Advanced Program Analyses
for Object-oriented Systems

Dr. Barbara 6. Ryder
Rutgers University
http://www.cs.rutgers.edu/~ryder

http://prolangs.rutgers.edu/
July 2007

ACACES-5 July 2007 © BG Ryder

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Lecture 5 - Outline

-+ Uses of analysis in software tools

- For performance diagnosis, program
understanding, slicing and testing

- Idea: choose an appropriate analysis for a
problem

- Projects:
1. Testing recovery code in Java programs

2. Accurate interclass test dependence to guide
integration testing

3. Blended (static & dynamic) analysis for
performance diagnosis

Thanks to my graduate students: Bruno Dufour, Chen Fu

and Weilei Zhang for help with these slides.

ACACES-5 July 2007 © BG Ryder UTGERS

PROLANGS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Testing Robustness of Java SW

Idea

* Use static analysis to find exception
handling paths in Java program fairly
accurately;

* Use fault injection engine to test
exception handling through communication
with instrumented Java program

- Replace current black box testing

appr‘oaCh C. Fu, A. Milanova, B.G. Ryder, D. Wonnacott, “"Robustness
Testing of Java Server Applications”, TEEE TSE, 2005;

C. Fu, B.G. Ryder, “"Exception-chain Analysis: Revealing

Exception Handling Architecture in Java Server Applications”,

ICSE'07:;

ACACES-5 July 2007 © BG Ryder]A I |[RSC:€[]W2$ 3

PROLANGS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

The approach, a form of

white box testing, uses Socke
knowledge of application ¢, o Non
from the compiler to

inject possibly-affecting
faults and record their ‘
handling N

ACACES-5 July 2007 © BG Ryder ur |[RSC:€[]W2$ 4

PROLANGS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Our Approach - 1.Analysis

try{

Application
s.read();

Java Runtime
} catch (IOException e){

// recovery code

o \
AR Device /
\ L’
ACACES-5 Ji uly 2007 © BG6 Rydzr TRM Simlwlwmdﬁﬁgm 5
PROLANGS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

try{

inject_fault();
s.read();

cancel_fault();

} catch (IOException e){
record_current_fault();
// recovery code

¥ /
Device L

Mendosus =——p .
Fault Injection Engine

ACACES-5 July 2007 © BG Ryder RUTGERS 6

PROLANGS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

. C. Fu et al, TSE'0O5
Framework Built

e e
1 | Tester provided Compile-time :
1 Fault set 1
1 1
| 1
' Java Exception-Catch I .
! e I ——» Possible
1 AppIICGTIon L|nk AnGIYSiS | E_C Iinks
L e e e e o e e e e e e e = == | \
Mendosus *
o Instrumented Observed
Fault In);echon “—> Java Program > E-C links
Engine e ¢
Runtime Measured
Exception
Def-Catch
Coverage
ACACES-5 July 2007 © BG Ryder % 7

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Exception-catch Link Analysis

+ Two phase algorithm
- Exception-flow analysis - initial estimate of e-c links
- DataReach analysis - prune away links corresponding to
infeasible call paths, using points-to information
* Need fairly accurate call graph to trace exception
handling up the call stack
- Techniques - CHA, RTA, FieldSens - determine precision of
analysis
- Whole-program dataflow analysis

+ Backward Eropagaﬁon on call graph from exception throws
to catch block handlers

+ Intraprocedural propagation maintains ordering between try
blocks; partially flow-sensitive, context-insensitive

ACACES-5 July 2007 © BG Ryder RUTGERS C. Fuetal, TSE'O5 ,
PROLANGS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

DataReach Analysis

ivoid readFile (String s) {

i byte[] buffer = new byte[256];

otry{

! InputStream f =new FileInputStream(s);

5 InputStream source=new BufferedInputStream(f) ;
i for (...)

: c = source.read (buffer) ; <t::]

i }catch (IOException e){ ...}

...

byte[] buffer = new byte[256];

try{

InputStream n =s.getInputStream() ;
InputStream source=new BufferedInputStream(n) ;
for (...)
c = source.read (buffer) ; <t::]

}catch (IOException e){ ...}

ACACES-5 July 2007 © BG Ryder

PROLANGS

PROGRAMMNG LANGUAGES RESARCH GROUP.

