=

CS2104 Problem

Solving in

Computer Science
Margaret Ellis,

Naren Ramakrishnan,
Sehrish Basir Nizamani

M

VIRGINIA TECH.

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

1



Python and
Algorithms

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Day 1 Objectives

Explain algorithms and efficiency
Interpret flow charts

Implement algorithms in python
Experiment using LLMS to code and test

3 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0 & z;
Vi



Algorithms

Algorithms are the threads that tie together most of the
subfields of computer science.

Something magically beautiful happens when a
sequence of commands and decisions is able to marshal

a collection of data into organized patterns or to discover
hidden structure.

Donald Knuth

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0 x Z
VIRGINIA TECH



r

N/~ VIRGINIA TECH

Example: Diagram for making an origami swan

\\ g
e Fold in the dotted |ines

© rold in half to make !
to meet the center line

crease and fold back

ST

e Fold forward in
the dotted lines

(=g - S 5
© Hood fold in NG| TSNS
the dotted |ine NV /
© Hood fold in © Pocket fold

the dotted line -\

raw eyes
and finished

*Copyr ight -Fumiaki Shingu

|

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/

\/a

VIRGINIA TECH



Examples of Algorithms

Recipe for Chicken and Macaroni Casserole
Knitting pattern for a blanket

Calculating a tip at a restaurant

Finding the best deal on EXPO markers
Finding the fastest route to Virginia Beach

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



Definition of Algorithm

= effective method (or procedure)

= a procedure that reduces the solution of some class of problems to
a series of rote steps which, if followed to the letter, and as far as
may be necessary, is bound to:

= always give some answer rather than ever give no answer;
= always give the right answer and never give a wrong answer;

= always be completed in a finite number of steps, rather than in an infinite
number;

= work for all instances of problems of the class.
= Algorithm

= an effective method expressed as a finite list of well-defined
-------------- instructions for calculating a function

7 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0 x Z
VIRGINIA TECH



Properties of an Algorithm

An algorithm must possess the following properties:

finiteness: The algorithm must always terminate after a finite number of steps.

definiteness: Each step must be precisely defined; the actions to be carried out
must be rigorously and unambiguously specified for each case.

input: An algorithm has zero or more inputs, taken from a specified set of objects.

output: An algorithm has one or more outputs, which have a specified relation to
the inputs.

effectiveness: All operations to be performed must be sufficiently basic that they
can be done exactly and in finite length.

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

\/a

VIRGINIA TECH



Common Elements of Algorithms

Acquire data (input): Some means of reading values from an external source; most
algorithms require data values to define the specific problem (e.g., coefficients of a
polynomial)

Computation: Some means of performing arithmetic computations, comparisons, testing
logical conditions, and so forth...

Selection: Some means of choosing among two or more possible courses of action, based
upon initial data, user input and/or computed results

Iteration: Some means of repeatedly executing a collection of instructions, for a fixed
number of times or until some logical condition holds

Report results (output): Some means of reporting computed results to the user, or
requesting additional data from the user

Simple and list variables: Name and store data values

9 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0 x Z
VIRGINIA TECH



Modern CS Algorithms

= Matching users to servers, using Gayle-Shapely —I
Algorithm for matching medical students to their
residency placements

= This is a beautiful algorithm for fair matching. Simple,
elegant and effective. In its core form, it'’s also
straightforward to implement. Has numerous applications.
See: Stable marriage problem — Wikipedia

= Music Search using Fast Fourier Transforms (FFT)

= Music recognition is done by converting it into frequency
domain using FFT. FFT has implementations in number of
languages. See this article for a great start: Shazam It!
Music Recognition Algorithms, Fingerprinting, and

10 P rOCGSS| n q . © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x Z

VIRGINIA TECH



https://en.wikipedia.org/wiki/Stable_marriage_problem#Applications
https://www.toptal.com/algorithms/shazam-it-music-processing-fingerprinting-and-recognition
https://www.toptal.com/algorithms/shazam-it-music-processing-fingerprinting-and-recognition
https://www.toptal.com/algorithms/shazam-it-music-processing-fingerprinting-and-recognition

N/~ VIRGINIA TECH

Problems, Algorithms and Programs

|

= For each problem or class of problems, there
may be many different algorithms.

= For each algorithm, there may be many different
implementations (programs).

