=

CS52104 Problem
Solving in
Computer Science

Margaret Ellis,
Naren Ramakrishnan,

Sehrish Basir Nizamani W

VIRGINIA TECH. 1

N/~ VIRGINIA TECH

=

Algorithms
_

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Virginia Tech CS Alumni Quote

"Most tech companies have their own internal tooling so
you can't just use stackoverflow or ChatGPT to figure
things out, you need to be able to master the
fundamentals to be productive and successful. The
process of constantly learning new languages and
concepts during my education prepared me for new
frontiers.”" - VT CS BS 2023, Meng 2024, Amazon AWS
Cloud Engineer, Seattle, WA

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

r \a

Today’s Objectives

1. Understand and use python string matching
2. Analyze the use of LLMS to code and test
3. Understand and use python regular expressions

4 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x Z

VIRGINIA TECH

N/~ VIRGINIA TECH

Recall Python Strings

|

e Strings are sequences of characters
Strings are immutable

o Once created, strings cannot be modified - any operation that appears to modify a string
actually creates a new one

° Here’s a simple program to print each character in a string
def print_characters(string):
for char in string:
print(char)
example_string = "Hello, World!"

print_characters(example_string)

VIRGINIA TECH

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x Z

r Y7/~ VIRGINIA TECH
Concepts for HW4 ...

_
Concepts for HW4 ...

6 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.(3/ x Z
VIRGINIA TECH

r \a

Indexing Python Strings

|

e Characters in a string can be indexed from 0 till the length of
the string - 1

® for instance, given a string in variable “text”
o print(text[@]) # First character
o print(text[1]) # Second character
o print(text[-1]) # Last character
e You can index a string from 0 till len(string)-1
o Or from -len(string) to -1

7 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x ;;

VIRGINIA TECH

r \a

Find repeated letter in a given string

|

def find_repeated_|letters(input_string):

repeated_letters =]

GPT-40 generated code —

for i in range(len(input_string)):

Bt urtere el b eek e if input_string[i] in input_string[:i] and input_string[i] not in repeated_letters:

Demo: repeated_letters.append(input_string[i])
1) setting breakpoint with
debugger to step through in vs

return repeated_letters

code # Example usage
2) python tutor : o, —_
3) asking LLM to explain Input_string = “programming

4) trace by hand! print(find_repeated_letters(input_string))

Output will be

8 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x ;;

#[lrl, lml’ Igl] VIRGINIA TECH

Palindrome

Sequence of characters that
reads same as backwards

” 13

o E.g., “level’, “radar”
Given a string, check if that

def is_palindrome(string):
Remove non-alphanumeric characters and convert to lowercase
clean_string = ".join(char.lower() for char in string if
char.isalnum())
Check if the string is equal to its reverse
return clean_string == clean_string[::-1]

string is palindrome
e GPT-40 generated code—

Don’t understand the code? Demo:
1) setting breakpoint with debugger to
step through in vs code

2)python tutor

3) asking LLM to explain

4) trace by hand!

Example usage
string = input("Enter a string: ")

if is_palindrome(string):

print("The string is a palindrome!")
else:

print("The string is not a palindrome.")

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

\/a

VIRGINIA TECH

B \/a
Week 4 HW - Substring Wannabe Palindrome

Problem

|

In this assignment, you will solve the following problem:

Given a string s, find the longest "wannabe" palindromic substring. A wannabe palindrome
allows for one mismatch within the substring (e.g., "abcbda" is a wannabe palindrome since
"abcba" is the core palindrome). Return the length of the longest wannabe palindromic
substring.

Constraints:
1. s consists only of lowercase English letters.
2. Asubstring with more than one mismatch does not qualify
3. Asubstring with no mismatches qualifies

Examples:
1. s ="abcba", Expected output: 5 (abcba)
10 2. s ="abcbda", Expected output: 6 (abcbda) © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ vz

