
CS2104 Problem 
Solving in 
Computer Science

1

Margaret Ellis, 
Naren Ramakrishnan, 
Sehrish Basir Nizamani

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Python and 
Algorithms

2© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Day 1 Objectives

▪ Explain algorithms and efficiency
▪ Interpret flow charts
▪ Implement algorithms in python
▪ Experiment using LLMS to code and test

3 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Algorithms

Algorithms are the threads that tie together most of the 
subfields of computer science. 
Something magically beautiful happens when a 
sequence of commands and decisions is able to marshal 
a collection of data into organized patterns or to discover 
hidden structure.

Donald Knuth 

4 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Example: Diagram for making an origami swan

5 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Examples of Algorithms

▪ Recipe for Chicken and Macaroni Casserole
▪ Knitting pattern for a blanket
▪ Calculating a tip at a restaurant
▪ Finding the best deal on EXPO markers
▪ Finding the fastest route to Virginia Beach

6 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Definition of Algorithm

▪ effective method (or procedure)
▪ a procedure that reduces the solution of some class of problems to 

a series of rote steps which, if followed to the letter, and as far as 
may be necessary, is bound to:

▪ always give some answer rather than ever give no answer;

▪ always give the right answer and never give a wrong answer;

▪ always be completed in a finite number of steps, rather than in an infinite 
number;

▪ work for all instances of problems of the class.

▪ Algorithm
▪ an effective method expressed as a finite list of well-defined 

instructions for calculating a function
7 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Properties of an Algorithm

An algorithm must possess the following properties: 

▪ finiteness: The algorithm must always terminate after a finite number of steps. 

▪ definiteness:  Each step must be precisely defined; the actions to be carried out 
must be rigorously and unambiguously specified for each case. 

▪ input: An algorithm has zero or more inputs, taken from a specified set of objects. 

▪ output:  An algorithm has one or more outputs, which have a specified relation to 
the inputs. 

▪ effectiveness:  All operations to be performed must be sufficiently basic that they 
can be done exactly and in finite length. 

8 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Common Elements of Algorithms

Acquire data (input): Some means of reading values from an external source; most 
algorithms require data values to define the specific problem (e.g., coefficients of a 
polynomial) 

Computation: Some means of performing arithmetic computations, comparisons, testing 
logical conditions, and so forth... 

Selection: Some means of choosing among two or more possible courses of action, based 
upon initial data, user input and/or computed results 

Iteration: Some means of repeatedly executing a collection of instructions, for a fixed 
number of times or until some logical condition holds 

Report results (output): Some means of reporting computed results to the user, or 
requesting additional data from the user 

Simple and list variables: Name and store data values

9 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Modern CS Algorithms

▪ Matching users to servers, using Gayle-Shapely 
Algorithm for matching medical students to their 
residency placements
▪ This is a beautiful algorithm for fair matching. Simple, 

elegant and effective. In its core form, it’s also 
straightforward to implement. Has numerous applications. 
See: Stable marriage problem – Wikipedia

▪ Music Search using Fast Fourier Transforms (FFT)
▪ Music recognition is done by converting it into frequency 

domain using FFT. FFT has implementations in number of 
languages. See this article for a great start: Shazam It! 
Music Recognition Algorithms, Fingerprinting, and 
Processing.10 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://en.wikipedia.org/wiki/Stable_marriage_problem#Applications
https://www.toptal.com/algorithms/shazam-it-music-processing-fingerprinting-and-recognition
https://www.toptal.com/algorithms/shazam-it-music-processing-fingerprinting-and-recognition
https://www.toptal.com/algorithms/shazam-it-music-processing-fingerprinting-and-recognition


Problems, Algorithms and Programs

▪ For each problem or class of problems, there 
may be many different algorithms.

▪ For each algorithm, there may be many different 
implementations (programs).

11 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Problems vs Algorithms vs Programs

12 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Expressing Algorithms

An algorithm may be expressed in a number of ways:

▪ natural language: usually verbose and ambiguous 

▪ flow charts: avoid most (if not all) issues of ambiguity; difficult to 
modify w/o specialized tools; largely standardized 

▪ pseudo-code: also avoids most issues of ambiguity; vaguely 
resembles common elements of programming languages; no 
particular agreement on syntax 

▪ programming language: tend to require expressing low-level details 
that are not necessary for a high-level understanding 

13 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Flowchart Example of Linear Search

14 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Testing Correctness

▪ How do we know whether an algorithm is actually 
correct? 

▪ First, perform logical analysis 
▪ Second, testing
▪ testing can never prove that the algorithm 

produces correct results in all cases. 

15 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Recap on Unit Test

1. Set up the initial conditions for your test (create any 
objects needed, place them in the correct state, put 
everything necessary where it needs to be, etc.).

