-
rify [18], Slither [36], and Smartcheck [37], as the static
verification tools for VFIX. We built the parsing and trans-
formation modules upon an open source Solidity parser [57]
built on top of ANTLR4 [58]. We evaluated the effectiveness
of VFIX in fixing vulnerabilities in real-world smart contracts.
Specifically, our evaluations aim to answer the following
research questions.
• RQ1: How effective is VFIX in generating successful

patches for vulnerable contracts?
• RQ2: How effective is the synergy of static verification

and post-processing in detecting vulnerabilities, compared
to static verification only?

7

TABLE III: Vulnerable contracts used in evaluation
Type Contract Count Lines of Code

Reentrancy 17 8,522
MissingInputValidation 21 26,102

LockedEther 20 17,277
UnhandledException 19 30,349

Mixed 17 38,644
Injected 50 20,510

Total 144 141,404

• RQ3: How efficient is VFIX in generating patches?

A. Evaluation Setup

Our evaluation datasets have 144 contracts (141, 404 lines
of Solidity code), and the evaluations are conducted on a
server with Intel(R) Xeon(R) CPU E5-2637 v4 (3.50GHz) and
256GB RAM.

Injected Vulnerabilities: We use a widely adopted
dataset [40] that contains smart contracts with various
types of injected known vulnerabilities (e.g., integer
overflow/underflow, reentrancy, and timestamp-dependency).
We choose 50 contracts with injected reentrancy vulnerabilities
as other types of vulnerabilities in the dataset are not the focus
of VFIX. These contracts provide the detailed information of
the injected vulnerabilities and thus we can directly evaluate
our patch generation without applying vulnerability detection.

Real Vulnerabilities: We collect real smart contracts based
on the addresses obtained from BigQuery [59], and select the
top 10, 000 contracts sorted by the number of transactions.
We further download the source code from Etherscan [41]
based on the addresses, and exclude the contracts whose
source code is not available. We then apply static verification
on these downloaded contracts and exclude the ones that
cannot be analyzed by the Solidity compiler due to version
incompatibility. In total, we obtain 4, 640 contracts. For each
contract to be used in our evaluation, we inspect the source
code to confirm vulnerabilities, verify the patches, and prepare
test cases that exercise the vulnerable behaviors of the original
contracts, which requires non-trivial manual efforts. Within our
affordable efforts, we select 94 vulnerable contracts that have
the four types of vulnerabilities described in Section II-C, as
shown in Table III. The test cases are shown in Table IV. If
a contract has several types of vulnerabilities, we classify it
into the Mixed category.

Semantic Validation: To ensure that the patched contracts
preserve the expected behaviors, semantic validation is con-
ducted using a smart contract testing platform named Truf-
fle [60]. Truffle allows us to deploy a contract on a local
blockchain powered by Ganache and make a method call
or issue a transaction. To obtain the test cases for checking
contracts’ expected behaviors, we made use of the publicity
of all transactions on blockchain: we downloaded the existing
transactions of a contract and extracted the input values to
create test cases because these transactions should reflect the
functionality of a contract. But these constructed test cases
lack test oracles to assert the expected results. To address this

TABLE IV: Effectiveness of VFIX in patch generation
Type Total Success Fail Suc. Rate Test Case

Reentrancy 23 21 2 0.91 73
MissingInputValidation 131 128 3 0.98 68

LockedEther 137 136 1 0.99 60
UnhandledException 60 60 0 1.00 245

Injected 250 220 ∗30 0.88 -
Total 601 565 36 0.94 446

problem, we consider the original contract and the patched
contract as different implementations for the same require-
ments [61], [62] and assert that the states of both contracts (i.e.,
the values of the on-chain persistent state variables) should be
the same after the testing. Specifically, VFIX first deploys both
the patched contract and the original contract on the Truffle
with the same initial states. Then, VFIX runs the test cases
and compares the states of both contracts. If the states of both
contracts remain the same after the testing, VFIX considers that
the expected behaviors are preserved in the patched contract.

B. RQ1: Effectiveness in Patch Generation

We run VFIX on each of the contracts in our testing set to
generate a patched contract. We then manually examine the
patched contract and verify its correctness. We also examine
why VFIX fails to generate patches for certain contracts.