VIRGINIA TECH

Regular expression

N/~ VIRGINIA TECH

|

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

11

Regular Expressions

e Regex is a sequence of characters that forms a search pattern

o Used in many programming languages, text editors

e Consist of a combination of normal characters (letters and
digits) and special characters (*, +, ?) that have special
meanings

e Finding specific words or patterns in a document, validating
user input in a form, and transforming text into a different

format

12 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0 x ;;
VIRGINIA TECH

N7~ VIRGINIA TECH

rRegular Expressions Symbols Review
Special Characters

|

Symbol Description Example Matches)
Matches any single character except newline. a.b aab, acb
" Matches the start of a string. “abc abc at the start of the string
$ Matches the end of a string. abc$ abc at the end of the string Shou |d be
* Matches 0 or more repetitions of the preceding token. ab*c ac, abc, abbc familiar from
+ Matches 1 or more repetitions of the preceding token. abtc abc, abbc >
? Matches 0 or 1 repetition of the preceding token. ab?c ac, abc python
{n} Matches exactly n occurrences of the preceding token. a{3} aaa tutorial
{n,} |Matches n or more occurrences of the preceding token. a{2,} |aa, aaa, aaaa
{n,m} |Matches between n and m occurrences of the preceding token. |[2{2,4} [aa, aaa, aaaa

13 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x Z

https://media.datacamp.com/legacy/image/upload/v1665049611/Marketing/Blog/Regular_Expressions_Cheat_Sheet.pdf VIRGINIA TECH

https://media.datacamp.com/legacy/image/upload/v1665049611/Marketing/Blog/Regular_Expressions_Cheat_Sheet.pdf

rRegular Expressions Symbols
Sets
_

[FEsz] |Regular Expression Square brackets [] define a set, where each character is matched independently. A match occurs if
any character from the set appears in the text.

Syntax Matches Explained

[a-z] 1 Fig, 2 NewTons The - in [m-n] is a range operator, matching any character from m to n.

[a\-Z] atozisnot=A-Z The \ escapes the -, treating it as a literal character instead of a range operator. This set matches a,
z, and - only.

[a-] regular-expression Matches a and the literal - because - is treated as a character when placed at the start or end of a
set.

[-a] regular-expression As above, matches a or -.

[a-z0-9] [396 ExpressionS Matches characters from a to z and also from 0 to 9.

[(+)] (valid)*expressionstwords |Special characters become literal inside a set, so this matches (, +, *, and).

[fers] regular expression The * negates the set, matching any character not in the set. Here, it matches characters that are not

4 e, r, ors.

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0. x 7;
VIRGINIA TECH

rRegular Expressions Symbols
Special Sequences

|

Character Class [Description [Example/Matches R
\w Matches all alphanumeric characters (a-z, A-Z, and |Ch4racter_Class3s
0-9) and underscore ()
\W Matches any non-word character (symbols, |@#$%"&*()
punctuation, spaces)
\d [Matches all digits 0-9 1a2b3c Should
\D |Matches any non-digits 1a2b3c be
\s Matches whitespace characters including \t, \n, \r, Character classes > familiar
and spaces
\S IMatches non-whitespace characters Character classes from
\b Matches word boundaries i.e. the start and end of the [\bfox\b python
word The fox tried to trick the hunter, but he tutorial
remained unfoxed.
\B Matches non-word boundaries. match characters in [\Bfox\B
the middle of other non-space characters The fox tried to trick the hunter, but he
remained unfoxed. |/
Ts &

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/

VIRGINIA TECH

r \a

Python re Module Functions

Syntax Explained

re.findall(A, B) |Finds all non-overlapping matches of the pattern A in string B and returns them as a list. If no
matches are found, it returns an empty list.

re.search(A, B) |Searches string B for the first occurrence of the pattern A and returns a match object. If no
match is found, it returns None.

re.split(A, B) Splits string B into a list at each occurrence of the pattern A. If no match is found, it returns
the original string as a single-element list.

re.sub(A, B, C) |Replaces all occurrences of the pattern A in string C with the string B and returns the
modified string. The original string C remains unchanged.

re.match(A, B) |Attempts to match the pattern A starting strictly at position O in string B. If the pattern doesn't
match at the start, it returns None. Unlike re.search(), it does not evaluate the rest of the
string.

