
CS2104 Problem
Solving in
Computer Science

1

Margaret Ellis,
Naren Ramakrishnan,
Sehrish Basir Nizamani

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Algorithms

2© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Virginia Tech CS Alumni Quote

"Most tech companies have their own internal tooling so
you can't just use stackoverflow or ChatGPT to figure
things out, you need to be able to master the
fundamentals to be productive and successful. The
process of constantly learning new languages and
concepts during my education prepared me for new
frontiers." - VT CS BS 2023, Meng 2024, Amazon AWS
Cloud Engineer, Seattle, WA

3 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Today’s Objectives

1. Understand and use python string matching
2. Analyze the use of LLMS to code and test
3. Understand and use python regular expressions

4 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Recall Python Strings

● Strings are sequences of characters
● Strings are immutable

○ Once created, strings cannot be modified - any operation that appears to modify a string
actually creates a new one

● Here’s a simple program to print each character in a string

def print_characters(string):

 for char in string:

 print(char)

example_string = "Hello, World!"

print_characters(example_string)

5 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Concepts for HW4 …

Concepts for HW4 …

6 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Indexing Python Strings

● Characters in a string can be indexed from 0 till the length of
the string - 1

● For instance, given a string in variable “text”

○ print(text[0]) # First character
○ print(text[1]) # Second character
○ print(text[-1]) # Last character

● You can index a string from 0 till len(string)-1
○ Or from -len(string) to -1

7 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Find repeated letter in a given string

def find_repeated_letters(input_string):

 repeated_letters = []

 for i in range(len(input_string)):

 if input_string[i] in input_string[:i] and input_string[i] not in repeated_letters:

 repeated_letters.append(input_string[i])

 return repeated_letters

Example usage

input_string = "programming"

print(find_repeated_letters(input_string))

Output will be

#['r', 'm', 'g']

Don’t understand the code?
Demo:
1) setting breakpoint with
debugger to step through in vs
code
2) python tutor
3) asking LLM to explain
4) trace by hand!

GPT-4o generated code →

8 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Palindrome

● Sequence of characters that
reads same as backwards

○ E.g., “level”, “radar”
● Given a string, check if that

string is palindrome
● GPT-4o generated code→

def is_palindrome(string):
 # Remove non-alphanumeric characters and convert to lowercase
 clean_string = ''.join(char.lower() for char in string if
char.isalnum())
 # Check if the string is equal to its reverse
 return clean_string == clean_string[::-1]

Example usage

string = input("Enter a string: ")

if is_palindrome(string):
 print("The string is a palindrome!")
else:
 print("The string is not a palindrome.")

Don’t understand the code? Demo:
1) setting breakpoint with debugger to
step through in vs code
2)python tutor
3) asking LLM to explain
4) trace by hand!

9 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Week 4 HW - Substring Wannabe Palindrome
Problem

In this assignment, you will solve the following problem:

Given a string s, find the longest "wannabe" palindromic substring. A wannabe palindrome
allows for one mismatch within the substring (e.g., "abcbda" is a wannabe palindrome since
"abcba" is the core palindrome). Return the length of the longest wannabe palindromic
substring.

Constraints:
1. s consists only of lowercase English letters.
2. A substring with more than one mismatch does not qualify
3. A substring with no mismatches qualifies

Examples:
1. s = "abcba", Expected output: 5 (abcba)
2. s = "abcbda", Expected output: 6 (abcbda) 10 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Regular expression

11© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Regular Expressions

● Regex is a sequence of characters that forms a search pattern
● Used in many programming languages, text editors
● Consist of a combination of normal characters (letters and

digits) and special characters (*, +, ?) that have special
meanings

● Finding specific words or patterns in a document, validating
user input in a form, and transforming text into a different
format

12 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Regular Expressions Symbols Review
Special Characters

