
1

ACACES-5 July 2007 © BG Ryder 1

Advanced Program Analyses
for Object-oriented Systems

Dr. Barbara G. Ryder
Rutgers University

http://www.cs.rutgers.edu/~ryder
http://prolangs.rutgers.edu/

July 2007

ACACES-5 July 2007 © BG Ryder 2

Lecture 5 - Outline
• Uses of analysis in software tools

– For performance diagnosis, program
understanding, slicing and testing

– Idea: choose an appropriate analysis for a
problem

– Projects:
1. Testing recovery code in Java programs
2. Accurate interclass test dependence to guide

integration testing
3. Blended (static & dynamic) analysis for

performance diagnosis
Thanks to my graduate students: Bruno Dufour, Chen Fu
and Weilei Zhang for help with these slides.



2

ACACES-5 July 2007 © BG Ryder 3

Testing Robustness of Java SW
Idea
• Use static analysis to find exception
handling paths in Java program fairly
accurately;

• Use fault injection engine to test
exception handling through communication
with instrumented Java program

• Replace current black box testing
approach C. Fu, A. Milanova, B.G. Ryder, D. Wonnacott, “Robustness

Testing of Java Server Applications”, IEEE TSE, 2005;
C. Fu, B.G. Ryder, “Exception-chain Analysis: Revealing
Exception Handling Architecture in Java Server Applications”,
ICSE’07;

ACACES-5 July 2007 © BG Ryder 4

Testing by Fault Injection

The approach, a form of
white box testing, uses
knowledge of application
from the compiler to
inject possibly-affecting
faults and record their
handling

Application

Java Runtime

OS

Device

s.read()
Socket
Exception



3

ACACES-5 July 2007 © BG Ryder 5

Our Approach - 1.Analysis
try{
  …

  s.read();
  …

} catch (IOException e){
  // recovery code
}

Socket
Exception

s.read()

vulnerable
operation

fault-sensitive
operation

Application

Java Runtime

OS

Device

ACACES-5 July 2007 © BG Ryder 6

Our Approach - 2.Instrumentation

try{
  …
inject_fault();
  s.read();
  …
cancel_fault();
} catch (IOException e){
  record_current_fault();
  // recovery code
}

Mendosus
Fault Injection Engine

s.read()

Application

Java Runtime

OS

Device

Socket
Exception



4

ACACES-5 July 2007 © BG Ryder 7

Framework Built
Tester provided 

Fault set

Mendosus,
Fault Injection

Engine 

Java
Application

Instrumented 
Java Program 

Exception-Catch
Link Analysis

Measured
Exception
Def-Catch
Coverage

Compile-time

Runtime

Possible
E-C links

Observed
E-C links

C. Fu et al, TSE’05

ACACES-5 July 2007 © BG Ryder 8

Exception-catch Link Analysis
• Two phase algorithm

– Exception-flow analysis - initial estimate of e-c links
– DataReach analysis - prune away links corresponding to

infeasible call paths, using points-to information
• Need fairly accurate call graph to trace exception

handling up the call stack
– Techniques - CHA, RTA, FieldSens - determine precision of

analysis
– Whole-program dataflow analysis

• Backward propagation on call graph from exception throws
to catch block handlers

• Intraprocedural propagation maintains ordering between try
blocks; partially flow-sensitive, context-insensitive

C. Fu et al, TSE’05



5

ACACES-5 July 2007 © BG Ryder 9

DataReach Analysis
void readFile(String s){
 byte[] buffer = new byte[256];
 try{
  InputStream f =new FileInputStream(s);
  InputStream source=new BufferedInputStream(f);
  for (...)
   c = source.read(buffer);
 }catch (IOException e){ ...}
}

void readNet(Socket s){
 byte[] buffer = new byte[256];
 try{
  InputStream n =s.getInputStream();
  InputStream source=new BufferedInputStream(n);
  for (...)
   c = source.read(buffer);
 }catch (IOException e){ ...}
}

ACACES-5 July 2007 © BG Ryder 10

DataReach Analysis

FilterInputStream.read(byte[])

BufferedInputStream.read(byte[],int,int)

BufferedInputStream.read1(byte[],int,int)