16 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x Z

https://media.datacamp.com/legacy/image/upload/v1665049611/Marketing/Blog/Regular_Expressions_Cheat_Sheet.pdf VIRGINIA TECH

https://media.datacamp.com/legacy/image/upload/v1665049611/Marketing/Blog/Regular_Expressions_Cheat_Sheet.pdf

EXAMPLE: re.search()

import re
import unittest
def findmatch(str):
return re.search('word:\w\w\w',str)

#print(findmatch(‘an example word:cat!!").group())

class TestFindMatch(unittest. TestCase):
def test_findmatch(self):
Test cases for findmatch
self.assertEqual('word:cat',findmatch(‘an example word:cat!!").group(), "not matched")
)
if _name__=='_main__"

unittest.main(argv=["], exit=False)

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/

\/a

VIRGINIA TECH

r

N/~ VIRGINIA TECH

VT CS Alumni Quote

"GenAl tools are changing how we work in the software industry and there's J
certainly a time and place to use them! I'd encourage students to use those tools
when appropriate and when explicitly allowed in their course syllabi as a way to

find new ideas, generate boilerplate code, or try to explain a concept. However,

it is also obvious when someone presents work that is incorrect and written by a

tool such as ChatGPT. Oftentimes these tools will produce code (or explanations

of code) that look "correct” but make fundamental errors such as not following

the syntax of a given programming language.

Virginia Tech CS prepared me for my current role with a solid understanding of
Computer Science fundamentals. Generative Al is not a substitute for this
foundational knowledge. To be able to work effectively with colleagues in the
industry you need to be able to explain and justify your work." VT CS BS 2023,
Red Hat Consultant, Raleigh, NC

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x Z

VIRGINIA TECH

=

Recursion
Algorithms

N/~ VIRGINIA TECH

19

Objectives

e Understand and use recursion and dynamic
programming in Python
I. Understanding Recursion

il. Recursive vs lterative
iii. Use of Helper Functions

Iv. Recursions with Backtracking
e Analyze the use of LLMs to code and test

20 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0 x Z
VIRGINIA TECH

Y7/~ VIRGINIA TECH

Staircase Problem

|

® Given a staircase with n stairs and that you can only take 1 or 2
steps at a time, how many ways you can walk your way up to
reach the nth stair.

21 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.(3/ x Z

VIRGINIA TECH

There is only 1 way to climb stair 1 W VIRGINIA TECH

[Staircase gﬁ

Problem -

There are 2 ways to climb stair 2 => (1,1) and (2) I
g\ @

There are 3 s to climb stair 3 => (1,1,1), (1,2) and (2,1)

e, B B

There are 5 ways to climb stair 4 => (1,1,1,1), (1,1,2) ,
(1,2,1,2,1,1) and(22)

= 2o

—~ £~
A’\
N 54 s
o j“\
o _2_2_ ________ r\‘ 1 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ VZ?

VIRGINIA TECH

V7~ VIRGINIA TECH

Staircase Problem (Continue)

|

F(n) = F(n-1) +F(n-2)

1 step from (n-1)th stair 2 steps from (n-2)th stair

23 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ v Z
VIRGINIA TECH.

N/~ VIRGINIA TECH

The Fibonacci Numbers

Recursive Algorithm

Computes the value of the n-th Fibonacci number.
Pre: n is a non-negative integer.
def fibonacci(n):
if n<2: # base case
return 1
return fibonacci(n-1) + fibonacci(n-2) # recursive case

25 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x ;;

Adapted from 2011-12 Shaffer & McQuain CS 2104 VIRGINIA TECH

Understanding Recursion

® A process in which the result of each repetition is
dependent upon the result of the next repetition.
e Simplifies program structure at a cost of function calls

26 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x Z

Adapted from 2011-12 Shaffer & McQuain CS 2104 VIRGINIATECH

r Y7/~ VIRGINIA TECH
Recursive Definitions (Fibonacci sequence)

|

base
1 n=01<—case
fibonacci(n) = _ ' .
fibonacci(n—1)+ fibonacci(n—2) n>1 <——— recursive
case

fibonacci(4) = fibonacci(3) + fibonacci(2)
= fibonacci(2) + fibonacci(l) +
fibonacci (1) + fibonacci (0)
= fibonacci(l) + fibonacci(0) +
1+ 1 + 1
= 1+ 1+ 1+ 1+ 1

27 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.(3/ x Z

VIRGINIA TECH

r Recursion

+* a base case in which no
recursion occurs
% arecursive case

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

int factorial(int);
void main()

{

int fact, n;

printf(“Enter any positive integer: ”);
scanf(“%d", &n);

fact = factorial(n);

printf(“Factorial of %d is %d”, n, fact);

int factorial(int n)
{
int temp;
ifln==0)
return 1;
else

return temp;

}

temp =n * factorial(n-1); /]

Y7/~ VIRGINIA TECH

factorial(3);

3*factorial(2);

{

int factorial(int n)

int temp;
if(n==0)
return 1;
else
temp =n * factorial(n-1);
return temp;