Symbol Description Example Matches
. Matches any single character except newline. a.b aab, acb
^ Matches the start of a string. ^abc abc at the start of the string
$ Matches the end of a string. abc$ abc at the end of the string
* Matches 0 or more repetitions of the preceding token. ab*c ac, abc, abbc
+ Matches 1 or more repetitions of the preceding token. ab+c abc, abbc
? Matches 0 or 1 repetition of the preceding token. ab?c ac, abc
{n} Matches exactly n occurrences of the preceding token. a{3} aaa

{n,} Matches n or more occurrences of the preceding token. a{2,} aa, aaa, aaaa
{n,m} Matches between n and m occurrences of the preceding token. a{2,4} aa, aaa, aaaa

https://media.datacamp.com/legacy/image/upload/v1665049611/Marketing/Blog/Regular_Expressions_Cheat_Sheet.pdf

Should be
familiar from
python
tutorial

13 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://media.datacamp.com/legacy/image/upload/v1665049611/Marketing/Blog/Regular_Expressions_Cheat_Sheet.pdf

Regular Expressions Symbols
Sets

Syntax Matches Explained
[rEsz] Regular Expression Square brackets [] define a set, where each character is matched independently. A match occurs if

any character from the set appears in the text.

[a-z] 1 Fig, 2 NewTons The - in [m-n] is a range operator, matching any character from m to n.

[a\-z] a to z is not = A-Z The \ escapes the -, treating it as a literal character instead of a range operator. This set matches a,
z, and - only.

[a-] regular-expression Matches a and the literal - because - is treated as a character when placed at the start or end of a
set.

[-a] regular-expression As above, matches a or -.

[a-z0-9] 396 ExpressionS Matches characters from a to z and also from 0 to 9.

[(+*)] (valid)*expressions+words Special characters become literal inside a set, so this matches (, +, *, and).

[^ers] regular expression The ^ negates the set, matching any character not in the set. Here, it matches characters that are not
e, r, or s.14 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Regular Expressions Symbols
Special Sequences

Character Class Description Example/Matches
\w Matches all alphanumeric characters (a-z, A-Z, and

0-9) and underscore (_)
Ch4racter_Class3s

\W Matches any non-word character (symbols,
punctuation, spaces)

!@#$%^&*()

\d Matches all digits 0-9 1a2b3c
\D Matches any non-digits 1a2b3c
\s Matches whitespace characters including \t, \n, \r,

and spaces
Character classes

\S Matches non-whitespace characters Character classes
\b Matches word boundaries i.e. the start and end of the

word
\bfox\b
The fox tried to trick the hunter, but he
remained unfoxed.

\B Matches non-word boundaries. match characters in
the middle of other non-space characters

\Bfox\B
The fox tried to trick the hunter, but he
remained unfoxed.

Should
be
familiar
from
python
tutorial

15 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Python re Module Functions

Syntax Explained
re.findall(A, B) Finds all non-overlapping matches of the pattern A in string B and returns them as a list. If no

matches are found, it returns an empty list.
re.search(A, B) Searches string B for the first occurrence of the pattern A and returns a match object. If no

match is found, it returns None.
re.split(A, B) Splits string B into a list at each occurrence of the pattern A. If no match is found, it returns

the original string as a single-element list.
re.sub(A, B, C) Replaces all occurrences of the pattern A in string C with the string B and returns the

modified string. The original string C remains unchanged.
re.match(A, B) Attempts to match the pattern A starting strictly at position 0 in string B. If the pattern doesn’t

match at the start, it returns None. Unlike re.search(), it does not evaluate the rest of the
string.

https://media.datacamp.com/legacy/image/upload/v1665049611/Marketing/Blog/Regular_Expressions_Cheat_Sheet.pdf
16 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://media.datacamp.com/legacy/image/upload/v1665049611/Marketing/Blog/Regular_Expressions_Cheat_Sheet.pdf

EXAMPLE: re.search()
import re

import unittest

def findmatch(str):

 return re.search('word:\w\w\w',str)

#print(findmatch('an example word:cat!!').group())

class TestFindMatch(unittest.TestCase):

 def test_findmatch(self):

 # Test cases for findmatch

 self.assertEqual('word:cat',findmatch('an example word:cat!!').group(), "not matched")

