
CS2104 Problem
Solving in
Computer Science

1

Margaret Ellis,
Naren Ramakrishnan,
Sehrish Basir Nizamani

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Introduction to
Software
Engineering

2© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Software Engineering Learning Objectives

● explore concepts in software engineering
● recognize stages of software development
● construct software design given system requirements
● explore concepts in software engineering quality control
● recognize how LLMs can and cannot reliably assist in

the software engineering process

3 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Introduction to Software Engineering …

● Metaphors and Analogies
○ Multiple meanings: viruses, Trojan horses, worms, bugs,

bombs, crashes, flames, and fatal errors
○ “A metaphor serves more as a heuristic than it does as an

algorithm.”
○ “Because each program is conceptually unique, it's difficult or

impossible to create a general set of directions that lead to a
solution in every case. Thus, knowing how to approach
problems in general is at least as valuable as knowing
specific solutions for specific problems.”

○ Accretion, incremental development

4 Adapted from Code Complete © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Introduction to Software Engineering cont.

Building Software
○ Building a dog house vs. a human house vs. a custom

house
○ Cost of labor vs cost of material
○ Structural changes vs. independent changes
○ Multiple meanings: architecture, scaffolding, construction,

foundation classes, and tearing code apart

5 Adapted from Code Complete © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Topics in Software Engineering

Requirements Gathering

Project Management

Designing

Programming

Repository - version control

Testing

Security

Debugging - stepping through

Refactoring

DevOps

6

Maintenance
© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Topics in Software Engineering

Requirements Gathering

Project Management

Designing

Programming

Repository - version control

Testing

Security

Debugging - stepping through

Refactoring

DevOps

7

Maintenance
© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Requirements Gathering
Defining the Problem, Determining the Solution

● Iterative – Ask Many Questions!
○ What does the end result look like?
○ How does the end result work?

● Business Rules
○ Ask the right people the right questions

● Project Managers
● Testing
● Features?!
● SMART - specific, measurable, agreed upon, realistic and

time-based
8 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Searching for Requirements
○ How will you use this feature?
○ How might we meet this business need?
○ Where does the process start?
○ Where would the user be located physically when using this feature?
○ When will this feature fail?
○ Who will receive the outputs of the feature?
○ What does this feature need to do?
○ What are the pieces of this feature?
○ What if…? Think of all the alternative scenarios and ask questions

about what should happen if those scenarios are true
○ What needs to be tracked?

9 https://www.bridging-the-gap.com/what-questions-do-i-ask-during-requirements-elicitation/ © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://www.bridging-the-gap.com/what-questions-do-i-ask-during-requirements-elicitation/

Use of LLMs in Requirements Gathering
● Natural Language Processing (NLP) for Requirements: LLMs can

analyze and extract requirements from unstructured data such as
emails, meeting notes, and user feedback. LLMs can help in
translating natural language requirements into technical specifications
and design documents.

● Interview Structuring: They can help structure interviews and
surveys to gather requirements more effectively

● Drafting Requirements Documents: LLMs can generate initial
drafts of Software Requirements Specifications (SRS) based on
input from stakeholders

● LLMs can be utilized to assess various characteristics of
high-quality requirements, such as:

a. Unambiguity;
b. Consistency;
c. Traceability;
d. Feasibility;
e. Verifiability.

Generated with assistance of co-pilot Dec 2024 and
resources:https://fitech101.aalto.fi/courses/software-engineering-with-large-language-models/part-4/2-requirements-gather
ing,https://arxiv.org/pdf/2404.17842,https://insights.sei.cmu.edu/blog/application-of-large-language-models-llms-in-softwar
e-engineering-overblown-hype-or-disruptive-change/,
https://www.techopedia.com/5-ways-llms-can-empower-software-engineering

10 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://fitech101.aalto.fi/courses/software-engineering-with-large-language-models/part-4/2-requirements-gathering
https://fitech101.aalto.fi/courses/software-engineering-with-large-language-models/part-4/2-requirements-gathering
https://arxiv.org/pdf/2404.17842
https://insights.sei.cmu.edu/blog/application-of-large-language-models-llms-in-software-engineering-overblown-hype-or-disruptive-change/
https://insights.sei.cmu.edu/blog/application-of-large-language-models-llms-in-software-engineering-overblown-hype-or-disruptive-change/
https://www.techopedia.com/5-ways-llms-can-empower-software-engineering

