
Week 5 HW: Knapsack Problem Comprehension
  Published  Assign To  Edit 

Objectives:

Explain algorithms and efficiency
Understand and use python unit tests
Understand and use recursion and dynamic programming in python
Experiment using LLMs to code and test
Analyze the use of LLMs to code and test

For this homework assignment you will explore solutions to a variation on the classic knapsack
problem and the use of LLMs for coding and testing. As you work through each section, answer the
questions in the following doc: HW5 Knapsack Contraints Assignment Template.docx
(https://canvas.vt.edu/courses/204793/files/37872809?wrap=1)

You are allowed to use resources and LLMs but do be sure to document their usage. If you write or
use any scripts for your testing then include those in your descriptions.

Think about the following problem description
Given a set of N items, each with a weight and a value. The goal is to select a subset of these items
to maximize the total value without exceeding a given capacity W . However, the problem can have
additional complexities.

A. Conflicting Items: Certain pairs of items conflict with each other. If you select one item from a
conflicting pair, you cannot select the other.

B. Bonuses for Item Sets: Selecting specific combinations of items grants additional bonus value.

Constraints
▾ Conflicting Items Solution

A. Conflicting Items

A request to an LLM provided the following solution for the knapsack problem with constraint A listed

https://canvas.vt.edu/courses/204793/assignments/2284178/edit
https://canvas.vt.edu/courses/204793/files/37872809?wrap=1

above, conflicting items, Write tests to break it and describe if and where it breaks. As needed,
search online and use LLMs to learn how to test and solve it.

1)(30pts) Is it correct? See if you can find a test case that breaks it. If so, explain how you found it
and include a screenshot of it failing in vscode. (50-100 words). Note that the test case should
demonstrate a logical error (not handling cases such as negative numbers or empty input).

def knapsack_with_conflicts(weights, values, conflicts, W):
 n = len(weights)

 # Initialize a DP table
 dp = [[0] * (W + 1) for _ in range(n + 1)]

 # Fill the DP table
 for i in range(1, n + 1):
 for w in range(W + 1):
 # Check if the current item conflicts with any previously selected item
 conflict = False
 for j in range(i):
 if (i - 1, j) in conflicts or (j, i - 1) in conflicts:
 conflict = True
 break

 if conflict:
 dp[i][w] = dp[i - 1][w]
 else:
 if weights[i - 1] <= w:
 dp[i][w] = max(dp[i - 1][w], dp[i - 1][w - weights[i - 1]] + values[i - 1])
 else:
 dp[i][w] = dp[i - 1][w]

 return dp[n][W]

Example usage
weights = [2, 3, 4, 5]
values = [3, 4, 5, 6]
conflicts = [(0, 2), (1, 3)] # Indices of conflicting items
W = 5

result = knapsack_with_conflicts(weights, values, conflicts, W)
print(result)

▾ Bonus Items Solution

B. Bonuses for Items Set
A request to an LLM provided the following solution for the knapsack problem with constraint B listed
above, bonus value for including items from a set. Write tests to break it and describe if and where it
breaks. As needed, search online and use LLMs to learn how to test and solve it.

2)(30pts) Is it correct? See if you can find a test case that breaks it. If so, explain how you found it
and include a screenshot of it failing in vscode. (50 - 100 words). Note that the test case should
demonstrate a logical error (not handling cases such as negative numbers or empty input).

def knapsack_with_bonuses(weights, values, W, bonuses):
 n = len(weights)

 # Initialize a DP table
 dp = [[0] * (W + 1) for _ in range(n + 1)]

 # Fill the DP table
 for i in range(1, n + 1):
 for w in range(W + 1):
 if weights[i - 1] <= w:
 dp[i][w] = max(dp[i - 1][w], dp[i - 1][w - weights[i - 1]] + values[i - 1])
 else:
 dp[i][w] = dp[i - 1][w]

 # Apply bonuses
 for items, bonus in bonuses:
 total_weight = sum(weights[i - 1] for i in items)
 total_value = sum(values[i - 1] for i in items) + bonus

 for w in range(W, total_weight - 1, -1):
 dp[n][w] = max(dp[n][w], dp[n][w - total_weight] + total_value)

 return dp[n][W]

Example usage
weights = [2, 3, 4, 5]
values = [3, 4, 5, 6]
W = 10
bonuses = [([1, 4], 5)] # Bonus for selecting items with indices 1 and 4

result = knapsack_with_bonuses(weights, values, W, bonuses)
print(result)

 Reading
▾ Reading and Reflection

Read the following essay by Joel Chan for University of Maryland's Introduction to Programming for
Information Science: How (Not) to Code with LLMs as a Beginning Programmer
(https://canvas.vt.edu/courses/204793/pages/how-not-to-code-with-llms-as-a-beginning-programmer)

Answer the following questions based on this assignment, previous assignments in the course, or
other experiences that you describe.

