
APSEC Keynote, Dec 2012, BG Ryder
1

Blended Program Analysis
for Improving Reliability of

Real-world Applications

Collaborators: Bruno Dufour (Rutgers), Gary Sevitsky (IBM Research), Marc Fisher II (VT),
Ben Wiedermann (VT), Shiyi Wei (VT), S. Basu (ug-Lafayette), Luke Marrs (ug-VT); Funded
by IBM Open Collaborative Research Program and NSF 08-0811518

Dr. Barbara G. Ryder
J. Byron Maupin Professor of Engineering

Virginia Tech

APSEC Keynote, Dec 2012, BG Ryder
2

Outline
§ What is program analysis?
§  Challenge of modern software applications
§ What is blended program analysis?
§  Examples of blended analysis

§  Performance diagnosis for framework-based
applications (Java)

§ Data integrity & program understanding for
webpage codes (JavaScript)

§  Summary

What is Program Analysis?

§  Historically,
§ Static program analysis was used for code
optimization during compilation
§ Gave a safe approximation of all possible
program behaviors, without running the program

§ Allows checking of specific program properties
§ Dynamic program analysis was used for
tracking program behavior at runtime
§ Gathered information about program on one
execution

APSEC Keynote, Dec 2012, BG Ryder
3

What is Program Analysis?
§  Static Analysis

§  Input: code
§  Output: model of

semantics of program
§  When: At compile time
§  Cost: High
§  Goal: code

optimization, property
validation, program
understanding, test
case generation...

§  Dynamic Analysis
§  Input: trace of

execution(s)
§  Output: an observed

property
§  When? At runtime
§  Cost: Low
§  Goal: Debugging,

uncovering code
dependences,test
coverage...

APSEC Keynote, Dec 2012, BG Ryder
4

Challenge: Tools for Modern
SW Applications

§  Framework-based software systems
(Java)
§ Transactional, complex, many libraries/
components
§ E.g., personal financial managers, e-commerce
applications, information records managers

§  Performance problems difficult to isolate
§ Need understanding of business logic as
well as run-time behavior

APSEC Keynote, Dec 2012, BG Ryder
5

Dynamic Language Constructs
§  Java

§  Reflection – values from run-time environment
influence program behavior (e.g., in dynamic
class loading)
//read name of class to be dynamically loaded
//from command line*
Class a = Class.forName(args[0]); …
Method mainMethod = findMain(a);
mainMethod.invoke(…);

*http://media.techtarget.com/tss/static/articles/content/dm_classForname/
DynLoad.pdf

 APSEC Keynote, Dec 2012, BG Ryder

6

Challenge: Tools for Modern
SW Applications

§ Websites (JavaScript)
§  Constructed from combination of static and
dynamically loaded/generated code

§  Code can be constructed at runtime and
then executed

§  Program understanding (for maintenance),
testing, and validating data integrity are
hard

APSEC Keynote, Dec 2012, BG Ryder
7

Dynamic language constructs

§  JavaScript
§ Ability to construct a URL at runtime and
then load that webpage

§  Functions with variable numbers of
arguments

§ Ability to write code at runtime and
execute it with eval statement
//xmlhttp is an instance of XMLHttpRequest
eval(xmlhttp.response());

APSEC Keynote, Dec 2012, BG Ryder
8

What is Blended Program Analysis?
ISSTA07, FSE08, ICSM10, CS@VT TR-12-18(2012)

§  A way to integrate dynamic and static
analyses to obtain scalability and
precision for specific problems
§ Use of a dynamic program representation

§ Reflects call structure of execution(s)
§ Use of light-weight dynamic information

§ To prune (some) infeasible paths
§ To tie static analysis information to actual run-
time objects

§ To deal with dynamic program constructs

APSEC Keynote, Dec 2012, BG Ryder
9

Outline

§  Blended analysis for performance
diagnosis in framework-intensive
applications (Java)

