CS 6604: Data Mining Fall 2007

Lecture 16 — October 15, 2007

Lecture: Naren Ramakrishnan Scribe: Xiaomo Liu

1 Overview

In the previous several lectures, we mainly discussed algorithms for ILP, i.e., supervised learning of rela-
tional predicates. In this class, we focus on unsupervised algorithms for learning relational patterns. In
particular, we look at algorithms that are the relational equivalent of traditional enumerative search algo-
rithms.

Take, for instance, the most famous algorithm in the association rules literature, i.e., Apriori. Its relational
twin, call it Relational Apriori, is its generalization to first-order logic. To recall the details of Apriori, one
of the properties it exploits is anti-monotonicity, namely if a set of items X does not have support, a set
Y O X cannot have support.

2 Relational Apriori

2.1 Queries

Suppose we have a relational database consisting of three tables, i.e., "Customer”, ”Parent”, and ”Buys” as
follows:

Customer_ID Parent_ID | Child_ID Customer_ID | Item
allen allen bill allen wine
bill allen carol bill candy
carol bill zoe bill pizza
diana carol diana diana pizza

Table 1: Relation database RD with customer information

The type of pattern we try to mine can be viewed as queries. We say that a query-pattern matches the
database if the set of tuples returned by the query is not empty. Take an ordinary SQL query for example, if
we need to inquire the relational database for the customer who buys its child “candy’:

SELECT Customer.Customer_ID, Parent.Child_1ID
FROM Customer, Parent, Buys

WHERE Customer.Customer_ID = Parent.Parent_ 1D
AND Parent.Child_ID = Buys.Customer_ID

AND Buys.Item = ’candy’

Let us convert this query into predicate logic form. Thus, the above SQL query is translated into the follow-
ing logical clause form, ().

Customer (X), Parent (X,Y), Buys (Y,candy)

We say query-pattern ()1 matches the relational database RD because there exists an answer { X = allen,Y =
bill}.

2.2 ‘“Relational Itemsets”
Queries can be view as “relational itemsets”. Compare example query (); to itemset:

{Customer, Parent, Child, Candy_buyer}.
In the single table database framework, such an itemset has a ‘market-basket’ interpretation so that in a
single transaction, a customer, a parent, a child, and a candy buyer occur. In the relational case, we need
to define the notion of a ‘transaction’. Consider again query ()1 and assume we observe that 25% of our

customers are parents of children who buy candy (Allen).

Customer (X), Parent (X,Y), Buys (Y, candy)
Frequency: 0.25

At the same time, we can also count the occurrence for another query Q2 and observe that 75% of our
customers are parents (Allen, Bill and Carol).

Customer (X), Parent (X,Y)
Frequency: 0.75

The frequency calculation, i.e. occurrence counting, for queries in the relational database framework is
slightly different from that for itemsets in a single table. The details of the query occurrence counting
method is described by the Algorithm 2: WARMR-EVAL in [1].

2.3 Relational Association Rules
In the original single table database frame, we take two itemsets, corresponding to queries)1 and (J2:

{Customer, Parent, Child, Candy_buyer}
Frequency: 0.25

and

{Customer, Parent, Child}
Frequency: 0.75

and construct an association rule

{Customer, Parent, Child} -> {Candy_buyer}
Confidence: 0.25/0.75=0.33

Now let us consider a similar rule generation in the relational framework. One approach is to construct:
Customer (X), Parent (X,Y) -> Buy(Y, candy).

However, the problem is that, if we interpret this rule, the left hand side is read as ‘some customers are
parents’ and the right hand side is interpreted as ‘someone buys candy’ which holds for all the customers.
So this rule is obviously not what we are looking for. The following rule is correct, read as ‘if a customer
has a child, then that customer also has a child that buys candy’.

Customer (X), Parent (X,Y) —-> Customer, Parent (X,Y), Buy(Y, candy).

If using a more strict predicate logic representation, the above rule can be written as
Jz3y, Customer(x) A Parent(x,y) — Customer(x) A Parent(x,y) A Buy(y, candy).

As mentioned in the previous section 2.1.2, query ()1 has the frequency 0.25 and query ()2 has the frequency
0.75 and the confidence of this rule is 0.33.

3 Relational Rule Mining

In the single table database framework, the mining algorithms such as Apriori etc. use a level-wise approach
to search in the lattice spanned by a specialization relation < between patterns, where p; =< po denotes
‘pattern p; is more general than pattern py’ or ‘py is more specific than p;’. Pruning is based on anti-
monotonicity of < with respect to frequency: if a pattern is not frequent then none of its specializations are
frequent [1].

Recall that in the candidate generation phase of Apriori, it prunes the infrequent patterns, or itemsets, based
on the property of anti-monotonicity on C, namely if a itemset X (e.g.{a}) is infrequent then its superset Y’
(e.g.{a, b, c}) is also infrequent. Here < is equivalent to C because set X is more general than its superset
Y.

In the case of the relational data mining framework, we again need to perform a level-wise search from the
bottom of the lattice for queries. For instance, the level-1 queries consist of one literal such as a(z) and d(z).
From these we construct level-2 queries such as a(x)b(z) and b(x)c(y). In the candidate generation phase
of ‘Relational-Apriori’, we also need to determine a specialization relation < for queries so as to perform
the pruning process. With such as specialization relation, if we can find a query @ at level-i is infrequent
then all the queries Q' at level-j (¢ < j) are also infrequent.

However, the subset relation from the traditional Apriori framework is not suitable for queries. For example,
consider the query:

Likes (Z,%2), Buys(Z, candy)
which is more specific than the query:

Likes (X,Y), Likes(Y,X)

although the first query is not a subset of the second. Fortunately, the notion of #-subsumption satisfies this
purpose. However, the original definition of §-subsumption introduced in the previous lectures need to be
flipped in the context of ‘Relational-Apriori’. The reason for this flip is that the query is rather a clause
with the conjunction of all literals, whereas in the previous definition a clause is a disconjunction of all
literals. Therefore, a query (01 6-subsumes (abbreviated to: ts) another query ()5 if and only if there exists
a substitution of the variables of ()2 such that @1 O Q20 (recall that this was: @16 C ()2 in the original
definition). Take the above example:

Likes (Z2,%2), Buys(Z, candy) ts Likes(X,Y), Likes(Y,X)
with 0 = {X/Z,Y/Z}, because
Likes(Z,Z) N Buys(Z,candy) O Likes(Z,Z) N\ Likes(Z,Z).
In this case, Likes(Z, Z), Buys(Z, candy) is more specific than Likes(X,Y), Likes(Y, X). If we can
prove that the query Likes(X,Y'), Likes(Y, X) is infrequent, then we can determine that the query Likes(Z, Z),

Buys(Z, candy) must also be infrequent and, thus, we can prune it. The details of the pruning process and
candidate generation is described by Algorithm 3: WARMR-GEN in [1].

4 Summary

As a summary of the ‘relational’ version of Apriori, such a rule mining algorithm for queries is similar to
the ordinary Apriori algorithm except for three modifications:

e Determine how to count the occurrence of a query in the relational database.
e Cannot cancel out the literals for rule generation as the ordinary association rule.

e Flip the definition of #-subsumption in order to perform the pruning.

References

[1] L. Dehaspe, H. Toivonen, Discovery of Relational Association Rules, In N. Lavrac and S. Dzeroski,
editors, Relational Data Mining, pages 189-212, Springer-Verlag, 2001.

