
Sixth Program Visualization Workshop 1

Truly Interactive Textbooks for Computer Science Education

Clifford A. Shaffer∗, Thomas L. Naps∗∗, and Eric Fouh∗

∗Department of Computer Science
Virginia Tech

∗∗Department of Computer Science
University of Wisconsin, Oshkosh

shaffer@cs.vt.edu, naps@uwosh.edu, efouh@vt.edu

1 Introduction

The dream of an electronic textbook has been actively pursued for at least two decades. Goals
include (i) improving exposition through a richer collection of technologies than are available
through print textbooks, and (ii) increase student engagement with the material, in order
to get them to learn at a higher level in Bloom’s taxonomy (Naps et al., 2002). Instead of
merely viewing material, we can hope to use frequent assessment (by asking questions) to get
them responding, and through interactive activities get them to change and construct virtual
artifacts. We will use the term hypertextbook to refer to an electronic textbook that integrates
interactive exercises and assessment. See (Rössling et al., 2006; Ross and Grinder, 2002) for
background on efforts to define and implement the hypertextbook.

In this paper, we discuss our plans to create a hypertextbook for a complete semester
course in Data Structures at the Sophomore level. Data Structures and Algorithms as a
topic can particularly benefit from the use of advanced technology to aid explanation of the
dynamic processes that make up the essence of an algorithm, and which can be difficult to
convey using words and images. Therefore, our particular focus is on the use of algorithm
visualization (Shaffer et al., 2010; Naps et al., 2002) as a means both to deliver the necessary
dynamic exposition, and to increase student interaction with the material. We will discuss
how research results indicating the value of AVs combined with a lack of progress in uptake of
AVs in actual courses leads us to the conclusion that a complete semester-long course package
is the right way to go. We describe our plans for implementation, including a discussion of
relevant technology for the project.

2 Motivation

Periodic surveys on both instructor interest in AVs and their level of use have been conducted
among attendees of education conferences and listservs for more than a decade. Naps et al.
(2002) report on three surveys conducted in 2000. Collectively, they indicate a strong positive
view in favor of AV use (over 90%). However, only about 10% of respondents at that time
indicated frequent use of AVs in data structures courses at their institutions, while about half
to three quarters indicate occasional use of AVs in such classes.

At SIGCSE’10 (held in Milwaukee during March 2010) we conducted a new survey to de-
termine instructor attitudes toward AVs and their use in the classroom. For details, see Shaffer
et al. (2011). The survey was designed in the spirit of the 2000 surveys, and the findings are
consistent with those earlier results. In 2010, 41 of 43 respondents agreed or strongly agreed
that AVs can help learners learn computing science, with two neutral. However, just over half
had used AV in a class within the past two years. It is not clear that all of the “yes” answers
from the present survey refer to what we might consider to be “AVs.” But they probably all
refer to some sort of dynamic software visualization run on a computer, as was the case in
the 2000 survey. We did not ask about frequency of use of AVs in class.

Our third survey question asked what respondents see as the greatest impediments to using
AVs in courses. Roughly half the responses relate to finding suitable AVs to use. We can



2 Sixth Program Visualization Workshop

hope that the presence of online resources such as the AlgoViz Portal (http://algoviz.org)
will reduce this information gap, by making it easy for instructors to locate quality AVs.
However, about half of the responses relate to issues with integrating AVs into courses. These
results are roughly the same as reported in Naps et al. (2002, 2003) and Rössling et al. (2006).
Such issues are much harder to deal with, and are representative of well-known problems for
adoption of educational technology in general (Hew and Brush, 2007). While it is easy to
give students pointers to AVs as supplemental material, it is much harder to integrate AVs
into lectures, labs, and assignments. Respondants cite lack of time to make course changes,
lack of time within the course to spend additional time on a given topic, and inconsistencies
between the course textbook and the AV.

We hope that community support provided by the AlgoViz portal can help. The model
embraced by AlgoViz is to allow the community to add value beyond information embodied
in a simple catalog of AVs. This value comes as a byproduct of direct communication between
community members. While forums are one obvious method for this, there is a deeper com-
munication involving community ratings and recommendations for content entries and sharing
experiences on how to make the best use of content. A major concern for instructors is de-
ciding whether a given educational resource is of good quality, and how to use it. Therefore,
user feedback on resources is as important as the resources themselves. AlgoViz provides the
field report, which gives a convenient way for instructors who have used an AV in a class to
share their experiences. Field reports are designed to supplement the evaluation data in the
AV Catalog, since AV ratings in the catalog are not necessarily based on real-world classroom
experiences. A field report can thus provide empirical evidence to strengthen or qualify a
recommendation.