2. Call the method you are testing.
3. Check that the behavior you expected has occurred. 

This could involve checking the return value of the 
method, or checking the state of the objects involved 
in the test. Be sure to check everything you expect to 
happen, not just the most obvious item.

16 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Polya’s Problem Solving Steps

■ Step 1: Understand the problem.
■ Have concrete examples (these become test cases)

● Step 2: Devise a plan (translate).
■ Break the problem down into manageable pieces/step

■ Step 3: Carry out the plan (solve).
■ Iterate on 3 and 4 piece by piece

■ Step 4: Look back (check and interpret).
■ Need to really understand the problem!

Understand your 
problem solving process 

then decide how and 
when an LLM can and 

cannot assist. 

17 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Class Activity -Turn Flowcharts into Python Code
New Algorithm:

1. Turn Leap Year Flowchart into python code
2. Write test cases for each branch in the flowchart
3. Come up with alternate ways to code it

18 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Leap Year Flowchart

19 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Class Activity

Do python first steps in class (use vscode in Rlogin)

20 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Animation of Binary Search vs Sequential

21 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Efficiency of Linear Search

• In many applications, it is easy to come up with a numeric value that 
specifies the problem size, which is generally denoted by the letter N.  

• For most array applications, the problem size is simply the size of the 
array.

• In the worst case—which occurs when the value you’re searching for 
comes at the end of the array or does not appear at all—linear search 
requires N steps.  

• On average, it takes approximately half that time.
○ A linear search of 10 items takes an average of 5 looks
○ A linear search of 800 items takes an average of 400 looks

22 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Efficiency of Binary Search

• The running time of binary search also depends on the number 
of elements, but in a profoundly different way.

• On each step in the process, the binary search algorithm 
rules out half of the remaining possibilities.  

• In the worst case, the number of steps required is equal to the 
number of times you can divide the original size of the array in 
half until there is only one element remaining.

23 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Efficiency of Binary Search (Cont.)

• In other words, what you need to find is the value of k that 
satisfies the following equation:

24 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Assessing Algorithmic Efficiency

• The discussion of the efficiency of the various searching 
and sorting algorithms illustrates a fundamental computer 
science technique called algorithmic analysis.

• One of the most important problems in algorithmic 
analysis is deducing the computational complexity of an 
algorithm, which is the relationship between the size of 
the problem and the expected running time.

25 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Examples of Algorithmic Efficiency

26 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Big-O Notation

• The most common way to express computational complexity is to use 
big-O notation, which was introduced by the German mathematician 
Paul Bachmann in 1892.

• Big-O notation consists of the letter O followed by a formula that 
offers a qualitative assessment of running time as a function of the 
problem size, traditionally denoted as N.

• For example, the computational complexity of linear search is O( N ) 
and the computational complexity of radix sort is O(N log N )

• If you read these formulas aloud, you would pronounce them as “big-O 
of N ” and “big-O of N log N ” respectively.

27 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Exercise: Computational Complexity

Assuming that none of the steps in the body of the following for loops depend on the problem 
size stored in the variable n, what is the computational complexity of each of the following 
examples:

28 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Algorithm’s Time Complexity

https://adrianmejia.com/most-popular-algorithms-time-complexity-every-programmer-should-know-free-online-tu
torial-course/

29 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://adrianmejia.com/most-popular-algorithms-time-complexity-every-programmer-should-know-free-online-tutorial-course/
https://adrianmejia.com/most-popular-algorithms-time-complexity-every-programmer-should-know-free-online-tutorial-course/


Binary Search

def binarySearch (key,values): 

    lh = 0

    rh = len(values)  - 1

    while (lh <= rh): 

        mid =  (lh + rh) // 2

        if (key == values[mid]): 

            return mid

        if (key < values[mid]):

            rh = mid - 1

        else:

            lh = mid + 1

    return - 1    

Given totals = {23, 44, 55, 146, 255, 300, 440, 575}
Trace binarySearch(440, totals)
List all the values of lh, rh and mid.

30

lh rh mid

0 7 3

4 7 5

6 7 6 ✅

0 1 2 3 4 5 6 7

23 44 55 146 255 300 440 575

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



LLMs to help (as allowed by assignments)
Sample Response: This unit test covers various scenarios, including cases where the key is present in the list, 
not present in the list, an empty list, and a single-element list. You can run this test to verify that your 
binarySearch function works correctly. If you have any other questions or need further assistance, feel free to 
ask!

Sample Response Code:
import unittest

def binarySearch(key, values):
    lh = 0
    rh = len(values) - 1
    
    while lh <= rh:
        mid = (lh + rh) // 2
        if key == values[mid]:
            return mid
        if key < values[mid]:
            rh = mid - 1
        else:
            lh = mid + 1
    return -1….

