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ABSTRACT

The life of a cell is governed by the physicochemical properties of a complex network of in-
teracting macromolecules (primarily genes and proteins). Hence, a full scientific under-
standing of and rational engineering approach to cell physiology require accurate mathe-
matical models of the spatial and temporal dynamics of these macromolecular assemblies,
especially the networks involved in integrating signals and regulating cellular responses. The
Virginia Tech Consortium is involved in three specific goals of DARPA’s computational bi-
ology program (Bio-COMP): to create effective software tools for modeling gene-protein-
metabolite networks, to employ these tools in creating a new generation of realistic models,
and to test and refine these models by well-conceived experimental studies. The special em-
phasis of this group is to understand the mechanisms of cell cycle control in eukaryotes (yeast
cells and frog eggs). The software tools developed at Virginia Tech are designed to meet gen-
eral requirements of modeling regulatory networks and are collected in a problem-solving
environment called JigCell.

INTRODUCTION

THE LIVING CELL is a miniature, membrane-bound, biochemical machine that harvests material and en-
ergy from its environment and uses them for maintenance, growth and reproduction. These processes

are carried out by macromolecular machines (enzymes, ribosomes, transport proteins, structural proteins,
motor proteins) whose structures are encoded in nucleotide sequences (DNA and mRNA). The activities of
these macromolecules are controlled and coordinated by regulatory networks of great complexity and ex-
quisite effectiveness. These networks collect information from inside and outside the cell, process the data,
and direct cellular responses that foster the survival and reproduction of the cell (Bray, 1995). How these
regulatory systems work is no more or less apparent from their network diagrams than is a complex piece
of electronics from its schematic wiring diagram. Whereas electrical engineers create accurate mathemati-
cal representations of wiring diagrams and use these equations to design new devices, molecular biologists
are not accustomed to this kind of approach. To employ quantitative modeling as a means for deeper sci-
entific understanding and for more rational engineering of cellular responses, there needs to be a paradigm
shift in the field.
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To this end, DARPA’s Bio-Computation Program is supporting development of BioSPICE (Simulation
Program for Intra-Cellular Evaluation), a collection of interoperable programs for model development, sim-
ulation, analysis, and comparison to experimental data. The tools are developed by expert computer scien-
tists, in close collaboration with experienced modelers, and used to build sophisticated models that accu-
rately represent molecular control systems. The models are based on experimental results retrieved from
data repositories, and specific predictions of the models are tested experimentally by molecular biologists
within the program.

The Virginia Tech Consortium is led by experienced modelers (John Tyson and Kathy Chen of Virginia
Tech, Bela Novak of the Budapest University of Technology and Economics), experimentalists (Jill Sible
of Virginia Tech, Fred Cross of The Rockefeller University, and Michael Mendenhall of the University of
Kentucky Medical School), and computer scientists (Cliff Shaffer, Layne Watson and Naren Ramakrish-
nan of Virginia Tech). The group’s goals are to develop accurate models of cell growth and division (Table
1), to conduct novel experimental tests of some of these models (Table 2), and to create general-purpose
software tools (Table 3). This paper reviews progress to date in these three areas. Technical details are pro-
vided in cited references and in papers in preparation.

MODELING AND EXPERIMENTATION

The cell division cycle, the sequence of events by which a cell replicates all its components and divides
them equally between two daughter cells, is an ideal test case for the BioSPICE program. The cell cycle is
a regulatory system of fundamental biological significance, governed (in eukaryotes) by a universal mech-
anism that has been characterized in great detail both genetically and biochemically (Murray and Hunt,
1993). Realistic and accurate models are available, which make specific predictions that can be tested ex-
perimentally. However, cell cycle modeling has now reached the limit of what can be “hand-crafted,” and
the next level of computer simulation will require the type of tools envisaged by BioSPICE.

Our modeling efforts center around two specific experimental systems: frog eggs and budding yeast cells.
Frog eggs provide a convenient system for biochemical studies, especially in cytoplasmic extracts (Murray
and Kirschner, 1989). By supplementing egg extracts with recombinant proteins, one can manipulate the
regulatory network to almost any specifications (Kumagai and Dunphy, 1995; Solomon et al., 1990). Bud-
ding yeast is an ideal organism for genetic characterization of molecular regulatory systems, and most of
the genes encoding its cell cycle control system are now known (Mendenhall and Hodge, 1998).