Example: LLM helping with Requirements
Gathering
Prompt: Provide an example of an LLM structuring and
interview to gather requirements for a food delivery app

See: Co-Pilot Generated Requirements Interview Script for Food
Delivery App

11 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://docs.google.com/document/d/1JXt7C9mm5QcnWPbW3XRSoFNSMhFqMhEtq9p0hwhi7i8/edit?usp=sharing
https://docs.google.com/document/d/1JXt7C9mm5QcnWPbW3XRSoFNSMhFqMhEtq9p0hwhi7i8/edit?usp=sharing

Topics in Software Engineering

Requirements Gathering

Project Management

Designing

Programming

Repository - version control

Testing

Security

Debugging - stepping through

Refactoring

DevOps

12

Maintenance
© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Project Management

Interaction with Customer

Scheduling

Communication

Task Delegation

Technical Lead/ Management Lead

Adapted from 2011-12 Shaffer & McQuain CS 210413 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Project Management Considerations

Objectives Scope Assumptions
and risks Approach

Required
Resources

Methods of
Communication Organization Roles

Effort Cost Duration Quality Control

Adjustments Work
Environment

Schedule,
schedule,
schedule

http://www.techrepublic.com/blog/10-things/10-best-practices-for-successful-project-management/
14 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

http://www.techrepublic.com/blog/10-things/10-best-practices-for-successful-project-management/

Project Management Strategies

Waterfall

Agile

Chaos

DevOps

Use of LLMs

http://www.techrepublic.com/blog/10-things/10-best-practices-for-successful-project-management/
15 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

http://www.techrepublic.com/blog/10-things/10-best-practices-for-successful-project-management/

Agile Problem Solving Approach
(Agile Manifesto)

● Welcome change

● Small cycles, regular feedback

● Reflect, recap what you know

● Ask questions

● Keep it simple

● Iterate

16 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Scheduling

● Managing large-scale projects involves significant
efforts to plan and schedule activities
○ It is human nature to work better toward intermediate milestones.

● The same concepts can/should be applied to mid-sized
projects encountered in class.
○ For any project that needs more than a week of active work to

complete, break into parts and design a schedule with milestones
and deliverables.

■ Track your progress
■ Set goals
■ Seek feedback

17 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Use of LLMs in Project Management

● Task Automation: LLMs can automate routine tasks such as
scheduling meetings, summarizing project updates, and
generating reports

● Risk Management: They can analyze historical data to
predict potential risks and suggest mitigation strategies

● Communication: LLMs can facilitate clearer communication
by summarizing complex documents and translating
languages.

Generated with assistance of co-pilot Dec 2024 and resources:
https://pmsymposium.umd.edu/pm2024/session/demystifying-llms-polaski-and-beall/,https://integranxt.com/blog/large-language-models-project-management/

18 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://pmsymposium.umd.edu/pm2024/session/demystifying-llms-polaski-and-beall/
https://integranxt.com/blog/large-language-models-project-management/

Example of Risk Assessment

Example Case Study: A company used an LLM to analyze
historical project data from their project management
system. The LLM identified that projects with frequent
scope changes and high team turnover were more likely
to experience significant delays. Based on these insights,
the company implemented stricter change management
processes and focused on improving team stability,
which led to a reduction in project delays.

https://dev.to/delamorareseach/project-management-and-large-language-models-llm-a
-synergistic-future-3ei

19 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://dev.to/delamorareseach/project-management-and-large-language-models-llm-a-synergistic-future-3ei
https://dev.to/delamorareseach/project-management-and-large-language-models-llm-a-synergistic-future-3ei

Topics in Software Engineering

Requirements Gathering

Project Management

Designing

Programming

Repository - version control

Testing

Security

Debugging - stepping through

Refactoring

DevOps

20

Maintenance
© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Design

21

User Interface Design

System Design

OO Design & Design Patterns

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Design

22

User Interface Design

System Design

OO Design & Design Patterns

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

User Interface Design

23

User Interface Design
○ HCI
○ Usability and Accessibility
○ Prototyping
○ Use Cases