DataReach Analysis

readFile (String s) readNet (Socket s)
A A
! \
! .

utStream. read (by

T STATEJNIVERSITY OF NEW Jeheey

PROLANGS

PROGRAMMNG LANGUAGES RESARCH GROUP.

ACACES-5 July 2007 ¢

DataReach Analysis

readFile (String s)

o

a

Visible thru:

parameters,
globals,

AN

readNet (Socket s)

FilterInputStiream.read (bytel[])

Ob o C

BufferedInputStxeam. read(byte[],int,int)

ref field loads,
obj creation. BufferedInputSiream.réadl (byte[],int,int)

04

BufferedInputStream.£ill ()

FileInputStream.read(...)

SocketInputStream.read(...)

on paths from readFile()?

ACACES-5 July 2007 © BG Ryder

Q: what objects are visible in BufferedInputStream.fill()

PROLANGS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Experiment Benchmarks

Name Classes Methods | Try Blocks | .class Size
FTPD 11(1407) 128(7479) 17 39,218
JNFS 56(1664) | 447(9603) 36 | 175297
Muftin 278(1365) | 2080(7677) 270 727,118
Haboob 338(1403) | 1323(7432) 134 731,413
HttpClient | 252(2210) | 1334(4741) 536 | 1,049,784
Spec]VM | 484(2161) | 2489(4592) 219 | 2,817,687
VMark 307(2266) | 1565(5029) 502 | 2,902,947
ACACES-5 Tuly 2007 © B Ryder RUTGERS C. Fuet al, TSE'O5 ,,

PROLANGS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Experiment Details

* Analysis combinations tried:

CHA, RTA, FieldSens, In-Points-to, Points-to/DataReach,
In-Points-to/DataReach, In-Points-to/MDataReach

* Measured coverage as ratio of number

of executed e-c links to number of
possible e-c links

- Added some context sensitivity by

inlining constructors that assign to
reference fields through the this
parameter

ACACES-5 July 2007 © BG Ryder RUTGERS C. Fu et al, TSE'O5 ;

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

90% -
80% |— = PTA-
70%
60%
50%
40%
30%

20% -

H iy | JT

E-C Link Coverage Data A

= CHA " B RAA — C. Fu et al, TSE'05

B .

FTPD JNFS Muffin Haboob HttpClient SpecJVM Vmark

ACACES-5 July 2007 © BG Ryder

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

_E-C Link Coverage Data B

90%

[PTA-DR
N InPTA-DR

80%
InPTA-Mdr

70% C. Fuet al, TSE'0O5
60%
50%
40%
30%
20%
- m
0%

FTPD JNFS Muffin Haboob HttpClient SpecJVM Vmark

GERS 15
LANGS

uuuuuuuuuuuuuuuuu

ACACES-5 July 2007 © BG Ryder

Uncovered E-C Links

- Categorized uncovered e-c links
1. Feasible, but uncovered because of
insufficient tests or input
2. Infeasible and difficult to prune for any
static analysis
3. Infeasible, but could be eliminated by a
more precise static analysis

1 2 3 Total
Muffin 1(14%) 3(43%) 3(43%) 7
SpecJVM 4(13%) 26(87%) 30
HTTPClient | 10(25)% 24(60%) 6(15%) 40

C. Fu et al, TSE'05 |

ACACES-5 July 2007 © BG Ryder

Exception-Catch Chains

- Semantically-related exceptions

* Preserve state of original exception object in
new exception throw, or

* Re-throw original exception object
* Called re-thrown exceptions

* E-c chains of re-thrown exceptions

* Discover through flow-sensitive analysis of each
catch clause

* Link together exception handling paths of re-
thrown exceptions to find e-c chains

ACACES-5 July 2007 © BG Ryder RUTGERS Fu & Ryder, ICSE'07
PROLANGS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Lengths: 1 2 3] 4, b5 6| Total
Pgms:

Muffin 6 6
SpecJV | 69| 46 115
M

Vmark 300 81| 12 393

Tomcat | 312| 365| 31 3| 2| 10| 723

HttpClien | 583 | 547 | 275 1405
T
ACACES-5 July 2007 © BG Ryder ﬁiﬁéﬁi&n Fu & Ryder, ICSE'07 18

PROLANGS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

E-C Chains span components

etHandler.doService-1

e

AP
110.clearhl iReceive-d|

Commpct lon. e xecSQL- 6

-
I~ ImiMapper . roadIML-1

x JondElemnt-0 012cpE:
PoolTepadpolat. storte:
017

Java JDK Library

SacketPactory. getDetanlt—-3~
ImlMappor LosdINL-0

-
rvagmiReader . loadCon £igPile-0

Tomear Modules",

WebXulBeader.
abxml Reader. froces sHebX;

___—=ralicyloader. addInterceptor-0
—™ReloadInterceptor.Contextdap-1 '

wir ity Tomeat Core

\ conte
‘Dagt extMamager .addInterceptor-1

Tomcat

Legen

d:
Exception handler.