Frog eggs and extracts

Regulation of Cdk1-cyclin B activity: parameter estimation. Ten years ago, Novak and Tyson (1993)
published a thorough theoretical study of the mechanism of mitotic control in frog eggs (Xenopus laevis).
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TABLE 1. SURVEY OF MODELS

Cell division cycle
Budding yeast—molecular regulation of “Start” (G1-to-S transition) and “Finish” (metaphase-anaphase-telophase

transitions); mechanism of the morphogenetic checkpoint (impaired bud formation)
Fission yeast—comprehensive model of G1-S, G2-M and meta-anaphase transitions; septation initiation network
Frog egg—patterns of cyclin-dependent kinase activation in early embryonic development (Cdk1-cyclin B activity

and Cdk2-cyclin E activity); regulation of Cdk1-cyclin B activity in frog egg extracts
Other phenomena

Growth patterns in fission yeast—spatiotemporal organization of zones of actin polymerization, which determine
regions of cell wall extension and hence cell shape

Circadian rhythms in fruit flies—oscillations and steady states in models of the synthesis and degradation of
PERIOD and TIMELESS proteins in fly brain cells; mechanism of robust temperature compensation

Apoptosis (programmed cell death)—autocatalytic activation of caspases; mechanisms to stabilize the inactive
state; irreversible activation



A simplified version of their model is presented in Figure 1 as a graph, where labeled directed edges rep-
resent chemical reactions transforming substrates into products (the vertices of the graph). Reactions cause
the concentrations, Ci (i 5 1, . . . , N), of the chemical species (the substrates and products) to change in

time according to a system of N ordinary differential equations 5 ^
R

j51 

bijvj (i 5 1, . . . , N), where vj

is the velocity of the jth reaction in the network and bij is the stoichiometric coefficient of species i in re-
action j (bij , 0 for substrates, . 0 for products, and 5 0 for species that are not transformed by the reac-
tion). The velocities are nonlinear functions of the “state variables,” Ci, and of “parameters” (rate constants,
binding constants, enzyme concentrations). When the number of molecules per cell is small, as is often the
case in cell biology, the governing equations are stochastic differential equations. The full set of rate equa-
tions is a mathematical representation of the temporal behavior of the regulatory network. Modelers are
faced with many computational problems: accurately and efficiently solving equations when velocities vary
over many orders of magnitude, finding steady state solutions (or distributions), estimating rate constants
by fitting numerical solutions to experimental data, and identifying bifurcation points in the multi-dimen-
sional parameter space.

dCi}
dt
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TABLE 2. CRITICAL EXPERIMENTAL TESTS OF CELL CYCLE MODELS

Budding yeast
Nuclear localization of Cln-type cyclins controls cell size at division (Miller and Cross, 2001)
Bistability of the control system (Cross et al., 2002)
Two pathways for exit from mitosis (Cross, 2003)

Fission yeast
Branching patterns in cells that are defective in microtubule polymerization (under investigation in Paul Nurse’s

laboratory)
Frog egg

Rate constants for phosphorylation and dephosphorylation reactions (Kumagai and Dunphy, 1995; Lee et al.,
1994)

Bistability of the Cdk-1-cyclin B activation system (Pomerening et al., 2003; Sha et al., 2003)
Critical slowing down close to the activation threshold (Sha et al., 2003)
Activation threshold raised by agents that block DNA synthesis (Sha et al., 2003)

TABLE 3. OVERVIEW OF SOFTWARE TOOLS

JigCell components
Model Builder—assists users in specifying a reaction network and deriving its governing kinetic equations
Run Manager—organizes numerical input to the kinetic equations, necessary for simulating specific experiments
Comparator—organizes experimental data, associates data to model simulations, computes a score reflecting the

goodness-of-fit of the model to the data
Working components not yet incorporated into JigCell

Parameter Estimator—determines optimal parameter values for a model by minimizing the “distance” between
simulations and experimental data; uses Levenberg-Marquardt method (based on local gradients)

VT DIRECT—determines the global optimum of the fitting problem by an efficient and rational search within a
region of parameter space

Steady State Finder—computes all steady state solutions of an elementary chemical reaction network (mass action
rate laws only); uses a globally convergent homotopy method implemented in the software package
POLYSYS_PLP (Wise et al., 2000)

Components under construction
Utilities—Dashboard, Installer, Tutorials, Help Facility
Database Managers—for models, simulations, comparisons, optimizations
Compare2—tools for comparison of alternative models
Numerical Bifurcation Analysis—seamless access to the best freeware; database management to store, organize,

retrieve, and search results



For example, Novak and Tyson (1993), in order to match their model to the known properties of DNA
synthesis and nuclear division in intact eggs and extracts, had to estimate numerical values of dozens of ki-
netic constants that appeared in their equations. Although there were, at the time, direct experimental mea-
surements of only one of these constants (for cyclin degradation), Novak and Tyson were able to predict
rate constants for the crucial phosphorylation and dephosphorylation reactions simply by fitting their model
to basic qualitative facts about the control system. A few years later, Kumagai and Dunphy (1995) and Lee
et al. (1994) observed the rates of these reactions on recombinant proteins in egg extracts, obtaining val-
ues in close agreement with theoretical predictions (Marlovits et al., 1998). An early goal of the Virginia
Tech consortium was to use automatic parameter estimation to find an optimal fit of the Novak-Tyson model
to the data summarized in Marlovits et al. (1998).