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Requirements Discovery & Verification:
Efficiency techniques and strategies

24

Cross business
representation No devices Keep the team small Set solo work

Set inescapable
deadlines A bit of competition Independent decision

making Short, energetic bursts

Divide and swarm

Prototype – answer
questions by

producing prototypes
(not PowerPoint
presentations)

Finish with a test – put
your final prototype in

front of real
customers

Design Sprint Video © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://econsultancy.com/how-to-put-people-at-the-heart-of-your-design-sprint/

Chatbot Boom

25

● What are examples of chatbots you use?
● Chatbots are everywhere

○ Universities
○ Airlines
○ Online shopping

● Chatbots can be built based on a specific
content area

● Querying a LLM can be inefficient and costly
○ Uses 10x more power than a websearch!

https://www.msn.com/en-us/money/other/the-cost-of-an-ai-query-chatbot-boom-linked-to-massive-energy-drain/ar-AA1tubfL
© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://www.msn.com/en-us/money/other/the-cost-of-an-ai-query-chatbot-boom-linked-to-massive-energy-drain/ar-AA1tubfL

Deciding whether to include GenAI in a
product?

26

Design Sprint for Adding
GenAI

1. Problem Definition
with content experts

2. Ideation
3. Rapid Prototyping
4. Testing with users

Caution: LLMs use a
lot of power

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://medium.com/@npshah/an-approach-to-genai-design-sprint-data-prototypes-speed-ff32ae541039
https://medium.com/@npshah/an-approach-to-genai-design-sprint-data-prototypes-speed-ff32ae541039

Design

27

User Interface Design

System Design

OO Design & Design Patterns

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

System Design

28

Strategies

Spreadsheets

Workflow Diagram

Algorithm Flowcharts

Algorithm Pseudocode

Considerations

System Storage

Time Constraints

Telecommunication

Users

Platforms

Type of data

Environment

Security

Toolbox

Budget! © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Design

29

User Interface Design

System Design

OO Design & Design Patterns

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Object Oriented Design

30

● What are your classes?

● What tasks are they responsible
for?

● What information do they contain?

● What kind of interaction do they
have with other classes?

● Are there hierarchies? Nested
classes?

● Code reuse?

Use UML diagrams to represent this information

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Object Oriented Design

31

When I am working on a
problem I never think
about beauty. I think only
how to solve the problem.
But when I have finished,
if the solution is not
beautiful, I know it is
wrong.
— R. Buckminster Fuller

GOALS:
• Manage Complexity
• Ease of Maintenance
• Reuse
• Portability
• Extensibility

https://www.tutorialspoint.com/uml/uml_class_diagram.htm
© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Design Considerations for Maintainability
and Reuse

32

▪ Loosely Coupled – want to be able to make changes easily,
replace one class with another

▪ Encapsulated – protect the class’ data and functionality,
information only available through accessors(getters) and
mutators(setters)

▪ Highly Cohesive – a class should be a cohesive unit, only
contain relevant data, anything extraneous should be in its own
class

https://www.planetgeek.ch/2011/07/08/presentation-agile-code-design-how-to-keep
-your-code-flexible/

How LLMS can aid in Design

33

● Generative Design: LLMs can convert text-based prompts into
design specifications and generate multiple design variations

● Design Optimization: They can evaluate and optimize designs based
on performance criteria

● Documentation: LLMs can generate detailed design documentation,
making it easier to understand and maintain design decisions

● Technology Considerations:
a. LLMs can provide valuable assistance to software development teams in selecting

implementation tools and frameworks.
b. Based on the system specifications and design models, LLMs can recommend

appropriate programming languages, libraries, and implementation frameworks

Generated with assistance of co-pilot Dec 2024 and
resources:https://hdsr.mitpress.mit.edu/pub/15nqmdzl/release/2,https://blog.burnsmcd.com/revolutionizing-engineering-design-unleashing-the-power-of-large-language-models,
https://www.techopedia.com/5-ways-llms-can-empower-software-engineering