Overall Results: Table IV shows the path generation results.
On average, each contract in the testing set has 4.17 vulnerabil-
ities. We consider a patch is successful if the patched contracts
pass the test cases written to exercise the vulnerable behaviors
(Table IV) and the test cases built from the public-transaction
records (Table V). We also perform manual verification to
ensure the detected vulnerabilities are eliminated. Overall,
VFIX successfully generates 565 patches for 601 vulnerabili-
ties, achieving a very high success rate (94%). These results
indicate that the combination of template-based fix patterns
and static program analysis is very effective in generating
successful patches.

Patch Statistics: For the real contracts, on average, VFIX
needs to change 3.7, 17.47, 3.71, 2.26, and 12.71 lines
of code to patch a contract with Reentrancy vulnerabili-
ties, LockedEther vulnerabilities, MissingInputValidation vul-
nerabilities, UnhandledException vulnerabilities, and multiple
types of vulnerabilities (i.e., Mixed). Without considering the
type of vulnerabilities, VFIX needs to averagely change 7.97
lines of code to patch a contract. For the contracts with injected
vulnerabilities, VFIX needs to change 4 lines of code to patch
the Reentrancy vulnerabilities.

Transaction Replay: To show that the patch preserves the
original functionality of the smart contracts, we chose 25
contracts (top 5 contracts that have the most transactions in
each vulnerable type) and crawled 5000 transactions for each
of them (125, 000 transactions in total). We then deployed
their original version and the patched version in the local
testing environment (e.g., Ganache), and issued transactions
to execute the contracts using the crawled transaction data.
Table V shows the results of the transaction replay. Column
“Status diff” shows the number of different result states.

8

Column “Gas Diff” shows the average gas usage differences.
We can see the number of contracts that have different result
states are all 0. This result shows that the patches generated
by VFIX preserves the contracts’ original functionality. The
results also show that gas usage has only a slight increase
(maximum being 188.84). As each unit of gas equals to
10E − 9 Ethers [63], which is ∼ $0.000027, the cost of the
extra gas is negligible.

Failed Patches: For real contacts, VFIX fails to generate
patches for 2 Reentrancy vulnerabilities, which is mainly due
to the stack depth limit of EVM. When fixing Reentrancy
vulnerability, VFIX usually needs to create temporary vari-
ables. While not often, such behavior may trigger the EVM
exceptions about stack depth, causing the patches not to pass
the validation. This case may be improved by requesting
the developers to limit their call stack, which will also help
defend stack depth attack [64]. The main reason why fixing
MissingInputValidation and LockedEther may fail lies in the
limitation of our source code generator, which adopts the
pre-order traversal of the patched AST to generate patches.
However, when a method call is used as the argument for a
function modifier, the generated source code will have syntax
errors. This case can be fixed by improving the code generation
mechanism.

For contracts with injected vulnerabilities, VFIX fails to
generate patches for 30 contracts as our dataflow analysis con-
siders the injected vulnerabilities cannot be fixed by moving
statements. But all these 30 contracts can be fixed by VFIX by
adopting the global bool value as a lock to limit the method
invocations.

Example Patched Contract: We select one real contract with
a Reentrancy vulnerability to describe our patch:

+ var totalUnreleasedTokens_temp = totalUnreleasedTokens.
+ vestingSchedule.principleLockAmount =

_principleLockAmount;
+ vestingSchedule.bonusLockAmount = _bonusLockAmount;
+ vestingSchedule.isPrincipleReleased = false;
+ vestingSchedule.isBonusReleased = false;
+ totalUnreleasedTokens = safeAdd(totalUnreleasedTokens,

_totalAmount);
+ vestingSchedule.amountReleased = 0;
+ require(token.balanceOf(this) >= safeAdd(

totalUnreleasedTokens_temp, _totalAmount));

- require(token.balanceOf(this) >=
safeAdd(totalUnreleasedTokens, _totalAmount));

- vestingSchedule.principleLockAmount =
_principleLockAmount;

- vestingSchedule.bonusLockAmount = _bonusLockAmount;
- vestingSchedule.isPrincipleReleased = false;
- vestingSchedule.isBonusReleased = false;
- totalUnreleasedTokens = safeAdd(totalUnreleasedTokens,

_totalAmount);
- vestingSchedule.amountReleased = 0;

Based on the data-flow analysis, VFIX finds that there
is a WAR dependence between safeAdd() and the writes to
totalUnreleasedTokens. In this case, VFIX generates a patch
that saves totalUnreleasedTokens before safeAdd() by creating
a temporary variable, replaces the parameters of safeAdd()
with the temporary variable, and moves all the writes ahead.