The survey results lead us to the conclusion that it is easier to integrate a complete block
of instruction (either a complete topic or even a semester course) than it is to fit a piece of
instruction such as an AV into existing presentation on that topic. Instructors are used to the
concept of adopting a new textbook for new courses that they teach, and often welcome lecture
notes and other class support artifacts. Even for courses taught previously, instructors will
adopt new textbooks and new presentations for various topics in the course. A key aspect is
that adopting a new chunk of content allows the instructor to completely replace or populate
a block of course time, as opposed to squeezing new content or presentation techniques on
top of existing material. In the past, most AVs developers have implicitly taken the approach
that their AV will be integrated into existing presentations. A typical example might be an
AV presenting a Quicksort algorithm, with no tutorial explanation of the algorithm. The
idea seems to be that this visualization can be slipped into lecture or used by students to
supplement the textbook for self-study. But this approach has led to the problems noted
above. In contrast, a complete unit of instruction (including AVs) can more easily replace an
unsatisfactory existing presentation of the topic.

Important technological factors contribute to making AVs easier to use in the classroom
than in prior years. More AVs are available than ever before (Shaffer et al., 2010), backed up
by improved research studies and improved access both through general Internet search and
at the AlgoViz Portal. Increased access to the Internet by students and instructors, both in
and out of the classroom, makes AV use more practical. For example, at Virginia Tech, while
it has been “possible” to project Internet material from a computer in class for over a decade,
it has only been in the past couple of years that such access has become both ubiquitous and
reliable in all of our classrooms. This makes a huge difference in the confidence of mainstream
instructors for using such technology, in contrast to early adopters (Hew and Brush, 2007).

Another potential factor in favor of the use of AVs and hypertextbooks is ubiquitous avail-
ability of laptops and mobile devices. For example, all Engineering majors at Virginia Tech
are required to own a tablet PC, and most also have mobile devices including smartphones,
ebook readers, or iPads. However, there is a downside to the non-PC devices, in that they
have various technology limits on how eTextbook content can be provided. So while there



Sixth Program Visualization Workshop 3

is ubiquitous access to the Internet among our target audience, there are still limits. For
example, Java Applets cannot be displayed on most such devices.

3 Prior Work

The bulk of effort by CS educators involved with interactive AVs has focused on development
of the AV technologies themselves and at best small, focused hypertextbook modules that
incorporate AVs into a particular topic or small set of topics within a course. For example,
Grinder et al. (2002) report on a set of web pages integrated with applets that were used in
parts of a theory of computation course. Many instructors who teach theory now use Susan
Rodger’s JFLAP (Gramond and Rodger, 1999) throughout much of their course and Rodger
has published a hard copy guide to using JFLAP (Rodger and Finley, 2006). In the preface
Rodger warns the reader “our book assumes that the reader has read briefly about these
topics first in an automata theory textbook or a compiler textbook”.

Ross (2008) describes efforts at building a Perl-based infrastructure for creating hyper-
textbooks. The infrastructure relies on the Dreamweaver toolkit. Only a few chapters (three
out of seven) of a theory of computing and a biology book has been produced using this tech-
nology. The system requirements for these hypertextbooks also hinder their wide adoption
due to browser restrictions, use of Java applets, and specific screen resolutions.

Rößling and Vellaramkalayil (2009) report on a technology that integrates AV into Moodle-
based lessons, but the emphasis of that report was again on a technology that would support
visualization-based hypertextbooks in Moodle, and to our knowledge little progress has been
made on the actual writing of such a textbook.

Titterton et al. (2010) have used a lab-centric mode of instruction for introductory CS
courses at UC-Berkeley. Their current work is being done in Moodle and uses a small amount
of AV along with many other “check point” exercises that students must complete as they
progress through a set of material presented in Moodle. It is built upon an earlier technology
called UC-WISE that was developed and used exclusively at UC-Berkeley. Their materials are
designed for introductory CS courses that aims mostly at developing students’ programming
skills. Hence they make only limited use of AVs. Alharbi et al. (2010) are using eXe, an open
source authoring system for academic-related web content using XML and HTML (http:
//www.exelearning.org/). Their efforts intend to help teaching Operating Systems using
visualization. Learners can interact with the AVs, and can take quizzes and tests online. They
used the Sharable Content Object Reference Model (SCORM: http://www.adlnet.gov/) to
support integration of digital teaching materials with a CMS (Moodle in their case).