3) (10pts)((Describe a time when an LLM provided code that you did not understand. What were your
next steps? How does this relate to Joel Chan's essay? (50-100 words)

4) (10pts) Describe a time when an LLM provided code that did not work. How did you realize it didn't
work? How does this relate to Joel Chan's essay? (50-100 words)

https://canvas.vt.edu/courses/204793/pages/how-not-to-code-with-llms-as-a-beginning-programmer

Points

Submitting

File Types

100

a file upload

pdf

Due For Available from Until

Feb 21 CS_2104_13319_202501 - Feb 22 at 11:59pm

Feb 21 CS_2104_13317_202501 - Feb 22 at 11:59pm

Feb 21 CS_2104_13318_202501 - Feb 22 at 11:59pm

Feb 21 CS_2104_13316_202501 - Feb 22 at 11:59pm

Feb 23 at 1am 1 student - Feb 23 at 1am

Week 5 HW:
Knapsack
Problem
Comprehension
Rubric

You've already rated students with this rubric. Any major changes could affect their assessment results.

Criteria Ratings Pts

5) (10pts) Describe the concept of likely vs correct code. Provide at least one example. How does this
relate to Joel Chan's essay? (50-100 words)

6) (10pts) Describe the concept of steering. What are some examples of steering an LLM effectively
to generate or fix code? What must be true fo the LLM user to steer effectively?(50-100 words)

1a correct
or failed
test case

10 pts

1b
describe
process

10 pts

1c
screenshot
of failing
code

10 pts

2a correct
or failed
test case

10 pts

2b
describe
process 10 pts

2c
screenshot
of failing
code

10 pts

10 pts
Full Marks

Response correlates with screenshot and
behavior checks out when run manually.

0 pts
No Marks

10 pts
Full Marks

5 pts
Partical Marks

Somewhat describe
process

0 pts
No Marks

10 pts
Full Marks

0 pts
No Marks

10 pts
Full Marks

Response correlates with screenshot and
behavior checks out when run manually.

0 pts
No Marks

10 pts
Full Marks

Descriptions are thorough
and are logical

5 pts
Partical Marks

Somewhat describe
process

0 pts
No Marks

No descriptions or fail to
describe process at any
level.

10 pts
Full Marks

0 pts
No Marks

3
Description
of LLM
code didn't
understand

10 pts

4
Description
of LLM
code that
didn't work

10 pts

5 Describe
likely vs
correct
code 10 pts

6 Describe
the
concept of
steering

10 pts

10 pts
Full Marks

Provide a concrete
example, Describe
next steps,
Connect back to
Joel Chan's Essay

7 pts
Partial Marks

Missing 1/3 parts:
Provide a concrete
example, Describe
next steps,
Connect back to
Joel Chan's Essay

3 pts
Minimal Marks

Missing 2/3 parts:
Provide a concrete
example, Describe
next steps,
Connect back to
Joel Chan's Essay

0 pts
No Marks

10 pts
Full Marks

Provide a concrete
example, How did
you realize,
Connect back to
Joel Chan's Essay

7 pts
Partial Marks

Missing 1/3 parts:
Provide a concrete
example, How did
you realize,
Connect back to
Joel Chan's Essay

3 pts
Minimal Marks

Missing 2/3 parts:
Provide a concrete
example, How did
you realize,
Connect back to
Joel Chan's Essay

0 pts
No Marks

10 pts
Full Marks

Describe the
concept, Provide
one example,
relate back to Joel
Chan's essay

7 pts
Partial Marks

2/3 correct:
Describe the
concept, Provide
one example,
relate back to Joel
Chan's essay

3 pts
Minimal Marks

1/3 correct
:Describe the
concept, Provide
one example,
relate back to Joel
Chan's essay

0 pts
No Marks

10 pts
Full Marks

Describe the
concept, Provide
more than one
example, describe
what must be true
to steer effectively

7 pts
Partial Marks

2/3 correct:
Describe the
concept, Provide
more than one
example, describe
what must be true
to steer effectively

3 pts
Minimal Marks

1/3 correct
:Describe the
concept, Provide
more than one
example, describe
what must be true
to steer effectively

0 pts
No Marks

Total Points: 100

