CS 5594: Blockchain Technologies

Cryptographic Primitives

Peng Gao
Assistant Professor

Spring 2022

Part of materials are derived from Prof. Thang Hoang’s SP 2021 course
Outline

• What Is Cryptography? Why Cryptography?
• Cryptographic Hash Functions
• Hash-Based Primitives
 – Digital Signature
 – HMAC
 – Hash Chain, Hash List
 – Merkle Tree
• Public Key Cryptography
 – RSA
 – Digital Signature Algorithm (DSA)
 – Elliptic Curve Digital Signature Algorithm (ECDSA)
Outline

• What Is Cryptography? Why Cryptography?
• Cryptographic Hash Functions
• Hash-Based Primitives
 – Digital Signature
 – HMAC
 – Hash Chain, Hash List
 – Merkle Tree
• Public Key Cryptography
 – RSA
 – Digital Signature Algorithm (DSA)
 – Elliptic Curve Digital Signature Algorithm (ECDSA)
What Is Cryptography

• **Cryptography** is the study of techniques for secure communications in the presence of adversaries
 – Based on mathematical theory

• Security is not the same as cryptography

Introduction to modern Cryptography (3rd edition)
– Jonathan Katz and Yehuda Lindell
What Is Cryptography

- **Cryptographic algorithms** are designed around **computational hardness assumptions**
 - Assuming adversary is **computationally bounded**
 - Problem cannot be solved efficiently (in polynomial time)
 - E.g., integer factorization: given integer \(n \), solve for \(p, q: p \cdot q = n \)
 - Hard when \(n \) grows large
 - E.g., discrete log problem: given integers \(n, g, \) and prime \(p \), solve for \(x: n = g^x \mod p \)
 - Hard when \(p \) grows large
 - Theoretically breakable
 - Hard to break in practice with current computing power
 - Need to reevaluate with better theory and faster computing
- **Examples**
 - Hash functions: MD5, SHA-1, SHA-256
 - Symmetric encryption: DES, AES
 - Asymmetric encryption: RSA, ECDSA
What Is Cryptography

• **Information-theoretically secure** schemes
 – No computational assumptions about the adversary
 – Theoretically unbreakable even with *unlimited* computing power
 – Hard to use in practice

• Example information-theoretic encryption scheme: **one-time pad**
Information-Theoretic Encryption: One-Time Pad

Terminology
- M: plaintext
- K: encryption key
- C: ciphertext

Message: $M = \{0,1\}^n$
Key: $K = \{0,1\}^n$
$Enc(M, K) = M \oplus K$

Adversary: gets no information from ciphertext

Using a new random secret key (as long as the plaintext) for each encryption
Problems With One-Time Pad

• **Conditions** for one-time pad to be theoretically unbreakable
 – The key is at least as long as the plaintext
 – The key is random (independent of the plaintext)
 – The key (in whole or in part) is used only once
 – The key is kept completely secret

• **Problems** in **practical** adoption
 – Costly to generate a long, random key every time
 – The sender needs to send the long key securely to the receiver ⇒ If such a method exists, why not just send the plaintext message?
The Role of Cryptography in Information Security

• Can be used to achieve several goals of information security
 – **Confidentiality:** keeping sensitive information private
 ▪ Encryption: plaintext \rightarrow ciphertext
 ▪ Decryption: ciphertext \rightarrow plaintext
 – **Integrity:** keeping information unmodified
 ▪ Cryptographic hash functions
 – **Authentication:** verifying someone/something is who/what it is declared to be
 ▪ Digital signatures, digital certificates
 ▪ Beyond cryptography
 • “Something you are”: biometric (fingerprint, Face ID)
 • “Something you have”: one-time token
 • “Something you know”: PIN, password
 • Multifactor authentication (MFA): password + cell phone
 – **Non-repudiation:** cannot deny having performed a particular action
 ▪ Digital signatures

• (Not limited to encryption)

• **Cryptographic primitives:** low-level cryptographic algorithms used to build cryptographic protocols for security systems (e.g., SHA-256, AES, RSA, PRG, digital signatures)
The CIA Triad for Information Security

- An information security model used to guide an organization’s security procedures and policies
 - **Confidentiality**: keeping an organization’s data private or secret; protecting the data from unauthorized access
 - Cases of compromise: electronic eavesdropping, data exfiltration
 - **Integrity**: keeping an organization’s data correct and reliable; protecting the data from unauthorized changes
 - Cases of compromise: modifying configuration files, changing system logs to evade detection
 - **Availability**: authorized users can have timely, reliable access to resources they need; networks, systems, and applications are up and running
 - Cases of compromise: denial-of-service (DoS) attack, system failure, natural disasters

- Using the CIA Triad to analyze cybersecurity
- Cryptography does **NOTHING** to ensure availability
Why Cryptography for This Course

• Bitcoin is a cryptocurrency
• Crypto is a mandatory building block in Bitcoin/blockchain
 – Cryptographic hash functions and hash-based primitives
 – Public key cryptography

Remark: Blockchain is based on distributed system and cryptography
Outline

• What Is Cryptography? Why Cryptography?
• Cryptographic Hash Functions
• Hash-Based Primitives
 – Digital Signature
 – HMAC
 – Hash Chain, Hash List
 – Merkle Tree
• Public Key Cryptography
 – RSA
 – Digital Signature Algorithm (DSA)
 – Elliptic Curve Digital Signature Algorithm (ECDSA)
Hash Function

• Hash function: a function H with two basic properties
 – **Compression**: H maps an input x of arbitrary length to an output $y = H(x)$ of a fixed length
 ▪ The process is called hashing the data
 • Hash functions are sometimes called compression functions, one-way functions
 ▪ Outputs are called hash values or message digest
 • n-bit output: $y = |H(x)| \ll |x|$, $|y| = \{160, 256, 384, 512\}$ (preferred 256 bits)
 – **Ease of computation**: given H and x, it’s easy to compute $y = H(x)$
Three Important Properties of Hash Functions

• Three additional important properties for a hash function to be an effective cryptographic tool