1 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.(3/ x Z
VIRGINIA TECH



Y7/~ VIRGINIA TECH

Problems vs Algorithms vs Programs

|

Algorithms

Problem K—

Programs

12 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x z
VIRGINIA TECH



N/~ VIRGINIA TECH

Expressing Algorithms

|

An algorithm may be expressed in a number of ways:

= natural language: usually verbose and ambiguous

= flow charts: avoid most (if not all) issues of ambiguity; difficult to
modify w/o specialized tools; largely standardized

= pseudo-code: also avoids most issues of ambiguity; vaguely
resembles common elements of programming languages; no
particular agreement on syntax

= programming language: tend to require expressing low-level details
that are not necessary for a high-level understanding

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.(3/ x Z

VIRGINIA TECH



N/~ VIRGINIA TECH

Flowchart Example of Linear Search

Flowchart for Linear Search
by Shane Kerr, 2008
Public Domain

check
next item

h 4

retum
"not found"

14 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.(3/ x Z

VIRGINIA TECH



Testing Correctness

= How do we know whether an algorithm is actually
correct?

= First, perform logical analysis
= Second, testing

= testing can never prove that the algorithm
produces correct results in all cases.

15 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0 x Z
VIRGINIA TECH



Recap on Unit Test

1. Set up the initial conditions for your test (create any
objects needed, place them in the correct state, put
everything necessary where it needs to be, etc.).

2. Call the method you are testing.

3. Check that the behavior you expected has occurred.
This could involve checking the return value of the
method, or checking the state of the objects involved
In the test. Be sure to check everything you expect to
happen, not just the most obvious item.

16 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0 x Z
VIRGINIA TECH



Polya’s Problem Solving Steps

Understand your
problem solving process
then decide how and
when an LLM can and
cannot assist.

Step 1: Understand the problem.
m Have concrete examples (these become test cases)
Step 2: Devise a plan (translate).
m Break the problem down into manageable pieces/step
Step 3: Carry out the plan (solve).
m /terate on 3 and 4 piece by piece
Step 4: Look back (check and interpret).

m Need to really understand the problem!
© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.(3/ W

VIRGINIA TECH



\Y//
Class Activity -Turn Flowcharts into Python Code

New Algorithm:

1. Turn Leap Year Flowchart into python code
2. Write test cases for each branch in the flowchart

3. Come up with alternate ways to code it

18 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0 x Z
VIRGIN



Leap Year Flowchart

Y7/~ VIRGINIA TECH

is year
divisible by
4007

output “leap
- year. °

no

is year
divisible by 47

output "NOT
aleap year"

no

yes

is year
divisible by
1007

no output” leap
year"
yes

output "NOT
a leap year"

y

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0 3 ;i
VIRGINIA TECH



Y7/~ VIRGINIA TECH

Class Activity
_

Do python first steps in class (use vscode in Rlogin)

20 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.(3/ x Z
VIRGINIA TECH



Y7/~ VIRGINIA TECH

Animation of Binary Search vs Sequential

|

Binary search steps: @

Sequential search steps: ©

77N
(37)

" |
BHONEEENEOREOEEEE

21 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x z;

VIRGINIA TECH.



Efficiency of Linear Search

* In many applications, it is easy to come up with a numeric value that
specifies the problem size, which is generally denoted by the letter .

* For most array applications, the problem size is simply the size of the
array.

* In the worst case—which occurs when the value you’re searching for
comes at the end of the array or does not appear at all—linear search
requires N steps.

* On average, it takes approximately half that time.

o A linear search of 10 items takes an average of 5 looks

o A linear search of 800 items takes an average of 400 looks

22 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x Z

VIRGINIA TECH



Efficiency of Binary Search

« The running time of binary search also depends on the number
of elements, but in a profoundly different way.

* On each step in the process, the binary search algorithm
rules out half of the remaining possibilities.

* In the worst case, the number of steps required is equal to the
number of times you can divide the original size of the array in
half until there is only one element remaining.

23 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0 x Z
VIRGINIA TECH



7/
Efficiency of Binary Search (Cont.)
_

* In other words, what you need to find is the value of k that
satisfies the following equation:

N

1 —
2% 2% 2K e X2

k times

24 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x Z

VIRGINIA TECH



Assessing Algorithmic Efficiency

* The discussion of the efficiency of the various searching
and sorting algorithms illustrates a fundamental computer
science technique called algorithmic analysis.