ClassNamm . Mo thodNeme-Nand ler1D

e-c link:

v
Intra—component e~c Hnk: == == =======m=z=esen

Component

<]
Compane st Nams - -

Figure 10: E-c chain Graph of Tomcat

THE STATE UNIVERSITY OF NEW JERSEY

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Fu & Ryder, ICSE'O7

ACACES-5 July 2007 © BG Ryder

Improving Class-based Testing

« Class testing for OOPLs is unit testing

+ Classes can be interdependent imposing an

order on how best to integrate and test them
- Dependence cycles can exist -- solve by stubs or big-bang

- Deriving more accurate Interclass Test
Dependence (ICTD) through code analysis can
help

- May allow parallelization of integration test; more testing in
same time period

- ICTD also can be useful for program understanding and
software visualization

W. Zhang & B.G. Ryder, "Discovering Accurate

Interclass Test Dependences”, PASTE'07

ACACES-5 July 2007 © BG Ryder RUTGERS 20

PROLANGS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

10

ORD-Based Definition

* Causes for ICTD:
—p - Inheritance

- Aggregation (part-of) A |2 B
=P - Association (uses) —:L
- Polymorphism => I L4
B is test dependent on A, C and D ¢ D

Transitive closure of the above
Sometimes there are spurious cycles, and associations
which are not semantic dependences at runtime

ACACES-5 July 2007 © BG Ryder UTGERS 2

PROLANGS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Motivating Example

As

specjbb benchmark <

i | DeliveryTran
(class names shortened) | DeliveryHandler — eliverytrans

class DeliveryHandler({
public void handleDelivery
(DeliveryTrans deliveryTrans) {
deliveryTrans.process() ;
deliveryTrans.display (outFile) ;
}

Red C\}r'r'ow because handleDelivery calls DeliveryTrans
methods process () and display() but they have no
influence on the execution of their caller

Blue arrow because there is a valid dependence of
DeliveryTrans on DeliveryHandler

ACACES-5 July 2007 © BG Ryder UTGERS 22

PROLANGS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

11

Semantics-based Definition of ICTD

* There is test dependence from class A to
class B, if there is a statement s in a
method callable on an A object and a
statement t in a method declared in B, such
that:

- s may have visible side effects (i.e., s may
either write to the external memory or return a
value), and

- s is semantically dependent on t while testing
class A

Zhang & Ryder, PASTE'07

ACACES-5 July 2007 © BG Ryder RUT 23

PROLANGS

PROGRAMMNG LANGUAGES RESARCH GROUP.

Key Ideas

- Approximate at method-level granularity for
scalability

* Three causes for method dependence:
- Caller uses return value of callee
- Callee is control-dependent on caller

- Side effect: one method writes to the same
memory region that another method reads
* Requires reference analysis to identify wregigw ()

* Propagate dependences on the call graph

Zhang & Ryder, PASTE'07

ACACES-5 July 2007 © BG Ryder RUT 24

PROLANGS

PROGRAMMNG LANGUAGES RESARCH GROUP.

12

Analysis Configurations

* Algorithm parameterized by choice of
analyses to calculate the call graph and side
effects

* Four analysis configuration applied:

- VTA: variable type analysis (call graph not
constructed on the fly)

- OCFA: 0-CFA (call graph constructed on the fly)
- OB: 1-object-sensitive points-to analysis
- OBR: OB+R(i.e., DataReach)

Zhang & Ryder, PASTE'07
ACACES-5 July 2007 © BG Ryder W 25
PROLANGS

ICTD Reduction Rate wrt. ORD-based Definition

woow | BVTA OO0CFA ®BOB mOBR

0%

compress jess raytrace mpegaudio mtrt jack jbb Average

BVTA 41.28% 62.42% 18.62% 50.83% 24.51% 18.62% 82.34% 68.08%\ 43.30%

o 0CFA 64.53% 83.59% 63.24% 65.00% 68.89% 63.24% 83.53% 95.38%\ 67.83%

mQB 64.53% 84.73% 73.19% 80.00% 76.98% 72.87% 90.55% 96.75% 74.91%/

®0BR 64.53% 85.11% 73.19% 80.00% 79.51% 72.87% 90.55% 96.83% 75.549{

ACACES-5 July 2007 © BG Ryder

RUTGERS Zhang & Ryder, PASTEWé
PROLANGS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