Optimal parameter values are determined by fitting solutions of the reaction kinetic equations to a suite
of experimental observations. The experiments are usually of diverse types: time courses of individual com-
ponents, phenotypes of mutants, thresholds for response. They come from different laboratories, under sub-
tly different conditions, on different cell types. The “weight” given to each measurement is often a sub-
jective decision. Measurements are rarely repeated enough times to generate statistically reliable estimates,
and measurement errors in the independent variable are often comparable to errors in the dependent vari-
able. In such cases, we propose to use an algorithm, ODRPACK, that constructs the orthogonal distance
between the data and the model and minimizes this “objective function” by the Levenberg-Marquardt
method. The kinetic equations of the model are solved by LSODAR. This approach applies quite generally
to optimization problems in the context of biochemical regulatory circuits.

Using this approach, Zwolak et al. (2003) reconsidered the parameter estimation problem described by
Marlovits et al. (1998). Taking Marlovits’ informal parameter estimates as initial values, Zwolak found that
ODRPACK quickly converged to a locally optimal parameter set close by, and the regression error was sig-
nificantly improved. Zwolak also characterized the basin of attraction near this optimal solution. Zwolak’s
work is only a first step toward the goal of meaningful parameter estimation in cell cycle models. The team
is actively pursuing both local and global optimization strategies, as well as parameter survey tools like
Latin hypercube sampling.

Regulation of Cdk1-cyclin B activity: experimental confirmation of bistability. The original paper by No-
vak and Tyson (1993) made some striking predictions about the activation of MPF (M-phase promoting
factor, the active form of Cdk1-cyclin B) (Fig. 1). Frog egg extracts, as prepared by Solomon et al. (1990),
have copious amounts of Cdk1 but no cyclin B. By adding fixed amounts of recombinant, non-degradable
cyclin B, Solomon observed a distinct threshold below which MPF activity is negligible and above which
it is proportional to the total amount of cyclin B in the preparation (Fig. 2a). The Novak-Tyson model ac-
counts for this threshold in terms of a saddle-node bifurcation in the kinetic equations and makes three pre-
dictions about the threshold (Fig. 2b):

ii(i) There should be a different (lower) threshold for MPF inactivation, when cyclin B concentration is de-
creased in an initially active extract. This result would indicate that mitotic entry and exit are regu-
lated by a hysteresis loop.

i(ii) The time delay for MPF activation is inversely proportional to cyclin B concentration when the con-
centration is just above the threshold. The data of Solomon et al. (1990) did not support this predic-
tion, and a more quantitative re-examination of the timing of MPF activation was called for.

(iii) The threshold value of cyclin B should increase in the presence of inhibitors of DNA synthesis. This
prediction concerns the fundamental control system regulating cell cycle checkpoints, which arrest pro-
gression through the cell cycle when genomic integrity is threatened.

In a recently published paper (Sha et al., 2003), Sible and her coworkers report confirmation of all three
predictions (Fig. 2c,d). Prediction (i) was also confirmed independently by Pomerening et al. (2003). Sha’s
results, as an example of bridging experimental and theoretical work, were prominently highlighted in the
editorial section of IEEE/AIP journal Computing in Science and Engineering (March–April 2003 issue).

Regulation of Cdk2-cyclin E activity. After fertilization, frog eggs undergo 12 rapid (30 min) synchro-
nous divisions to generate a hollow ball of 4096 cells. During each cell division cycle, MPF (Cdk1-cyclin
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B) fluctuates from low activity (interphase) to high activity (metaphase), correlating with periodic degra-
dation of cyclin B. For each cycle of MPF activity, the dimer Cdk2-cyclin E (an initiator of DNA synthe-
sis in metazoans) undergoes two peaks of activity (15-min period), with highs in interphase (when DNA is
being synthesized) as well as mitosis (Hartley et al., 1996, 1997). Whereas Cdk1-cyclin B oscillations are
driven by periodic bursts of cyclin B degradation (Murray and Kirschner, 1989), Cdk2-cyclin E activity
fluctuates in spite of constant levels of both Cdk2 (Howe and Newport, 1996) and cyclin E (Hartley et al.,
1996). After cycle 12, the egg’s pool of cyclin E is abruptly degraded (Hartley et al., 1996), by an unknown
mechanism independent of cell number, protein synthesis and MPF activity.