* One of the most important problems in algorithmic
analysis 1s deducing the computational complexity of an
algorithm, which 1s the relationship between the size of
the problem and the expected running time.

25 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0 x Z
VIRGINIA TECH



Y7/~ VIRGINIA TECH
Examples of Algorithmic Efficiency

Big-O Complexity Chart J
(Forribie] (] [rair] [sood) (ERESTSHE]

Operations

O(n)

-------------- Elements W
26 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0
VIRGINIA TECH.



n 7
Big-0O Notation

|

* The most common way to express computational complexity is to use
big-O notation, which was introduced by the German mathematician
Paul Bachmann in 1892.

* Big-O notation consists of the letter O followed by a formula that
offers a qualitative assessment of running time as a function of the
problem size, traditionally denoted as M.

* For example, the computational complexity of linear search is O( N )
and the computational complexity of radix sort is O(N log N )

* If you read these formulas aloud, you would pronounce them as “big-O
of N and “big-O of N log N ” respectively.

27 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x Z

VIRGINIA TECH



r

Exercise: Computational Complexity

|

Assuming that none of the steps in the body of the following £or loops depend on the problem
size stored in the variable n, what is the computational complexity of each of the following

examples:

a)

b)

for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {
... loop body . .
}

for (int k = 1; k <= n; k *= 2) {
...loop body . . .
}

for (int i = 0; i < 100; i++) {
for (int j = 0; j < i; Jj++) {
...loop body . . .
}

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/

\/a

VIRGINIA TECH



Y7/~ VIRGINIA TECH

Algorithm’s Time Complexity

Big O Notation
o(1)

O(log n)

o(n)

O(n log n)
o(n?)

o(n3)

0(2")

o(n!)

%ttps://adrlanmel|a.com/most-Dopu|ar-alqorlthms-tlme-comDIexnv-everv-Droqrammer-shouId-know-free-on||ne-tu

Name

Constant

Logarithmic

Linear

Linearithmic

Quadratic

Cubic
Exponential

Factorial

|

Example(s)

# Odd or Even number,
# Look-up table (on average)

# Finding element on sorted array with binary search

# Find max element in unsorted array,
# Duplicate elements in array with Hash Map

# Sorting elements in array with merge sort

# Duplicate elements in array **(naive)**,
# Sorting array with bubble sort

# 3 variables equation solver
# Find all subsets

# Find all permutations of a given set/string

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x z;

torial-course/

VIRGINIA TECH.


https://adrianmejia.com/most-popular-algorithms-time-complexity-every-programmer-should-know-free-online-tutorial-course/
https://adrianmejia.com/most-popular-algorithms-time-complexity-every-programmer-should-know-free-online-tutorial-course/

[ Given totals = {23, 44, 55, 146, 255, 300, 440, 575)

Binary Search Trace binarySearch(440, totals)
List all the values of Ih, rh and mid. _I

def binarySearch (key,values): 0/ 1|2 3 4 5 6 7
Ih=0

23 |44 | 55| 146 | 255 | 300 | 440 | 575

rh = len(values) -1

while (Ih <= rh):
mid = (lh +rh)// 2
if (key == values[mid]): Ih rh m id
return mid
if (key < values[mid]): O 7 3
rh = mid - 1
else: 4 7 5
lh =mid + 1
return - 1 6 V4 %) —]

30 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x Z

VIRGINIA TECH



N/~ VIRGINIA TECH

LLMs to help (as allowed by assignments)

Sample Response: This unit test covers various scenarios, including cases where the key is present in the list,
not present in the list, an empty list, and a single-element list. You can run this test to verify that your I
im D ort binarySearch function works correctly. If you have any other questions or need further assistance, feel free to

ask!
) #co-pilot 12/29/24
\ Sample Response Code: class TestBinarySearch(unittest. TestCase): N
import unittest def test_binary_search(self):
# Test cases where the key is present in the list

def binarySearch(key, values): self.assertEqual(binarySearch(3, [1, 2, 3, 4, 9]), 2)

lh=0 self.assertEqual(binarySearch(1, [1, 2, 3, 4, 5]), 0)

th = len(values) - 1 self.assertEqual(binarySearch(5, [1, 2, 3, 4, 5]), 4)

# Test cases where the key is not present in the list

while Ih <= rh: self.assertEqual(binarySearch(0, [1, 2, 3, 4, 5]), -1)

rmd =(Ih+rh)// 2_ self.assertEqual(binarySearch(6, [1, 2, 3, 4, 5]), -1) .