13

Zhang & Ryder, PASTE'07

Size of Dependence Cycles

ORD VTA | OCFA OB /"\OBR
compress(128)6,4,4 5,3 3 3 / 3 \
jess(163) [147 4 139 96 94 / 90 \
raytrace(41) 18,4,2 16 8,4 7 7
db(20) [10 6 5 0 0
javac(184) [169 161 161 142 134
mpegaudio(60)44 37 6,3,2 0 0
mirt(d) 1842 16 8.4 7\ =
jack(69) |44 7622 [7422 7 \ 7 /
jbb(104) 79 49 332 2,2 \f/

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Blended Analysis
for Per'formance Diagnosis

App

Libraries and
Frameworks

B. Dufour, B.G. Ryder, G. Sevitsky,
"Blended Analysis for Performance

Understanding of Framework-based
Applications”, ISSTA'07

Framework-intensive
applications look like
icebergs to developers

* Problematic activity usually

spans multiple frameworks

* Long call chains across

multiple frameworks often
lead to object churn

- Want to identify these

* Current profiling tools focus

on object creation rather
than object use (e.g.
Jinsight, ArcFlow, HPROF)

ACACES-5 July 2007 © BG Ryder

28

14

Blended Analysis Paradigm

* Need information about a set of program
executions
- Full dynamic analysis is too expensive and too
intrusive for production codes
- Static analysis is too conservative and likely not
to scale
- IDEA: Use dynamic analysis to obtain a
calling structure of interest to use in a
subsequent static analysis

* Avoids intrusiveness and problems with dynamic loading

+ Dynamic analysis can selectively collect additional useful
information (e.g., object creations)

ACACES-5 July 2007 © BG Ryder 29

Blended Analysis Paradigm

Dufour et al, ISSTA'07

Java

Application

Profile > Loaded
| " Classes

A

[Dynamic Call Graph ’

RN

R Static Reflection Specification
"L Analysis + Templates
3
ACACES-5 July 2007 © BG Ryder W 30
PROLANGS

PROGRAMMNG LANGUAGES RESARCH GROUP.

15

Definitions

- Effective lifetime: period between an object's
creation and its last use

+ Allocation context: method invocations on
runtime stack during object allocation

- Escape: An object escapes method f(), if £()
is in its allocation context and the object can
be accessed beyond the lifetime of the
invocation of f().

* Capture: An object is captured by method g()
if g() is in its allocation context and the
object cannot be accessed beyond the
lifetime of the invocation of g().

ACACES-5 July 2007 © BG Ryder RUT

PROLANGS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

31

Escape Analysis

- Determines escape status of an object
at compile time:
- Globally escaping

- Escaping through arguments and return
values (arg-escaping)

- Non-escaping (captured) Global escaping ()
* Traditional uses in compilation:) | |
rg-escapin
- On-stack allocation grescapns

- Synchronization removal ‘
Captured (1)

ACACES-5 July 2007 © BG Ryder ”Rsiﬂlwlwmdﬁﬁgo
PROLANGS

PROGRAMMNG LANGUAGES RESARCH GROUP.

32

16

Blended Escape Analysis

- Based on escape analysis in choi et. al, TOPLAS'03

+ Connection graphs
- Nodes represent objects, fields and references
- Edges represent points-to relationships
- Abstract objects are allocation sites
- Modified to keep a distinct escape state for each

object at each node in the calling structure

- Flow-sensitive, context-insensitive, field-
sensitive analysis

* Now for an example of static escape
analysis...