)

if __name__ == '__main__':

 unittest.main(argv=[''], exit=False)

17 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

VT CS Alumni Quote

"GenAI tools are changing how we work in the software industry and there's
certainly a time and place to use them! I'd encourage students to use those tools
when appropriate and when explicitly allowed in their course syllabi as a way to
find new ideas, generate boilerplate code, or try to explain a concept. However,
it is also obvious when someone presents work that is incorrect and written by a
tool such as ChatGPT. Oftentimes these tools will produce code (or explanations
of code) that look "correct" but make fundamental errors such as not following
the syntax of a given programming language.

Virginia Tech CS prepared me for my current role with a solid understanding of
Computer Science fundamentals. Generative AI is not a substitute for this
foundational knowledge. To be able to work effectively with colleagues in the
industry you need to be able to explain and justify your work." VT CS BS 2023,
Red Hat Consultant, Raleigh, NC

18 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Recursion
Algorithms

19© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Objectives

● Understand and use recursion and dynamic
programming in Python

i. Understanding Recursion

ii. Recursive vs Iterative

iii. Use of Helper Functions

iv. Recursions with Backtracking
● Analyze the use of LLMs to code and test

20 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Staircase Problem

● Given a staircase with n stairs and that you can only take 1 or 2
steps at a time, how many ways you can walk your way up to
reach the nth stair.

21 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Staircase
Problem

22 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Staircase Problem (Continue)

1 step from (n-1)th stair 2 steps from (n-2)th stair

F(n) = F(n-1) +F(n-2)

23 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

The Fibonacci Numbers

24 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Recursive Algorithm

Computes the value of the n-th Fibonacci number.
Pre: n is a non-negative integer.
def fibonacci(n):
 if n < 2: # base case
 return 1
 return fibonacci(n-1) + fibonacci(n-2) # recursive case

Adapted from 2011-12 Shaffer & McQuain CS 2104
25 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Understanding Recursion

● A process in which the result of each repetition is
dependent upon the result of the next repetition.

● Simplifies program structure at a cost of function calls

Adapted from 2011-12 Shaffer & McQuain CS 2104
26 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Recursive Definitions (Fibonacci sequence)

fibonacci(4) = fibonacci(3) + fibonacci(2)

 = fibonacci(2) + fibonacci(1) +

 fibonacci(1) + fibonacci(0)

 = fibonacci(1) + fibonacci(0) +

 1 + 1 + 1

 = 1 + 1 + 1 + 1 + 1

 = 5

base
case

recursive
case

27 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Recursion

❖ a base case in which no
recursion occurs

❖ a recursive case

28 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Recursion animation

http://www.mathwarehouse.com/programming/images/recusion-factorial-code-animated-gifs.gif
29 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Recursive Definitions

factorial(5) = 5 * factorial(4)

 = 5 * (4 * factorial(3))

 = 5 * (4 * (3 * factorial(2)))

 = 5 * (4 * (3 * (2 * factorial(1))))

 = 5 * (4 * (3 * (2 * 1)))

 = 120

recursion a method of defining functions in which the function being defined is
applied within its own definition

base
case

recursive
case

30 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Head and Tail Recursion

31 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

K Queens Problem

Given a KxK chessboard, find a way to place K queens on the board
so that no queen can attack another queen. A queen can move an
arbitrary number of squares vertically, horizontally or diagonally.

Turns out that there must be one queen
in every row and one queen in every
column.

There are over 4 billion different ways
to drop 8 queens onto an 8x8 board.

It's known that there are exactly 92
distinct solutions to the problem.

Here is one solution:

32 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

4 Queens Problem

Now for row 2… we have two choices, let's try the first
one:

Oops… now all the squares in row 3 are under attack, so
this cannot lead to a solution…

Let's consider a variant on a 4x4 board… how to start?

Let's flag squares that are under attack with Xs, since we
cannot put a queen there.

Let's process the board row by row, from the top down.