 - **Preimage resistance**
 - Computationally hard to reverse the hash function
 - For any \(y \) (in the range of \(H \)) for which a corresponding input is unknown, computationally infeasible to find any input \(x \) s.t. \(H(x) = y \)
 - Protecting against an attacker who only has a hash value and is trying to find the input (preimage attacks)

 - **2nd preimage resistance**
 - Given an input and its hash, computationally hard to find a different input with the same hash
 - Given \(x \) and \(y = H(x) \), computationally infeasible to find \(x' \neq x \) s.t. \(H(x) = H(x') = y \)
 - Protecting against an attacker who has an input value and its hash, and wants to substitute a different input value as legitimate (e.g., checksum on files)

 - **Collision resistance**
 - Computationally hard to fine two different inputs that result in the same hash
 - Computationally infeasible to find \(x' \neq x \) s.t. \(H(x) = H(x') \)
 - Note that it is impossible for a hash function to **NOT** have collisions (due to compression); the property only says it is **HARD** to find
 - Protecting against collision attacks (finding two inputs producing the same hash value)
Relationships Between Properties

• Does collision resistance imply 2^{nd} preimage resistance?
 – Yes
 – **Proof by Contraposition:**
 ▪ Assume the 2^{nd} preimage resistance property does not hold. Repeatedly pick a random a, perform the attack that exhibits a b with $a \neq b$ and $H(a) = H(b)$, until it succeeds. This requires a feasible amount of work by our assumption. Once exhibited, the pair (a, b) proves that the collision resistance property does not hold.
 – 2^{nd} preimage resistance is a weaker version of collision resistance

• Does 2^{nd} preimage resistance imply collision resistance?
 – No

• Does preimage resistance imply 2^{nd} preimage resistance?
 – No
Relationships Between Properties

- Does 2nd preimage resistance imply preimage resistance?
 - No

- Does collision resistance imply preimage resistance?
 - No
 - **Proof by Construction:**
 - Let \(G \) be a hash function which is collision resistant and maps arbitrary-length inputs to \(n \)-bit outputs. Consider function \(H \):
 - \(H(x) = 1 \parallel x \), if \(x \) has bit length \(n \)
 - \(0 \parallel G(x) \), o.w.
 - Is \(H \) collision resistant? (yes)
 - Is \(H \) preimage resistant? (no)

- Does preimage resistance imply collision resistance?
 - No

- Different applications need different properties
Building Collision-Resistant Hash Functions

• Merkle-Damgard (MD) Construction
 – Starting from a collision-resistant one-way compression function H

- Iterating it
 ▪ Length padding: padding the input message to make its length a multiple of a fixed number (e.g., 512)
 ▪ IV: initialization vector (a fixed value)
 ▪ Breaking input into blocks and processing each block with the compression function
 • Hash value of the first message block becomes an input to the second hash operation
 • Avalanche effect: a slight change of input results (e.g., 1 bit flip) in a significant change of output
 – Property: If the compression function is collision resistant and an appropriate padding scheme (MD-compliant padding) is used, the constructed hash function is also collision resistant
Popular Hash Functions

- **MD5** (Message Digest)
 - 128-bit output
 - e.g., MD5 checksum for transferred files to provide integrity
 - Designed by Ron Rivest, 1991
 - Previous versions (MD2, MD4) have serious weaknesses
 - Broken:
 - Xiaoyun Wang et. al. found collision in one hour using IBM p690 cluster, 2004
 - Klima found collision within one minute on a notebook computer using tunneling technique, 2006
 - Too weak to be used for critical applications. No longer recommended for use

- **SHA-1** (Secure Hash Function)
 - 160-bit output
 - e.g., used for SSL (Secure Socket Layer) certificates
 - Designed by NSA, adopted by NIST, 1993
 - Broken: Xiaoyun Wang et. al. found attack on SHA-1, 2005 (CRYPTO’05)
 - Collision found in 2^{69} hash operations, much less than brute-force of 2^{80} operations

- Recommended
 - SHA-2 family: **SHA-256** (256-bit output), SHA-384, SHA-512
 - BLAKE-256/512 (good for embedded devices)
Applications of Hash Functions

• Password storage for websites
 – Server logon processes store “hash(password)” in file (list of <user_id, $H(P)$> entries)
 – New user logon:

 ![Diagram](Image)

Collision resistance \Rightarrow cannot guess a random password that works

Preimage resistance \Rightarrow cannot derive the password from the leaked hash
Applications of Hash Functions

- Data file integrity check using checksum
 - Detect any changes made to a data file
Birthday Paradox

• Why do we need 160 (e.g., SHA-1) or 256 (e.g., SHA-256) bits in the output of a hash function?
 – If it is too long: unnecessary overhead
 – If it is too short: loss of strong collision resistance property => vulnerable to **Birthday attack**

• **Birthday paradox**
 – The probability of a shared birthday in a group of 23 people exceeds 50%
 – The probability of a shared birthday in a group of 30 people is around 70%
Birthday Paradox

A classroom of k students.

Probability of at least two students having the same birthday ($= 1 - Pr(\text{all students have different birthdays})$):

- $k = 1$: \[1 - \frac{365}{365}\]
- $k = 2$: \[1 - \frac{364}{365}\]
- $k = 3$: \[1 - \left(\frac{364}{365} \times \frac{363}{365}\right)\]

Thus, for k students:

\[
1 - \left(\frac{364}{365} \times \frac{363}{365} \cdots \frac{365 - k - 1}{365}\right)
= 1 - \frac{365!}{(365 - k!) \cdot (365^k)}
\]
“Birthday of a person” can be thought of as a function that maps from an arbitrary person identifier to a fixed degree output from 1-365

- For 25 (different) people, around 50% probability to find a collision
- For 30 people, around 70% probability to find a collision
- For 366 people, 100% probability to find a collision

Generally, for a function \(H \) with \(n \) possible outputs, for \(k \) different inputs:

\[
\Pr(\text{no collision}) = \left(1 - \frac{1}{n}\right) \times \left(1 - \frac{2}{n}\right) \times \cdots \times \left(1 - \frac{k - 1}{n}\right)
\]

