Blended Program Analysis for Improving Reliability of Real-world Applications

Dr. Barbara G. Ryder J. Byron Maupin Professor of Engineering Virginia Tech

Collaborators: Bruno Dufour (Rutgers), Gary Sevitsky (IBM Research), Marc Fisher II (VT), Ben Wiedermann (VT), Shiyi Wei (VT), S. Basu (ug-Lafayette), Luke Marrs (ug-VT); Funded by IBM Open Collaborative Research Program and NSF 08-0811518

APSEC Keynote, Dec 2012, BG Ryder

Outline

- What is program analysis?
- Challenge of modern software applications
- What is blended program analysis?
- Examples of blended analysis
 - Performance diagnosis for framework-based applications (Java)
 - Data integrity & program understanding for webpage codes (JavaScript)
- Summary

What is Program Analysis?

Historically,

- Static program analysis was used for code optimization during compilation
 - Gave a safe approximation of all possible program behaviors, without running the program
 - Allows checking of specific program properties
- Dynamic program analysis was used for tracking program behavior at runtime
 - Gathered information about program on one execution

What is Program Analysis?

- Static Analysis
 - Input: code
 - Output: model of semantics of program
 - When: At compile time
 - Cost: High
 - Goal: code
 optimization, property
 validation, program
 understanding, test
 case generation...

- Dynamic Analysis
 - Input: trace of execution(s)
 - Output: an observed property
 - When? At runtime
 - Cost: Low
 - Goal: Debugging, uncovering code dependences,test coverage...

Challenge: Tools for Modern SW Applications

- Framework-based software systems (Java)
 - Transactional, complex, many libraries/ components
 - E.g., personal financial managers, e-commerce applications, information records managers
 - Performance problems difficult to isolate
 - Need understanding of business logic as well as run-time behavior

Dynamic Language Constructs

Java

- Reflection values from run-time environment influence program behavior (e.g., in dynamic class loading)
 - //read name of class to be dynamically loaded
 - //from command line*
 - Class a = Class.forName(args[0]); ... Method mainMethod = findMain(a);
 - mainMethod.invoke(...);

*http://media.techtarget.com/tss/static/articles/content/dm_classForname/ DynLoad.pdf

Challenge: Tools for Modern SW Applications

- Websites (JavaScript)
 - Constructed from combination of static and dynamically loaded/generated code
 - Code can be constructed at runtime and then executed
 - Program understanding (for maintenance), testing, and validating data integrity are hard

Dynamic language constructs

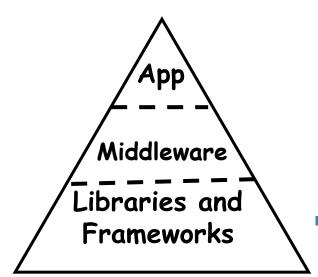
JavaScript

- Ability to construct a URL at runtime and then load that webpage
- Functions with variable numbers of arguments
- Ability to write code at runtime and execute it with *eval* statement

//xmlhttp is an instance of XMLHttpRequest
eval(xmlhttp.response());

What is Blended Program Analysis? ISSTA07, FSE08, ICSM10, CS@VT TR-12-18(2012)

- A way to integrate dynamic and static analyses to obtain scalability and precision for specific problems
 - Use of a dynamic program representation
 Reflects call structure of execution(s)
 - Use of light-weight dynamic information
 - To prune (some) infeasible paths
 - To tie static analysis information to actual runtime objects
 - To deal with dynamic program constructs



Outline

 Blended analysis for performance diagnosis in framework-intensive applications (Java)

Framework-based Applications

- Application is an iceberg
 - Bulk of the code in libraries and frameworks
 - Genre not commonly addressed by research community
 - E.g., financial planning services, ecommerce sites, online reservation systems, Tomcat-based systems software
- Programs are not just large, but are more complex in interactions between frameworks
- Performance problems span multiple layers