We have proposed a molecular mechanism and mathematical model for these curious features of Cdk2-
cyclin E activity in early frog embryos (Ciliberto et al., 2003b). We assume that (i) Cdk2-cyclin E oscilla-
tions are driven by periodic inhibitory phosphorylations of the Cdk2 subunit by Wee1 kinase, and (ii) cy-
clin E degradation is dependent on autocatalytic loading of Cdk2-cyclin E onto a nuclear structure. We have
tested some predictions of the model. For instance, when the embryo is injected with the recombinant pro-
tein Xic1D34, this specific inhibitor of Cdk2-cyclin E activity blocks the 15-min oscillations, as expected,
and delays the degradation of cyclin E until a few hours after Xic1D34 itself is degraded. The model pre-
dicts that Cdk2-cyclin E and Wee1 are involved in a negative feedback loop, in contrast to Cdk1-cyclin B
and Wee1, which are mutual antagonists. Direct experimental evidence for the negative feedback loop,
which has yet to be obtained, will provide a critical test for this model.

Budding yeast

The basic cell cycle engine. The molecular machinery of the eukaryotic cell cycle control is known in
more detail for budding yeast, Saccharomyces cerevisiae, than for any other organism (Mendenhall and
Hodge, 1998). Molecular biologists have painstakingly dissected and characterized individual components
and their interactions to derive a consensus picture of the regulatory network (Fig. 3). Some years ago, Chen
et al. (2000) published a thorough computational exploration of this model, and recently Chen and Calzone
(in preparation) have extended the model considerably to include the complex interactions of proteins con-
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FIG. 1. Activation of M-phase promoting factor (MPF) in frog eggs (Novak and Tyson, 1993). Mitosis is initiated
by cyclin-dependent kinase (Cdk1) in association with cyclin B (CycB). In frog eggs, CycB is synthesized steadily (re-
action 1) and degraded periodically (reaction 2) by the anaphase promoting complex, APC (the four small circles rep-
resent products of cyclin degradation). CycB combines rapidly with Cdk1 subunits (reaction 3) to form active MPF.
MPF is inactivated by phosphorylation (reaction 4; catalyzed by Wee1) and re-activated by dephosphorylation (reac-
tion 5; catalyzed by Cdc25). Three feedback signals control this network: MPF activates Cdc25 (positive feedback),
MPF inactivates Wee1 (mutual antagonism), and MPF activates the APC (negative feedback).



trolling exit from mitosis. The new model, developed in collaboration with Fred Cross, consists of about
35 differential and algebraic equations for the regulatory protein species and their complexes (some of which
are indicated in Fig. 3). The governing equations contain more than 100 parameters (kinetic constants) that
must be estimated.
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FIG. 2. Bistability of MPF activation in frog eggs. (a) Solomon et al. (1990) measured MPF activity in frog egg ex-
tracts supplemented with a fixed amount of non-degradable cyclin B, observing a characteristic cyclin threshold for MPF
activation. (b) Novak and Tyson (1993) predicted that Solomon’s threshold is indicative of an S-shaped dependence of
MPF activity on cyclin level. For cyclin concentrations between the two thresholds, the control system has two stable
steady states (interphase and M phase) separated by an unstable steady state (---). (c,d) Sha et al. (2003) measured MPF
activity in extracts supplemented with increasing and decreasing amounts of cyclin B. “I” and “M” refer to the mor-
phology of nuclei within an extract (interphase and metaphase, respectively; see insets). With increasing cyclin B con-
centration (panel c) Sha et al. confirmed Solomon’s threshold. With decreasing cyclin B concentration (panel d) they
confirmed the predictions of Novak and Tyson: (i) the cyclin threshold for MPF inactivation is about three times lower
than the cyclin threshold for MPF activation, (ii) the control system is bistable for cyclin concentrations between the
thresholds, (iii) MPF activity on the upper branch of the S-shaped curve is roughly proportional to cyclin concentration.
Sha et al. confirmed two other major predictions of the Novak-Tyson model, as described in the text. Reprinted from
the Proceedings of the National Academy of Sciences, U.S.A., copyright (2003).



The model has been verified in three specific ways. First of all, it must be consistent with the pheno-
types of over 100 mutants that have been constructed and characterized experimentally by deleting or over-
expressing the genes that code for all the components of the mechanism singly and in myriad combinations.
To test for consistency, we define a “basal” parameter set, presumed to describe wild-type budding yeast
cells. The solution of the governing equations with this parameter set must be consistent with the physiol-
ogy of wild-type cells: for example, durations of the unbudded and budded phases of the cell cycle, size of
the cell at the onset of DNA synthesis and at division, and the relative amounts of key regulators in the cell
at different stages in the cycle. Next, for each mutant, we are allowed to change only certain parameters in
specific directions. For instance, if the gene for Cln2 is deleted, then we must set the rate constant for Cln2
synthesis to zero. If the Clb2-gene is engineered to remove the amino acid sequence in Clb2-protein rec-
ognized by Cdc20 and Cdh1, then we must set to zero the rate constants characterizing Cdc20- and Cdh1-
dependent degradation of Clb2. All other parameters in the basal set must remain as they are. When the
governing equations are solved with a “mutant” parameter set, the model must be consistent with the ob-
served phenotype of that particular mutant. For example, the Cln2-deletion mutant is perfectly viable, but
it is large and bud emergence is significantly delayed (Dirick et al., 1995). Over-expression of the Clb2-
degradation deficient gene renders cells inviable, blocked in late anaphase (chromosomes separated but cell
undivided) (Amon et al., 1994).