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://www.techopedia.com/definition/14384/software-framework
https://www.techopedia.com/definition/24815/programming-language
https://hdsr.mitpress.mit.edu/pub/15nqmdzl/release/2
https://blog.burnsmcd.com/revolutionizing-engineering-design-unleashing-the-power-of-large-language-models
https://www.techopedia.com/5-ways-llms-can-empower-software-engineering

Topics in Software Engineering

Requirements Gathering

Project Management

Designing

Programming

Repository - version control

Testing

Security

Debugging - stepping through

Refactoring

DevOps

34

Maintenance
© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Programming

35

Unit test as you go

Reuse code

Readability

Less is more

Documentation

Algorithms

Efficiency

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

How LLMs can assist in programming

36

● Code Generation and Completion: LLMs can assist in writing
code by generating boilerplate code, suggesting code completions,
and even writing entire functions based on natural language
descriptions.

● Code Review and Quality Assurance: LLMs can help in reviewing
code by identifying potential bugs, suggesting improvements, and
ensuring adherence to coding standards.

● Documentation and Commenting: LLMs can generate
documentation and comments for code, making it easier for
developers to understand and maintain the codebase.

Generated with assistance of co-pilot Dec 2024 and resources: https://www.techradar.com/computing/artificial-intelligence/best-large-language-models-llms-for-coding,
https://www.techopedia.com/5-ways-llms-can-empower-software-engineering, https://nomadicsoft.io/choosing-the-best-llm-for-coding-a-comprehensive-guide-to-top-llms-for-code-generation/,
https://www.scribbledata.io/blog/the-top-llms-for-code-generation-2024-edition/, https://insights.sei.cmu.edu/blog/application-of-large-language-models-llms-in-software-engineering-overblown-hype-or-disruptive-change/

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://www.techradar.com/computing/artificial-intelligence/best-large-language-models-llms-for-coding
https://www.techopedia.com/5-ways-llms-can-empower-software-engineering
https://nomadicsoft.io/choosing-the-best-llm-for-coding-a-comprehensive-guide-to-top-llms-for-code-generation/
https://www.scribbledata.io/blog/the-top-llms-for-code-generation-2024-edition/
https://insights.sei.cmu.edu/blog/application-of-large-language-models-llms-in-software-engineering-overblown-hype-or-disruptive-change/

Suggestions when using LLMs for Coding

37

Continue to use incremental test-driven
development

● Instead of overwhelming the LLM, break the problem
into small pieces

○ Go step-by-step
● Give a skeleton for the LLM to work with

○ Test the subsolution at each step
○ Give very specific guidance
○ Tell the LLM exactly where to write/update code
○ Tell the LLM what code not to change

● Give very specific guidance to the LLM
○ Try to fix only one bug at a time (LLMs do not retain long

context) © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Topics in Software Engineering

Requirements Gathering

Project Management

Designing

Programming

Repository - version control

Testing

Security

Debugging - stepping through

Refactoring

DevOps

38

Maintenance
© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Simply Explained

39 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Why Version Control?

40

● Have you ever ….

○ Named things like my-project-current or my-project-UI_almostDone because you reached a
milestone, and want to be able to get back to the current version if you screw things up
later?

○ Have you ever wished that you had done that when you didn’t?

○ Have you ever been working with other people, and had to send files back and forth, figure
out how to merge each other’s changes, figure out who had the best version, etc. when
collaborating?

● A version control system such as GIT stores different versions of your files over
time, allowing you to
○ go back to older revisions

○ see how the code developed over time

○ facilitate collaboration between people

http://pages.cs.wisc.edu/~driscoll/software/vcs/ © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Distributed Version Control

41 https://www.edureka.co/blog/what-is-git/
© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Version Control Branching - Industry

42 http://blog.codinghorror.com/software-branching-and-parallel-universes/
© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Version Control

43

We will work more with git next week!

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Topics in Software Engineering

Requirements Gathering

Project Management

Designing

Programming

Repository - version control

Testing

Security

Debugging - stepping through

Refactoring

DevOps

44

Maintenance
© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Highlights of Software Testing

45

● Unit Testing utilizes module testing techniques (white-box /
black- box techniques).

