
DNA Strings in Linked List

A key element in many bioinformatics problems is the biological sequence. A biological sequence
is just a list of characters chosen from some alphabet. Two of the common biological sequences are
DNA (composed of the four characters A, C, G, and T) and RNA (composed of the four characters
A, C, G, and U). In this project, you will implement some basic functionality for manipulating
DNA and RNA sequences.

Implementation:
You will implement sequences using linked lists, storing one letter of the sequence per linked list

node. You may implement either a singly linked list or a doubly linked list, whichever you prefer.
You may implement your linked list using the code from the textbook (source is available from the
CS2604 website) or you may write your list code from scratch.

In addition to the linked lists of sequences, you will maintain a “sequence array” which stores
the various sequences. Commands that manipulate sequences will refer directly to entries in the
sequence array. The sequence array will store the sequence type (RNA or DNA) and a pointer or
other form of access to the linked list that stores the sequence itself. The type field should use an
enumerated type variable, and you should also have an enumeration value to recognize that a given
position in the sequence array is unused.

You are required to implement a freelist for this project (see p. 114-117 in the textbook). All
allocation and deallocation of linked-list nodes will go through the freelist functions. Many of the
commands that you will process require you to create and delete linked-list nodes. You must be
careful that you do not “lose” any of these nodes during this process. Losing access to a linked list
node is a form of memory leak, and will be considered a major error in your program for grading
purposes. You must also maintain counters for the number of times that a new linked list item has
ever been created, and the number of links currently on the freelist.

All indexing (both for the sequence array and for positions in a sequence) will begin with
position zero.

The primary design consideration for this project will be the interface between the list class and
its client. If you reuse the book code, it is acceptable to alter or add some list methods. Regardless
of whether you reuse the book code or write your own, it is mandatory that the list class remain
application independent. No bioinformatics-related code should be part of the list class. All such
code should be in some class above the level of the list class.

Input and Output:
The program will be invoked from the command-line as:
bio1 <array-size> <command-file>

The name of the program is biol. Parameter array-size is the size of the sequence array,
and command-file is the name of the input file that holds the commands to be processed by the
program.

The input for this project will consist of a series of commands (some with associated parameters,
separated by spaces), one command for each line. A blank line may appear anywhere in the
command file, and any number of spaces may separate parameters. You need not worry about
checking for syntactic errors. That is, only the specified commands will appear in the file, and the
specified parameters will always appear. However, you must check for logical errors. These include
attempts to access out-of-bounds positions in the sequence array or in a sequence. The commands

1



will be read from standard input, and the output from the commands will be written to standard
output. The program should terminate after reading the EOF mark. The commands are as follows:

insert pos type sequence
Insert sequence to position pos in the sequence array. type will be either DNA or RNA. You

must check that sequence contains only appropriate letters for its type, if not the insert operation
is in error and no change should be made to the sequence array. If there is already a sequence at pos
and if sequence is syntactically correct, then the new sequence replaces the old one at that position.
It is acceptable that sequence be null (contain no characters) in which case a null sequence will be
stored at pos. Note that a null sequence in a sequence array slot is different from an empty slot.

remove pos
Remove the sequence at position pos in the sequence array (returning the linked-list nodes to

the free list). Be sure to set the type field to indicate that this position is now empty. If there is
no sequence at pos, output a suitable message.

print
Print out all sequences in the sequence array. Indicate for each sequence its position within the

sequence array and the type of that sequence (RNA or DNA). Don’t print anything for slots in the
sequence array that are empty. Finally, print out the number of times that a linked list element has
been created so far by your program (this is done when the freelist is exhausted), and the number
of linked list elements that are currently on the freelist.

print pos
Print the sequence and type at position pos in the sequence array. If there is no sequence in

that position, print a suitable message.

clip pos start end
Replace the sequence at position pos with a clipped version of the sequence. The clipped version

is that part of the sequence beginning at character start and ending with character end. It is an
error if start has a value less than zero, or if start or end are beyond the end of the sequence. A
clip command with such an error should make no alteration to the sequence. If there is no sequence
at this slot, output a suitable message. If the value for end is less than the value for start then the
result should be a sequence containing no characters.

clip pos start
Replace the sequence at position pos with a clipped version of the sequence. The clipped version

is that part of the sequence beginning at character start and continuing to the end of the original
sequence. It is an error if start is less than zero or beyond the end of the sequence, and a clip
command with an error should make no alteration to the sequence. If there is no sequence at this
slot, output a suitable message.

2



copy pos1 pos2
Copy the sequence in position pos1 to pos2. If there is no sequence at pos1, output a suitable

message and do not modify the sequence at pos2.

swap pos1 start1 pos2 start2
Swap the tails of the sequences at positions pos1 and pos2. The tail for pos1 begins at character

start1 and the tail for pos2 begins at character start2. It is an error if the value of the start position
is greater than the length of the sequence or less than zero. If the length of a sequence is n, the
start position may be n, meaning that the tail of the other sequence is appended (i.e., a tail of null
length is being swapped). The swap operation should be reported as an error if the two sequences
are not of the same type, or if one of the slots does not contain a sequence. In either case, no
change should be made to the sequences.

overlap pos1 pos2
Determine the position of maximum overlap between the sequences at positions pos1 and pos2.

The maximum overlap is the position such that the maximum number of characters match in the
two sequences, where the overlapping characters must be a suffix of the sequence at pos1 and a
prefix of the sequence at pos2. Print out the position of overlap and the overlapping subsequence.
If there is no such overlap, print a suitable message. If the sequences are not of the same type,
then do not check for overlap, simply report that there is no overlap due to mixed types being
compared. If either slot does not contain a sequence, then print a suitable message and do not
check for overlap.

transcribe pos1
Transcription converts a DNA sequence to an RNA sequence. It is an error to perform the

transcribe operation on an RNA sequence. To transcribe a DNA sequence, change its type field to
RNA, convert any occurrences of T to U, complement all the letters in the sequence, and reverse the
sequence. Letters A and U are complements of each other, and letters C and G are complements
of each other. If the slot is empty, then print a suitable message.

3