2*factorial(1);

int factorial(int n)
{
int temp;
if(n==0)
return 1;
else

return temp;

temp = n * factorial(n-1);

1*factorial(0);

int factorial(int n)
{
int temp;
if(n==0)
return 1;
else
temp = n * factorial(n-1);
return temp;

/ VIRGINIA TECH.

r Y7/~ VIRGINIA TECH
Recursion animation

factorial(n):

if n == 1:

return 1
else:
return n * factor1al011)

n == |:

factorial(n) =

www_mathwarehouse.com

9 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x Z

ht%p://www.mathwarehouse.com/programming/images/recusion-factorial-code-animated-gifs.gif VIRGINIA TECH.

N/~ VIRGINIA TECH

Recursive Definitions

|

recursion a method of defining functions in which the function being defined is
applied within its own definition
base
1 n=0 <«— case
factorial(n) = .
n- factorial(n—1) n>0 <—————— recursive
case

factorial (5) = * factorial (4)

* (4 * factorial(3))

* (3 * factorial(2)))

* (4 * (3 * (2 * factorial(l))))
* (4% (3% (2 *1)))

= 120

30 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.(3/ x Z

VIRGINIA TECH

Il
o o o g U
>*
D

Head and Tail Recursion

Tracing Tree Of Recursive Function

fun(3)
1
fun(2) 3
2

fun(1) 2
3

fun(0) 1
[Head Recursion]

Output: 123

#head recursion
#pre: nis an N+
def fun(n):
ifn==1:
print(1)
else:
fun(n -1)
print(n)

*Digits in red showing that the order in which the calls are made and note
that printing done at returning time. And it does nothing at calling time.

Output:321

Tracing Tree Of Recursive Function

fun(3)
1

3 fun(2)
2

2 fun(1)

Y| 1 fun(0)

[Tail Recursion]

Y7/~ VIRGINIA TECH

#tail recursion
#pre: nis N*
def fun(n):
ifn==1:
print(1)
else:
print(n)
fun(n - 1)

*Digits in red showing that the order in which the calls are made and according to the order of
calling the output are printed on the screen.Note that for fun(0) it gives nothing as output.

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/

\/a

VIRGINIA TECH

K Queens Problem

N/~ VIRGINIA TECH

|

Given a KxK chessboard, find a way to place K queens on the board
so that no queen can attack another queen. A queen can move an
arbitrary number of squares vertically, horizontally or diagonally.

IItI!

.]

. 1

Here 1s one solution:

Turns out that there must be one queen
in every row and one queen in every
column.

There are over 4 billion different ways
to drop 8 queens onto an 8x8 board.

It's known that there are exactly 92
distinct solutions to the problem.

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.(3/ x Z

VIRGINIA TECH

Y7/~ VIRGINIA TECH

Solve a
simpler

4 Queens Problem

|

Let's consider a variant on a 4x4 board... how to start?

Let's flag squares that are under attack with Xs, since we
cannot put a queen there.

Let's process the board row by row, from the top down.

Let's start by putting a queen in the first square in row 1:

Now for row 2... we have two choices, let's try the first
one:

Oops... now all the squares in row 3 are under attack, so
this cannot lead to a solution...

VIRGINIA TECH.

33 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ v Z

4 Queens Problem (2)

What to try next?
Let's backtrack... take back the last move and try a different one:

OK, now we have possibilities... let's fill the free square in row 3:
Rats! Now there are no free squares left in row 4.

We can backtrack again, but that means we must now remove the
2" and 3™ queens, since we've already tried all the possibilities for
the 2" one, and then we must consider a different spot for the 1%
one...

&~

Y7/~ VIRGINIA TECH

X | X &y
X X
X | X X

X

. 3

X
X
X

X

X
4

X

X

|

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x Z

VIRGINIA TECH

V7~ VIRGINIA TECH

4 Queens Problem (3)
_

So, we'll try the 1% queen in column 2:

That leaves just one place for a queen in row 2:

35 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x z;

VIRGINIA TECH.

K Queens Problem Algorithm

Let's suppose we have some way to represent a board configuration (size, location of queens,
number of queens, etc.)