Phenotypic details of the 125 mutants in our data set provide considerable constraints on the 100-di-
mensional parameter space, allowing us to estimate all the parameters in the model and to test the accuracy
and sufficiency of the wiring diagram. These estimated values are predictions, and Mendenhall is develop-
ing methods for direct measurement of some of these rate constants on purified proteins. In addition, the
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FIG. 3. Cell cycle control system in budding yeast (Chen et al., 2000). Cell cycle events in budding yeast are trig-
gered by Cdk1 (black rectangle) in association with a variety of cyclins: Cln2 (primarily responsible for bud emer-
gence), Clb5 (DNA synthesis), and Clb2 (mitosis). Cyclin levels are controlled by synthesis (transcription factors are
SBF and Mcm1), by degradation, and by a stoichiometric inhibitor (Sic1). (The binding of Cdk1 to cyclin and the re-
lease of Cdk1 upon cyclin degradation are not represented explicitly on this diagram.) Clb2 degradation by the anaphase
promoting complex (APC) is mediated by Cdc20 and Cdh1. The many feedback signals in the control system are in-
dicated by dashed lines (catalytic actions). Especially noteworthy are (i) the mutual antagonism between the Clb-de-
pendent kinases and their enemies (Sic1 and Cdh1), and (ii) the negative feedback loop whereby Cdk1–Clb2 activates
Cdc20–APC activates Cdc14 activates Sic1 and Cdh1, which then inactivate Cdk1–Clb2.



model can be used to predict the phenotypes of specific mutants that have not yet been constructed. A num-
ber of predictions of the model about mitotic-exit mutants have been tested recently by Cross (2003), and
they are confirmed.

The second test concerns the link between cell size and progress through the yeast cell cycle (Futcher,
1996; Johnston et al., 1977; Tyson et al., 1995). In the model, this link is forged by an assumption that
Cdk1-cyclin dimers accumulate in the nucleus of the cell, achieving intra-nuclear concentrations that are
proportional to total cell size (total number of ribosomes). Miller and Cross (2001) have tested this crucial
assumption of the model by manipulating the “nuclear localization signals” on Cln proteins. By increasing
or decreasing the targeting of Clns to the nucleus, Miller and Cross made cells smaller or larger, respec-
tively, as predicted.

The third test concerns bistability in the budding yeast cell cycle control system (Fig. 4). As Chen et al.
(2000) pointed out, the antagonism between the Clb-dependent kinases (Cdk1-Clb2 and Cdk1-Clb5) and
their enemies (Sic1 and Cdh1) creates two, coexisting, stable steady states (Fig. 4a): a “G1” state (low ac-
tivities of the Clb-dependent kinases and high activities of their enemies) and a “S-G2-M” state (vice versa).
“Helper” proteins, Cln2 and Cdc20-Cdc14 (Fig. 4a), drive transitions between these two states. Early in the
cell cycle, rising activity of Cdk1-Cln2 destabilizes the G1 state and forces the transition to the S-G2-M
state. Physiologists call this transition “Start.” At the end of the cycle, activation of Cdc20 and Cdc14 desta-
bilize the S-G2-M state and force the transition back to G1 (called “Finish” or “exit from mitosis”). Cross
et al. (2002) tested this prediction of the model with an engineered strain of budding yeast that allowed
them to control precisely the relative activities of Cln-dependent kinases and of Cdc14. They showed that,
when both activities are zero, the control system could stably arrest in either G1 or M phase of the cell cy-
cle, depending on which transition was last induced (Fig. 4b).

The morphogenetic checkpoint. Comparing Figures 1 and 3, we see a significant difference between frog
and yeast cell cycle control: in frog eggs, a major role is played by Cdk1 phosphorylation-inactivation by
Wee1 (and dephosphorylation by Cdc25), whereas in the budding yeast wiring diagram, the analogous re-
actions are absent. Indeed, budding yeast cells contain a kinase and phosphatase homologous to Wee1 and
Cdc25 (Booher et al., 1993), but these enzymes seem to play no role in the normal cell cycle (Amon et al.,
1992; Sorger and Murray, 1992). Cells with mutated Cdk1 that cannot be inactivated by Wee1 (CDC28AF)
are perfectly viable in the presence of DNA synthesis inhibitors, and their “unreplicated DNA checkpoint”
mechanism is still intact. Most eukaryotic cells are prevented from entering mitosis if there are problems
in DNA replication, and this block is imposed by Cdk1 phosphorylation by Wee1. Not so in budding yeast,
which enter mitosis just fine in the presence of unreplicated DNA, but cannot exit.