TABLE V: Execution results about transaction replay
Type Status Diff. Gas Diff.

Reentrancy 0 53.38
MissinputValidation 0 46.99

LockedEther 0 7.36
UnhandledException 0 27.68

Mixed 0 188.84

Comparison to Existing Works:. As there are no existing
works that combine detection, patching, and verification as
VFIX does, we cannot directly compare VFIX with existing
works. Thus, we compare only the patching step in our evalu-
ations. As shown in Table I, VFIX provides fix patterns (global
lock for Reentrancy and owner check for LockedEther) that
EVMPatch [65] and sGuard [22] can support. The results show
that VFIX can effectively generate these patches (91% for
Reentrancy and 99% for LockedEther) as the existing works
without compromising expected behaviors. Beyond that, VFIX
supports moving statement to fix Reentrancy vulnerabilities
with a much lower gas cost than sGuard (5 v.s. 25000).
EVMPatch is not released publicly and cannot be directly
compared. Nonetheless, it cannot support this fix pattern as
binary code loses the source code semantics and requires extra
data analysis to move the statements.

C. RQ2: Ensemble of Static Verification Tools

In this RQ, we evaluate the effectiveness of VFIX’s ensem-
ble of multiple static verification tools. Table II shows the
vulnerability detected by different static verification tools by
VFIX. Column Majority shows the number of vulnerability
confirmed by at least two static verification tools except
for MissInputValidation, because only Securify supports the
detection of this vulnerability. The results show that our post-
processing filters out the candidates that cannot be fixed
(Section IV-A). For example, MissingInputValidation reports
795 vulnerabilities and only 131 of them are related to
address types. We further manually examine the detected
vulnerabilities by the majority voting, and confirm all of them
are true positives, indicating the effectiveness of majority
voting in improving the detection performance. For example,
Slither reports 129 UnhandledException vulnerabilities, while
the majority voting confirms 60 out of them. Similarly, Slither
misses 37 LockedEther vulnerabilities, but the combination of
Securify and SmartCheck finds these 37 vulnerabilities.

We can also see the combination of post-processing and
majority voting addresses the limitations of using only one
static verification tool. For example, some security properties
used by Securify are too general: for Reentrancy vulnera-
bilities, Securify’s property detects all the writes to storage
after an external method call; however, if another external
method call is used to determine the execution of the writes
to storage, a false positive is reported. Based on the results,
Securify reports 26 false positives, which is first reduced by
the post-processing to 3 and then by the majority voting to
0. These results demonstrate that static-verification and post-
processing greatly improve the precision of the vulnerability
detection, making it feasible and practical to support the patch
generation.

9

D. RQ3: Runtime Performance

To understand the performance of VFIX, we measure the
execution time of VFIX’s three phases. We exclude the val-
idation using Truffle since it requires manual interactions
(e.g., sending transactions). The results show that VFIX takes
1159.58s to finish the whole process. Without considering
the time needed by static verification (i.e., detection and
validation), VFIX only takes 3.75s to fix a contract on average,
indicating that VFIX’s light-weight program analysis and patch
generation based on template-based fix patterns are very
efficient.

VI. DISCUSSION

Static Verification: Static verification techniques employ
sound analysis that produces no false positives but can produce
false positives, such as Securify [18]. VFIX addresses this
issue by leveraging majority voting to ensemble multiple static
verification tools and employs post-processing to filter out
vulnerabilities not amenable for automatic fix. Alternatively,
more precise static verification with more flexible security
properties can be used, but this direction requires further
research efforts and is out of the scope of this paper.