Let's start by putting a queen in the first square in row 1:

Solve a
simpler
version

33 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

4 Queens Problem (2)

34

OK, now we have possibilities… let's fill the free square in row 3:

Rats! Now there are no free squares left in row 4.

We can backtrack again, but that means we must now remove the
2nd and 3rd queens, since we've already tried all the possibilities for
the 2nd one, and then we must consider a different spot for the 1st
one…

What to try next?

Let's backtrack… take back the last move and try a different one:

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

4 Queens Problem (3)

35

So, we'll try the 1st queen in column 2:

That leaves just one place for a queen in row 2:

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

K Queens Problem Algorithm

36

Let's suppose we have some way to represent a board configuration (size, location of queens,
number of queens, etc.)
K Queens Algorithm

Try_config takes configuration C, number m

 if C contains K queens

 display C

 halt

 endif

 for each square in row m of C

 if square is free

 place a queen in square

 Try_config(C, m + 1) # leads to soln?

 remove queen from square # no, backtrack

 endif

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Backtracking

37

The general steps of backtracking are:

● start with a sub-solution

● check if this sub-solution will lead to the solution or not

● If not, then come back and change the sub-solution and
continue again

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Geeks for Geeks (Working through columns)

38 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Knapsack

39

● What is Knapsack?
○ A combinatorial optimization problem where you

maximize the total value of items placed in a knapsack
without exceeding its weight capacity.

○ Think of a traveler with a fixed-size backpack trying to
carry the most valuable combination of items.

● Real-world applications
○ Resource Allocation: Budget optimization, investment

decisions.
○ Logistics: Shipping container capacity optimization.
○ Computer Science: Memory allocation, load

balancing.
○ Cryptography: Basis for some encryption schemes.

https://en.wikipedia.org/wiki/Knapsack_problem

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://en.wikipedia.org/wiki/Knapsack_problem

Knapsack Problem

40

Given an integer total, and an integer
list, determine if any collection of
list elements within a subset of the
list sum up to total.

Your goal is to fill your knapsack with
15 weight capacity, choose items from
the list [17, 3, 4, 12, 2], how to pick
the items such that they will mount up
to 15?

17

3

4

12

2

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Knapsack Problem - Algorithm

41

Algorithm:
Check if a collection exists containing the first subset
element,
(i.e. does collection exist for the remaining elements in
the list for the total reduced by the first element)?
If no collection exists containing the first subset
element check for a collection for total from subset
start + 1 to the end of the subset.

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Knapsack Problem (Recursive Solution)

42

ray List of integers
sum Subset sum goal
start First subset index
end Last subset index
Prerequisite: ray is a list of positive integers,
sum is a positive integer
start, end are valid list indexes
def knapsack(ray,sum,start,end):
 if (sum == 0): #empty collection sums to zero
 return True
 if ((sum < 0) or (start > end)): #no solution
 return False
 #check for soln with first element
 if (knapsack(ray, sum-ray[start], start+1, end)):
 return True
 #any possible soln cannot contain first element
 return knapsack(ray, sum, start+1, end)

[17, 3, 4, 12, 2]

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Knapsack Problem Recursive Solution -
Code Trace

43

knapsack code trace of [17, 3, 4, 12, 2] looking for sum of 15 between indices 0 and 4
(diagram on next slide)
call knapsack(ray, 15 – 17, 1, 4)
 looking for sum of -2 which returns FALSE
call knapsack(ray, 15, 1, 4) looking for sum of 15 between 1 and 4

call knapsack(ray, 15 – 3, 2, 4)
call knapsack(ray, 12 – 4, 3, 4)

 call knapsack (ray, 8 – 12, 4, 4)
looking for sum of -4 which returns false

call knapsack(ray, 8, 4, 4)
call knapsack(ray, 8 – 2, 5, 4)

start > end which returns false
 call knapsack(ray, 8, 5, 4)

 returns false
 call knapsack(ray, 12, 3, 4) # backtrack happens

 call knapsack(ray,12 – 12, 4, 4)
 returns TRUE!!