if key == values[mid]: Unit test
return mid # Test cases with an empty list >

if key < values[mid]: self.assertEqual(binarySearch(3, []), -1) ClaSS
rh = mid - 1

else: # Test cases with a single element list
Ih = mid + 1 self.assertEqual(binarySearch(1, [1]), 0)

return -1.... self.assertEqual(binarySearch(0, [1]), -1)

if _name__=='_main__"
unittest.main(argv=["], exit=False)

31 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x Z

VIRGINIA TECH



Find the Longest Run

= Given a list of values, finds the length of the longest
sequence of values that are in strictly increasing
order.

= Concrete example?
= longest run([5,4,8,1,2,3,1]) should output 3 as the longest
run
= What variables would you use?
= What procedures would you take?
= How do you test the correctness of your algorithm?

32 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0 x Z
VIRGINIA TECH



Find the Longest Run (Cont.)

# Given a list of values, finds the length of the longest sequence
# of values that are in strictly increasing order.
def longest_run(arr):
size = len(arr)
if size <=0: # if list is empty, no runs...
print("The list is empty")
else:
current_position = 0 # start with first element in list
max_run_length = 1 # it forms a run of length 1
this_run_length = 1

33 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0 x Z
VIRGINIA TECH



Find the Longest Run (Continue)

# QUESTION TO PONDER: is this Algorithm Correct?
while current_position < size - 1:
if ( arr[current_position] < arr[current_position + 1] ):
this_run_length = this_run_length + 1
else:
if ( this_run_length > max_run_length ):
max_run_length = this_run_length [0, 1, 2, 3]
this_run_length = 1 [1, 3, 0, 5, -1, 1, 2, 3]
current_position = current_position + 1
print("The max run length is: “, max_run_length)

34 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ \6 Z

VIRGINIA TECH



N/~ VIRGINIA TECH

Unit Testing...
_

Demo Class Activity: Unit Testing,

= students follow along
= create W3_demo folder in vscode
= click on the download arrow in canvas week 5 to get the

py version of each file
binsearch withtest LLM.py
longest runl withtest.py
longest run2 withtest.py
longest runl withtest LLM.py
longest run2 withtest LLM.py

= Drag files into the directory (they get uploaded to rlogin)

35 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.(3/ x Z

VIRGINIA TECH


https://canvas.vt.edu/courses/204793/files/37062155?wrap=1
https://canvas.vt.edu/courses/204793/files/37062151?wrap=1
https://canvas.vt.edu/courses/204793/files/37062154?wrap=1
https://canvas.vt.edu/courses/204793/files/37062158?wrap=1
https://canvas.vt.edu/courses/204793/files/37062159?wrap=1

EXPLORER binsearch_withtest LLM.py X

OPEN EDITORS

Unit Testing (Cont.) B

W2_hello_world
{} CS2104_S25.code-workspace
W3_class_demos

test_binary_search(self):

binsearch_withtest LLM.py

Demo Class Activity: Unit

longest_run1_withtest LLM.py assertEqual(binarySearch

Testi n g y longest_run1_withtest.py 2)

longest_run2_withtest LLM.py assertEqual(binarySearch
. A longest_run2_withtest.py 4)
"  binsearch withtest LLM.py W3_Longest_Run

W3_Pythi First_St
should pass Cthon. Flesl, Sops
W4_gapped_palindrome assertEqual(binarySearch
W4_kqueens -1)
assertEqual(binarySearch

W4_regex
-1)

WS5_knapsack

= requirements.txt

TERMINAL

~ DEBUG CONSOLE TERMINAL

source /home/staff/maellis1/CS2104_S25/.ve
nv/bin/activate

[maellisl@cherry CS2104_S25]$% source /home
/staff/maellis1/CS2104_S25/.venv/bin/activ
ate

(.venv) [maellisl@cherry €S2104_S251$ []

VIRGINIA TECH

36 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x Z


https://canvas.vt.edu/courses/204793/files/37062155?wrap=1

longest_run1_withtest.py — CS2104_S25 [SSH: rlogin.cs.vt.edu] D Qo

EXPLORER M longest_run1_withtest.py X

OPEN EDITORS W3_class_demos longest_run1_withtest.py > 43 TestLongestRun test_longest_run1 Run Python File
€$2104_S25[SSH:RL.. [J B2 U @ this_run_length = 1 Debug Python File