When \(x \) is small \(1 - x \approx e^{-x} \Rightarrow \left(1 - \frac{1}{n}\right) \approx e^{-\frac{1}{n}}, \ldots \)

\[
\Pr(\text{no collision}) \approx e^{-1/n} \times e^{-2/n} \times \cdots \times e^{-\frac{k-1}{n}}
\]
\[
\approx e^{-\frac{k(k-1)}{2n}} \approx e^{-k^2/2n}
\]

\[
\Pr(\text{at least one collision}) = 1 - e^{-k^2/2n}
\]

Suppose the probability for finding a collision is at least \(p \). Then:

\[
k \approx \sqrt{2n \times \ln\left(\frac{1}{1 - p}\right)}
\]

In general, for a function with \(n \) possible outputs, on average \(\sqrt{n} \) inputs are required to find a collision
Birthday Attack

• A cryptographic attack that exploits the birthday paradox to find collisions for a hash function

• For a hash function H of output length m bits

 $\sqrt{2n \times \ln\left(\frac{1}{1-p}\right)} \approx 1.174\sqrt{n} \approx \sqrt{2^m} = 2^{m/2}$

 Thus, if we hash $2^{m/2}$ random inputs, it is likely that two messages will have the same hash outputs

 Conclusion: choose at least $m \geq 160$, preferably $m = 256$
Birthday Attack Example

- Example: $H(x) = \text{first_byte}(\text{SHA256}(x))$
 - Collision: $H(\text{"GOOD"}) = H(\text{"EVIL"}) = 1a$

Salted Hashing

- Deterministic hashing is not sufficient for storing passwords
 - Vulnerable to rainbow table attack
 - A type of pre-computation attack
 - Rainbow table: pre-computed tables/databases of hashes and their plaintext passwords
 - Hashes can be searched for and immediately reversed into plaintexts
 - Using less processing time and more space than brute-force attack
 - Basic brute-force attack: exhaustive search for every possible combination for passwords
 - Dictionary attack: a type of brute-force attack that uses a predefined list of passwords that would have a higher probability of success
 - Traditional brute force attacks store no pre-computed data and compute each hash at run time ⇒ using minimal space but taking a long time (space-time tradeoff)

- Salted hashing
 - **Salt**: a random unique token passed to the hash function along with the password plaintext to generate a unique hashed password
 - Goal of salting: making it infeasible to construct pre-computed databases to crack password hashes
 - Infeasible to generate rainbow tables for every possible salt
 - The salt should be unique per password
 - For global salt (same salt for all passwords), pre-computed databases can still be used. --- though they have to be computed for specifically for the application’s salt
 - The salt can be stored right next to the salted and hashed password in the database
 - Need both the salt and the hashed password to validate a password. Thus, they should be “close” in architectural sense
 - Salts are NOT assumed to be secret
 - For extra security, can use a second piece of salt (called “**pepper**”), which is the same for all users and stored outside the database (e.g., environment variable, configuration file, code)
Keyed Hashing

• Collisions are impossible to eliminate completely

• Keyed hash functions
 – An algorithm that uses a cryptographic key and a cryptographic hash function to produce a message authentication code that is keyed and hashed
 – Also known as hash-based message authentication code, or HMAC
 ▪ Used to detect when an attacker has tampered with a message (cryptographic checksums)

• Comparison to salted hashing
 – The salt is usually stored along with the hashed password and is not assumed to be secret, but the key is
 – The salts are supposed to vary but the key is shared between instances
Is Encryption a Good Hash Function?

• **Block-based encryption** as hash
 – Encryption block size may be too short (e.g., DES has 64-bit output)
 ▪ Birthday attacks
Outline

• What Is Cryptography? Why Cryptography?
• Cryptographic Hash Functions
• Hash-Based Primitives
 – Digital Signature
 – HMAC
 – Hash Chain, Hash List
 – Merkle Tree
• Public Key Cryptography
 – RSA
 – Digital Signature Algorithm (DSA)
 – Elliptic Curve Digital Signature Algorithm (ECDSA)
Hash-Based Primitives

• Authentication
 – Digital signature
 – Hash-based message authentication code (HMAC)
 – Authenticated data structures
 ▪ Hash chain
 ▪ Merkle tree

• Proof of work (PoW)
Digital Signature

• A cryptographic mechanism used to verify the **authenticity** and **integrity** of digital data
 – A code that is attached to a message
• Cryptographic hash functions + public key cryptography (PKC)
• **Hash-then-sign** paradigm
 – First shorten arbitrary-long message using hashing, \(d = H(M) \) --- hash function
 – Then sign the digest using the signer’s private key, \(s = \text{Sign}(d) \) --- PKC
• The recipient of the message can **verify** if the signature is valid by using the signer’s public key (“public” means everyone can access)

Signature generation
- Message \(m \)
 - Hash
 - \(H(m) \)
 - Sign
 - Signature \(s \)

Signature verification
- Bob’s public key \(pk \)
 - Message \(m \)
 - Hash
 - \(H(m) \)
 - Verify
 - Valid/invalid
- Bob’s private key \(sk \)
Digital Signature: Important Notes

• Different message have different digital signatures, though a handwritten signature can be used across messages

• Both public and private keys are generated by the sender of the message, but only the public key is shared with the receiver

• Private key needs to be kept in secret by the sender. Otherwise, anyone who gets the key can pretend to be the sender
 – E.g., attacker can use Alice’s private key to sign a transaction to move or spend her Bitcoins

• Hashing is not a must for producing a digital signature
 – Blockchains prefer hashing as the fixed-length digests facilitate the whole process

• Digital signature is not the same as encryption
 – Encryption:
 ▪ Public key to write message and private key to read it
 ▪ Provides confidentiality
 – Signing:
 ▪ Private key to write message’s signature and public key to verify it
 ▪ Provides message authentication and non-repudiation

• Digital signature provides:
 – **Data integrity**: any modification will produce a completely different signature
 – **Authenticity**: can use public key to confirm the signature was created by the corresponding sender
 – **Non-repudiation**: the sender cannot deny having signed it
Digital Signature: Security Aspects

• Relying on \textbf{collision resistance} property
 – If $H(M) = H(M')$, then s is a signature for both M and M'

• Attacks on MD5, SHA-1 threaten current signatures
 – MD5 attacks can be used to get bad CA certificate [Stevens et al. 2009]