In budding yeast, Wee1 and Cdc25 are used instead to monitor a “morphogenetic checkpoint” (Lew,
2000). If bud emergence is aborted (for example, by drugs or by mutations that block actin polymeriza-
tion), entry into mitosis is delayed. This delay is achieved because Cdk1-Clb2 is inhibited by phosphory-
lation, catalyzed by a checkpoint-activated form of Wee1 (Sia et al., 1998). The delay prevents the forma-
tion of di-nucleate cells, which, though viable, are at a selective disadvantage to mono-nucleate cells (Sia
et al., 1996).

The morphogenetic checkpoint is also intimately connected with a developmental switch in the life cy-
cle of yeast, when they switch from the unicellular, budding mode of reproduction to a multicellular, pseudo-
hyphal mode of growth (Edgington et al., 1999; Loeb et al., 1999). We have studied the wiring diagram
for the morphogenetic checkpoint in great detail (Ciliberto et al., 2003a), comparing its behavior to the phe-
notypes of mutants studied in the laboratory of Daniel Lew at Duke University.

Other modeling efforts

Tyson’s group is also involved in stochastic modeling (Mohsen Sabouri-Ghomi) and bifurcation analy-
sis (Dorjsuren Battogtokh) of the budding yeast cell cycle, and in bifurcation analysis (Emery Conrad) and
mechanisms of temperature compensation (Christian Hong) of circadian rhythms in fruit flies. Novak’s
group is modeling the fission yeast cell cycle (Akos Sveiczer), patterns of growth in fission yeast (Attila
Csikasz-Nagy), and bistability in the signaling pathway for programmed cell death (Bela Gyorffy).
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SOFTWARE DEVELOPMENT

JigCell refers to our suite of software components intended to provide a problem-solving environment
(PSE) (Ramakrishnan et al., 2002) for modeling molecular regulatory networks. JigCell was developed in
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FIG. 4. Bistability in the budding yeast cell cycle. (a) Chen et al. (2000) predicted that the activity of Cdk1–Clb2 should
show an S-shaped dependence on the combined activities of the Start-promoters (Cln2– and Cln3–dependent kinases) and
the Finish-promoters (Cdc20 and Cdc14). When the promoters are absent, the control system is in the “neutral” position
(A/B in the figure) and may persist indefinitely in either G1 phase (low Clb2–dependent kinase activity) or M phase (high
Clb2 activity). (b) Cross et al. (2002) tested the prediction in a yeast strain allowing them to control Cln3 expression by
galactose induction and Cdc14 activity by temperature. “Neutral” corresponds to cells growing on glucose (Cln3 synthe-
sis off) at 37 C (Cdc14 inactive). Cell cycle phase is monitored by budding index and Clb2 level (G1 5 low budding in-
dex and Clb2 absent, M 5 high budding index and Clb2 present). The figure shows that cells in neutral can arrest stably
in either G1 or M phase, depending on which transition (Start or Finish) was the last event experienced. Reprinted from
Molecular Biology of the Cell (2002, vol. 13, pp. 52–70), with permission by the American Society for Cell Biology.



close collaboration with the modeling team using standard participatory design techniques. Rather than bas-
ing it on existing, general-purpose PSEs, JigCell was tailored to the specific needs of molecular cell biol-
ogists. This approach has not been a significant drawback, since most of the development work relates to
domain-specific support rather than modeling infrastructure. We intend to support experts in molecular bi-
ology and biophysical chemistry who do not have significant experience in formal modeling. As much as
possible, we employ off-the-shelf components, such as libraries of numerical algorithms, visualization tools,
and communication protocols, where quality implementations exist and technical specifics can be hidden
from the user.

In order to support the “modeling cycle” (Fig. 5) exemplified in the previous section, JigCell has three
major components. The Model Builder assists the user to translate a wiring diagram into a correct and con-
sistent set of differential-algebraic-discrete equations. The kinetic constants in the model, which are for the
most part unknown at this stage, are given names instead of numerical values. The Run Manager associ-
ates a particular experimental protocol with a model (mathematical equations), a specific set of parameter
values and initial conditions, and specifications for numerical simulation of the equations. The Run Man-
ager tracks instructions for deriving the specific parameter values from a “basal” parameter set, so that the
modeler can easily explore the dynamics of a model by twiddling the basal parameter values. The Com-
parator contains experimental data, a pointer to the appropriate row in a run file for simulating this data,
output from the simulation, instructions for transforming simulation results into predictions in the same for-
mat as the experimental data, and a facility for quantifying the goodness-of-fit of the simulated to observed
data and flagging outliers.