K Queens Algorithm
Try config takes configuration C, number m
if C contains K queens
display C
halt

endif

for each square in row m of C
if square is free

place a queen in square

Try config(C, m + 1) # leads to soln?
remove queen from square # no, backtrack
endif
36 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0 x Z

VIRGINIA TECH

r Y7/~ VIRGINIA TECH
Backtracking

|

The general steps of backtracking are:

e start with a sub-solution

e check if this sub-solution will lead to the solution or not

e Ifnot, then come back and change the sub-solution and
continue again

37 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x z;

VIRGINIA TECH.

N7~ VIRGINIA TECH

Geeks for Geeks (Working through columns)

[
b4

|

VIRGINIA TECH.

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x z;

38

Knapsack

e What is Knapsack?

o

A combinatorial optimization problem where you

maximize the total value of items placed in a knapsack 7
without exceeding its weight capacity. ﬁ; f)

o Think of a traveler with a fixed-size backpack trying to ~ e
carry the most valuable combination of items. I15 kgl

e Real-world applications \ o

o Resource Allocation: Budget optimization, investment l o l
decisions. o

o Logistics: Shipping container capacity optimization.

o Computer Science: Memory allocation, load https://en.wikipedia.org/wiki/Knapsack_problem
balancing.

o Cryptography: Basis for some encryption schemes.

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x z;

VIRGINIA TECH

https://en.wikipedia.org/wiki/Knapsack_problem

N/~ VIRGINIA TECH

Knapsack Problem

Given an integer total, and an integer
list, determine if any collection of
list elements within a subset of the
list sum up to total.

Your goal i1s to fill your knapsack with
15 weight capacity, choose items from
the 1list [17, 3, 4, 12, 2], how to pick
the items such that they will mount up
to 157

2 4

40 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x Z

VIRGINIA TECH

Y7/~ VIRGINIA TECH

Knapsack Problem - Algorithm
|

Algorithm:

Check if a collection exists containing the first subset
element,

(i.e. does collection exist for the remaining elements in
the list for the total reduced by the first element)?

If no collection exists containing the first subset
element check for a collection for total from subset
start + 1 to the end of the subset.

41 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x zi
VIRGINIA TECH.

\7/ad

Knapsack Problem (Recursive Solution)

ray List of integers

sum Subset sum goal

start First subset index

end Last subset index

Prerequisite: ray is a list of positive integers,

H sum is a positive integer
H start, end are valid list indexes
def knapsack(ray,sum,start,end):

if (sum == 0): #empty collection sums to zero

return True

if ((sum < 0) or (start > end)): #no solution
return False

#check for soln with first element

if (knapsack(ray, sum-ray[start], start+1, end)):
return True

#any possible soln cannot contain first element

return knapsack(ray, sum, start+1, end)

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0 x Z

VIRGINIA TECH

[. . \Z
Knapsack Problem Recursive Solution -

knapsack code trace of [17, 3, 4, 12, 2] looking for sum of 15 between indices 0 and 4
(diagram on next slide)

call knapsack(ray, 15-17,1, 4)
looking for sum of -2 which returns FALSE
call knapsack(ray, 15, 1, 4) looking for sum of 15 between 1 and 4
call knapsack(ray, 15 -3, 2, 4)
call knapsack(ray, 12 -4, 3, 4)
call knapsack (ray, 8 =12, 4, 4)
looking for sum of -4 which returns false
call knapsack(ray, 8, 4, 4)
call knapsack(ray, 8 — 2, 5, 4)
start > end which returns false
call knapsack(ray, 8, 5, 4)
returns false
call knapsack(ray, 12, 3, 4) # backtrack happens
call knapsack(ray,12 — 12, 4, 4)
returns TRUE!!
The values 3 and 12 sum to 15, it skipped 17 and 4 by backtracking

43 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x Z

VIRGINIA TECH

Knapsack Problem Approaches

e Recursive with backtracking

e Dynamic programming uses book-keeping
(remembering subsolutions)

o Dynamic programming is useful for online
coding challenges and interview questions

44 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0 x Z
VIRGINIA TE

N/~ VIRGINIA TECH

VT CS Alumni Quotes

|

"We have daily stand ups and regular code reviews so being able to
communicate about your work and the work of others is a vital part of the
job. It's fun to help design new features and it requires a lot of time and
work to be prepared to contribute to a project. My courses, undergraduate
research, and student organizations at VT CS gave me experience to get
and be successful in my web development positions.”" -VT CS BS 2019,
Google, Software Engineer, Seattle, WA

"Employers want to know you can problem solve and work in a team. It's

important to be able to communicate about your decision making and

coding process and also be able to ask your colleagues questions so you

can learn and advance in your career." -VT CS BS 2023, Manhattan,

Cloud and Security Engineer, Atlanta, GA / V7

VIRGINIA TECH

N/~ VIRGINIA TECH

Knapsack and Variations

|

Objectives:

e understand and use recursion and dynamic programming in python
e analyze the use of LLMs to code and test

46 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.(3/ x Z

VIRGINIA TECH

Types of Knapsack Problems

e 0/1 Knapsack Problem: Either include or exclude an item (binary
choice).

e Fractional Knapsack Problem: Items can be broken into fractions
(solved using greedy algorithms).