…
#co-pilot 12/29/24
class TestBinarySearch(unittest.TestCase):
    def test_binary_search(self):
        # Test cases where the key is present in the list
        self.assertEqual(binarySearch(3, [1, 2, 3, 4, 5]), 2)
        self.assertEqual(binarySearch(1, [1, 2, 3, 4, 5]), 0)
        self.assertEqual(binarySearch(5, [1, 2, 3, 4, 5]), 4)
        
        # Test cases where the key is not present in the list
        self.assertEqual(binarySearch(0, [1, 2, 3, 4, 5]), -1)
        self.assertEqual(binarySearch(6, [1, 2, 3, 4, 5]), -1)
        
        # Test cases with an empty list
        self.assertEqual(binarySearch(3, []), -1)
        
        # Test cases with a single element list
        self.assertEqual(binarySearch(1, [1]), 0)
        self.assertEqual(binarySearch(0, [1]), -1)

if __name__ == '__main__':
    unittest.main(argv=[''], exit=False)

Unit test 
class

import

31 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Find the Longest Run

▪ Given a list of values, finds the length of the longest 
sequence of values that are in strictly increasing 
order.

▪ Concrete example?
▪ longest_run([5,4,8,1,2,3,1]) should output 3 as the longest 

run
▪ What variables would you use?
▪ What procedures would you take?
▪ How do you test the correctness of your algorithm?

32 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Find the Longest Run (Cont.)

# Given a list of values, finds the length of the longest sequence
# of values that are in strictly increasing order.
def longest_run(arr):
    size = len(arr)
    if size <= 0:                         # if list is empty, no runs...
        print("The list is empty")
    else:
        current_position = 0       # start with first element in list
        max_run_length = 1       # it forms a run of length 1
        this_run_length = 1
…

33 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Find the Longest Run (Continue)

…
# QUESTION TO PONDER:  is this Algorithm Correct?
        while  current_position < size - 1: 
            if ( arr[current_position] < arr[current_position + 1] ):
                this_run_length = this_run_length + 1
            else: 
                if ( this_run_length > max_run_length ):
                    max_run_length = this_run_length            
                this_run_length = 1        
            current_position = current_position + 1
        print("The max run length is: ", max_run_length)

[0, 1, 2, 3]

[1, 3, 0, 5, -1, 1, 2, 3]

34 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Unit Testing…

Demo Class Activity: Unit Testing, 
▪ students follow along 
▪ create W3_demo folder in vscode 
▪ click on the download arrow in canvas week 5  to get the 

py version of each file
▪ binsearch_withtest_LLM.py

▪ longest_run1_withtest.py

▪ longest_run2_withtest.py

▪ longest_run1_withtest LLM.py

▪ longest_run2_withtest LLM.py

▪ Drag files into the directory (they get uploaded to rlogin)

35 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://canvas.vt.edu/courses/204793/files/37062155?wrap=1
https://canvas.vt.edu/courses/204793/files/37062151?wrap=1
https://canvas.vt.edu/courses/204793/files/37062154?wrap=1
https://canvas.vt.edu/courses/204793/files/37062158?wrap=1
https://canvas.vt.edu/courses/204793/files/37062159?wrap=1


Unit Testing (Cont.)

Demo Class Activity: Unit 
Testing, 

▪ binsearch_withtest_LLM.py 
should pass

36 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://canvas.vt.edu/courses/204793/files/37062155?wrap=1


Unit Testing cont.
Demo Class Activity: Unit Testing

▪ Longest_run1_withtest.py  

▪ should not pass

▪  (investigate with debugger)

▪ Set breakpoint in the gutter of 

failing test

▪ Use buttons to trace code

▪ S

▪ S

▪ S

▪ Watch values in variables

▪ Fixed version (can look side-by-side) 

Longest_run2_withtest.py  should pass

37 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://canvas.vt.edu/courses/204793/files/37062151?wrap=1
https://canvas.vt.edu/courses/204793/files/37062154?wrap=1


Unit Testing (Continue)
Demo Class Activity: Unit Testing 
(same code, different tests)

▪ longest_run1_withtest LLM.py

▪ Should not pass

▪ Investigate with debugger

▪ Use buttons to trace code(hover to see 

functionality)

▪ .

▪ .

▪ .

▪ .

▪ Watch values in variables

▪ longest_run2_withtest LLM.py

▪ Should pass

▪ Compare side-by-side

38 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://canvas.vt.edu/courses/204793/files/37062158?wrap=1
https://canvas.vt.edu/courses/204793/files/37062159?wrap=1


Maximum Subsequence Sum Problem

▪ The maximum subsequence is defined as zero if all 
the integers are negative, (i..e., the subsequence of 
the empty set is zero).