Framework-based Applications

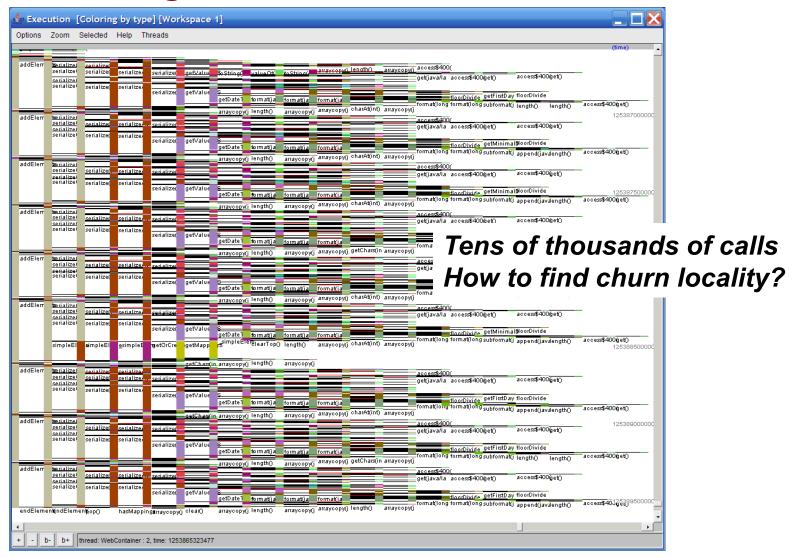
App Middleware Libraries and Frameworks

Software characteristics

- Not amenable to static analyses
 - Not scalable -- too complex
- Not amenable to dynamic analysis
 - Too intrusive into execution for production codes
- Application's main function often is data transformation
- Goal: design analyses for performance diagnosis of these systems