 The values 3 and 12 sum to 15, it skipped 17 and 4 by backtracking
 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Knapsack Problem Approaches

44

● Recursive with backtracking
● Dynamic programming uses book-keeping

(remembering subsolutions)
○ Dynamic programming is useful for online

coding challenges and interview questions

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

VT CS Alumni Quotes

45

"We have daily stand ups and regular code reviews so being able to
communicate about your work and the work of others is a vital part of the
job. It's fun to help design new features and it requires a lot of time and
work to be prepared to contribute to a project. My courses, undergraduate
research, and student organizations at VT CS gave me experience to get
and be successful in my web development positions." -VT CS BS 2019,
Google, Software Engineer, Seattle, WA

"Employers want to know you can problem solve and work in a team. It's
important to be able to communicate about your decision making and
coding process and also be able to ask your colleagues questions so you
can learn and advance in your career." -VT CS BS 2023, Manhattan,
Cloud and Security Engineer, Atlanta, GA

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Knapsack and Variations

46

Objectives:
● understand and use recursion and dynamic programming in python

● analyze the use of LLMs to code and test

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Types of Knapsack Problems

47

● 0/1 Knapsack Problem: Either include or exclude an item (binary

choice).

● Fractional Knapsack Problem: Items can be broken into fractions

(solved using greedy algorithms).

● Unbounded Knapsack Problem: Unlimited copies of each item are

allowed.

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Consider

48 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

How do we solve the knapsack problem?

49

● One strategy is to do “dynamic programming”
○ Fancy term for “book-keeping”

● For every item
○ We can either keep it, or discard it
○ Lets create a lookup table dp[i][w] where

■ i is the index of the current item (0 to n).

■ w is the current weight capacity (0 to W).

■ dp[i][w] represents the maximum value obtainable using the first i items
and weight capacity w.

○ We will keep filling this table from one corner so as to make sure
we have considered all possibilities

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Knapsack worked out

50

● We have 3 items and capacity 5, so we will actually create a
table of 4 (3+1) rows and 5 columns

dp[i][w] represents the maximum value
obtainable using the first i items and weight
capacity w.

dp[3][4] could just be dp[2][4]
which is 20, but get more value

by removing what was there
and adding weight of 4 with

value of 30

Number of
items

weight

More examples of 0/1 knapsack

51

Given a set of N items, each with a weight and a value, determine the maximum total value
of items you can include in a knapsack of capacity W. Remember that you cannot break
items; you either take an item or not (0/1 Knapsack problem).

N = 3
W = 50
Weights = [10, 20, 30]
Values = [60, 100, 120]

220

N = 4
W = 10
Weights = [5, 4, 6, 7]
Values = [10, 40, 30, 50]

70

N = 5
W = 15
Weights = [12, 7, 11, 8, 9]
Values = [24, 13, 23, 15, 16]

28

N = 6
W = 100
Weights = [77, 22, 29, 50, 99, 1]
Values = [92, 22, 87, 46, 90, 1]

134

N = 4
W = 5
Weights = [5, 5, 5, 5]
Values = [10, 40, 30, 50]

50

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Lets use GPT-4o to generate code for 0/1
Knapsack

52

def knapsack(N, W, weights, values):
 # Initialize a 2D DP array
 dp = [[0] * (W + 1) for _ in range(N + 1)]

 # Fill the DP table
 for i in range(1, N + 1):
 for w in range(W + 1):
 if weights[i - 1] <= w:
 dp[i][w] = max(dp[i - 1][w], dp[i - 1][w - weights[i - 1]] + values[i - 1])
 else:
 dp[i][w] = dp[i - 1][w]

 return dp[N][W] © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Given the knapsack algorithm in python …] can you explain
dp[i - 1][w - weights[i - 1]] + values[i - 1]? (co-pilot)

53

Sure! Let's break down the expression dp[i - 1][w - weights[i - 1]] + values[i - 1] in the
context of the knapsack algorithm.

Context

In the knapsack problem, we aim to maximize the total value of items that can be placed in a knapsack of
capacity (W), given (N) items, each with a specific weight and value.