APSEC Keynote, Dec 2012, BG Ryder
10

APSEC Keynote, Dec 2012, BG Ryder
11

Framework-based Applications

§  Application is an iceberg
§  Bulk of the code in libraries and

frameworks
§  Genre not commonly addressed by

research community
§  E.g., financial planning services, e-

commerce sites, online reservation
systems, Tomcat-based systems
software

§  Programs are not just large, but
are more complex in interactions
between frameworks

§  Performance problems span multiple
layers

Libraries and
Frameworks

App

Middleware

APSEC Keynote, Dec 2012, BG Ryder
12

Framework-based Applications
§  Software characteristics

§  Not amenable to static analyses
§ Not scalable -- too complex

§  Not amenable to dynamic
analysis
§ Too intrusive into execution
for production codes

§  Application’s main function often
is data transformation

§  Goal: design analyses for
performance diagnosis of these
systems

Libraries and
Frameworks

App

Middleware

APSEC Keynote, Dec 2012, BG Ryder
13

Goal: Find Object Churn
§  Identify execution contexts with
excessive use of temporaries
§  Based on total number of instances
§  Not the same as finding often-executed allocation sites
§  Need to identify temporary objects and to approximate

“object lifetime”

§  Elimination strategies
§  Optimize the frequent use of frameworks and libraries

together
§  Introduce caching for temporary data structures
§  Code specialization

APSEC Keynote, Dec 2012, BG Ryder
14

Current Practice: Jinsight Trace of
HoldingDataBean_Ser.serialize()

Tens of thousands of calls
How to find churn locality?

APSEC Keynote, Dec 2012, BG Ryder
15

Blended Analysis - Scalability

1473

18267

8089

25012

348

3919

2223

5848

17

322

71

373

1

10

100

1000

10000

100000

Dct-Std Dct-WS EJB-Std EJB-WS

C
a

ll
in

g
 c

o
n

te
x

ts

getHoldings()

2 orders of magnitude!
Looking at the entire trace

Approximating contexts that use temporaries

Identifying contexts that truly use temporaries

Trade6:

APSEC Keynote, Dec 2012, BG Ryder
16

Blended Analysis Paradigm

Java
Application

Profile Loaded
Classes

Reflection Specification
+ Templates

Dynamic Calling Structure

Static
Analysis

Models of methods

Pruning Code in Methods
Entry

Exit

x = new B()

y = D.m()

z = C.m()

w = new A()

Allocated types: {B}
Observed targets: {D.m}

(FSE’08)

APSEC Keynote, Dec 2012, BG Ryder
17

C D

E

18

Escape Analysis, by Example

zag()

foo()

bar() baz() A B C D

E

Captured Arg-escaping Globally escaping

void bar() {
 a = new A();
 a.x = new B();
}
C baz() {
 c = new C();
 c.y = new D();
 c.z = new E();
 return c;
}
void foo(F f) {
 c = baz();
 f.w = c.z;
}
void zag() {
 F f = new F();
 foo(f);
 G.global = f;
}

C D

E F E

F E G F E

A
B
C
D
E
F
G

Disposition

APSEC Keynote, Dec 2012, BG Ryder

Invocation tree for hasConnectAccess!

LittleEndianUtil

readInt

40 captured, 40 new

LittleEndianUtil

readInt

80 captured, 80 new

SecurityServer

hasConnectAccess

180 captured

SecurityDescriptor

getEffectiveAccess

60 captured, 40 new

LittleEndianUtil

readIntFromBytes

80 captured

GCDObject

getAttribute

20 captured, 20 new

SecurityDescriptor

deserialize

60 new

PermissionSource

getInstanceFromInt

40 captured, 40 new

AceAccess

getInstanceFromInt

40 captured, 40 new

LittleEndianUtil

readShort

40 captured, 20 new

SecurityDescriptor

loadFromBytes

100 captured, 40 new

AccessControlList

deserialize

80 new

AccessControlEntry

deserialize

120 new

LittleEndianUtil

readIntFromBytes

40 captured

LittleEndianUtil

readShort

80 captured, 40 new

SecurityContext

isSidPresent

80 captured

APSEC Keynote, Dec 2012, BG Ryder
19

Optimized trace;
only shows allocating
and capturing methods
1000 instances created
but 880 not escaping