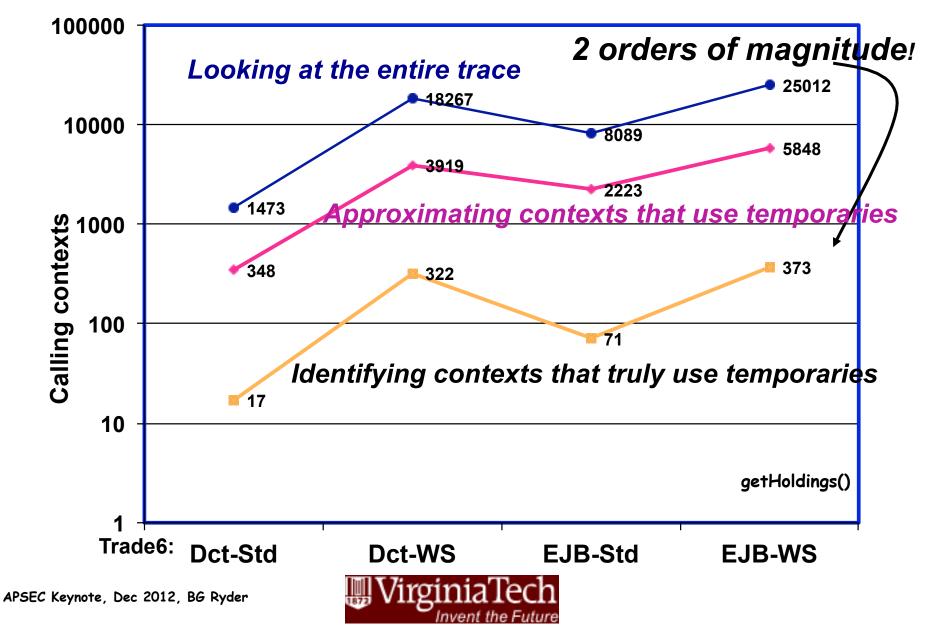
Goal: Find Object Churn

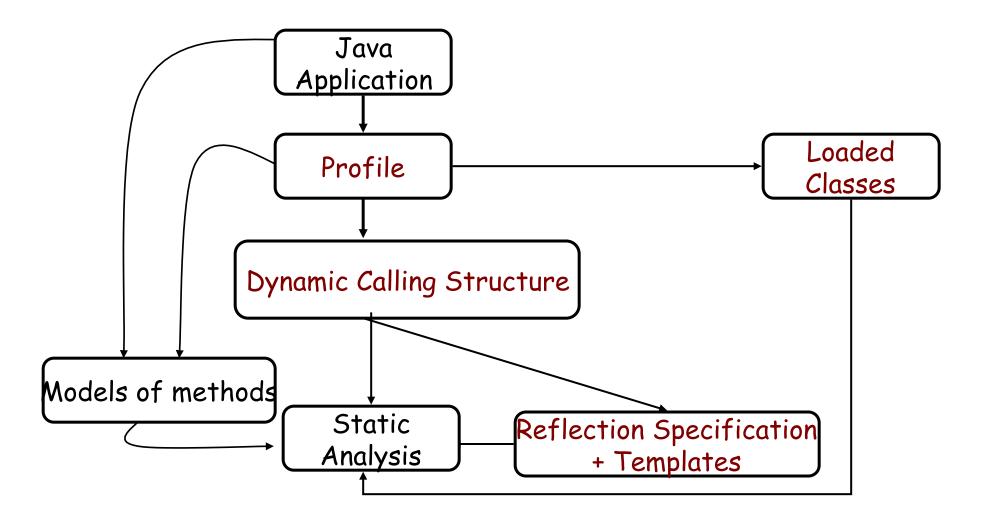
Identify execution contexts with excessive use of temporaries

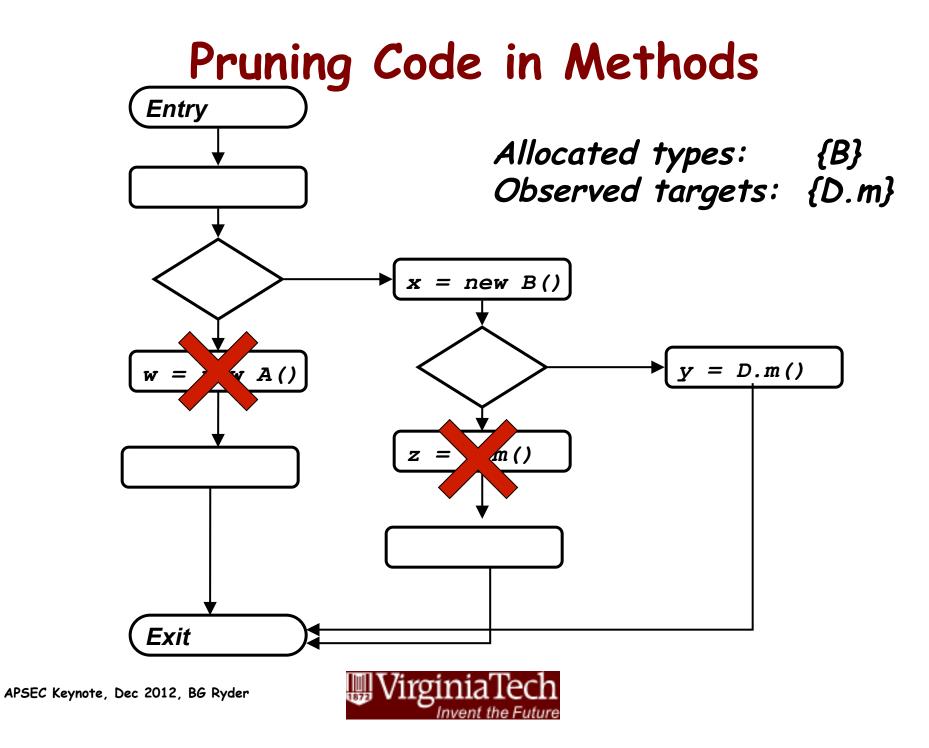

- Based on total number of *instances*
- Not the same as finding often-executed allocation sites
- Need to identify temporary objects and to approximate "object lifetime"