Generalization of Fix Patterns: The infrastructure of VFIX
can easily enable other fix patterns as long as data/control-flow
analysis and type hierarchy analysis are sufficient to produce
the required repair actions. For example, developers may revise
our fix patterns for MissingInputValidation to include more
data types with valid range checking.

Threat To Validity: We mitigate the major external threat
of dataset representativeness by using datasets of both real
vulnerabilities and injected vulnerabilities. In future work,
we plan to collect more types of vulnerabilities that can be
supported with more provided fix patterns. The major internal
threat is the human errors in constructing ground truths and
verifying the patches. We mitigate this threat through multi-
user inspection and rigorous testing on fixed contracts.

Limitations: VFIX cannot fix vulnerabilities whose exploits
rely on the mechanisms of the underlying blockchain platform,
such as transaction-executing order (e.g., TODAmount and TO-
DReceiver vulnerabilities) and timestamp. Existing research
on blockchain security [66], [67], [68], [69] can be adopted to
address these vulnerabilities, being beyond the scope of this
paper. VFIX can easily integrate other fix solutions as patch
templates, such as the mutex for reentrancy. Currently, we do
not use mutex because this solution will cost more gas (i.e.,
execution fee) than our employed template (i.e., reordering
statements).

VII. RELATED WORK

Automatic Program Repair: Some previous research [70],
[31], [35], [29], [32] focuses on the code that is executed
for negative test cases, and then produces modifications to
a program, including deleting a statement and inserting a

statement found in the program. Treating all the modifications
of a program as a search space, the research adapts search
algorithms such as genetic algorithms to generate patches,
facing significant challenges in search space explosion [34],
[35]. Some other research [26], [27] uses constraint solving
to find correct expressions to replace incorrect or vulnerable
expressions in a program. Compared with the preceding previ-
ous research, VFIX does not rely on the test suite that triggers
a failure of the target program to generate a patch. Also, VFIX
conducts static verification and rule-based checking to detect
vulnerabilities and includes program analysis techniques to
enable complex fix patterns.

Patch Generation for Smart Contracts: Recently, re-
searchers developed multiple tools to fix vulnerable smart
contracts automatically. Rodler et al. and Torres et al. [65],
[71] propose techniques to patch vulnerable smart contracts
at the binary code level. Unlike VFIX, which can support
a diverse set of fix patterns by leveraging the source code
semantics, binary-level templates lack source code semantics
and can support only a subset of VFIX’s fix patterns such as fix
patterns for uncaught exceptions. Nguyen et al. [22] propose
sGUARD to detect vulnerable smart contracts and fix them
(e.g., adding global locks to fix reentrancy vulnerabilities).
Compared with sGUARD, VFIX avoids the heavy dependency
on a single detector and can be easily extended to support
more types of vulnerabilities. Yu et al. [72] propose a search-
based approach among the mutations of a buggy contract to
find a patched contract. As the approach searches only the
mutations of the original contract, it cannot support fix patterns
that require additional code as VFIX does.

Template-Based Code Generation: Template-based code
generation [38] is a widely used approach in program re-
pair and other software engineering tasks. Kyle et al. [73]
propose a template-based approach to help developers un-
derstand program refactoring. Sakamoto et al. [74] propose
a template-based, test-case generator for web applications.
VFIX is inspired by these approaches and provides template-
based fix patterns whose parameter values are filled using
the context information inferred by our program analysis
techniques tailored to smart contracts.

VIII. CONCLUSION

In this paper, we have presented a novel framework named
VFIX, which facilitates software maintenance of smart con-
tracts by automatically generates source code patches to fix
detected vulnerabilities. VFIX innovatively combines template-
based fix patterns with static verification, providing a program
analysis framework that can support multiple fix patterns
and can prove the elimination of the vulnerabilities in the
patched contract. Our evaluations on vulnerable contracts from
a widely used dataset and real-world vulnerable contracts have
shown that VFIX can successfully fix 94% of the detected
vulnerabilities.

10

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.”
[2] V. Buterin, “Ethereum: a next generation smart contract and

decentral- ized application platform,” 2013, https://github.com/ethereum/
wiki/wiki/White-Paper.

[3] “Blockchain in financial services,” 2021,
https://consensys.net/blockchain-use-cases/finance/.