Another effort to integrate AVs into hypertext is being performed by Karavirta (2009).
His solution is based on HTML and JavaScript, allowing the hypertextbook to be viewed in
any browser without additional plug ins. The learner can interact with the animation and
draw annotations on it, but the current system does not store the annotation, nor does it
support quizzes and tests. Their earlier work on TRAKLA2 (Malmi and Korhonen, 2008)
includes a tutorial on heaps that is integrated with AVs. Animal (Rößling et al., 2000) and
JHAVÉ (Naps, 2005) are AV development systems that include tutorial descriptions for some
single AVs. Crescenzi and Nocentini (2007) takes the novel approach of a traditional textbook
whose examples and illustrations are closely tied to the AlViE AV system.

Largescale use of educational hypermedia in South Korea. provides interesting feedback
about the challenges of hypertextbooks. Kim and Jung (2010) identify usability, portabil-
ity, interactivity, and feedback as major elements to consider while designing such systems.
Learners should be able to ask questions and receive help, as well as control, manipulate,
search and browse hypertextbook content. They also advocate for the development of models
to support group collaboration.

There exists no complete electronic textbook, tightly integrated with AVs, that could
be used as the primary learning resource in a semester-long computer science course. This is



4 Sixth Program Visualization Workshop

perhaps surprising because Marc Brown’s groundbreaking dissertation on AV ((Brown, 1988))
issued the following caution:

Much of the success of the BALSA system at Brown [at the time Brown’s thesis was
written] is due to the tight integration of its development with the development
of a textbook and curriculum for a particular course. BALSA was more than
a resource for that course – the course was rendered in software in the BALSA
system.

Why have CS educators not heeded Brown and authored hypertextbooks? We suspect the
answer is something known to anyone who has written a textbook or an AV: it consumes huge
amounts of time. While writing a textbook is a big job, writing and associated set of AVs
and the assessment support is a far bigger job yet.

4 A Case Study

In this section we briefly describe an online hashing tutorial and a study conducted to deter-
mine its pedagogical efficacy. The results have helped us to make progress toward defining
the requirements for a more comprehensive electronic textbook. Note that this approach is
similar in spirit to the TRAKLA2 heaps tutorial (http://svg.cs.hut.fi/heaptutorial).

In 2008 and repeated again in 2009, students in separate sections of a sophomore level
course on data structures and algorithms at Virginia Tech were taught about hashing. One
section was given standard lecture and textbook for one week, equivalent to what had been
done previously in the class. The other section spent the class time working through an
online tutorial combined with algorithm visualizations to present the same material. The
tutorial used text content taken from the course textbook, so that it was an exact match
to the material being presented in the control section. However, the online tutorial heavily
supplemented this text with algorithm visualizations. The tutorial can be found online at
http://research.cs.vt.edu/AVresearch/hashing.

In each of the trials, the two sections were given a quiz on hashing at the conclusion of
the week of instruction. The results were positive: An analysis of variance shows a significant
difference between the two treatment groups (F(1, 118) = 4.37, p < 0.05), with students
completing the tutorial averaging higher quiz scores than those who were given the lecture
and textbook content. However, the difference in the means is 6.2 percentage points, or
approximately one third of one standard deviation. These results indicate that not only
can an online tutorial be as effective as lecture (which has important implications for distance
learning), but that providing proper interactivity allows computerized instruction to be better
than lecture-based (passive) instruction. However, there is at least one major consideration
that might influence the results of this particular study: How much impact did the controlling
structure of coming to class and doing the tutorial in “lab” setting have on the results? The
outcome could be quite different for a student just reading the material and working through
the visualizations on their own, where self-discipline might well not be sufficient to provide the
necessary amount of time and attention. Likewise, the controlled environment of attending
lecture before reading the textbook on one’s own is also likely to have a major difference
compared to just reading the book on one’s own.

We hypothesize that, if we want to have a viable self-contained electronic textbook that
supports self-study of the material, the system needs to build in some equivalent to the
controlled pacing and feedback that is encountered when attending classes or labs. This
means that assessment and an objective measure of “progress” through the material needs to
be an integral part of the system (whether purely self assessment or with results submitted to
an instructor). This means a much tighter integration of material, interactive exercises, and
assessment than is provided by a system as simple as the Hashing Tutorial.