- s venv current_position = current_position + 1
nit lesting cont. |[Eaees S

{} CS2104_S25.code-workspace
W3_class_demos rt unittest
binsearch_withtest LLM.py

LongestRun(unittest.TestCase):
" " . . | ith test_longest_runl(self):
Demo Class Activity: Unit Testin st sserEqnl, gt (1,3, 4.3 6, 1. 2 3.
- longest_run1_withtest.py o t tc

| )

er does matc
H longest_run2_withtest LLM.py self.assertEqual(8, longest_runl([-1, 1, 2, 3, 4, 5, 2
ongest runl withtest bl

hello_world.py

longest_run2_withtest.py ’ 1

self.assertEqual(1l, longest_runl

S OLI|d nOt pass W3_Longest_Run self.assertEqual(2, longest_runl

.assertEqual(4, longest_runl

(investigate with debugger) WA geprer] palicone aehe)

W4_kqueens self.assertEqual(4, longest_runl

W3_Python_First_Steps self

. . ANSWe doesn na %)
=  Set breakpointin the gutter of e \eUF e tEnun (Sehe ok 1= e Tanget ]

W5_knapsack ; : )

fai | i ng teSt = requirements.txt T
Use buttons to trace code DERUOICANBOLE TERMBOAG

(.venv) [maellisl@cherry €S2104_S25]$ /home/staff/maelli
51/CS2104_S25/.venv/bin/python /home/staff/maellis1/CS21
04_S25/W3_class_demos/longest_runl_withtest.py

F

FAIL: test_longest_runl (__main__.TestLongestRun)

Lwust recent call last):

. Watch Va|ueS in va riables _.e "/home/staff/maellis1/CS2104_S25/W3_class_demos/1

ongest_runl_withtest.py", line 26, in test_longest_runl
self.assertEqual(2, longes'_runl([1, 3]), "answer do

FiXed VerSion (Can |00k Side'bY'Side) gfz;ﬁt’:s;g;;r: 2 !=1": answer doesn't match
ngest run2 withtest.py should pass

Ran _1-test in 0.000s

FAILED (failures=1)
OUTLINE (.venv) [maellisl@cherry €S2104_S251$ []

TIMELINE
login.csvtedu ®O0/A0 ®O Ln26,Col9 Spaces:4 UTF-8 LF {j Python 3.9.21('venv:venv) &' [

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC O/ x Z

VIRGINIA TECH



https://canvas.vt.edu/courses/204793/files/37062151?wrap=1
https://canvas.vt.edu/courses/204793/files/37062154?wrap=1

N/~ VIRGINIA TECH

Unit Testing (Continue)

Demo Class Activity: Unit Testing J

(same code, different tests)
= Jongest runl withtest LLM.py
: ShOU|d nOt pass VARIABLES < DS longest_runi_withtest LLM.py
» Investigate with debugger Locals longest_runi(arr):

if len(arr)==0:

»  Use buttons to trace code(hover to see G return ("
functiona”tY) X_rur =ngt 7 Véurrentfposition=@

n_Le max_run_length = 1
> Globals this_run_length = 1
e current_position < len(arr)-1:
f ( arrlcurrent_position] < arricurrent_position + 1
this_run_length = this_run_length + 1

RUNAND DE.. [> NoConfv 8% - longest_run1_withtest LLM.py X

( this_run_length > max_run_length ):
max_run_length = this_run_length

=  Watch values in variables this_run_length = 1
. current_position = current_position + 1
= longest run2 withtest LLM.py return (max_run_length)

= Should pass
= Compare side-by-side

38 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.(3/ x Z

VIRGINIA TECH


https://canvas.vt.edu/courses/204793/files/37062158?wrap=1
https://canvas.vt.edu/courses/204793/files/37062159?wrap=1

7/
Maximum Subsequence Sum Problem

= Given (possibly negative) integers A, A, ... , A, find
the maximum value of:

J
>.(4,)
k=1
= The maximum subsequence is defined as zero if all

the integers are negative, (i..e., the subsequence of
the empty set is zero).

= Consider the sequence: 4 -3 5 -2 -1 2 6 -2

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0



\7/ad

Maximum subsequence sum solution 1

# finds the max subsequence sum in the list values
def max_subsequence_sum_1(values):

size = len(values)
max_sum =0
i=0
while i < size:
j=i
while j < size:
this_sum =0
k=i
while k <=j:
this_sum = this_sum + values[k]
k=k+1
if (this_sum > max_sum ):
max_sum = this_sum
j=j+1
i=i+1
return(max_sum)

If size = 1000, how many
times are the statements in
the innermost loop
executed?