® Unbounded Knapsack Problem: Unlimited copies of each item are
allowed.

47 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0 x Z
VIRGINIA TECH

r N/~ VIRGINIA TECH

Consider
_
 Example:
e |tems:
Item Weight w Value v
1 2 10
2 3 20
3 4 30

e Knapsack Capacity: W = 5

» Solution (0/1 Knapsack): Include items 1 and 2 for a total value of 30.

48 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x Z

VIRGINIA TECH

How do we solve the knapsack problem?

e One strategy is to do “dynamic programming”
o Fancy term for “book-keeping”

e Foreveryitem
o We can either keep it, or discard it
o Lets create a lookup table dpl[i][w] where
B iis the index of the current item (O to n).
B wis the current weight capacity (0 to W).
m dpli][w] represents the maximum value obtainable using the first i items

and weight capacity w.
o We will keep filling this table from one corner so as to make sure

we have considered all possibilities

49 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0 x ;;
VIRGINIA TECH

r v? VIRGINIA TECH

dp[i][w] represents the maximum value

KnapsaCk WO rked Out obtainable using the first i items and weight

capacity w.

e We have 3 items and capacity 5, so we will actually create a
table of 4 (3+1) rows and 5 columns

weight
4 N
dplil [w] 0 1 2 3 4 5
P
3.=10 0 0 0 0 0 0
Number of gi=] 0 0 10 10 10 10
items
] = 0 0 10 20 20 30
_| 2= 3 0 0 10 20 30 30
| dp[3][4] could just be dp[2][4]
frem Weiantw valuew which is 20, but get more value
1 2 10 q
by removing what was there
50 ’ ’ 2 and adding weight of 4 with
3 4 % value of 30

r

\7/ad

More examples of 0/1 knapsack

Given a set of N items, each with a weight and a value, determine the maximum total value I
of items you can include in a knapsack of capacity W. Remember that you cannot break
items; you either take an item or not (0/1 Knapsack problem).

N=3

W =250

Weights = [10, 20, 30]
Values = [60, 100, 120]

N=4

W=10

Weights =[5, 4, 6, 7]
Values =[10, 40, 30, 50]

220

70

28 N=4 50
W=5
Weights =[5, 5, 5, 5]
Values = [10, 40, 30, 50]

N=5

W =15

Weights = [12, 7, 11, 8, 9]
Values =[24, 13, 23, 15, 16]

N=6

W =100 134
Weights = [77, 22, 29, 50, 99, 1]
Values =1[92, 22, 87, 46, 90, 1]

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x Z

VIRGINIA TECH

\/
Lets use GPT-40 to generate code for 0/1

Knapsack

def knapsack(N, W, weights, values):
Initialize a 2D DP array
dp =[[0] * (W + 1) for _inrange(N + 1)]

Fill the DP table
foriinrange(1, N + 1):
for win range(W + 1):
if weights[i - 1] <= w:
dpl[i][w] = max(dp[i - 1][w], dp[i - 1][w - weights[i - 1]] + values]i - 1])
else:
dp[i][w] = dpli - 1][w]

---------- return dp[N][W]

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0 x Z
VIRGINIA TECH

N/~ VIRGINIA TECH

Given the knapsack algorithm in python ...] can you explain
dpli - 1]Iw - weights]i - 1]] + values]i - 1]? (co-pilot)

Sure! Let's break down the expressiondp[i - 1][w - weights[i - 1]] + values[i - 1]inthe
context of the knapsack algorithm.

Context

In the knapsack problem, we aim to maximize the total value of items that can be placed in a knapsack of
capacity (W), given (N) items, each with a specific weight and value.

Dynamic Programming Table (dp)

dF [1][w] represents the maximum value that can be achieved with the first i items and a knapsack capacity
of w.