Sixth Program Visualization Workshop 5

5 Implementation Principles for an Electronic Textbook

Based on our interpretation of the results of the 2010 survey (Shaffer et al., 2011), our expe-
riences with the Virginia Tech Hashing Tutorial, and the continuous improvements in online
technologies that we observe, we think that the time is ripe to create an entire online text-
book for an undergraduate course on Data Structures and Algorithms. Depending on the
exact topics to be covered, this could be beneficial at any level from CS2 through senior
algorithms.

When considering the full breadth of content that would be contained in a complete course
textbook on the subject, we conclude that three distinct forms of content presentation are
desirable. First, no matter how dynamic and interactive the topic, text and images as are
now found in typical textbooks continue to have their place as part of the exposition. Some
content simply is not visual or dynamic and so is efficiently transferred via words and images.

Second, some content is essentially expository (i.e., at that point in the presentation there
is no need for student constructive interaction), but the content is about dynamic processes
or conducive to visual presentation. This includes most algorithm descriptions, such as how
a particular sorting algorithm works. Since initial presentation does not involve exploration
or decision making, or demonstration of proficiency, the prime concern is what techniques
provide the clearest explanation. This could best be handled by a presentation that relies
heavily on diagrams and simple animation, with pacing controlled by the the reader. In
essence, an animated slide show is adequate for such presentations.

Third, there many instances that from student interaction. This includes things as simple
as probing a calculation, (e.g., trying different inputs to a simple simulation or calculation).
An example is the famous Birthday Problem: How many people need to be in a room before
the odds are greater than even that two share a birthday? Another need for interaction comes
with demonstrating proficiency with an algorithm, such as the interactive exercises for tree
insertions that are part of TRAKLA2 (Malmi and Korhonen, 2008; Malmi et al., 2004). These
are best handled by something like a Java Applet to support user interaction and dynamic
on-the-fly calculations/processing of the algorithm. Performance comparisons are also of this
nature, where the student is invited to define and run built-in simulations of multiple data
structures or variants to see how they perform. Binding all of this together should be a
steady stream of assessment activities to make sure that students stay “on track” and to
keep them engaged even during otherwise passive exposition. This can be done with simple
pop-up questions (that might or might not require a successful response to continue) and
end-of-section quizzes whose success might be required to demonstrate competence needed to
continue to the next section.

As we progress from the first to the third of these presentation approaches, the development
cost goes up greatly. Text and images can be developed relatively quickly. In contrast, it took
several student-years of effort (and over two actual years) to develop the Hashing Tutorial,
mainly due to the effort involved in developing a handful of Java applets. A properly animated
slideshow takes longer to create than equivalent text and images, but should be significantly
faster to implement than a fully interactive exercise.

6 Technical Considerations

A number of technologies are available for developing the three presentation types for the elec-
tronic textbook as was envisioned in the previous section. Text and images can certainly be
done with any traditional web development tool. The second component, which we character-
ize as an animated slide show, can be done (as the characterization suggests) using a variety
of presentation tools such as MicroSoft Powerpoint, LaTeX’s Beamer package, OpenOffice
Impress, or Apple Keynote. However, while presentations can be created in these tools, the
resulting presentations cannot so easily be integrated with the rest of the electronic textbook.
Browsers can support some of these tools as plugins, but not universally across a range of



6 Sixth Program Visualization Workshop

devices. The presentations can generally be converted to PDF format, but only Adobe’s
Reader can actually display the animations (at least, evince and xpdf, popular alternative
PDF readers do not). Nor do the PDFs well integrate with non-PDF portions of the whole.

Flash is another popular tool for developing animations, and is rich enough to support the
interactive aspects of the third component of presentation as well. However, Flash requires a
plugin in most browsers, and so is not compatible with devices such as the iPad.

One technology that appears to be robust enough to implement all desired dynamic and
interactive components is HTML5 incorporating JavaScript. HTML5 integrates its dynamic
components well with standard text and images, and easily ports between PC browsers and
mobile devices. Potential concerns include ease of use for content developers (as compared
to, for example, PowerPoint when developing animated slide shows), and level of penetration
of the necessary browser technology. Given that alternatives such as Flash are at least as
problematic in terms of a typical user having access (since they require plugins), the problem
of penetration seems to be low and quickly receding, in that we can expect that college-level
students tend to have access to moderately up-to-date browser technology. Thus, we currently
advocate use of HTML5 technology for developing the dynamic components of the electronic
textbook.