▪ Consider the sequence:  4  -3  5  -2  -1  2  6  -2

▪ Given (possibly negative) integers A1, A2, … , AN, find 
the maximum value of:

39 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Maximum subsequence sum solution 1
# finds the max subsequence sum in the list values

def max_subsequence_sum_1(values):
 
    size = len(values)
    max_sum = 0     
    i = 0        
    while i < size: 
        j = i
        while  j < size: 
            this_sum = 0
            k = i
            while  k <= j: 
                this_sum = this_sum + values[k]
                k = k + 1
            if (this_sum > max_sum ):
                max_sum = this_sum
            j = j + 1
        i= i + 1
    return(max_sum)

If size = 1000, how many 
times are the statements in 
the innermost loop 
executed?

Can you/we do better?

40 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Maximum subsequence sum solution 2

▪ Reuse the subsum, so just adds the newest value in 
the subsequence to what was previously calculated

[4]
[4  -3]
[4  -3  5]
[4  -3  5  -2]
[4  -3  5  -2  -1]
[4  -3  5  -2  -1  2]
[4  -3  5  -2  -1  2  6]
[4  -3  5  -2  -1  2  6  -2]

[-3]
[-3  5]
[-3  5  -2]
[-3  5  -2  -1]
[-3  5  -2  -1  2]
[-3  5  -2  -1  2  6]
[-3  5  -2  -1  2  6  -2]

· · ·

4  -3  5  -2  -1  2  6  -2

41 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Maximum subsequence sum solution 2 
(Continue)

# finds the max subsequence sum in the list values
def max_subsequence_sum_2(values):
 
    size = len(values)
    max_sum = 0     
    i = 0        
 
    while i < size: 
        j = i
        this_sum = 0
        while  j < size: 
            this_sum = this_sum + values[j]         
            if (this_sum > max_sum ):
                max_sum = this_sum
            j = j + 1
        i= i + 1
    return(max_sum)

If size = 1000, how many times are 
the statements in the innermost 
loop executed?

Can you/we do even better?

42 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Maximum subsequence sum solution 3

# finds the max subsequence sum in the list values
def max_subsequence_sum_3(values):
    size = len(values)
    max_sum = 0  
    this_sum = 0   
    j = 0    
    while (j <= size -1):
        this_sum = this_sum + values[j]
        if ( this_sum > max_sum ):
            max_sum = this_sum
        elif ( this_sum < 0 ):
            this_sum = 0
        j = j + 1
    return max_sum

One must observe that if any list[i] is negative then it 
cannot be the beginning of the optimal sequence 
since any sequence starting with it would be 
improved by omitting it and starting with list[i+1].

Also by the same logic any negative subsequence 
cannot be the start of the optimal subsequence.

Try it:
4  -3  5  -2  -1  2  6  -2

43 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Maximum subsequence sum solution LLM

def max_subsequence_sum(arr):
    max_sum = 0
    current_sum = 0

    for num in arr:
        current_sum += num
        if current_sum > max_sum:
            max_sum = current_sum
        if current_sum < 0:
            current_sum = 0

    return max_sum

# Given sequence
sequence = [4, -3, 5, -2, -1, 2, 6, -2]

# Calculate the maximum subsequence sum
result = max_subsequence_sum(sequence)

print(f"The maximum subsequence sum is: 
{result}")

44 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Research on LLMS in CS Education

▪ Students using LLMS had reduced ability to write 
code from scratch but similar ability to trace and read 
code
▪ source:CS1-LLM: Integrating LLMs into CS1 Instruction

▪ Students who used AI less or later in problem solving 
process had higher grades in course (don’t know 
cause-effect)
▪ source:Interactions with How Novices Use LLMs to Solve Programming Problems

▪ Students with strong programming foundations 
benefited more from LLMs, while those without a solid 
base may be hindered by them
▪ Sources: Insights from Social Shaping Theory: The Appropriation of Large Language Models in an Undergraduate 

Programming Course and The Widening Gap: The Benefits and Harms of Generative AI for Novice Programmers
45 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://dl.acm.org/doi/abs/10.1145/3649217.3653584
https://dl.acm.org/doi/abs/10.1145/3631802.3631806?casa_token=bwaJSFE7y2EAAAAA:tJVCyOPmNwdeSHcfUVY5t-Gg8P7adcSydbujP6eo-gAYuiogtimYTPvkDRGsJo3arBuCqXfY4kPo1Q
https://doi.org/10.1145/3632620.367109
https://doi.org/10.1145/3632620.367109
https://doi.org/10.1145/3632620.3671116


Leetcode Assignment

1. Looks over assignment together
2. Open up Leetcode together(set to Python)
3. VT approved LLM (bing.com/chat)
4. Considerations

▪ Can also experiment in vscode
▪ Can also create your own test cases
▪ Keep trying to get more efficient solutions

46 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

http://bing.com/chat