● Integration Testing involves checking subsets of the system.
● Acceptance, Function and System testing is performed upon

the entire system.
● Regression Testing involves fixing errors during testing and

the re-execution of all previous passed tests.

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

How can LLMs assist with Testing

46

● Test Case Generation: LLMs can generate
comprehensive test cases, including edge cases, to
ensure thorough testing coverage

● Automated Testing: LLMs can automate the
execution of test cases and analyze the results to
identify potential issues

● Regression Testing: LLMs can help in regression
testing by ensuring that new changes do not
introduce new bugs

Generated with assistance of co-pilot Dec 2024 and resources:
ttps://www.confident-ai.com/blog/llm-testing-in-2024-top-methods-and-strategies, https://speedscale.com/blog/llm-testing/

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://www.confident-ai.com/blog/llm-testing-in-2024-top-methods-and-strategies
https://speedscale.com/blog/llm-testing/

Topics in Software Engineering

Requirements Gathering

Project Management

Designing

Programming

Repository - version control

Testing

Security

Debugging - stepping through

Refactoring

DevOps

47

Maintenance
© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Security Concerns in Software Engineering

48
© 2025 Ellis, Ramakrishnan &
Nizamani — CC BY-NC-ND 4.0

Examples of Secure Coding Practices …
1. Regular Code Reviews and Static Analysis: Conduct regular code

reviews and use static analysis tools to detect potential
vulnerabilities early.

2. Implement Proper Error Handling: Avoid exposing sensitive
information through error messages. Use generic error messages
for users and log detailed errors for developers.

3. Input Validation: Always validate and sanitize user inputs to prevent
injection attacks like SQL injection and cross-site scripting (XSS).

4. Use Parameterized Queries: Prevent SQL injection by using
parameterized queries instead of concatenating user inputs into
SQL statements.

Will revisit when
we learn about
databases

49 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Examples of Secure Coding Practices cont.
5. Use Secure Libraries and Frameworks: Rely on well-maintained and
secure libraries and frameworks. Keep them updated to the latest
versions.
6. Principle of Least Privilege: Grant the minimum necessary
permissions to users and processes to reduce the impact of a potential
breach.
7. Avoid Hardcoding Secrets: Never hardcode passwords, API keys, or
other sensitive information in your code. Use environment variables or
secure vaults.

8. Secure Session Management: Implement secure session handling
to prevent session hijacking and fixation.

Authentication
issues

50 https://www.youtube.com/watch?v=wcaiKgQU6VE © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://www.youtube.com/watch?v=wcaiKgQU6VE

How LLMs can assist with security

51

Automated Code Review: LLMs can analyze code for potential
vulnerabilities, ensuring that security best practices are followed.
This helps in identifying issues like buffer overflows, SQL injection,
and cross-site scripting (XSS) early in the development process

Secure Code Generation: When generating code, LLMs can
incorporate secure coding practices by default, reducing the
likelihood of introducing vulnerabilities. For example, they can
automatically use parameterized queries to prevent SQL injection

Continuous Monitoring and Auditing: LLMs can assist in
monitoring code changes and auditing logs for suspicious activities.
They can detect unusual patterns that might indicate a security
breach or an attempted attack

Caution: LLMs need to be
guided and generated output
needs to be reviewed to ensure
reliability of these approaches

Generated with assistance of co-pilot Dec 2024 and resources: https://www.securityjourney.com/ai/llm-tools-secure-coding,
https://www.redhat.com/en/blog/llm-and-llm-system-risks-and-safeguard,
https://www.unite.ai/enhancing-code-security-the-rewards-and-risks-of-using-llms-for-proactive-vulnerability-detection/

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://www.securityjourney.com/ai/llm-tools-secure-coding
https://www.redhat.com/en/blog/llm-and-llm-system-risks-and-safeguard
https://www.unite.ai/enhancing-code-security-the-rewards-and-risks-of-using-llms-for-proactive-vulnerability-detection/