Model builder

The Model Builder (Vass et al., 2003) assists the user in specifying reaction equations and kinetic in-
formation of a molecular regulatory network. The information is displayed in spreadsheet format. A row of
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FIG. 5. The modeling cycle. The modeler starts with a hypothetical wiring diagram that he or she thinks is consis-
tent with a set of experimental observations on a certain aspect of cell physiology. To test this hypothesis, the wiring
diagram must be translated into a set of dynamical equations, parameters in the equations must be estimated, simula-
tions run, and the model output compared to the original experimental data. Typically the output looks promising but
is not in good quantitative agreement with experiment. Discrepancies trigger the inner loop of parameter adjustments
to get a better fit. If no amount of parameter twiddling can bring the model in alignment with the data, then the mod-
eler must consider changes in the wiring diagram itself, which starts the whole process from the top.



the spreadsheet specifies a single chemical reaction: its substrates and products, stoichiometry, kinetic rate
law, enzymatic catalysts, and designations of rate constants. For example, if we were working on the wiring
diagram in Figure 1, we might write for reaction 4 something like this: Cdk1CycB is reset to PCdk1CycB,
Michaelis-Menten kinetics, enzyme 5 Wee1, turnover number 5 “kwee”, Michaelis constant 5 “Kmwee.”
(The precise syntax of the Model Builder is illustrated in Fig. 6.) Chemical reactions and rate laws provide
a natural, precise, and concise representation of molecular regulatory networks of the type envisioned by
BioSPICE. The Model Builder can also handle discrete events, such as cell division [mass(t) R mass(t)/2],
when a certain condition is fulfilled (e.g., Clb2(t) drops below a given threshold value).

Species names and kinetic information are checked continuously during model entry, with color high-
lights indicating portions of the model that are not correctly specified. The Model Builder also checks con-
tinuously for conserved quantities in the mechanism. For example, if the only reactions involving Wee1 are
inter-conversion between active and inactive forms, then Wee1_total 5 Wee1_active 1 Wee1_inactive is a
conserved quantity (a constant). In networks of even modest complexity, it is difficult to identify and im-
plement these conservation conditions correctly. The Model Builder finds them automatically from the ma-
trix of stoichiometric constants.

When a wiring diagram is fully entered into the spreadsheet and all inconsistencies have been resolved,
the Model Builder constructs the governing equations and outputs them in three formats (at present). Be-
cause SBML (Systems Biology Markup Language) is becoming the standard interchange language in the
modeling community, the Model Builder reads and writes models in SBML Level 2 (www.sbw-
sbml.org/sbml/docs/index.html). Because the Tyson lab uses PhasePlane and LSODE as its standard simu-
lator packages, the Model Builder also writes the differential-algebraic-discrete equations as PhasePlane-
specific “.ode” files and generic FORTRAN subroutines.

The Model Builder will be able to support stochastic models when it is integrated with BIONETS, a sto-
chastic simulator package being developed by another BioSPICE group (led by Tim Elston). Spatial mod-
eling, at present, is supported only as subdivision of a cell into topologically distinct compartments. Part
of the problem here is that the modeling community has not yet settled on a general framework for sto-
chastic and spatial modeling (in terms of SBML standard syntax).

Run manager

Also in spreadsheet format, the Run Manager (Fig. 7) is intended to describe an ensemble of simulation
runs. Each row specifies how to simulate a certain experiment: the model, the parameter values and initial
conditions, and the simulator to use. For instance, suppose we wanted to describe the simulation of a se-
ries of yeast cell mutants. The first row of the Run Manager might describe how to simulate wild-type cells,
using a basal parameter set. The second row might describe the simulation of a Cln2-deletion mutant us-
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FIG. 6. The Model Builder. An implementation of the frog egg model in Figure 1. The APC is sometimes called the
Cyclosome, hence the variable “csome” in this implementation.

http://www.sbwsbml.org/sbml/docs/index.html
http://www.sbwsbml.org/sbml/docs/index.html


ing exactly the same information as in row 1, except that the rate constant for synthesis of Cln2 (given the
name “kscln2” in the Model Builder) is singled out and given the value 0. Suppose row 3 describes a mu-
tant cell with two copies of the wild-type Cln2 gene. In this case, kscln2 must be singled out and multi-
plied by 2. Now, if the modeler decides that his/her first guess of a numerical value for kscln2 is inoppor-
tune, it is a simple matter to change the value of kscln2 in the basal parameter set, and this change will be
propagated automatically by the Run Manager to all simulations of mutants involving changes in expres-
sion of Cln2. By organizing information in this way, the Run Manager allows the modeler to explore the
parameter space easily over a complicated set of simulations.