Each invoke of
hasConnectaccess
has a unique
SecurityDescriptor for
an ID instance; could
cache w/I ID;

Metrics

Designed new metrics for blended escape
analysis

§ Measure effectiveness of pruning
§ Scalability of analysis – % of blocks in
methods pruned

APSEC Keynote, Dec 2012, BG Ryder
20

Scalability

APSEC Keynote, Dec 2012, BG Ryder
21

Benchmark

Analysis time (h:m:s)

Speedup %Pruned
No

pruning
Pruned

Direct-Std 00:00:18 00:00:17 1.1 45%

Direct-WS 01:34:01 00:04:41 20.0 40%

EJB-Std 00:04:24 00:01:46 2.5 43%

EJB-WS N/A 29:23:16 N/A 43%
Eclipse 24:37:12 06:37:22 3.7 29%

Jazz 02:49:55 00:39:06 4.3 27%

IBM Appln 00:04:35 00:02:05 2.2 39%

Metrics

§ Measure usage of temporaries
§ Disposition- categorizes instances as
globally: escaping, captured, mixed

APSEC Keynote, Dec 2012, BG Ryder
22

Disposition of Instances

APSEC Keynote, Dec 2012, BG Ryder
23

33.9%
51.6%

32.3%
42.1%

26.3%

74.3%
56.9%

0%

25%

50%

75%

100%

Direct/Std Direct/WS EJB/Std EJB/WS Eclipse Jazz CDMS

%
 o

f
dy

na
m
ic
 o

bj
ec

t
in
st

an
ce

s

Captured Mixed Escaping

IBM App

~50% instances captured

Most instances exhibit only 1 behavior

Metrics

§ Measure usage of temporaries
§  Concentration- measures locality of
temporary usage

APSEC Keynote, Dec 2012, BG Ryder
24

Concentration of Captured Instances

APSEC Keynote, Dec 2012, BG Ryder
25

29.0%

54.3%

42.0%

51.2%

88.4%

62.2%
 66.8%

0%

25%

50%

75%

100%

Direct/
Std

Direct/
WS

EJB/Std EJB/WS Eclipse Jazz CDMS

%
 o

f
ca

pt
ur

ed
 i
ns

ta
nc

es

5% 10% 20%

IBM App

Outline

§  Blended analysis for capturing effects
of dynamically generated or dynamically
loaded code (JavaScript)

APSEC Keynote, Dec 2012, BG Ryder
26

JavaScript – Website Glue Code

§  JavaScript is lingua franca of client-
side applications

§ 98 out of 100 most popular websites use
JavaScript (Guarnieri et al, ISSTA11)

§ Use of dynamic features is evident in websites
(Richards et al, ECOOP11, PLDI10; Zorn et al, WebApps10)

APSEC Keynote, Dec 2012, BG Ryder
27

APSEC Keynote, Dec 2012, BG Ryder
28

Blended Analysis Paradigm for JavaScript

Application

Profile

Gather dynamically
generated/loaded

code

Dynamic Calling Structure

Static
Analysis

Pruned models

of methods

How to Profile a Website for Analysis?
§  Run several executions of the website,
to explore its behaviors

§  Each execution is comprised by a set of
page traces

§  Gather all page traces for the same
webpage together and consider them a
single JavaScript program for analysis

APSEC Keynote, Dec 2012, BG Ryder
29

 JavaScript Analysis Framework

APSEC Keynote, Dec 2012, BG Ryder
30

Execution
collector

Trace
selector

Solution
integrator

Static
analyzer

`

Dynamic analysis

Static analysis

JS Program
Solution

Tainted Input Analysis

§  Integrity violation – allowing user input
to reach a sensitive operation

§ Tainted Source: user has control of its value
§ Sensitive operation: can affect behavior of
website or browser

§ Source-sink pair reported if there is a possible
dataflow between them (ignoring sanitizers)

§  Hyp: blended tainted input analysis will
report fewer false alarms and more
true positives than pure static tainted
input analysis