Ry

ACACES-5 July 2007 © BG Ryder RUTGE] 33
PROL

Example

public X identity(X objl){ Connection Graph

return objl;

vVVewvw

}

public X escape (X obj2) {
G.global = obj2;
return obj2;

}

Object #1

public void £() {

X inst;
if (...) inst = identity(new Y()) Preserves escape
else inst = escape(new Z()); sTaTe,of GCTUG|
' argument
ACACES-5 July 2007 © BG Ryder ”litju-rwﬂsmﬁﬁgn
PROLANGS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

34

17

Example
public X identity(X objl) { Connection Graph

return objl;

}

public X escape (X obj2) {
G.global = obj2;
return obj2;

AVAR VAR VAR v4

}

Object #2

public void £() {

X inst;

if (...) inst = identity(new Y())

else inst = escape(new Z()); Makes GCTUGI
} argument globally

escaping
ACACES-5 July 2007 © BG Ryder RU wwmdﬁﬁgﬂ 35
PROLANGS
Example

public X identity (X obj) Connection Graph

return obj;

}

public X escape (X obj) {
G.global = obj;
return obj;

}

public void £() {

>—> X inst;

=>if (...) inst = identity(new Y())
else inst = escape(new Z());

}

ACACES-5 July 2007 © BG Ryder RUTGERS 36

PROLANGS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

18

Example connection Graph

public X identity (X obj) {
return obj;

}

public X escape (X obj) {
G.global = obj;
return obj;

}

public void £() {
X inst;
if (...) inst = identity(new Y())

~> else inst = escape(new Z())

}

Object #2
2 is globally escaping
HOGKeR yis capturedinf() 7

ACACES-5 July 2007 © BG Ryder

Implementation

Dufour et al, ISSTA'07

Jinsight L Calling
Trace Jinsight Structure
Jinsight
Profiler T]
A
Loaded Blended Escape Escape
Clgsses Analysis (Wala) Analysis
(Jar) Data
ACACES-5 July 2007 © BG Ryder UTGERS 38

Th =
PROLANGS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

19

Benchmarks

- Software
- Trade 6.0.1
- Websphere Application Server 6.0.0.1
- DB2 v8.2.0
* 4 configurations of Trade6
- Run-time mode: Direct, EJB
- Access mode: Standard, WebServices

* Tracing a single login transaction after
warm-up

PROLANGS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuu

ACACES-5 July 2007 © BG Ryder

Size Comparison for Configurations

Scenario Config | Methods | Invocs Max Type | Insts Abs.
Stack Objects

getHoldings | Direct- 710 4,484 26 30 186 549
Std
Direct- 3,308 | 127,794 53| 166| 5,622 2,517
ws
EJB-Std 1,978 | 60,936 62 82| 1,751 1,834
EJB-WS 4,479 | 184,288 72| 210| 7,088 3,747

getHoldings: Retrieves user's portfolio
from a database

PROLANGS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuu

ACACES-5 July 2007 © BG Ryder

20

Reduced Connection Graphs

- Use additional calling context tree (CCT)
data from Jinsight about object instances
created, to prune uninteresting object nodes
from the connection graphs

- Sum the number of remaining instances in
each escape state at method node in the CCT

- Show only CCT nodes that capture object
instances, to try to understand use of
temporaries

- Used in performance diagnosis

ACACES-5 July 2007 © BG Ryder 41

RUTGERS
PROLANGS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

CCT showing only capturing
Homgpmaenn_sereraizeg | NOAE@S reachable from
‘ HoldingDataBean_Ser.serialize

HoldingDaunBean_seraddElements) | IN Direct-WS Conflg
9 captured
» \J ~a .
SimpleSerializer DateSerializer SerializationContextImpl Func‘hon Of CCT:
serialize() serialize() getSerializer() .
54 captured 27 captured 10 captured for‘ma""rlng Sfock
| | \
. . ' records into
- SerializationContextImpl H
Double. toString() Rgi'ﬁlsei‘:;ﬁ"n” getSerializerFactory- response pOI’"l'lon of
pepet | oscopuung. T SOAP message
7/ N
| N
4 7 | \ Wi createCalendar()
/ | N 108 arg-escaped
/7 N
» .
CalendarSerializer G ,* X ! 262 instances
cetDate TimeV alue- regon:jlcl gkl‘ndz:r Gregonépclgli] nd‘}r .
= . c te! Q0 t 0
Ao RS cmpereismo— cqptyred in CCT
9 captured
I
DateFormat.format()
9 captured

ACACES-5 July 2007 © BG Ryder 42

RUTGERS
PROLANGS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

21

Reduced Connection Graph for
DateSerializer.getValueAsString()

27 instances: 9 String
18 char(] from
9 String SwingBuffer.toSring()

Arg-escaped

L

9longl]

9charf] 9char]
from from
SwingBuffer(int) StringBufferexpandCapacity()
Captured
108 instances:
72ini] 9 GregorianCalendar
18 boolean(] from

9 GregorianCalendar

Calendar.createCalendar()

63 int]] 18 boolean(] 9longl] 9int[]
from from from from
Calendar() Calendar() Calendar() GregorianCalendar()
(3 sites) (2 sites)

ACACES-5 July 2007 © BG Ryde.