7 Integrated Assessment and Progress Monitoring

There is much evidence that AVs foster effective learning when presented in a way that
forces the student to actively engage with the visualization instead of passively viewing it
(Hundhausen et al., 2002; Naps et al., 2002). Additional engagement can be created by
having the student respond to interactive questions. Although many AVs include questions,
few do so in a way that allows an instructor to monitor their students’ progress. More typically
the student’s interaction with the system produces immediate feedback to the student, but
the assessment of that interaction is not recorded in a way that the instructor can access.
Nor do the students’ answers provide a persistent record for the student that a section has
been mastered, or integrate with navigation through the content such as provided by an
“intelligent tutor”. Two AV systems that do support this sort of integrated assessment are
TRAKLA2 (Malmi et al., 2004; Malmi and Korhonen, 2008) and JHAVÉ. (Naps, 2005).

Although the TRAKLA and JHAVÉ systems support online assessment of students’ using
the visualizations, they both do so in a unique, non-portable way. We seek an approach that
can work with a variety of presentation as well as the electronic textbook structure itself
(some but not all questions will come within AVs). One possibility is a decoupled approach to
assessment, where the actual assessment process is done by following a link to a third-party
site that provides the relevant series of questions. This might take place at the end of each
section in the textbook. Among the factors that will have to be considered in developing this
protocol are:

• Developing effective strategies for assessing student responses. Assessing multiple-
choice, multiple-selection, and fill-in-the-blank questions is straightforward. But au-
tomated assessment of textual responses is clearly much more difficult.

• Support for richer types of activities specific to CS, such as small programming tasks
evaluated by comparing output from the proposed solution to the answer key.

• How to represent test questions. There exist standardized question representations,
such as the IMS Question and Test Interoperability specification (QTI: http://www.
imsglobal.org/question/qtiv1p2/imsqti_oviewv1p2.html).

• How to store student responses and progress in a fashion that makes it easy for instruc-
tors to analyze their students’ results.

• How to store assessments of students’ work in a fashion that respects their privacy.
• How to “loosely couple” the assessment system with the electronic textbook. Because

the visualizations watched by our learners will be launched out of the hypertextbook,



Sixth Program Visualization Workshop 7

we will need to have a mechanism for recognizing the learner’s identity so as to interact
with the quiz/assessment database that might be stored on a different server.

8 Connexions and the Creative Commons

Our final consideration is the broader context in which development of an electronic textbook
should take place. Such a project is a huge undertaking. As evidence of this (besides our
experiences with the extraordinary amount of time that it takes to develop high-quality AVs),
consider that there exist few examples of the type of artifact that we seek to create, as stated
in Section 3. Ideally, a broader community can be encouraged to contribute to the project,
much in the style of an open source software development effort. The authors have many
collaborators within the broader algorithm visualization community, and ideally we could
leverage these collaborations to develop the materials. Since we envision the materials to be
distributed with a GPL or Creative Commons license, intellectual property rights will be less
of an issue than if a commercial publisher were involved.

The Connexions Project (http://cnx.org) is presently the largest collection of online
textbooks developed with a creative commons license model. Connexions is more than a col-
lection of publicly available online textbooks. They have developed a “creative commons”
infrastructure that makes it easy for authors to reuse and combine pieces of textbooks, or to
make their own altered version of an existing textbook. We envision developing our project in
such an infrastructure to support sharing and reuse of educational chunks. There are integra-
tion concerns related to, for example, HTML5 technology or other technology for developing
dynamic presentations. Integration of assessment is also of concern, since Connexions has
only recently begun developing support for assessment.

We envision a multistage process to develop the hypertextbook project. The first step is
to devise a complete management plan and to define the development workflow within the
chosen implementation infrastructure. Next is to define a detailed “storyboard” defining a
detailed layout for the entire hypertextbook, with all of the text and detailed descriptions of
all places where interactive activities or presentations are desired. Third is to then begin an
open development process where submissions from interested parties are provided for specific
activities called for in the Storyboard under a reviewing process. If developed in this way, the
hypertextbook will become “owned by” the broader community of AV developers.

References

A. Alharbi, F. Henskens, and M. Hannaford. Integrated standard environment for the teaching
and learning of operating systems algorithms using visualizations. In 5th International
Multi-Conference on Computing in the Global Information Technology, pages 205–208, 2010.

M.H. Brown. Algorithm Animation. MIT Press, Cambridge, Massachussets, 1988.