• Well-worth the attacker’s effort
 – One collision \Rightarrow forgery for any signer

• Improvement: adding a random token
 – To sign M, choose fresh random salt s, return $Sign(s, H(s, M))$
Outline

• What Is Cryptography? Why Cryptography?
• Cryptographic Hash Functions
• Hash-Based Primitives
 – Digital Signature
 – HMAC
 – Hash Chain, Hash List
 – Merkle Tree
• Public Key Cryptography
 – RSA
 – Digital Signature Algorithm (DSA)
 – Elliptic Curve Digital Signature Algorithm (ECDSA)
Hash-Based Message Authentication Code (HMAC)

- Using keyed hash functions
 - E.g., using encryption with key and output last b bytes
 - Keyless hash functions: MD5, SHA-1
- Providing integrity and authenticity
- Simple key-prepend construction (MAC)
 - Procedure:
 - Sender/recipient shares secret key K
 - For message M, MAC: $\text{tag} \leftarrow H(K \parallel M)$
 - If the adversary changes M to M', he/she won’t know how to change the MAC
 - However, susceptible to length extension attacks
 - Pre-condition:
 - MD construction-based hash (e.g., MD5, SHA-1) is used with construction $H(K \parallel M)$
 - Message M and the length of secret k is known
 - Consequence: the attacker can include extra information at the end of M and produce a valid hash without knowing the content of k
- Improved construction (HMAC)
 - Two passes of hash computation: for message M, tag $\leftarrow H(K \parallel H(K \parallel M))$
 - About as fast as key-prepend for a MD hash
 - Immunity against length extension attacks
- MAC/HMAC does not encrypt the message
HMAC Construction

\[\text{HMAC}(K, M) = H \left((K' \oplus \text{opad}) \parallel H((K' \oplus \text{ipad}) \parallel M) \right) \]

\[K' = \begin{cases} H(K) & \text{if } K \text{ is larger than block size} \\ K & \text{Otherwise} \end{cases} \]

Two “magic numbers” --- related to the security proof

- \text{opad} is the block-sized outer padding, 0x5c5c5c…5c
- \text{ipad} is the block-sized outer padding, 0x363636…36
Outline

• What Is Cryptography? Why Cryptography?
• Cryptographic Hash Functions
 • Hash-Based Primitives
 – Digital Signature
 – HMAC
 – Hash Chain, Hash List
 – Merkle Tree
 • Public Key Cryptography
 – RSA
 – Digital Signature Algorithm (DSA)
 – Elliptic Curve Digital Signature Algorithm (ECDSA)
Hash Chain

• **Definition:** a successive application of a cryptographic hash function H to x

 - $H^5(x) = H \left(H \left(H \left(H(H(x)) \right) \right) \right)$ has length 5

• **Key property:** suppose $i < j < k$, given $H^j(x)$, easy to compute $H^k(x)$, but computationally infeasible to compute $H^i(x)$

• **Applications**
 - S/Key one-time password protocol
 - Authenticated data streams
One-Time Password

• **Idea:** generate a long list of passwords, and use each **only one time**

• Attacker gains little/no advantage by eavesdropping on password transmission, or cracking one password

• Disadvantages:
 – Storage overhead
 – Need to remember lots of passwords

• **Alternative:** the **S/Key protocol**
 – Uses one-way hash chain
S/Key One-Time Password Protocol

- **Password generation**
 - A secret key W is either generated by the server or provided by the user
 - The server applies H to W for n times: $H(W), H(H(W)), \ldots, H^n(W)$
 - The secret W is discarded
 - The user is provided with n passwords in reverse order: $H^n(W), H^{n-1}(W), \ldots, H(H(W)), H(W)$
 - The server only stores $H^n(W)$ and discards the rest passwords

S/Key One-Time Password Protocol

• **Password authentication**
 - The user provides
 \[pwd = H^{n-i}(W) \quad (i = 1, 2, ..., n-1) \]
 - The server computes \(H(pwd) \),
 and compares it with the one
 stored on the server (i.e., \(H^{n-i+1}(W) \))
 - If the results match, the
 authentication is successful. The
 server then stores the provided
 \(pwd \) for future use

• **Limitations:**
 - Limited number of passwords;
 need to periodically regenerate a
 new chain
 - Does not authenticate the server

[Diagram of S/KEY authentication process]

Chained Hash

- More general construction than one-way hash chains
- Useful for authenticating a sequence of data values $D_0, D_1, ..., D_n$
- H^* authenticates the entire chain
Hash List

- **Definition**: a list of hashes of data blocks in a file
 - A subtree of a Merkle hash tree
 - Top/root hash: *commitment* of the entire hash list

- **Protecting data integrity**
 - Verification is complete after checking the root hash
 - Better than a simple hash of the entire file: only need to redownload the damaged blocks

\[m_0 = H(k_0) \]
\[m_0 \ldots m_7 = H(m_0, ..., m_7) \]
Outline

• What Is Cryptography? Why Cryptography?
• Cryptographic Hash Functions
 • Hash-Based Primitives
 – Digital Signature
 – HMAC
 – Hash Chain, Hash List
 – Merkle Tree
• Public Key Cryptography
 – RSA
 – Digital Signature Algorithm (DSA)
 – Elliptic Curve Digital Signature Algorithm (ECDSA)
Merkle Hash Tree

- A **binary tree** over data values
 - Every leaf is labelled with the **cryptographic hash** of a data block
 - Every inner node is labelled with the cryptographic hash of the labels of its child nodes
 - Top/root hash: **commitment** of the entire Merkle tree

- Generalization of hash chain and hash list
 - Protecting data integrity
Merkle Hash Tree

- Allows **efficient** and secure **verification** of the contents of a large data structure
 - Verification is complete after checking the root hash
 - $O(\log(n))$ to verify if a leaf node is part of a tree
 - No need to download the entire tree to verify a data block (need root node + some inner nodes)

- Hashing at the leaf level is **mandatory** to prevent unnecessary disclosure of data values

Example:
To authenticate k_2, send $(k_2, m_3, m_{01}, m_{47})$
Check $m_{07} = H\left(\left(H\left(m_{01} \parallel H\left(H\left(k_2\right) \parallel m_3\right)\right) \parallel m_{47}\right)\right)$
Merkle Hash Tree