LR TRy 43

i’ROLAI\jGS

HoldingDataBean_Ser. se
|

v

CCT showing only capturing
w0 | Nodes reachable from
HoldingDataBean_Ser.serialize

Hadingbubean_seraiikemens) | i Direct-WS config

9 captured
- | ~
P ~
s + N
SimpleSerializer DateSerializer SerializationContextImpl
serialize() serialize() getSerializer()
54 captured 27 captured 10 captured
| | \
| | !
v v
* - SerializationContextImpl
Double. toString() DateSerializer setSerializerFactory-
y getValueAsString()
9 captured * 108 ca plure d FromInterface()
y i N 9 captured
7/ | N
, 7 | h \ WacreateCalendar()
/s | N 108 arg-escaped
7/ N
» v .
lall «
e S A R s— 262 instances
getDate TimeV alue- N) eldsImpl() d . CCT
. comp p
332’;:@2 9 captured r9 captured) Captu re 'n
|

v

DateFormat.format()
9 captured

ACACES-5 July 2007 © BG Ryder

TE STATE JNIVERSITY OF NEW Jeheey

PROGRAMMNG m«au‘mius ns!!m S0

44

22

Summary

- Presented 3 research projects using
program analysis for testing,
performance diagnosis and program
understanding

- Showed different cost/benefit tradeoffs
for analyses used

- Demonstrated strength of using static and
dynamic analyses together

- Illustrated the need for empirical
investigation with accepted benchmarks

ACACES-5 July 2007 © BG Ryder ”quﬂlwl‘vmdﬁﬁgm
PROLANGS

PROGRAMMNG LANGUAGES RESARCH GROUP.

45

ACACES-5 July 2007 © BG Ryder ”quﬂlwl‘vmdﬁﬁgm
PROLANGS

PROGRAMMNG LANGUAGES RESARCH GROUP.

46

23

Algorithm Illustration

O Method
A Heap Data

— Call and return
“useful” value
—p Other calls

Side Effect

—— write
read

ACACES-5 July 2007 © BG Ryder 47

Algorithm Illustration

Methods Callable on CUT

O Method
A Heap Data

—>» Call and return
“useful” value

—p Other calls s s 2%

: : .

Side Effect . . :

. . .

.. . ®eecccccccccfoccce®
—— write
read

ACACES-5 July 2007 © BG Ryder UTGERS 48

PROLANGS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

24

Algorithm Illustration

Methods Callable on CUT

O Method
A Heap Data

— Call and return
“useful” value
—p Other calls

Side Effect

—— write
read

ACACES-5 July 2007 © BG Ryder 49

Algorithm Illustration

Methods Callable on CUT

s
. cu .

O Method

A Heap Data

—>» Call and return
“useful” value

—p Other calls s s <,

: : :

Side Effect . . :

. . .

.. . ®eecccccccccfoccce®
—— write
read

ACACES-5 July 2007 © BG Ryder RUTGERS 50

PROLANGS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Algorithm Illustration

Methods Callable on CUT

O Method
A Heap Data

— Call and return
“useful” value
—p Other calls

Side Effect

°
.
.
.
.
.
.

—— write
read

ACACES-5 July 2007 © BG Ryder 51

Algorithm Illustration

Methods Callable on CUT

O Method
A Heap Data

—>» Call and return
“useful” value

—p Other calls s s <,

: : :

Side Effect . . :

. . .

.. . ®eecccccccccfoccce®
—— write
read

ACACES-5 July 2007 © BG Ryder RUTGERS 52

PROLANGS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

26

Algorithm Illustration

Methods Callable on CUT

O Method
A Heap Data

— Call and return
“useful” value
—p Other calls

Side Effect

—— write
read

ACACES-5 July 2007 © BG Ryder W 53
PROLANGS
Breakdown of Abstract Objects
by Escape State
[w Always captured nSometimes captured o Never captured |
ACACES-5 July 2007 © BG Ryder 54

RUTGERS
PROLANGS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

27