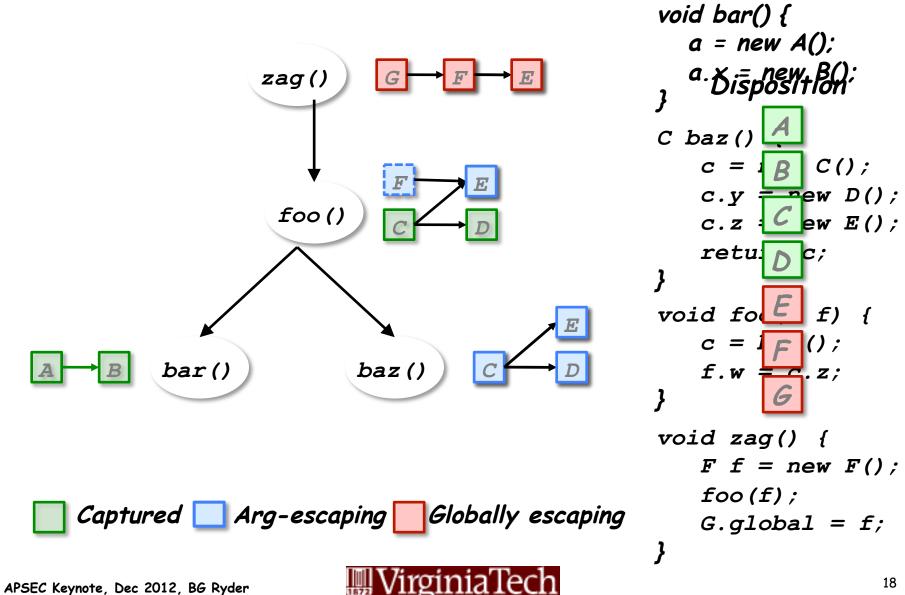
Elimination strategies

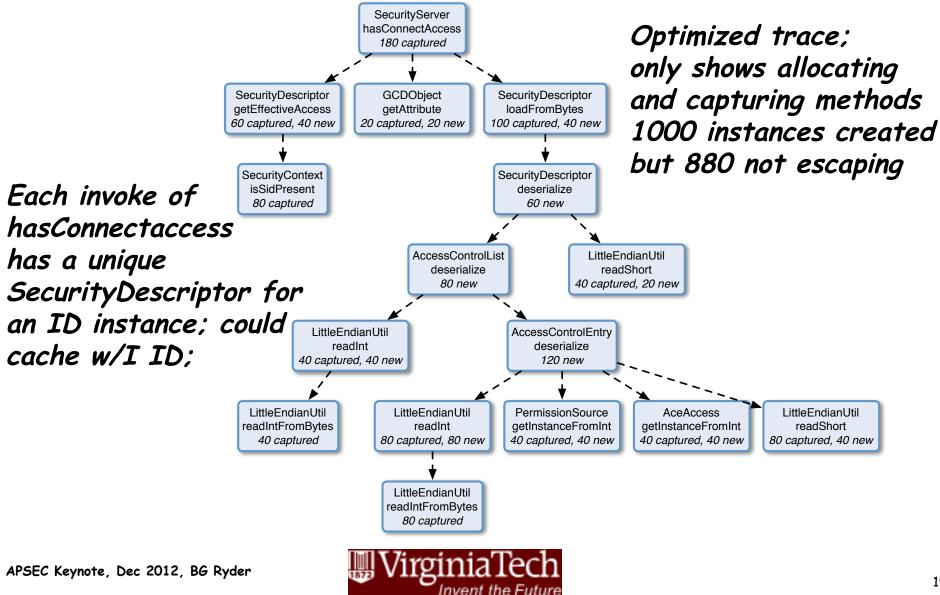
- Optimize the frequent use of frameworks and libraries together
- Introduce caching for temporary data structures
- Code specialization


Current Practice: Jinsight Trace of HoldingDataBean_Ser.serialize()