- Authentication of the root is necessary to use the tree
 - Typically done through a digital signature or pre-distribution
- Merkle tree operations: updating, insertion, deletion
Merkle Hash Tree in Blockchain

Hash chain of blocks

Hash tree (Merkle tree) of transactions in each block
Outline

• What Is Cryptography? Why Cryptography?
• Cryptographic Hash Functions
• Hash-Based Primitives
 – Digital Signature
 – HMAC
 – Hash Chain, Hash List
 – Merkle Tree
• Public Key Cryptography
 – RSA
 – Digital Signature Algorithm (DSA)
 – Elliptic Curve Digital Signature Algorithm (ECDSA)
Public Key (Asymmetric) Cryptography

- Cryptographic operations use **different** keys
- Known as **asymmetric key cryptography**, **public key cryptography**
- Asymmetric encryption:
 - Digital signatures
 - Key management
Recall: Information-Theoretic Encryption: One-Time Pad

Terminology
- M: plaintext
- K: encryption key
- C: ciphertext

Message: $M = \{0,1\}^n$
Key: $K = \{0,1\}^n$
$Enc(M, K) = M \oplus K$

Internet ISPs

Adversary: gets no information from ciphertext

Secret key distribution

Key: $K = \{0,1\}^n$
$Dec(C, K) = C \oplus K = M$

Using a new random secret key (as long as the plaintext) for each encryption
Computational Encryption: Asymmetric/Public Key Encryption

• Two keys
 – Private key known only to individual
 – Public key available to anyone
 – Idea for confidentiality:
 ▪ Encrypt using public key, decrypt using private key

Message: $M = \{0,1\}^n$
Enc(M, Public$_K$) = C

Keys:
• Public$_K$
• Private$_K$
Dec(C, Private$_K$) = M
Computational Encryption: Asymmetric/Public Key Encryption

- Two keys
 - Private key known only to individual
 - Public key available to anyone
 - Idea for authentication/integrity (digital signature):
 - Encrypt using private key, decrypt using public key

\[\text{Dec}(C, \text{Public}_K) = M \]

Keys:
- \(\text{Public}_K \)
- \(\text{Private}_K \)

Message: \(M = \{0,1\}^n \)

Encrypted with the private key, decrypted with the public key.
Computational Encryption: Asymmetric/Public Key Encryption

• **Requirements:**
 - It must be *computationally easy* to encrypt or decrypt a message given the appropriate key
 - It must be *computationally infeasible* to derive the private key from the public key
 - It must be *computationally infeasible* to determine the private key from a ciphertext

• PKC relies on some known **mathematical hard problems**
 - Large integer factorization (e.g., RSA)
 ▪ Given integer \(n \), solve for \(p, q \): \(p \cdot q = n \)
 • Hard when \(n \) grows large
 - Discrete logarithmic (e.g., DSA)
 ▪ Given integers \(n, g \), and prime \(p \), solve for \(x \): \(n = g^x \mod p \)
 • Hard when \(p \) grows large
 - Elliptic curve discrete logarithmic (e.g., ECDSA)
PKC Security Arguments

• Confidentiality
 – Only the owner of the private key knows it, so text encrypted with public key cannot be read by anyone except the owner of the private key

• Authentication
 – Only the owner of the private key knows it, so text encrypted with private key must have been generated by the owner

• Integrity
 – Encrypted letters cannot be changed undetectably without knowing private key

• Non-repudiation
 – Message encrypted with private key came from someone who knew it
Public key cryptosystem harnesses certain algebraic properties in finite field

- **Closure under addition**:
 \[a + b = c \in G \]

- **Associativity of addition**:
 \[a + (b + c) = (a + b) + c \]

- **Additive identity**:
 \[\exists e \text{ s.t. } a + e = e + a = a \]

- **Additive inverse**:
 \[\exists b \text{ s.t. } a + b = e \]

- **Commutativity of addition**:
 \[a + b = b + a \]

- **Closure under multiplication**:
 \[a \times b = c \in G \]

- **Associativity of multiplication**:
 \[a \times (b \times c) = (a \times b) \times c \]

- **Distributive laws**:
 \[a \times (b + c) = a \times b + a \times c \]

- **Commutativity of multiplication**:
 \[a \times b = b \times a \]

- **Multiplicative identity**:
 \[\exists e \text{ s.t. } a \times e = e \times a \]

- **No zero divisors**:
 \[a \times b = 0 \Rightarrow a = 0 \lor b = 0 \]

- **Multiplicative inverse**:
 \[\exists b \text{ s.t. } a \times b = e \]
Outline

• What Is Cryptography? Why Cryptography?
• Cryptographic Hash Functions
• Hash-Based Primitives
 – Digital Signature
 – HMAC
 – Hash Chain, Hash List
 – Merkle Tree
• Public Key Cryptography
 – RSA
 – Digital Signature Algorithm (DSA)
 – Elliptic Curve Digital Signature Algorithm (ECDSA)
Public Key Primitive: RSA

• Rivest-Shamir-Adleman
• Most popular public key method
 – Provide both public key encryption and digital signature
• Based on large integer factorization problem
 – Given integer n, solve for p, q: $p \cdot q = n$
 – Hard to factorize n in polynomial time
• Variable key length (2048 bits or greater)
• Variable plaintext block size
 – Plaintext block size must be smaller than key size
 – Ciphertext block size is same as key size
RSA Algorithm

• **Euler’s totient function** $\phi(n)$

 – Number of positive integers less than n and relatively prime to n

 ▪ **Relatively prime** means having no factors in common with n

• If m and n are relatively prime, then $\phi(mn) = \phi(m)\phi(n)$

• **Example:** $\phi(10) = 4$

 – 1, 3, 7, 9 are relatively prime to 10

• **Example:** $\phi(21) = 12$

 – 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20 are relatively prime to 21
RSA Algorithm