Can you/we do better?

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

\/a

VIRGINIA TECH



\7/ad

Maximum subsequence sum solution 2

= Reuse the subsum, so just adds the newest value in
the subsequence to what was previously calculated

[4]

[4 -3]

[4 -3 5]

[4 -3 5 -2]

[4 -3 5 -2 -1]
[4-35-2-12]
[4-35-2-12 6]
[4-35-2-126-2]

4 -35-2-126 -2

—
1 1 1 1 1 1 1

w w wwwww
o 0 011 U1 N

oo
N NNDNN

_1]

1 2]
12 6]
126 -2]

© 2025 Ellis, Ramakrishnan & N

izamani — CC BY-NC-ND 4.0

\/a

VIRGINIA TECH



Maximum subsequence sum solution%

(Continue)

# finds the max subsequence sum in the list values
def max_subsequence_sum_2(values):

size = len(values)
max_sum =0
i=0

while i < size:
j=i
this_sum =0
while j < size:
this_sum = this_sum + values[j]
if (this_sum > max_sum ):
max_sum = this_sum
j=j+1
i=i+1
return(max_sum)

If size = 1000, how many times are
the statements in the innermost
loop executed?

Can you/we do even better?

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

\/a

VIRGINIA TECH



43|

\7/ad

Maximum subsequence sum solution 3

# finds the max subsequence sum in the list values
def max_subsequence sum_3(values):
size = len(values)
max_sum = 0
this_sum = 0
j=0
while (j <= size -1):
this sum = this_sum + values[j]
if ( this_sum > max_sum ):
max_sum = this_sum
elif ( this_ sum <0 ):
this sum =0
j=j+1
return max sum

Try it:
4-35-2-126 -2

One must observe that if any list[i] is negative then it
cannot be the beginning of the optimal sequence
since any sequence starting with it would be
improved by omitting it and starting with list[i+1].

Also by the same logic any negative subsequence
cannot be the start of the optimal subsequence.

L © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0




r N7~ VIRGINIA TECH
Maximum subsequence sum solution LLM

|

def max_subsequence_sum(arr):
max_sum =0

# Given sequence
current_ sum =0

sequence = [4, -3, 5, -2, -1, 2, 6, -2]

for num in arr:
current_sum += num
if current_sum > max_sum:
max_sum = current_sum
if current_sum < O:
current sum=20

# Calculate the maximum subsequence sum
result = max_subsequence _sum(sequence)

print(f"The maximum subsequence sum is:
{result}")

return max_sum

44 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.(3/ x Z

VIRGINIA TECH



Research on LLMS in CS Education

= Students using LLMS had reduced ability to write
code from scratch but similar ability to trace and read
code

source:CS1-LLM: Integrating LLMs into CS1 Instruction

. Students who used Al less or later in problem solving
process had higher grades in course (don’t know
cause-effect)

source:Interactions with How Novices Use LLMs to Solve Programming Problems

= Students with strong programming foundations
benefited more from LLMs, while those without a solid
base may be hindered by them

Sources: Insights from Social Shaping Theory: The Appropriation of Large Language Models in an Undergraduate
______________ Programming Course and The Widening Gap: The Benefits and Harms of Generative Al for Novice Programmers / W
0

45 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.
VIRGINIA TECH


https://dl.acm.org/doi/abs/10.1145/3649217.3653584
https://dl.acm.org/doi/abs/10.1145/3631802.3631806?casa_token=bwaJSFE7y2EAAAAA:tJVCyOPmNwdeSHcfUVY5t-Gg8P7adcSydbujP6eo-gAYuiogtimYTPvkDRGsJo3arBuCqXfY4kPo1Q
https://doi.org/10.1145/3632620.367109
https://doi.org/10.1145/3632620.367109
https://doi.org/10.1145/3632620.3671116

Leetcode Assignment

Looks over assignment together
Open up Leetcode together set to Python)
VT approved LLM (bing.com/chat)

Considerations
= Can also experiment in vscode
= Can also create your own test cases
= Keep trying to get more efficient solutions

=

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x ;;
VIRGINIA TECH


http://bing.com/chat