[4] “Blockchain casino games,” 2021, https://blockchain-casino-
games.com/.

[5] “Blockchain in digital identity,” 2021, https://consensys.net/blockchain-
use-cases/digital-identity/.

[6] “Solidity,” 2021, https://github.com/ethereum/solidity.
[7] “Ethereum platform,” 2021, https://ethereum.org/.
[8] “King of ether,” 2021, https://github.com/kieranelby/

KingOfTheEtherThrone\/blob/master/contracts/
KingOfTheEtherThrone.sol.

[9] “Accidental’ bug may have frozen $280 million worth of
digital coin ether in a cryptocurrency wallet,” 2017,
https://www.cnbc.com/2017/11/08/accidental-bug-may-have-frozen-
280-worth-of-ether-on-parity-wallet.html.

[10] “How to find $10m just by reading the blockchain,” 2021,
https://medium.com/golem-project/how-to-find-10m-by-just-reading-
blockchain-6ae9d39fcd95.

[11] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok),” in Proceedings of the International Conference
on Principles of Security and Trust (POST), 2017, pp. 164–186.

[12] “The dao attack,” 2021, https://www2.deloitte.com/ie/en/pages/
technology/articles/DAO-Attack-Analysis.html.

[13] “Security alert,” 2017, https://www.parity.io/security-alert/.
[14] “TheDAO,” 2021, https://etherscan.io/token/

0xbb9bc244d798123fde783fcc1c72d3bb8c189413.
[15] “Reentrancy,” 2021, https://swcregistry.io/docs/SWC-107.
[16] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart

contracts smarter,” in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2016, pp. 254–269.

[17] “Mythril,” 2021, https://github.com/ConsenSys/mythril.
[18] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and

M. Vechev, “Securify: Practical security analysis of smart contracts,”
in Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2018, pp. 67–82.

[19] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the
greedy, prodigal, and suicidal contracts at scale,” in Proceedings of the
Annual Computer Security Applications Conference (ACSAC), 2018, pp.
653–663.

[20] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing
safety of smart contracts,” in Proceedings of the Annual Network and
Distributed System Security Symposium (NDSS), 2018, pp. 1–12.

[21] M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum: Protecting
existing smart contracts against re-entrancy attacks,” in Proceedings
of the Annual Network and Distributed System Security Symposium
(NDSS), 2019, pp. 1–15.

[22] T. D. Nguyen, L. H. Pham, and J. Sun, “sguard: Towards fixing
vulnerable smart contracts automatically,” in Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2021, pp. 1215–1229.

[23] V. C. Bui, S. Wen, J. Yu, X. Xia, M. S. Haghighi, and Y. Xiang,
“Evaluating upgradable smart contract,” in 2021 IEEE International
Conference on Blockchain (Blockchain). IEEE, 2021, pp. 252–256.

[24] “Ethereum smart contract best practices,” 2021,
https://consensys.github.io/smart-contract-best-practices/.

[25] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” IEEE Transactions on
Software Engineering (TSE), vol. 38, no. 1, pp. 54–72, 2011.

[26] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:
Program repair via semantic analysis,” in Proceedings of the Interna-
tional Conference on Software Engineering (ICSE), 2013, pp. 772–781.

[27] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in Proceedings of the
International Conference on Software Engineering (ICSE), 2016, pp.
691–701.

[28] F. Long and M. Rinard, “Automatic patch generation by learning correct
code,” in Proceedings of the Annual ACM SIGPLAN-SIGACT symposium
on principles of programming languages (POPL), 2016, pp. 298–312.

[29] Y. Xiong, X. Liu, M. Zeng, L. Zhang, and G. Huang, “Identifying
patch correctness in test-based program repair,” in Proceedings of the
International Conference on Software Engineering (ICSE), 2018, p.
789–799.

[30] R. van Tonder and C. Le Goues, “Static automated program repair for
heap properties,” in Proceedings of the International Conference on
Software Engineering (ICSE), 2018, pp. 151–162.

[31] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for
$8 each,” in Proceedings of the International Conference on Software
Engineering (ICSE), 2012, pp. 3–13.