- **Computing public/private keys:**
 - Find (using Miller-Rabin primality test) large primes p and q
 - Let $n = p \cdot q$, then $\phi(n) = (p - 1)(q - 1)$
 - Do not disclose p and q
 - Choose $e < n$ such that e is relatively prime to $\phi(n)$
 - Compute d such that $ed = 1 \mod \phi(n)$
 - d is multiplicative inverse of e under modulo $\phi(n)$

- Public key: (e, n)
- Private key: d
RSA Algorithm

• Let RSA public key \((e, n)\) and RSA private key \(d\)

• Given a plaintext message \(m < n\)

• **Encryption:**
 – Encryption: \(c \leftarrow m^e \pmod{n}\)
 – Decryption: \(m \leftarrow c^d \pmod{n}\)

• **Digital signature:**
 – Signing: \(s \leftarrow m^d \pmod{n}\)
 – Verification: \(m \leftarrow s^e \pmod{n}\)

• What if \(m > n\)?
 – Remark: Hash-then-sign paradigm
 – Hashing: \(t \leftarrow \text{Hash}(m), |t| = 160\) bits \(\Rightarrow t < n\)
 – Signing: \(s \leftarrow t^d \pmod{n}\)
RSA Example: Confidentiality

• Take $p = 7$, $q = 11$, so $n = 77$ and $\phi(n) = 60$

• Alice chooses $e = 17$, making $d = 53$
 – Verify: $ed = 901 = 1 \mod 60$

• Bob wants to send Alice secret message HELLO (07 04 11 11 14):
 – $07^{17} \mod 77 = 28$
 – $04^{17} \mod 77 = 16$
 – $11^{17} \mod 77 = 44$
 – $11^{17} \mod 77 = 44$
 – $14^{17} \mod 77 = 42$

• Bob sends 28 16 44 44 42
RSA Example: Confidentiality

• Alice receives 28 16 44 44 42

• Alice uses private key, \(d = 53 \), to decrypt message:
 \[28^{53} \mod 77 = 07 \]
 \[16^{53} \mod 77 = 04 \]
 \[44^{53} \mod 77 = 11 \]
 \[44^{53} \mod 77 = 11 \]
 \[42^{53} \mod 77 = 14 \]

• Alice translates message to letters to read HELLO

• **Security property:** No one else could read it, as only Alice knows her private key and that is needed for decryption
RSA Example: Authentication/Integrity

- Take $p = 7$, $q = 11$, so $n = 77$ and $\phi(n) = 60$
- Alice chooses $e = 17$, making $d = 53$
 - Verify: $ed = 901 = 1 \mod 60$
- Alice wants to send Bob message HELLO (07 04 11 11 14) so Bob knows it is what Alice sent (no changes in transit, and authenticated):
 - $07^{53} \mod 77 = 35$
 - $04^{53} \mod 77 = 09$
 - $11^{53} \mod 77 = 44$
 - $11^{53} \mod 77 = 44$
 - $14^{53} \mod 77 = 49$
- Alice sends 35 09 44 44 49 (the signature) in together with HELLO (07 04 11 11 14)
RSA Example: Authentication/Integrity

- Bob receives 35 09 44 44 49 (signature) and HELLO (07 04 11 11 14)
- Bob uses Alice’s public key, $e = 17$, $n = 77$, to verify message:
 - $35^{17} \mod 77 = 07$
 - $09^{17} \mod 77 = 04$
 - $44^{17} \mod 77 = 11$
 - $44^{17} \mod 77 = 11$
 - $49^{17} \mod 77 = 14$
- Bob translates message to letters to verify HELLO
- Security property:
 - Alice sent it as only she knows her private key, so no one else could have “encrypted” it
 - If (enciphered) message’s blocks (letters) are altered in transit, the message would not be “decrypted” properly
RSA Example: Both

• Alice wants to send Bob message HELLO both encrypted and authenticated (integrity-checked)
 – Alice’s keys: public (17, 77); private 53
 – Bob’s keys: public (37, 77); private 13

• Alice encrypts HELLO (07 04 11 11 14):
 – \((07^{53} \mod 77)^{37} \mod 77 = 07\)
 – \((04^{53} \mod 77)^{37} \mod 77 = 37\)
 – \((11^{53} \mod 77)^{37} \mod 77 = 44\)
 – \((11^{53} \mod 77)^{37} \mod 77 = 44\)
 – \((14^{53} \mod 77)^{37} \mod 77 = 14\)

• Alice sends 07 37 44 44 14
RSA Security

- At present, 1024-bit keys are considered secure, but 2048-bit keys are **recommended**

- **Tips** for making n hard to be factorized
 - p and q lengths should be similar (e.g., ~500 bits each if key is 1024 bits)
 - Both $p - 1$ and $q - 1$ should contain a “large” prime factor
 - $\gcd(p - 1, q - 1)$ should be “small”
 - d should be larger than $n^{0.25}$

- **Some attacks on RSA**
 - Mathematical attacks (factor n, compute d from e) → extremely difficult
 - Brute force
 - Probable-message attacks
 - Timing attacks

- **How to prevent attacks?**
 - Large key
 - Random padding (RSA + OAEP)
 - Message blinding
Announcements

• Initial project report: due March 6, 2022
 – 2-3 pages, double-column ACM format, PDF report prepared using LaTeX
 – The report should be well-formatted and include:
 ▪ Title, authors, abstract
 ▪ Introduction (problem motivation, key ideas, proposed contributions)
 ▪ Approach overview (short summary of the approach)
 ▪ Related work (comprehensive survey of related papers and tools, their pros and cons, why your proposed approach/solution is better)
 ▪ Project timeline and expected milestones
 ▪ References

• Midterm project progress report: due April 3, 2022

• Weekly/biweekly paper reading assignments start very soon
Outline

• What Is Cryptography? Why Cryptography?
• Cryptographic Hash Functions
• Hash-Based Primitives
 – Digital Signature
 – HMAC
 – Hash Chain, Hash List
 – Merkle Tree
• Public Key Cryptography
 – RSA
 – Digital Signature Algorithm (DSA)
 – Elliptic Curve Digital Signature Algorithm (ECDSA)
Digital Signature Algorithm (DSA)