BufferedInputStream.fill()

FileInputStream.read(...) SocketInputStream.read(...)

readFile(String s) readNet(Socket s)



6

ACACES-5 July 2007 © BG Ryder 11

DataReach Analysis

FilterInputStream.read(byte[])

BufferedInputStream.read(byte[],int,int)

BufferedInputStream.read1(byte[],int,int)

BufferedInputStream.fill()

FileInputStream.read(...) SocketInputStream.read(...)

readFile(String s) readNet(Socket s)

Q: what objects are visible in BufferedInputStream.fill() 
on paths from readFile()?

oa 

ob  o c

od  

Visible thru:
parameters,
globals,
ref field loads,
obj creation.

spurious

infeasible

ACACES-5 July 2007 © BG Ryder 12

Experiment Benchmarks

C. Fu et al, TSE’05



7

ACACES-5 July 2007 © BG Ryder 13

Experiment Details
• Analysis combinations tried:

CHA, RTA, FieldSens, In-Points-to, Points-to/DataReach,
In-Points-to/DataReach, In-Points-to/MDataReach

• Measured coverage as ratio of number
of executed e-c links to number of
possible e-c links

• Added some context sensitivity by
inlining constructors that assign to
reference fields through the this
parameter

C. Fu et al, TSE’05

ACACES-5 July 2007 © BG Ryder 14

E-C Link Coverage Data A

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

FTPD JNFS Muffin Haboob HttpClient SpecJVM Vmark

CHA RTA
PTA InPTA
PTA-DR

C. Fu et al, TSE’05



8

ACACES-5 July 2007 © BG Ryder 15

E-C Link Coverage Data B

C. Fu et al, TSE’05

ACACES-5 July 2007 © BG Ryder 16

Uncovered E-C Links
• Categorized uncovered e-c links

1. Feasible, but uncovered because of
insufficient tests or input

2. Infeasible and difficult to prune for any
static analysis

3. Infeasible, but could be eliminated by a
more precise static analysis

406(15%)24(60%)10(25)%HTTPClient
3026(87%)4(13%)SpecJVM
73(43%)3(43%)1(14%)Muffin

Total321

C. Fu et al, TSE’05



9

ACACES-5 July 2007 © BG Ryder 17

Exception-Catch Chains
• Semantically-related exceptions

• Preserve state of original exception object in
new exception throw, or

• Re-throw original exception object
• Called re-thrown exceptions

• E-c chains of re-thrown exceptions
• Discover through flow-sensitive analysis of each
catch clause

• Link together exception handling paths of re-
thrown exceptions to find e-c chains

Fu & Ryder, ICSE’07

ACACES-5 July 2007 © BG Ryder 18

E-C Chains found

1405275547583HttpClien
t

723102331365312Tomcat

3931281300Vmark

1154669SpecJV
M

66Muffin

Total654321Lengths:
Pgms:

Fu & Ryder, ICSE’07



10

ACACES-5 July 2007 © BG Ryder 19

E-C Chains span components

Tomcat

Fu & Ryder, ICSE’07

ACACES-5 July 2007 © BG Ryder 20

Improving Class-based Testing
• Class testing for OOPLs is unit testing
• Classes can be interdependent imposing an

order on how best to integrate and test them
– Dependence cycles can exist -- solve by stubs or big-bang

• Deriving more accurate Interclass Test
Dependence (ICTD) through code analysis can
help
– May allow parallelization of integration test; more testing in

same time period
– ICTD also can be useful for program understanding and

software visualization
W. Zhang & B.G. Ryder, “Discovering Accurate
Interclass Test Dependences”, PASTE’07



11

ACACES-5 July 2007 © BG Ryder 21

ORD-Based Definition
• Causes for ICTD:

– Inheritance
– Aggregation (part-of)
– Association (uses)
– Polymorphism

A B

C D

As

I
Ag

B is test dependent on A, C and D

Transitive closure of the above
Sometimes there are spurious cycles, and associations
which are not semantic dependences at runtime

ACACES-5 July 2007 © BG Ryder 22

Motivating Example
specjbb benchmark
(class names shortened)

class DeliveryHandler{
public void handleDelivery

           (DeliveryTrans deliveryTrans){
  deliveryTrans.process();
  deliveryTrans.display(outFile);
}