[32] E. Schulte, J. DiLorenzo, W. Weimer, and S. Forrest, “Automated repair
of binary and assembly programs for cooperating embedded devices,” in
Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPOLOS), 2013,
p. 317–328.

[33] S. So and H. Oh, “Smartfix: Fixing vulnerable smart contracts by accel-
erating generate-and-verify repair using statistical models,” in Proceed-
ings of the ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE),
2023, p. 185–197.

[34] C. Le Goues, S. Forrest, and W. Weimer, “Current challenges in
automatic software repair,” Software Quality Journal, vol. 21, no. 3,
pp. 421–443, 2013.

[35] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-aware
patch generation for better automated program repair,” in Proceedings
of the International Conference on Software Engineering (ICSE), 2018,
p. 1–11.

[36] J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis framework
for smart contracts,” in Proceedings of the IEEE/ACM International
Workshop on Emerging Trends in Software Engineering for Blockchain
(WETSEB), 2019, pp. 8–15.

[37] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” in Proceedings of the International Workshop
on Emerging Trends in Software Engineering for Blockchain, 2018, pp.
9–16.

[38] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Tbar: revisiting
template-based automated program repair,” in Proceedings of the ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA), D. Zhang and A. Møller, Eds., 2019, pp. 31–42.

[39] “vfix source code,” 2024, https://github.com/vfixresearch/vFix.
[40] A. Ghaleb and K. Pattabiraman, “How effective are smart contract

analysis tools? evaluating smart contract static analysis tools using
bug injection,” in Proceedings of the ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA), 2020, pp. 415–
427.

[41] “Etherscan,” 2021, https://cn.etherscan.com/.
[42] “Bitcoin script,” 2021, https://en.bitcoin.it/wiki/Script.
[43] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek,

“Secure multiparty computations on bitcoin,” in Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2014, pp. 443–458.

[44] “Hyperledger,” 2021, https://www.hyperledger.org/.
[45] “Corda,” 2021, https://www.corda.net/.
[46] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum

smart contracts.” IACR Cryptology ePrint Archive, vol. 2016, p. 1007,
2016.

[47] B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: fuzzing smart
contracts for vulnerability detection,” in Proceedings of the ACM/IEEE
International Conference on Automated Software Engineering (ASE),
2018, pp. 259–269.

[48] “Transaction ordering dependency,” 2021,
https://consensys.github.io/smart-contract-best-practices/known -
attacks/.

[49] “Missing zero check,” 2021, https://github.com/crytic/slither/wiki/
Detector-Documentation#missing-zero-address-validation.

[50] “Lock ether,” 2021, https://github.com/crytic/slither/wiki/
Detector-Documentation#contracts-that-lock-ether.

[51] “Swc 104,” 2021, https://swcregistry.io/docs/SWC-104.
[52] V. A. Alfred, S. L. Monica, and D. U. Jeffrey, Compilers principles,

techniques & tools. pearson Education, 2007.
[53] F. Nielson, H. R. Nielson, and C. Hankin, Principles of program

analysis. springer, 2015.

11

https://github.com/kieranelby/KingOfTheEtherThrone\/blob/master/contracts/KingOfTheEtherThrone.sol
https://github.com/kieranelby/KingOfTheEtherThrone\/blob/master/contracts/KingOfTheEtherThrone.sol
https://github.com/kieranelby/KingOfTheEtherThrone\/blob/master/contracts/KingOfTheEtherThrone.sol
https://www2.deloitte.com/ie/en/pages/technology/articles/DAO-Attack-Analysis.html
https://www2.deloitte.com/ie/en/pages/technology/articles/DAO-Attack-Analysis.html
https://etherscan.io/token/0xbb9bc244d798123fde783fcc1c72d3bb8c189413
https://etherscan.io/token/0xbb9bc244d798123fde783fcc1c72d3bb8c189413
https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
https://github.com/crytic/slither/wiki/Detector-Documentation#contracts-that-lock-ether
https://github.com/crytic/slither/wiki/Detector-Documentation#contracts-that-lock-ether

[54] D. Lee, P. M. Chen, J. Flinn, and S. Narayanasamy, “Chimera: hybrid
program analysis for determinism,” in Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (PLDI), 2012, pp. 463–474.