Pierluigi Crescenzi and Carlo Nocentini. Fully integrating algorithm visualization into a CS2
course: A two-year experience. In Proceedings of the 12th Annual Conference on Innovation
and Technology in Computer Science Education (ITiCSE), pages 296–300, 2007.

E. Gramond and S.H. Rodger. Using JFLAP to interact with theorems in automata theory.
ACM SIGCSE Bulletin, 31(1):336–340, 1999.

M.T. Grinder, S.B. Kim, T.L. Lutey, R.J. Ross, and K.F. Walsh. Loving to learn theory:
Active learning modules for the theory of computing. In Proceedings of the 33rd ACM
SIGCSE Technical Symposium on Computer Science Education, pages 371–375, 2002.

K. Hew and T. Brush. Integrating technology into K12 teaching and learning: current knowl-
edge gaps and recommendations for future research. Educational Technology Research and
Development, 55:223–252, 2007.



8 Sixth Program Visualization Workshop

C.D. Hundhausen, S.A. Douglas, and J.T. Stasko. A meta-study of algorithm visualization
effectiveness. Journal of Visual Languages and Computing, 13:259–290, June 2002.

V. Karavirta. Towards seamless merging of hypertext and algorithm animation. In Proceedings
of the 5th Program Visualization Workshop, pages 105–114, 2009.

J.H.-Y. Kim and H.-Y. Jung. South Korean digital textbook project. Computers in the
Schools, 27(3 & 4):247–265, 2010.

L. Malmi, V. Karavirta, A. Korhonen, J. Nikander, O. Seppälä, and P. Silvasti. Visual
algorithm simulation exercise system with automatic assessment: Trakla2. Informatics in
Education, 3(2):267–288, September 2004.

L. Malmi and A. Korhonen. Active Learning and Examination Methods in a Data Structures
and Algorithms Course, pages 210–227. Number 4821 in LNCS. Springer-Verlag, 2008.

T.L. Naps. Jhavé: Supporting algorithm visualization. IEEE Computer Graphics and Appli-
cations, 25:49 – 55, September 2005.

T.L. Naps, S. Cooper, and twelve more authors. Evaluating the educational impact of vi-
sualization. In Working Group Reports from ITiCSE on Innovation and Technology in
Computer Science Education, pages 124–136, 2003.

T.L. Naps, G. Rössling, and nine more authors. Exploring the role of visualization and
engagement in computer science education. In Working Group Reports from ITiCSE on
Innovation and Technology in Computer Science Education, pages 131–152, 2002.

S.H. Rodger and T.W. Finley. JFLAP-an interactive formal languages and automata package.
Jones & Bartlett Learning, 2006.

R.J. Ross. Hypertextbooks and a hypertextbook authoring environment. In ITiCSE ’08:
Proceedings of the 13th annual conference on Innovation and technology in computer science
education, page 133–137, Madrid, Spain, 2008. ACM.

R.J. Ross and M.T. Grinder. Hypertextbooks: Animated, active learning, comprehensive
teaching and learning resources for the web. In S. Diehl, editor, Software Visualization,
pages 269–284. Springer, 2002.

G. Rössling, T. Naps, and nine more authors. Merging interactive visualizations with hyper-
textbooks and course management. In Working Group Reports from ITiCSE on Innovation
and Technology in Computer Science Education, pages 166–181, 2006.

G. Rößling and T. Vellaramkalayil. First steps towards a visualization-based computer sci-
ence hypertextbook as a Moodle module. In Proceedings of the 5th Program Visualization
Workshop, pages 47 – 56, 2009.

Guido Rößling, Markus Schüer, and Bernd Freisleben. The ANIMAL algorithm animation
tool. In Proceedings of the 5th Annual Conference on Innovation and Technology in Com-
puter Science Education (ITiCSE), pages 37–40, 2000.

C.A. Shaffer, M. Akbar, A.J.D. Alon, M. Stewart, and S.H. Edwards. Getting algorithm
visualizations into the classroom. In Proceedings of the 42nd ACM Technical Symposium
on Computer Science Education (SIGCSE’11), pages 129–134, 2011.

C.A. Shaffer, M.L. Cooper, A.J.D. Alon, M. Akbar, M. Stewart, S. Ponce, and S.H. Ed-
wards. Algorithm visualization: The state of the field. ACM Transactions on Computing
Education, 10:1–22, August 2010.

N. Titterton, C.M. Lewis, and M.J. Clancy. Experiences with lab-centric instruction. Com-
puter Science Education, 20(2):79–102, 2010.