}

DeliveryHandler DeliveryTrans
As

As

Red arrow because handleDelivery calls DeliveryTrans
  methods process() and display() but they have no 
  influence on the execution of their caller
Blue arrow because there is a valid dependence of
  DeliveryTrans on DeliveryHandler



12

ACACES-5 July 2007 © BG Ryder 23

Semantics-based Definition of ICTD

• There is test dependence from class A to
class B, if there is a statement s in a
method callable on an A object and a
statement t in a method declared in B, such
that:
– s may have visible side effects (i.e., s may

either write to the external memory or return a
value), and

– s is semantically dependent on t while testing
class A

Zhang & Ryder, PASTE’07

ACACES-5 July 2007 © BG Ryder 24

Key Ideas

• Approximate at method-level granularity for
scalability

• Three causes for method dependence:
– Caller uses return value of callee
– Callee is control-dependent on caller
– Side effect: one method writes to the same

memory region that another method reads
• Requires reference analysis to identify region

• Propagate dependences on the call graph
w=x.foo()

Zhang & Ryder, PASTE’07



13

ACACES-5 July 2007 © BG Ryder 25

Analysis Configurations

• Algorithm parameterized by choice of
analyses to calculate the call graph and side
effects

• Four analysis configuration applied:
–  VTA: variable type analysis (call graph  not

constructed on the fly)
–  0CFA: 0-CFA (call graph constructed on the fly)
–  OB: 1-object-sensitive points-to analysis
–  OBR: OB+R(i.e., DataReach)

Zhang & Ryder, PASTE’07

ACACES-5 July 2007 © BG Ryder 26

ICTD Reduction Rate wrt. ORD-based Definition

0 %

2 0%

4 0%

6 0%

8 0%

100% VTA 0CFA OB OBR

V T A 4 1 . 2 8% 6 2 . 4 2% 1 8 . 6 2% 5 0 . 8 3% 2 3 . 0 3% 2 4 . 5 1% 1 8 . 6 2% 8 2 . 3 4% 6 8 . 0 8% 4 3 . 3 0%

0 C F A 6 4 . 5 3% 8 3 . 5 9% 6 3 . 2 4% 6 5 . 0 0% 2 3 . 0 3% 6 8 . 8 9% 6 3 . 2 4% 8 3 . 5 3% 9 5 . 3 8% 6 7 . 8 3%

O B 6 4 . 5 3% 8 4 . 7 3% 7 3 . 1 9% 8 0 . 0 0% 3 4 . 5 8% 7 6 . 9 8% 7 2 . 8 7% 9 0 . 5 5% 9 6 . 7 5% 7 4 . 9 1%

O B R 6 4 . 5 3% 8 5 . 1 1% 7 3 . 1 9% 8 0 . 0 0% 3 7 . 2 6% 7 9 . 5 1% 7 2 . 8 7% 9 0 . 5 5% 9 6 . 8 3% 7 5 . 5 4%

c o m p r e s s j e s s r a y t r a c e d b j a v a c m p e g a u d i o m t r t j a c k j b b A v e r a g e

Zhang & Ryder, PASTE’07



14

ACACES-5 July 2007 © BG Ryder 27

Size of Dependence Cycles

22,23,3,24979jbb(104)

777,4,2,27,6,2,244jack(69)

778,41618,4,2mtrt(41)

006,3,23744mpegaudio(60)

134142161161169javac(184)

005610db(20)

778,41618,4,2raytrace(41)

909496139147,4jess(163)

3335,36,4,4compress(128)

OBROB0CFAVTAORD

Zhang & Ryder, PASTE’07

ACACES-5 July 2007 © BG Ryder 28

Blended Analysis
for Performance Diagnosis

• Framework-intensive
applications look like
icebergs to developers

• Problematic activity usually
spans multiple frameworks

• Long call chains across
multiple frameworks often
lead to object churn
– Want to identify these

• Current profiling tools focus
on object creation rather
than object use (e.g.
Jinsight, ArcFlow, HPROF)