[55] X. Xiao, N. Tillmann, M. Fahndrich, J. De Halleux, and M. Moskal,
“User-aware privacy control via extended static-information-flow anal-
ysis,” in Proceedings of the International Conference on Automated
Software Engineering (ASE), 2012, pp. 80–89.

[56] B.-C. Cheng and W.-M. W. Hwu, “Modular interprocedural pointer
analysis using access paths: Design, implementation, and evaluation,”
in Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2000, p. 57–69.

[57] F. Bond, “A solidity parser for js built on top of a robust antlr4 grammar,”
2019, https://github.com/federicobond/solidity-parser-antlr.

[58] T. Parr, “ANTLR,” 2014, http://www.antlr.org/.
[59] “Google bigquery,” 2021, https://cloud.google.com/bigquery/.
[60] “Tuffle,” 2021, https://www.trufflesuite.com/.
[61] K. Taneja, N. Li, M. R. Marri, T. Xie, and N. Tillmann, “Mitv: multiple-

implementation testing of user-input validators for web applications,” in
Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2010, pp. 131–134.

[62] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge
University Press, 2008.

[63] “Gas and fees,” 2021, https://ethereum.org/en/developers/docs/gas/.
[64] Ethereum, “Solidity security considerations,” 2019,

https://solidity.readthedocs.io/en/v0.6.1/security-considerations.html.
[65] M. Rodler, W. Li, G. O. Karame, and L. Davi, “Evmpatch: timely and

automated patching of ethereum smart contracts,” in Proceedings of the
USENIX Security Symposium (USENIX Security), 2021, pp. 1289–1306.

[66] G. O. Karame and E. Androulaki, Bitcoin and blockchain security.
Artech House, 2016.

[67] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song, “Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contracts,” in Proceedings
of the IEEE European Symposium on Security and Privacy (EuroS&P),
2019, pp. 185–200.

[68] E. Cecchetti, F. Zhang, Y. Ji, A. Kosba, A. Juels, and E. Shi, “Solidus:
Confidential distributed ledger transactions via pvorm,” in Proceedings
of the ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2017, pp. 701–717.

[69] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2016, pp. 839–858.

[70] C. Le Goues, M. Pradel, and A. Roychoudhury, “Automated program
repair,” Communications of the ACM, vol. 62, no. 12, pp. 56–65, 2019.

[71] C. Ferreira Torres, H. Jonker, and R. State, “Elysium: Context-aware
bytecode-level patching to automatically heal vulnerable smart con-
tracts,” in Proceedings of the International Symposium on Research in
Attacks, Intrusions and Defenses (RAID), 2022, pp. 115–128.

[72] X. L. Yu, O. Al-Bataineh, D. Lo, and A. Roychoudhury, “Smart contract
repair,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 29, no. 4, pp. 1–32, 2020.

[73] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim, “Template-based
reconstruction of complex refactorings,” in Proceedings of the Interna-
tional Conference on Software Maintenance (ICSM), 2010, pp. 1–10.

[74] K. Sakamoto, K. Tomohiro, D. Hamura, H. Washizaki, and Y. Fukazawa,
“Pogen: a test code generator based on template variable coverage in
gray-box integration testing for web applications,” in Proceedings of
the International Conference on Fundamental Approaches to Software
Engineering (FASE), 2013, pp. 343–358.

12

	I Introduction
	II Background and Motivation Study
	II-A Smart Contract and Ethereum
	II-B Vulnerabilities in Smart Contracts
	II-C Motivation Study

	III Overview
	IV Design of vFix
	IV-A Phase I: Vulnerability Detection
	IV-B Phase II: Patch Generation
	IV-B1 Program Analysis Infrastructure
	IV-B2 Fix Patterns in Statement Level
	IV-B3 Fix Patterns in Method Level
	IV-B4 Fix Patterns in Contract Level

	IV-C Phase III: Patch Verification

	V Evaluation
	V-A Evaluation Setup
	V-B RQ1: Effectiveness in Patch Generation
	V-C RQ2: Ensemble of Static Verification Tools
	V-D RQ3: Runtime Performance

	VI Discussion
	VII Related Work
	VIII Conclusion
	References