Sample Security Risks of LLMs in Software
Engineering

52

1. Data Leakage: LLMs can inadvertently expose sensitive information if
they are trained on datasets containing confidential data. This can lead to
privacy violations and data breaches

Samsung employees inadvertently disclosed confidential company
information in 2023 by using Chat GPT to review source code

2. Bias and Discrimination: LLMs can inherit biases present in their
training data, leading to biased or discriminatory outputs. This can affect
decision-making processes and perpetuate unfair practices

3. Incorrect Content Generation: LLMs might generate incorrect or
misleading content, which can introduce bugs or vulnerabilities into the
software. This is particularly risky if the generated code is used without
thorough review

Generated with assistance of co-pilot Dec 2024 and resources:
https://grumpygrace.dev/posts/top-10-sec-llm/,
https://www.akto.io/blog/llm-risks-insights-real-world-case-studies

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://grumpygrace.dev/posts/top-10-sec-llm/
https://www.akto.io/blog/llm-risks-insights-real-world-case-studies

Sample Security Risks of LLMs in Software
Engineering

53

4. Prompt Injection: Malicious users can manipulate the input
prompts to make the LLM generate harmful or unintended
outputs. This can be exploited to introduce vulnerabilities or
misinformation.

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Sample Security Risks of LLMs in Software
Engineering

54

5. Compliance and Regulatory Issues: Using LLMs can raise
compliance and regulatory concerns, especially if the data used
for training includes personally identifiable information (PII)
orother sensitive data
6. Insecure Code Creation: LLMs might generate code that is
not secure, leading to potential vulnerabilities in the software.
This risk is heightened if the generated code is not thoroughly
reviewed and tested
7.Resource Exhaustion: LLMs can be resource-intensive, and
overloading them with heavy operations can lead to
denial-of-service (DoS) attacks, disrupting services and incurring
significant costs

Caution: To mitigate these
risks, it's important to
implement robust security
measures, conduct thorough
reviews of generated content,
and ensure compliance with
relevant regulations.

Generated with assistance of co-pilot Dec 2024 and resources:
https://grumpygrace.dev/posts/top-10-sec-llm/

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://grumpygrace.dev/posts/top-10-sec-llm/

Topics in Software Engineering

Requirements Gathering

Project Management

Designing

Programming

Repository - version control

Testing

Security

Debugging - stepping through
Refactoring

DevOps

55

Maintenance
© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

56

Troubleshooting

● Troubleshooting techniques:
○ Initial focus is often on recent changes to the system or to the

environment in which it exists
○ Start from the simplest and most probable problems first, KISS
○ Check each component in a system one by one (serial substitution)
○ Start from a known good state, the best example being a computer

reboot
○ A cognitive walkthrough
○ Systematic checklist, troubleshooting procedure, flowchart or table

that is made before a problem occurs
○ Divide and Conquer (Half-splitting)

http://en.wikipedia.org/wiki/Troubleshooting57 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

http://en.wikipedia.org/wiki/Troubleshooting

Recent Software Engineering Fails

● Crowdstrike updated a security patch that had a bug which,
affected government, schools, and business. Thousands of flights
were cancelled worldwide in summer 2024.
(https://www.usatoday.com/story/money/2024/07/19/global-outage-
communications-systems/74465953007/)

● National Public Data (background checking system) breached
2.9 billion records in 2023
(https://thecyberexpress.com/biggest-global-data-breaches-of-2024
/)

58 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://www.usatoday.com/story/money/2024/07/19/global-outage-communications-systems/74465953007/
https://www.usatoday.com/story/money/2024/07/19/global-outage-communications-systems/74465953007/
https://thecyberexpress.com/biggest-global-data-breaches-of-2024/
https://thecyberexpress.com/biggest-global-data-breaches-of-2024/

How can LLMs assist with debugging
● Bug Detection and Fixing: LLMs can identify bugs in code by analyzing

patterns and common issues and suggest fixes
● Debugging Assistance: They can provide suggestions for fixing bugs

and stepping through code to understand the flow and identify issues
● Runtime Analysis: LLMs can analyze runtime information to help debug

complex issues

Generated with assistance of co-pilot Dec 2024 and resources:
https://dev.to/petrbrzek/7-best-practices-for-llm-testing-and-debu
gging-1148,https://aclanthology.org/2024.findings-acl.247/,
https://aclanthology.org/2024.findings-acl.49/