Libraries and
Frameworks

App

B. Dufour, B.G. Ryder, G. Sevitsky,
“Blended Analysis for Performance
Understanding of Framework-based
Applications”, ISSTA’07



15

ACACES-5 July 2007 © BG Ryder 29

Blended Analysis Paradigm

• Need information about a set of program
executions
– Full dynamic analysis is too expensive and too

intrusive for production codes
– Static analysis is too conservative and likely not

to scale
• IDEA: Use dynamic analysis to obtain a

calling structure of interest to use in a
subsequent static analysis

• Avoids intrusiveness and problems with dynamic loading
• Dynamic analysis can selectively collect additional useful

information (e.g., object creations)

ACACES-5 July 2007 © BG Ryder 30

Blended Analysis Paradigm

Java
Application

Profile

Dynamic
CCT

…

Static
Analysis

Loaded
Classes

Reflection Specification
+ Templates

Dynamic Call Graph

Dufour et al, ISSTA’07



16

ACACES-5 July 2007 © BG Ryder 31

Definitions
• Effective lifetime: period between an object’s

creation and its last use
• Allocation context: method invocations on

runtime stack during object allocation
• Escape: An object escapes method f(), if f()

is in its allocation context and the object can
be accessed beyond the lifetime of the
invocation of f().

• Capture: An object is captured by method g()
if g() is in its allocation context and the
object cannot be accessed beyond the
lifetime of the invocation of g().

ACACES-5 July 2007 © BG Ryder 32

Escape Analysis

• Determines escape status of an object
at compile time:
– Globally escaping
– Escaping through arguments and return
values (arg-escaping)

– Non-escaping (captured)
• Traditional uses in compilation:

– On-stack allocation
– Synchronization removal

Global escaping (  )

Arg-escaping

Captured (⊥)



17

ACACES-5 July 2007 © BG Ryder 33

Blended Escape Analysis
• Based on escape analysis in Choi et. al,TOPLAS’03

• Connection graphs
– Nodes represent objects, fields and references
– Edges represent points-to relationships
– Abstract objects are allocation sites
– Modified to keep a distinct escape state for each

object at each node in the calling structure
• Flow-sensitive, context-insensitive, field-

sensitive analysis
• Now for an example of static escape

analysis…

ACACES-5 July 2007 © BG Ryder 34

Example
public X identity(X obj1){
  return obj1;
}

public void f() {
  X inst;
  if (...) inst = identity(new Y())
  else inst = escape(new Z());
}

public X escape(X obj2){
  G.global = obj2;
  return obj2;
}

obj1

Phantom
Object #1

return

Connection Graph

Preserves escape
state of actual
argument



18

ACACES-5 July 2007 © BG Ryder 35

Example
public X identity(X obj1){
  return obj1;
}

public void f() {
  X inst;
  if (...) inst = identity(new Y())
  else inst = escape(new Z());
}

public X escape(X obj2){
  G.global = obj2;
  return obj2;
}

obj2

Phantom
Object #2

G

global

return

Connection Graph

Makes actual
argument globally 
escaping

ACACES-5 July 2007 © BG Ryder 36

Example
public X identity(X obj){
  return obj;
}

public void f() {
  X inst;
  if (...) inst = identity(new Y())
  else inst = escape(new Z());
}

public X escape(X obj){
  G.global = obj;
  return obj;
}

Connection Graph

inst

return obj

Phantom
Object #1

Y



19

ACACES-5 July 2007 © BG Ryder 37

Example

Z Y

inst

obj return

G

global

Phantom
Object #2

public X identity(X obj){
  return obj;
}

public void f() {
  X inst;
  if (...) inst = identity(new Y())
  else inst = escape(new Z());
}

public X escape(X obj){
  G.global = obj;
  return obj;
}

z is globally escaping
y is captured in f()

Connection Graph

ACACES-5 July 2007 © BG Ryder 38

Implementation

Jinsight
Profiler

Jinsight
Trace

Loaded
Classes

(jar)

Jinsight
Calling

Structure

Blended Escape
Analysis (Wala)