Dynamic Programming Table (dp)

dp[i][w] represents the maximum value that can be achieved with the first i items and a knapsack capacity
of w.

Expression Breakdown

dp[i - 1][w - weights[i - 1]] + values[i - 1]

This expression is used to determine the value if we include the (i)-th item in the knapsack.

1. dp[i - 1][w - weights[i - 1]]:

● This part looks at the maximum value achievable with the first i-1 items
and a reduced knapsack capacity of w - weights[i - 1].

● Essentially, it checks the value of the knapsack if we were to include the (
i)-th item, thus reducing the capacity by the weight of the (i)-th item.

2. values[i - 1]:

● This is the value of the (i)-th item itself.

Combining Both Parts

● By adding values[i - 1] to dp[i - 1][w - weights[i - 1]], we get the total
value if the (i)-th item is included in the knapsack.

● The max function then compares this value with dp[i - 1][w] (the value without
including the (i)-th item) to decide whether to include the (i)-th item or not.

Example

Let's say we have:

● weights = [2, 3, 4]

● values = [3, 4, 5]

● W = 5

For i = 2 (second item) and w = 5:

● weights[1] = 3

● values[1] = 4

The expression dp[1][5 - 3] + 4 translates to:

● dp[1][2] + 4

If dp[1][2] (maximum value with the first item and capacity 2) is 3, then:

● dp[1][2] + 4 = 3 + 4 = 7

So, dp[2][5] will be the maximum of dp[1][5] (not including the second item) and 7 (including the
second item).

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Basic Analysis

54

0/1 Knapsack is the most basic dynamic programming problem

● Recall that there is only one item of each kind, and you can choose to put it in or not.
● Use subproblems to define the state

○ F[i, v] represents the maximum value that can be obtained by putting the first i items into a knapsack with a
capacity of v

○ Then its state transition equation is:

● Dynamic Programming characteristics
○ Optimally solve subproblems

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Testing Approaches

55

● Think through all possibilities and edge cases
● Full coverage (all paths tested)
● Write a script to cover testing possibilities/variations
● Ask LLM for help with the above
● Latest research suggests generating code with one LLM and

testing it with another

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Imagine real-world scenarios

56

Increased complexity when optimizing

● Amazon airplane carrying packages/Fed Ex delivery truck
○ Space needed
○ Weight allowed (including weight distribution)
○ Destination
○ Expected delivery date
○ Fragile or hazardous item considerations

● Marketing campaigns optimizing reach
○ Which types of channels (TV, online ads, print media)
○ Cost of channels
○ Reach of channels
○ Effectiveness of combinations of channels
○ Time/Length of advertisements
○ Target audience

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Week 5 HW - a more complicated knapsack

57

You are given a set of N items, each with a weight and a value. Your goal is to select a subset of
these items to maximize the total value without exceeding a given capacity W . However, the
problem has additional complexities:

1. Mandatory Items: Some items are mandatory and must be included in the knapsack if the
total weight does not exceed W . If including all mandatory items exceeds W , it’s impossible to
satisfy the constraints.

2. Conflicting Items: Certain pairs of items conflict with each other. If you select one item from
a conflicting pair, you cannot select the other.

3. Grouped Items Constraint: Items are divided into groups. You can select at most K items
from each group.

4. Bonuses for Item Sets: Selecting specific combinations of items grants additional bonus
value.

Your task is to determine the maximum total value achievable under these constraints.

N = 5
G = 2
K = 2
W = 15
Items:
Group: [1, 1, 2, 2, 2]
Weights: [5, 7, 4, 3, 2]
Values: [10, 13, 8, 6, 4]
M = 1
Mandatory Items: [1]
C = 1
Conflicting Pairs: [(2, 3)]
B = 1
Bonus Sets: [([1, 4], 5)]

Items Selected: 1, 2, 4 (Initial selection)
Total Weight: 5 + 7 + 3 = 15 (equals W)
Total Value: 10 + 13 + 6 + 5 (Bonus) = 34

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