Example of a bug fix suggestion

 # Original code

 # def divide(a, b):

 # return a / b

 # Suggested fix to handle division by zero

 def divide(a, b):

 if b == 0:

 return "Error: Division by zero"

 return a / b59 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://dev.to/petrbrzek/7-best-practices-for-llm-testing-and-debugging-1148
https://dev.to/petrbrzek/7-best-practices-for-llm-testing-and-debugging-1148
https://aclanthology.org/2024.findings-acl.247/
https://aclanthology.org/2024.findings-acl.49/

Topics in Software Engineering

Requirements Gathering

Project Management

Designing

Programming

Repository - version control

Testing

Security

Debugging - stepping through

Refactoring

DevOps

60

Maintenance
© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Refactoring

61

• Change internal coding without changing external
behavior

• Improve and simplify implementation at various
stages… Design, Programming, Testing and
Debugging.

If x
A
B

Else
C
B

If x
A

Else
C

B
© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

62

Reasons to Refactor

63

● It is easier to fix bugs if:
○ source code is easy to read
○ the intent of its author is easy to grasp

● Help achieve this by:
○ reducing large monolithic routines into a set of individually

concise, well-named, single-purpose methods
○ moving a method to a more appropriate class
○ removing misleading comments
○ using recognizable design patterns

● Remember Design Considerations for Maintainability
and Reuse: Loosely Coupled , Encapsulated ,
Highly Cohesive

http://en.wikipedia.org/wiki/Code_refactoringx © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

http://en.wikipedia.org/wiki/Code_refactoring

 Refactoring

64

• “I should have named this differently”

• “this class has become too unwieldy”

• “new requirements have emerged that require a different structure” cases, etc...

• “this program is hard to read so it’s hard to modify”

• “there is duplicated logic so there are too many places to make updates”

• ”conditional logic is so complex it’s hard to understand and modify”

• “a class started out cohesive — but as I added, removed and changed instance
variables and methods— it turned into something that is really two or more classes,
so it needs to be split apart!”

• Check out your IDE’s Refactoring Menu!

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

How LLMs can help with refactoring

65

• Code Smell Detection: LLMs can identify code smells
and suggest refactoring opportunities to improve
code quality

• Automated Refactoring: They can automatically
refactor code to improve readability, maintainability,
and performance

• Refactoring Recommendations: LLMs can provide
recommendations for refactoring based on best
practices and coding standards

Generated with assistance of co-pilot Dec 2024 using resources:
https://arxiv.org/pdf/2411.04444 (posted Nov 2024, not peer reviewed):

© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://arxiv.org/pdf/2411.04444

Topics in Software Engineering

Requirements Gathering

Project Management

Designing

Programming

Repository - version control

Testing

Security

Debugging - stepping through

Refactoring

DevOps

66

Maintenance
© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

67

DevOps
Combines software development (Dev) and IT operations (Ops). The goal is to shorten the development
lifecycle and deliver high-quality software continuously. DevOps provide mechanism for development,
testing, and deployment. Ops teams often manage development, staging and production versions of
systems. Here are some key aspects of DevOps:

1. Version Control: Encourages close collaboration between developers and also operations teams.
2. Continuous Integration/Continuous Deployment (CI/CD): Ensures code changes are

automatically tested and deployed. This typically involves a testing pipeline.
3. Monitoring and Logging: Continuously monitors applications and infrastructure to detect and

resolve issues quickly.
4. Automation: Automates repetitive tasks like testing, integration, and deployment.Integrated tools

can be used for version control, testing, and monitoring.
5. Infrastructure as Code (IaC): Manages and provisions computing infrastructure through

machine-readable scripts and configuration files.
6. Infrastructure as Service: managing cloud configurations such as virtualized computing

resources, network infrastructure and storage
7. DevSecOps: Integrates security throughout software development, deployment, and maintenance

Generated with assistance of co-pilot Dec 2024 a
68 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