APSEC Keynote, Dec 2012, BG Ryder


Blended Analysis - Scalability


Blended Analysis Paradigm



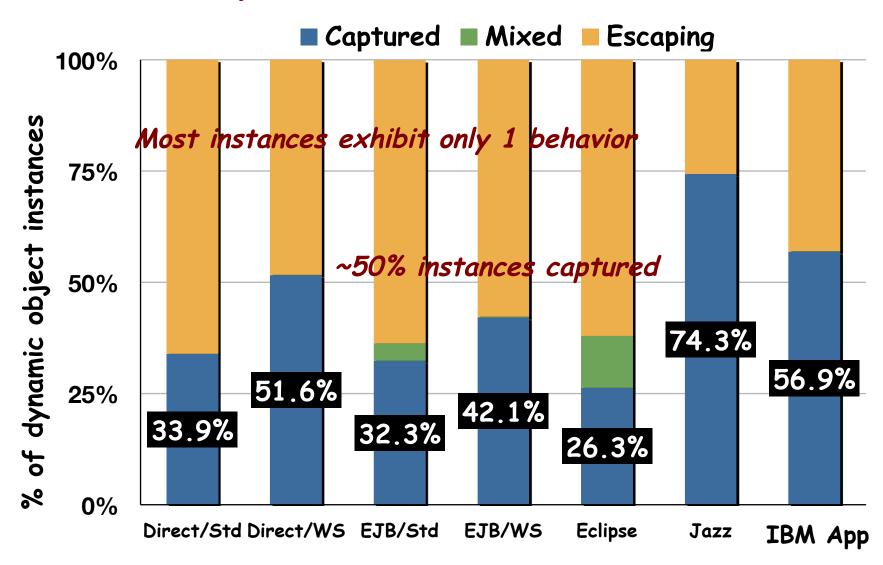
Escape Analysis, by Example

Invocation tree for hasConnectAccess

Metrics

Designed new metrics for blended escape analysis

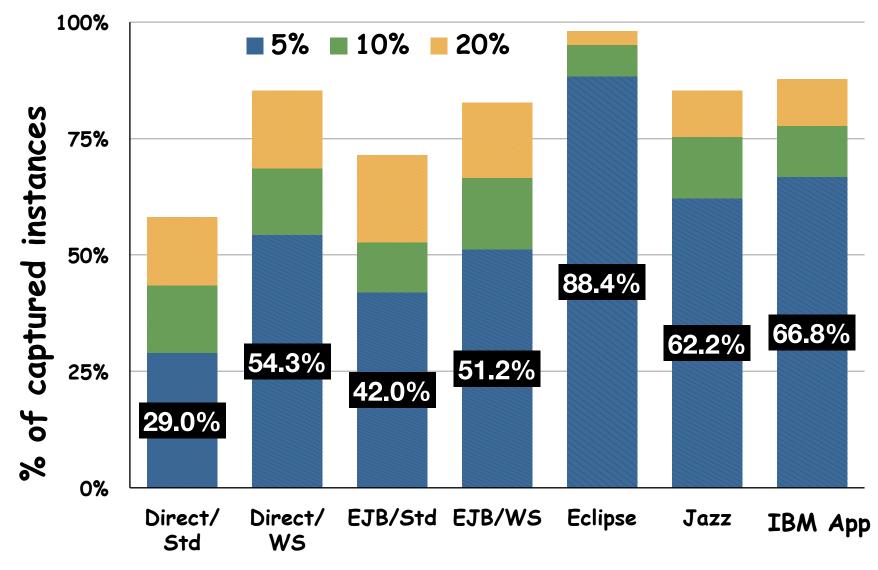
- Measure effectiveness of pruning
 - Scalability of analysis % of blocks in methods pruned


	Sco	alability	У		
	Analysis t	Analysis time (h:m:s)			
Benchmark	No pruning	Pruned		Speedup	%Pruned
Direct-Std	00:00:18	00:00:17	\mathbf{V}	1.1	45%
Direct-WS	01:34:01	00:04:41	Ĭ	20.0	40%
EJB-Std	00:04:24	00:01:46	Î	2.5	43%
EJB-WS	N/A	29:23:16	T	N/A	43%
Eclipse	24:37:12	06:37:22	T	3.7	29%
Jazz	02:49:55	00:39:06		4.3	27%
IBM Appln	00:04:35	00:02:05		2.2	39%
te, Dec 2012, BG Ryder	Virg	giniaTech			

Metrics

- Measure usage of temporaries
 - Disposition categorizes instances as globally: escaping, captured, mixed