Escape
Analysis

Data

Dufour et al, ISSTA’07



20

ACACES-5 July 2007 © BG Ryder 39

Benchmarks
• Software

– Trade 6.0.1
– Websphere Application Server 6.0.0.1
– DB2 v8.2.0

• 4 configurations of Trade6
– Run-time mode: Direct, EJB
– Access mode: Standard, WebServices

• Tracing a single login transaction after
warm-up

ACACES-5 July 2007 © BG Ryder 40

Size Comparison for Configurations

210

82

166

30

Type

72

62

53

26

Max
Stack

3,7477,088184,2884,479EJB-WS

1,8341,75160,9361,978EJB-Std

2,5175,522127,7943,308Direct-
WS

5491864,484710Direct-
Std

getHoldings

Abs.
Objects

InstsInvocsMethodsConfigScenario

 getHoldings: Retrieves user’s portfolio 
from a database



21

ACACES-5 July 2007 © BG Ryder 41

Reduced Connection Graphs

- Use additional calling context tree (CCT)
data from Jinsight about object instances
created, to prune uninteresting object nodes
from the connection graphs

- Sum the number of  remaining instances in
each escape state at method node in the CCT

- Show only CCT nodes that capture object
instances, to try to understand use of
temporaries

- Used in performance diagnosis

ACACES-5 July 2007 © BG Ryder 42

CCT showing only capturing
nodes reachable from
HoldingDataBean_Ser.serialize
in Direct-WS config

Function of CCT:
formatting stock 
records into 
response portion of 
SOAP message

262 instances 
captured in CCT



22

ACACES-5 July 2007 © BG Ryder 43

Reduced Connection Graph for
DateSerializer.getValueAsString()

ACACES-5 July 2007 © BG Ryder 44

CCT showing only capturing
nodes reachable from
HoldingDataBean_Ser.serialize
in Direct-WS config

262 instances 
captured in CCT



23

ACACES-5 July 2007 © BG Ryder 45

Summary
• Presented 3 research projects using
program analysis for testing,
performance diagnosis and program
understanding
– Showed different cost/benefit tradeoffs
for analyses used

– Demonstrated strength of using static and
dynamic analyses together

– Illustrated the need for empirical
investigation with accepted benchmarks

ACACES-5 July 2007 © BG Ryder 46



24

ACACES-5 July 2007 © BG Ryder 47

Side Effect

write
read

class

Method

Other calls

Call and return
“useful” value

Heap Data

CUT

Algorithm Illustration

ACACES-5 July 2007 © BG Ryder 48

Side Effect

write
read

Methods Callable on CUT

class

Method

Heap Data

CUT

Other calls

Call and return
“useful” value

Algorithm Illustration



25

ACACES-5 July 2007 © BG Ryder 49

Side Effect

write
read

Methods Callable on CUT

class

Method

Heap Data

CUT

Other calls

Call and return
“useful” value

Algorithm Illustration

ACACES-5 July 2007 © BG Ryder 50

Side Effect

write
read

Methods Callable on CUT

class

Method

Heap Data

CUT

Other calls

Call and return
“useful” value

Algorithm Illustration



26

ACACES-5 July 2007 © BG Ryder 51

Side Effect

write
read

Methods Callable on CUT

class

Method

Heap Data

CUT

Other calls

Call and return
“useful” value

Algorithm Illustration

ACACES-5 July 2007 © BG Ryder 52

Side Effect

write
read

Methods Callable on CUT

class

Method

Heap Data

CUT

Other calls

Call and return
“useful” value

Algorithm Illustration



27

ACACES-5 July 2007 © BG Ryder 53

Side Effect

write
read

Methods Callable on CUT

class

Method

Heap Data

CUT

Other calls

Call and return
“useful” value

Algorithm Illustration

ACACES-5 July 2007 © BG Ryder 54

Breakdown of Abstract Objects
by Escape State

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Dir-Std Dir-WS EJB-

Std

EJB-

WS

Dir-Std Dir-WS EJB-

Std

EJB-

WS

Dir-WS EJB-

Std

EJB-

WS

getHoldings login JSP

P
e
rc

e
n
ta

g
e
 o

f 
a
b
s
tr

a
c
t 

o
b
je

c
ts

Always captured Sometimes captured Never captured