Comparator

The Comparator (Fig. 8) is a tool for quantitative comparison of experimental data to model simulations.
It is organized as a series of spreadsheet tabs. On the first tab, one enters experimental data as “lists of
lists.” Elements of these lists may be real numbers, integers, Boolean variables, or character strings. For in-
stance, a row might contain the list (true, 1.8) whose elements answer the questions “is the mutant viable?”
and “if so, how much larger is it at division compared to wild-type cells?” Or it might contain the list (false,
“anaphase”) whose elements answer the questions “is the mutant viable?” and “if not, at what phase in the
cell cycle is it arrested?” A string like ((15.,0.06), (30.,0.13), (45.,30.7), . . . ) might represent a series of
measurements of MPF activity at different concentrations of total cyclin B (e.g., Solomon’s [1990] exper-
iment).

The second tab associates experimental data with simulation instructions on a row of a run file created
by the Run Manager. Furthermore, once the simulation results are retrieved from the Run Manager, this tab
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FIG. 7. The Run Manager. Instructions for simulating a few experiments from Kumagai and Dunphy (1995).

FIG. 8. The Comparator. Instructions for comparing the simulations in Figure 7 to the data in Kumagai and Dunphy
(1995).



contains a user-defined program for extracting the experimental observations, say (false, “anaphase”), from
a table of numbers in the form (t, x1(t), x2(t), . . . ).

The third tab describes how to compute a numerical value representing the goodness-of-fit of the simu-
lation to the data, and specifies a threshold for this number, beyond which the fit is considered unaccept-
able. Unacceptable fits are highlighted in color so that the modeler can see at a glance where the model
(equations plus parameter values) is having problems.

Exploration of parameter space, the inner loop of the modeling cycle (Fig. 5), is the most common and
tedious chore in this business. By changing the numerical value of a suspect parameter in the basal set, the
modeler can now see how the change propagates through the entire model and affects simulations of all the
data to be modeled. The parameter change may indeed fix the problem for which it was intended, but may
introduce new and unexpected discrepancies between the model and other experimental data.

By automating the comparison process, the Comparator takes all the drudgery out of the parameter-twid-
dling stage of model exploration, when the modeler is testing his/her intuition about the dynamic proper-
ties of a wiring diagram. It also provides the groundwork for the next stage: automatic parameter estima-
tion. The computer can now score a fit of the model to the data and explore parameter space automatically
for (possibly multiple) regions of good fit. Parameter optimization can be performed by local gradient-fol-
lowing algorithms or by global search algorithms. We are developing such tools, but they are not yet inte-
grated into JigCell.

Other components

We are designing databases to manage the information to be generated by JigCell when it is fully oper-
ational (Dan Moisa, a graduate student in Ramakrishnan’s lab). By recording usage of models and para-
meter sets and tracking simulations, run files, and comparisons as they are produced at every step of the
modeling cycle, JigCell will enable better model management and facilitate efficient retrieval, searching,
querying, and mining of the data.

We plan to use the BioSketchPad (http://bio.bbn.com/biospice/biosketchpad/index.html) as a graphical
user interface for our Model Builder, and MONOD (www.molsci.org/Dispatch?action-WebdocWidget:4884-
detail51) as our notebook for organizing the experimental information on which models are built. We are
also developing tools to aid numerical bifurcation analysis of models.

In the future, it might be useful to borrow some ideas from the computer-game industry. Like heroes and
villains fighting it out in a virtual castle, one might think of cell control systems as molecular agents (genes,
proteins and metabolites) interacting according to fixed rules in a virtual environment resembling the in-
ternal structures of a eukaryotic cell. The biophysical chemistry underlying the rules must be solid, but ap-
proximations can be tolerated for the sake of computational speed and efficiency. Intriguing results can be
confirmed using more accurate software in the BioSPICE toolkit. Game-based models with compelling
graphics might be easily designed and sufficiently realistic and appealing to attract even the most reluctant
molecular biologist to the modeling business.

CONCLUSION

Our experiences in modeling cell cycle regulation illustrate the challenges and promises of the BioSPICE
program. With current software tools, a skilled modeler can create a realistic and accurate mathematical
model of a complex molecular regulatory system, like that controlling cyclin-dependent kinase activity in
eukaryotic cells. But the process is tedious and error prone, and not suitable for use by novices. Nonethe-
less, in the post-genomic world of molecular cell biology, there is a growing need for more and better mod-
els. To meet this need, the community requires software tools that will help experienced modelers to tackle
problems of greater complexity and help novices to build correct and useful models of their latest labora-
tory experiments. In addition to BioSPICE, there are other recent attempts to provide the necessary com-
putational modeling environment: Virtual Cell (Loew and Schaff, 2001), the Systems Biology Workbench
(Hucka et al., 2003), GEPASI (www.gepasi.org), (Mendes, 1993; 1997), and E-cell (http://ecell.source-
forge.net/), (Tomita et al., 1999). At this stage, it seems wise to pursue a variety of ideas, keeping in mind
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that eventually the community will have to bring together the best ideas in a functional resource for the
worldwide community of scientists interested in the molecular basis of cell physiology. To this end, the
open-source philosophy of BioSPICE seems especially well suited.
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