- Useful only for digital signing (no encryption or key exchange)
- Components
 - SHA-1 to generate a hash value (some other hash functions also allowed now)
 - Digital Signature Algorithm (DSA) to generate the digital signature from this hash value
- Designed to be fast for the signer rather than verifier
- Based on discrete logarithmic hard problem
 - Given y_M, hard to find x_M s.t. $y_M = g^{x_M} \mod p$
DSA Public Parameters

Announce public parameters used for signing

Pick \(p \) as a prime with \(\geq 1024 \) bits

Pick \(q \) as a 160-bit prime such that \(q | (p-1) \)

Choose \(g \equiv h^{(p-1)/q} \mod p \),

where \(1 < h < (p-1) \) such that \(g > 1 \)

Note: \(g \) is of order \(q \mod p \) (i.e., smallest \(q \) s.t. \(g^q \equiv 1 \mod p \))

\[
\begin{align*}
p &= 103 & q &= 17 \, \text{(divides 102)} \\
\text{powers of 64 mod 103} &= 64, 79, 9, 61, 93, 81, 34, 13, 8, 100, 14, 72, 76, 23, 30, 66, 1
\end{align*}
\]

17 values
DSA Key Generation and Signing

Key Generation
- Alice generates a long-term **private** key x_M
 - Random integer $0 < x_M < q$
- Alice generates a long-term **public** key y_M
 - $y_M = g^{x_M} \mod p$
- Alice randomly picks a private key k such that $0 < k < q$, and generates $k^{-1} \mod q$

Signing phase
- Signing message M
 - Public key $r = (g^k \mod p) \mod q$
 - Signature $s = (k^{-1}(H(M) + x_M \cdot r)) \mod q$
- Send (M, r, s)

Examples
- $x_M = 13$
- $y_M = 64^{13} \mod 103 = 76$
- $k = 12; k^{-1} = 12^{-1} \mod 17 = 10$
- $H(M) = 75$
- $r = (64^{12} \mod 103) \mod 17 = 4$
- $s = (10 \cdot (75 + 13 \cdot 4)) \mod 17 = 12$

$(M, 4, 12)$
Verification

- **Public parameters**: \(g, p, q, y_M \)
- Received from signer: \(M, r, s \)

\[
\begin{align*}
 w &= (s)^{-1} \mod q \\
 u_1 &= [H(M)w] \mod q \\
 u_2 &= (r * w) \mod q \\
 v &= [(g^{u_1} \cdot y_M^{u_2}) \mod p] \mod q
\end{align*}
\]

- \(p = 103, q = 17, g = 64, y_M = 76 \)
- \(M, 4, 12 \)
- \(H(M) = 75 \)
- \(w = 12^{-1} \mod 17 = 10 \)
- \(u_1 = 75 \cdot 10 \mod 17 = 2 \)
- \(u_2 = 4 \cdot 10 \mod 17 = 6 \)
- \(v = (64^2 \cdot 76^6) \mod 103 \mod 17 = 4 \)

If \(v = r \), then the signature is verified
DSA Security

- Given y_M, it is difficult to compute x_M
 - x_M is the discrete log of y_M to the base g, mod p (i.e., $y_M = g^{x_M} \mod p$)

- Similarly, given r, it is difficult to compute k

- Cannot forger a signature without x_M

- Signatures are not repeated (used once per message) and cannot be replayed

- **Faster at signing than RSA, but slower at verifying than RSA**

- Key lengths of 2028 bits and greater are also allowed
Outline

• What Is Cryptography? Why Cryptography?
• Cryptographic Hash Functions
• Hash-Based Primitives
 – Digital Signature
 – HMAC
 – Hash Chain, Hash List
 – Merkle Tree
• Public Key Cryptography
 – RSA
 – Digital Signature Algorithm (DSA)
 – Elliptic Curve Digital Signature Algorithm (ECDSA)
Why Elliptic Curve Cryptography (ECC)?

- **Shorter key size** than conventional PKCs (RSA, discrete logarithm-based (e.g., DSA))
 - Because the elliptic curve discrete logarithm problem (ECDLP) is much harder
- **Lower computation overhead**
 - Due to shorter key
 - Less data => faster transactions (important for blockchain)
- **ECDSA**: an elliptic curve implementation of DSA
 - Signature scheme used in Bitcoin; every Bitcoin address is a cryptographic hash of the ECDSA public key

<table>
<thead>
<tr>
<th>Security level (bits)</th>
<th>RSA/DL-based key size (bits)</th>
<th>ECC key size (bits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>512</td>
<td>112</td>
</tr>
<tr>
<td>80</td>
<td>1024</td>
<td>160</td>
</tr>
<tr>
<td>112</td>
<td>2048</td>
<td>224</td>
</tr>
<tr>
<td>128</td>
<td>3072</td>
<td>256</td>
</tr>
<tr>
<td>192</td>
<td>7680</td>
<td>384</td>
</tr>
<tr>
<td>256</td>
<td>15360</td>
<td>512</td>
</tr>
</tbody>
</table>
Elliptic Curve Cryptography

An elliptic curve (EC) consists of all elements \((x, y) \in \mathbb{F}\) satisfying

\[
y^2 = x^3 + ax + b
\]
Elliptic Curve Cryptography

- **Point addition:** Let P and Q be two EC points
 \[P + Q = R = (x, -y), \]
 \[(x, y) = -R := \text{intersection of EC and PQ-line} \]

- **Point negation:** \(P + (-P) = O \)
 - O: identity point at infinity (not on the curve)
 - P: (x, y); -P: (x, -y)

- **Point doubling:** \(R = P + P = (x', -y') \),
 \[(x', y') = -R := \text{intersection of EC and tangent line of P} \]

- **Point multiplication:** achieved via double-and-add
 - Similar to multiply-and-square trick
 - e.g., \(Q=7P, 7 = (111)_2, Q = 0, R=P \)
 - \(Q += R \& R*2; Q+=R \& R*2; Q+=R \& R*2 \)
Elliptic Curve Cryptography

- **The Group Law**: The points on an elliptic curve form an additive group with an identity O.

https://en.wikipedia.org/wiki/Elliptic_curve#The_group_law
Elliptic Curve Cryptography

Point addition and point doubling (arithmetic)

Let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ be two points in the elliptic curve $y^2 = x^3 + ax + b$.