Disposition of Instances



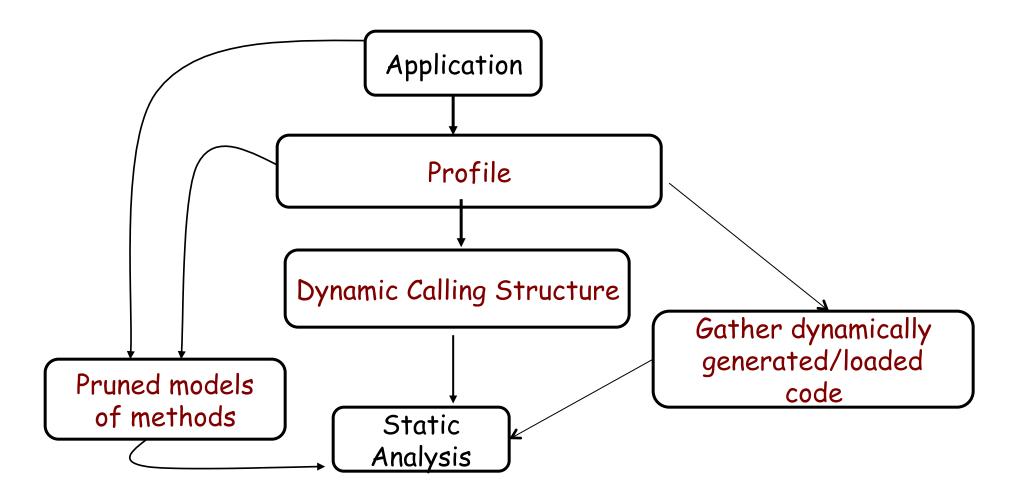
Metrics

- Measure usage of temporaries
 - Concentration measures locality of temporary usage

Concentration of Captured Instances

Outline

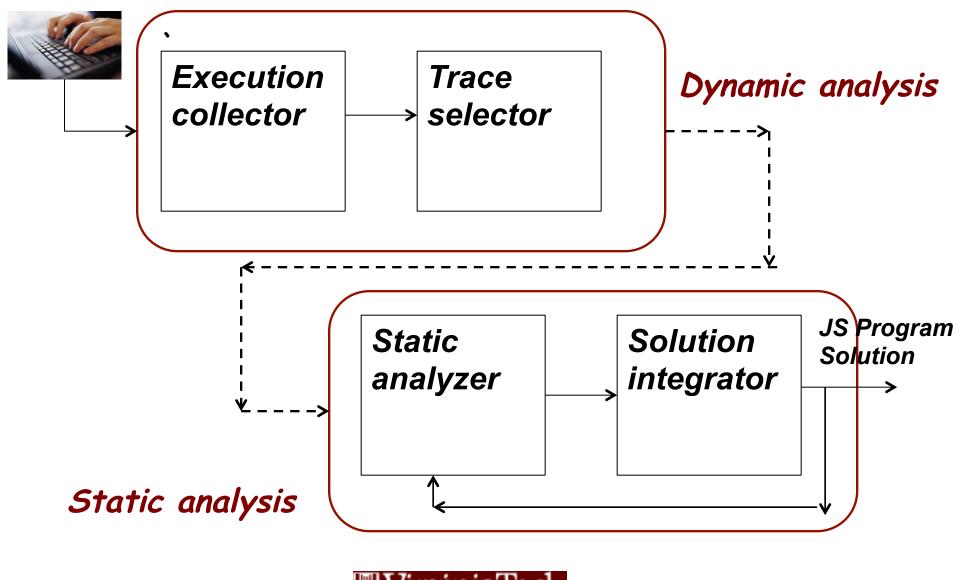
 Blended analysis for capturing effects of dynamically generated or dynamically loaded code (JavaScript)


JavaScript - Website Glue Code

JavaScript is *lingua franca* of clientside applications

- 98 out of 100 most popular websites use JavaScript (Guarnieri et al, ISSTA11)
- Use of dynamic features is evident in websites (Richards et al, ECOOP11, PLDI10; Zorn et al, WebApps10)

Blended Analysis Paradigm for JavaScript



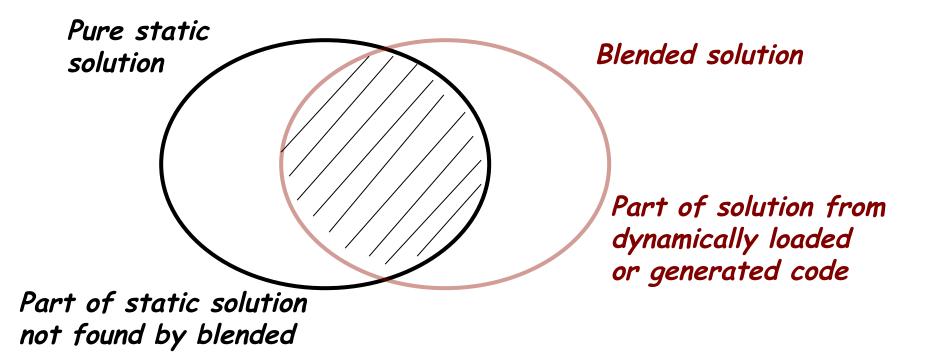
How to Profile a Website for Analysis?