APSEC Keynote, Dec 2012, BG Ryder
31

Benchmarks1

APSEC Keynote, Dec 2012, BG Ryder
32

Website Page count Trace count
bing.com 19 30
twitter.com 14 30
linkedin.com 12 30
qq.com 18 30
wordpress.com 23 30
sina.com.cn 16 30
163.com 22 30
cnn.com 18 30
msn.com 18 30
conduit.com 10 16
imdb.com 10 18
myspace.com 10 24
sohu.com 10 19
xing.com 10 18
xunlei.com 10 22
zedo.com 10 16
washingtonpost.com 10 27
pconline.com.cn 10 21
Average 14 25

Blended vs Pure Static Analysis

APSEC Keynote, Dec 2012, BG Ryder
33

Pure static
solution Blended solution

Part of static solution
not found by blended

Part of solution from
dynamically loaded
or generated code

Shaded area is part of solution
found by pure static and blended

Tainted Input Results

APSEC Keynote, Dec 2012, BG Ryder
34

Website Pure Static Pure Static Blended Blended
true soln false alarm true soln false alarm

live.com 1
youtube.com 1 1
myspace.com 1
sohu.com 2 1 2
xunlei.com 3 3
msn.com 1
bing.com 1
totals 6 2 9

false positives

false negatives

a b c

Statement-level Side-effects (ST-MOD)

For Program Understanding

§ Want to know the number of objects
whose f field value may be changed at
statement: x.f=
§ Helpful in navigating unfamiliar code

§  How solve?
§  Find which objects o that x can point to
§  Find which objects o.f can point to

APSEC Keynote, Dec 2012, BG Ryder
35

Benchmarks2

APSEC Keynote, Dec 2012, BG Ryder
36

Website
Page
count

Trace
count

eval
page

variadic
function

google.com 203 2104 52 177
facebook.com 138 1098 23 65
youtube.com 122 579 19 29
yahoo.com 52 265 21 13
baidu.com 49 147 6 16
wikipedia.org 67 130 0 3
live.com 54 226 10 44
blogger.com 24 146 6 7
totals 709 4695 137 354

Comparison: Pure Static to Blended Solutions
(points-to)

APSEC Keynote, Dec 2012, BG Ryder
37

Website

% Coverage
of pure
static

solution
%Additional

results
google.com 89.7 5.9
facebook.com 85.3 7.5
youtube.com 89.1 9.9
yahoo.com 78 9.8
baidu.com 93 6.7
wikipedia.org 92.1 none
live.com 81.8 7.5
blogger.com 83.8 1.4
mean 86.6 7.0

a b c

ST-MOD Solutions

APSEC Keynote, Dec 2012, BG Ryder
38

Websites Pure Static Blended
Average

number of
objects in
static code

Average
number of
objects in
static code

Average
number of
objects in

dynamic code

google.com 5.8 2.4 2.1
facebook.com 7.7 4.1 3.6
youtube.com 5.9 3.5 2.4
yahoo.com 5.2 2.5 2.8
baidu.com 2.6 1.4 1.8
live.com 2.9 1.6 2.2
blogger.com 4.5 2.8 2.3
average 4.9 2.6 2.5

Summary
§ Modern SW applications require new
approaches to program analysis - the
engine behind SW tools

§  New blended analysis paradigm seems
promising for handling the more dynamic
programming constructs

§ Performance diagnosis of framework-based apps
§ Understanding of website codes for
enhancement

§ More experimentation and investigation
needed to select best analysis for specific
use

APSEC Keynote, Dec 2012, BG Ryder
39

Challenges
§  Expect more combinations of static and
dynamic analyses for web & mobile apps

§  Challenge: analyzing 3rd party apps
(executables) in combo with known
codes

§  Challenge: analyzing event-driven codes
§  Challenge: increased use of explicit
concurrency will require new tools and
supporting analyses

APSEC Keynote, Dec 2012, BG Ryder

40

Questions?

Thank You

APSEC Keynote, Dec 2012, BG Ryder
41