- $P + O = O + P = P$
- If $x_1 = x_2$ and $y_1 = -y_2$, that is $Q = (x_1, -y_1) = -P$, then $P + Q = P + (-P) = O$
- If $Q \neq -P$ then $P + Q = (x_3, y_3)$ can be calculated by:

 \[
 \begin{align*}
 x_3 &= \lambda^2 - x_1 - x_2 \\
 y_3 &= \lambda(x_1 - x_3) - y_1
 \end{align*}
 \]

 where

 \[
 \lambda = \begin{cases}
 \frac{y_2 - y_1}{x_2 - x_1}, & \text{if } P \neq Q \text{ (point addition)} \\
 \frac{3x_1^2 + a}{2y_1}, & \text{if } P = Q \text{ (point doubling)}
 \end{cases}
 \]
Elliptic Curve Cryptography

• In cryptography, we are interested in **elliptic curves modulo a prime** p

 $$y^2 = x^3 + ax + b \mod p$$

• Points on an elliptic curve and the infinity point O form a **cyclic group**
 - E.g., $y^2 = x^3 + 2x + 2 \mod 17$
 - $P=(5,1), 2P=(6,3), 3P = 2P+P = (10,6), \ldots, 18P=(5,16), 19P=O, 20P=19P+P=O+P=P, \ldots$
 - EC has order $|E|=19$ as there are 19 points in its cyclic group

• **How many points** in an arbitrary EC?
 Given an elliptic curve E modulo p, the number of points on E is bounded by
 $$p + 1 - 2\sqrt{p} \leq |E| \leq p + 1 + 2\sqrt{p} \text{ (Hasse Theorem)}$$

Number of points close to prime p
Elliptic Curve Cryptography

- Rely on EC-discrete logarithmic hard problem
 - Given \((G, Y) \in EC\) s.t. \(Y = k \cdot G\) (\(Y\) is \(G\) added to itself \(k\) times), hard to find \(k\)

- ECC key size smaller than RSA and discrete log-based cryptography
 - Attacks on EC groups are weaker than factorizing algorithm or discrete log attacks

- Best known attacks
 - Baby-step, giant step
 - Pollard’s rho algorithm

- ECDSA
 - Asymmetric, based on DSA
 - Used another mathematical approach to key generation
 - Operations on points of EC
ECDSA Public Parameters

Public parameter generation

Pick p as a prime with ≥ 160 bits

$\text{Pick } a, b \text{ to form an EC}$

Pick an ECC generator G with order n

$n \times G = 0$

How to choose G and n?

Multiplication of $G \mod p =$

$(5,1)$ $(6,3)$ $(10,6)$ $(3,1)$ $(9,16)$ $(16,13)$ $(0,6)$ $(13,7)$ $(7,6)$ $(7,11)$ $(13,10)$ $(0,11)$ $(16,4)$ $(9,1)$ $(3,16)$ $(10,11)$ $(6,14)$ $(5,16)$ (0)

19 points

(p,a,b,G,n) are public parameters

$p = 17$

$y^2 = x^3 + 2x^2 + 2x$ ($a = 2, b = 2$)

$G = (5,1), n = 19$
ECDSA Key Generation and Signing

Key Generation

Alice generates a long-term **private** key \(d_A \)

Random integer \(0 < d_A < n \)

Alice generates a long-term **public** key \(Q_A \)

\[Q_A = d_M \times G \mod p \]

Signing phase: To sign message \(M \)

Select an ephemeral key \(k \) from \([1, n - 1]\)

Compute an EC point \((x_1, y_1) = k \times G\)

Compute \(r = x_1 \mod n \) (choose other \(k \) if \(r = 0 \))

Compute \(s = k^{-1} (z + r \cdot d_A) \mod n \) (choose other \(k \) if \(s = 0 \))

Signature \(\sigma = (r, s) \)

Send \((M, \sigma)\)
ECDSA Verification

Verification

Public parameters: \(a, b, G, n, Q_A\)
Received from signer: \(M, r, s\)

\[
\begin{align*}
\text{Compute EC point } (x_1, y_1) &= u_1 \times G + u_2 \times Q_A \\
\text{If } (x_1, y_1) &= 0, \text{ invalid signature} \\
\text{If } r &\equiv x_1 \mod n, \text{ valid signature. Invalid otherwise}
\end{align*}
\]

\[
\begin{align*}
u_1 &= z \cdot s^{-1} \mod n \\
u_2 &= r \cdot s^{-1} \mod n \\
M, 10, 12 &\quad z = H(M) = 5 \\
(9, 16) &\quad a = 2, b = 2, p = 17, n = 19, G = (5,1), Q_A = (9,16) \\
10 \cdot 12^{-1} \mod 19 &= 4 \\
5 \cdot 12^{-1} \mod 19 &= 2 \\
x_1 = 10, r = 10 \\
(6, 3) + (5, 1) = (10, 6)
\end{align*}
\]
Some Popular ECs

Curve25519 (Montgomery curve)
\[
y^2 = x^3 + 486662x^2 + x
\]
\[
p = 2^{255} - 19
\]

Secp256k1 (used in Bitcoin)
\[
y^2 = x^3 + 7
\]
\[
p = 2^{256} - 2^{32} - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1
\]
Other ECC-Based Primitives

• ECC replaces modular arithmetic operations in conventional PKC by operations defined over the elliptic curve

• ECC primitives can be easily constructed by making analogous changes to the corresponding conventional PKC
 – ECC encryption from ElGamal encryption
 – ECC-DH key exchange from Diffie-Hellman key exchange
 – ECC-DSA signature from DSA signature
Summary

• Cryptography enables secure/private communications in the present of adversaries

• Other important topics we haven’t covered
 – Pseudorandom number generator (PRG)
 – Symmetric encryption, stream cipher, block cipher, DES, AES
 – Key negotiation, Diffie-Hellman Key Exchange (DHKE)
 – Key management, public key infrastructure (PKI), digital certificates
 – …

• Advanced topics in cryptography
 – Private information retrieval
 – Searchable encryption
 – Homomorphic encryption
 – Oblivious ram
 – Zero-knowledge proof
 – Secure multi-party computation
 – …
Thanks!