- Run several executions of the website, to explore its behaviors
- Each execution is comprised by a set of page traces
- Gather all page traces for the same webpage together and consider them a single JavaScript program for analysis

JavaScript Analysis Framework

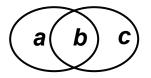
Tainted Input Analysis

- Integrity violation allowing user input to reach a sensitive operation
 - Tainted Source: user has control of its value
 - Sensitive operation: can affect behavior of website or browser
 - Source-sink pair reported if there is a possible dataflow between them (ignoring sanitizers)
- Hyp: blended tainted input analysis will report fewer false alarms and more true positives than pure static tainted input analysis



Benchmarks1

Website	Page count	Trace count
bing.com	19	30
twitter.com	14	30
linkedin.com	12	30
qq.com	18	30
wordpress.com	23	30
sina.com.cn	16	30
163.com	22	30
cnn.com	18	30
msn.com	18	30
conduit.com	10	16
imdb.com	10	18
myspace.com	10	24
sohu.com	10	19
xing.com	10	18
xunlei.com	10	22
zedo.com	10	16
washingtonpost.com	10	27
pconline.com.cn	10	21
Average	14	25



Blended vs Pure Static Analysis

Shaded area is part of solution found by pure static and blended

Tainted Input Results

Website	Pure Stat	ic Pure Static	Blended	Blended
	true soln	false alarm	true solr	n false alarm
live.com			1	
youtube.com	n 1		1	
myspace.com	n		1	false negatives
sohu.com	2	1	2	
xunlei.com	3	false positives	3	
msn.com			1	
bing.com		1		
totals	6	2	9	

Statement-level Side-effects (ST-MOD) For Program Understanding

- Want to know the number of objects whose f field value may be changed at statement: x.f=
 - Helpful in navigating unfamiliar code
- How solve?
 - Find which objects o that x can point to
 - Find which objects o.f can point to

Benchmarks2

Website	Page count	Trace count	<i>eval</i> page	variadic function
google.com	203	2104	52	177
facebook.com	n 138	1098	23	65
youtube.com	122	579	19	29
yahoo.com	52	265	21	13
baidu.com	49	147	6	16
wikipedia.org	67	130	0	3
live.com	54	226	10	44
blogger.com	24	146	6	7
totals	709	4695	137	354

Comparison: Pure Static to Blended Solutions (points-to)					
(a b) c Webs	% Coverage of pure static site solution	%Additional results			
google.com	89.7	5.9			
facebook.co	om 85.3	7.5			
youtube.con	n 89.1	9.9			
yahoo.com	78	9.8			
baidu.com	93	6.7			
wikipedia.or	rg 92.1	none			
live.com	81.8	7.5			
blogger.com	n 83.8	1.4			
mean	86.6	7.0			
PSEC Keynote, Dec 2012, BG Ryder					

37

ST-MOD Solutions

Websites	Pure Static Average number of objects in static code	Blended Average number of objects in static code	Average number of objects in dynamic code
google.com	5.8	2.4	2.1
facebook.com	7.7	4.1	3.6
youtube.com	5.9	3.5	2.4
yahoo.com	5.2	2.5	2.8
baidu.com	2.6	1.4	1.8
live.com	2.9	1.6	2.2
blogger.com	4.5	2.8	2.3
average	4.9	2.6	2.5

Summary

- Modern SW applications require new approaches to program analysis – the engine behind SW tools
- New blended analysis paradigm seems promising for handling the more dynamic programming constructs
 - Performance diagnosis of framework-based apps
 - Understanding of website codes for enhancement
 - More experimentation and investigation needed to select best analysis for specific

APSEC Keynote, Dec 2012, BG Ryder

Challenges

- Expect more combinations of static and dynamic analyses for web & mobile apps
- Challenge: analyzing 3rd party apps (executables) in combo with known codes
- Challenge: analyzing event-driven codes
- Challenge: increased use of explicit concurrency will require new tools and supporting analyses

Thank You