Expression Breakdown

dpli - 1]iw - weights]i - 1]] + values]i - 1]

This expression is used to determine the value if we include the (i)-th item in the knapsack.

1. dpl[i - 1][w - weights[i - 1]]:
° This part looks at the maximum value achievable wi}h_ the first1-1 items
and a reduced knapsack capacity of w - weights[i - 1 f

. Essentially, it checks the value of the knapsack if we were to include the (
i")-th item, thus reducing the capacity by the weight of the (i)-th item.

2. values[i - 1]:

. This is the value of the (i)-th item itself.

Combining Both Parts

. By adding values[i - 1]todp[i - 1][w - weights[i - 1]], we get the total
value if the (i)-th item is included in the knapsack.

. The max function then compares this value with dp[i - 1][w] (the value without
including the (i)-th item) to decide whether to include the (i)-th item or not.

Example

Let's say we have:

. weights = [2, 3, 4]
. values = [3, 4, 5]
. W=25

Fori = 2 (seconditem)andw = 5:
. weights[1] = 3
. values[1] = 4
The expressiondp[1][5 - 3] + 4 translates to:
. dp[1]1[2] + 4
Ifdp[1][2] (maximum value with the first item and capacity 2) is 3, then:
. dp[1][2] + 4 =3 +4 =7

So, dp[2][5] will be the maximum of dp[1][5] (not including the second item) and 7 (including the

second item).
© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x Z

VIRGINIA TECH

r Y7/~ VIRGINIA TECH
Basic Analysis

0/1 Knapsack is the most basic dynamic programming problem J

e Recall that there is only one item of each kind, and you can choose to put it in or not.

e Use subproblems to define the state

o F[i, v] represents the maximum value that can be obtained by putting the first i items into a knapsack with a
capacity of v
o Then its state transition equation is:

e Dynamic Programming characteristics
o Optimally solve subproblems

Fli,v] = max{F[i — 1,v], F[i — 1,v — C;] + W;}

F[0,0..V] <0
for 1 <1 to N
for v < C; to V
F[i,v] + max{F[i — 1,v], F[i — 1,0 — C;] + W;}
54 ©2025 Ells, Ramakrishnan & Nizamani — GG BY-NC-ND 4.0/ V7

VIRGINIA TECH

Testing Approaches

Think through all possibilities and edge cases

Full coverage (all paths tested)

Write a script to cover testing possibilities/variations

Ask LLM for help with the above

Latest research suggests generating code with one LLM and
testing it with another

55 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0 x Z
VIRGINIA TECH

r \a

Imagine real-world scenarios

Increased complexity when optimizing

e Amazon airplane carrying packages/Fed Ex delivery truck
Space needed

Weight allowed (including weight distribution)
Destination

Expected delivery date

Fragile or hazardous item considerations

e Marketing campaigns optimizing reach

Which types of channels (TV, online ads, print media)
Cost of channels

Reach of channels

Effectiveness of combinations of channels
Time/Length of advertisements

Target audience

o 0O O O O

0 0O 0O 0O 0 O

56 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x Z

VIRGINIA TECH

r w7

Week 5 HW - a more complicated knapsack

N=5 I
G=2
K=2

You are given a set of N items, each with a weight and a value. Your goal is to select a subset of W =15

these items to maximize the total value without exceeding a given capacity W . However, the ltems:

Group: [1,1, 2, 2, 2]
Weights: [5, 7, 4, 3, 2]
1. Mandatory Items: Some items are mandatory and must be included in the knapsack if the Values: [10, 13, 8, 6, 4]
total weight does not exceed W . If including all mandatory items exceeds W, it's impossible to M =1

satisfy the constraints. Mandatory Items: [1]

problem has additional complexities:

e C . c=1
2. anfllctlng Items: Certain pairs of items conflict with each other. If you select one item from Conflicting Pairs: [(2, 3)]
a conflicting pair, you cannot select the other. B =1

3. Grouped Items Constraint: Items are divided into groups. You can select at most K items Bonus Sets: [([1, 4], 5)]

from each group.

4. Bonuses for Item Sets: Selecting specific combinations of items grants additional bonus
value.
Your task is to determine the maximum total value achievable under these constraints.

Items Selected: 1, 2, 4 (Initial selection)
Total Weight: 5+ 7 + 3 =15 (equals W)
Total Value: 10 + 13 + 6 + 5 (Bonus) = 34

57 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0/ x Z

VIRGINIA TECH