How LLMs can assist with DevOps
1. Automated Troubleshooting: LLMs can analyze logs and error messages to identify

the root cause of issues and suggest remediation steps. For example, AWS has
developed a tool called DevOps Guru that uses LLMs to provide interactive
troubleshooting and root cause analysis

2. Knowledge Management: LLMs can help create and maintain a knowledge base by
extracting and organizing information from vast amounts of unstructured data. This
can be particularly useful for documenting best practices, common issues, and their
solutions

3. Code Reviews and Quality Assurance: LLMs can assist in code reviews by identifying
potential bugs, security vulnerabilities, and adherence to coding standards. This
helps maintain high code quality and reduces the time spent on manual reviews.

4. Automation of Repetitive Tasks: LLMs can automate routine tasks such as updating
dependencies, managing configurations, and deploying applications. This frees up
time for DevOps engineers to focus on more complex and strategic tasks

Generated with assistance of co-pilot Dec 2024 and resources: :https://community.aws/content/2iCmUplcA27JuSevbaiEHmKNE4R/we-built-an-llm-powered-devops-guru-heres-what-we-learned,,
https://cased.com/blog/applying-llms-devops/

69 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://community.aws/content/2iCmUplcA27JuSevbaiEHmKNE4R/we-built-an-llm-powered-devops-guru-heres-what-we-learned
https://cased.com/blog/applying-llms-devops/

Topics in Software Engineering

Requirements Gathering

Project Management

Designing

Programming

Repository - version control

Testing

Security

Debugging - stepping through

Refactoring

DevOps

70

Maintenance
© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Maintenance of Software

● Bug fixes
● Security updates
● Documentation updates
● Version updates
● Adaptive maintenance if hardware, OS changes
● Optimizing code (ex: add caching)
● Adding new features

71 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

How LLMs can assist with software maintenance

In addition to previously mentioned tasks such as automated code reviews,
documentation generation and bug detection.

1. Dependency Management: LLMs can monitor and manage software
dependencies, ensuring that libraries and packages are up-to-date
and compatible with the existing codebase

2. Performance Optimization: LLMs can analyze code and system
performance metrics to identify bottlenecks and suggest
optimizations. This helps maintain and improve the performance of
the software over time

3. Security Audits: LLMs can conduct automated security audits,
scanning the codebase for vulnerabilities and recommending security
best practices

Generated with assistance of co-pilot Dec 2024 and resources:
https://www.techopedia.com/5-ways-llms-can-empower-software-engineering,,
https://www.turing.com/blog/software-engineering-with-llms, , https://www.krasamo.com/software-testing-using-llms/

72 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://www.techopedia.com/5-ways-llms-can-empower-software-engineering
https://www.turing.com/blog/software-engineering-with-llms
https://www.krasamo.com/software-testing-using-llms/

Risks LLMs can create for software maintenance
In addition to previously mentioned issues such as incorrect code, security
flaws, bias, and noncompliance issues:

1. Developer De-skilling: Developers who become over reliant on LLMs
may not have the expertise to maintain and update software

2. Lack of System Awareness: Software package version tracking,
multiple component awareness, and style and documentation
consistency may be difficult to sustain overtime

3. Changes in LLMs: As LLM versions change, conventions and outputs
change. If a workflow is dependent on a set of prompts, the results
may vary overtime.

4. Technical Debt: LLMs can generate so much code quickly that
systems accumulate technical debt (such as poor design, lack of
documentation, and vulnerabilities)

73 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

Research on use of LLMs in Software
Engineering

Large Language Models for Software Engineering: A Systematic Literature Review Dec 2024:
https://dl.acm.org/doi/10.1145/3695988

74 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://dl.acm.org/doi/10.1145/3695988
https://dl.acm.org/doi/10.1145/3695988

Research on
use of LLMs in
Software
Engineering

Large Language Models for Software Engineering: A Systematic
Literature Review

Dec 2024: https://dl.acm.org/doi/10.1145/3695988

75 © 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC 4.0© 2025 Ellis, Ramakrishnan & Nizamani — CC BY-NC-ND 4.0

https://dl.acm.org/doi/10.1145/3695988

