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Innovative technology to support highly interactive smart learning content combined with re-
cent advances in data-driven learning science is rapidly changing Computing Education Research
(CER). The widespread adoption of new educational technology such as learning management
systems (LMS) and interactive content are generating large volumes of learning data. New tools
for analyzing big data leveraged by AI (e.g., deep learning for assessment) in turn improve both
content and pedagogy, thus setting up a virtuous cycle fueling learning discoveries and leveraging
innovation in AI: Online technologies → big data analysis → better online technologies.

To accelerate this promise, we propose a dedicated socio-technical research infrastructure for
Computing Education Research built on our highly successful SPLICE project, called SPLICE-
Portal. SPLICE-Portal is needed because too many computing education innovations are not
evaluated or scaled across populations, and because sharing of innovative pedagogical interventions,
data, analytic techniques, and resulting discoveries is too limited. SPLICE-Portal provides the
potential to collect and share learning data at scale from many institutions on a collection of
innovative interventions and analyzed by many researchers using many approaches. Following our
past successes in socio-technical infrastructure creation and use, SPLICE continues to be as much
about researcher community building as it is about the technical infrastructure. SPLICE-Portal
will expand the number of Computing Education Researchers while facilitating novel research
through sharing and use of research-based best practices, of innovative learning technologies, of
high volume/quality data, of advanced AI and statistical methods optimized for CE goals, and
of rigorous evaluation methods to demonstrate large, lasting, and replicable impacts on student
achievement.

Prior NSF-funded work enabled us to form an active community of tool developers and data
analysts. We now must broaden active participation to include educators as well. This will set up
another virtuous cycle tying the research community (who are developing innovative pedagogical
systems) to instructors who are using the online systems to generate the massive data required by
the research community to drive the next cycle of innovation.

Keywords: Computing Education; Data Mining; Machine Learning; Interoperability
Intellectual Merit: SPLICE-Portal will facilitate scientific advances in Computing Educa-

tion Research including: 1) understanding and breaking barriers to scale in instructor adoption
of applications of research-based best practices and innovative learning technologies, 2) using high
volume/quality learner data to unlock mysteries of human learning in the complex context of com-
puting education and to produce innovations that optimize student learning effectiveness, efficiency,
and engagement, and 3) developing new algorithms that produce better learning analytics or better
automated learning support. These scientific advances cross disciplinary boundaries, come from
technical and social scientists, and will be disseminated through the SPLICE-Portal infrastructure
and community as well as usual publication.

Broader Impact: SPLICE-Portal will have direct and immediate impact on hundreds of
researchers during the proposal phase and beyond. It will reduce barriers to educational innovation
and support scientific discoveries in the many scientific communities that contribute to computing
education research but where many researchers and educators currently isolated into separate silos.
The discoveries and innovations enabled by SPLICE-Portal will in turn help tens of thousands of
students in the strategically important field of computer science.



1 Motivation and Goals

Computing Education Research (CER) research is active and rapidly expanding. The ACM Special
Interest Group on CS Education (SIGCSE) is one of the largest ACM SIGs. CER is also attracting
the interest of CISE researches from a number of other domains such as AI, Machine Learning, and
Data Science. This interest is stimulated by the increasing availability of large volumes of learning
data collected in traditional and online learning contexts. We now have new ways to analyze such
data including modern AI and machine learning techniques, and through the lens of new peda-
gogical theories. At the same time, researchers are developing new approaches to pedagogy using
highly interactive “smart” learning content. This includes things like online programming exer-
cises, proficiency exercises, and AI-driven intelligent tutors. This combination of new data, smart
content, and better pedagogical techniques that could leverage these data promises to radically im-
prove computing education. However, this promise is hobbled by the lack of adequate computing
education research infrastructure. Without this infrastructure, researchers are currently limited to
smaller-scale research, typically exploring one novel tool at a single institution or exploring a single
dataset with their own analysis tools. Even the largest projects today explore at best a single tool
or pedagogy across institutions, or work with multiple datasets produced in a single institution.
While the community as a whole has a wealth of pedagogical interventions, datasets, and data
analysis approaches, the lack of infrastructure makes it unreasonably difficult to collect and reuse
this community wisdom and build upon the work of others.

The goal of this proposal is to develop SPLICE-Portal– an Infrastructure for Sustainable Inno-
vation and Research in Computing Education to enhance and scale CER by leveraging the power
of data-driven AI and ML. To do so, we need to overcome 3 challenges: data (there is not enough
quantity and quality of data to develop, test and benchmark data-driven methods), analytics (de-
veloping and sharing data mining and AI methods for CER is highly siloed and disconnected) and
evaluation (while “smart” learning tools are being developed by many researchers in the commu-
nity, they are not easily deployed and replicated across to other institutions). To address these
challenges, we will leverage our connections to the CER community to integrate existing projects
into a large collection of resources including datasets, analytical approaches, and reusable smart
learning content. We will build tools and user services that enable the community to reuse these
resources and contribute to the collection.

The proposal leverages the results of a NSF-supported multi-year community building and
planning project “Community-Building and Infrastructure Design for Data-Intensive Research in
Computer Science Education”. Through a series of 15 workshops we presented and discussed
the ideas of a CER Infrastructure to over 1000 researchers and formed a diverse community of re-
searchers interested in Standards, Protocols, and Learning Infrastructure for Computing Education
(SPLICE, cssplice.org). We further engaged this community through working groups, collaborative
projects, summer school courses, and online forums in discussing, conceptualizing, and prototyping
various components of the proposed infrastructure.

SPLICE refined our vision of the infrastructure, helped us to understand the needs and priori-
ties of key research communities involved in CER, and identified efficient community engagement
approaches. We propose to address these needs and more effectively engage these communities.
We will go the next step by effectively reaching computing educators to use the course material,
which will in turn allow collection of massive amounts of data for use by the research community.
In this way, we reach critical mass on the virtuous cycle: Online technologies → big data analysis
→ better online technologies.
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We will build a research infrastructure for CER that facilitates a wide variety of researchers in
exploring research questions of scientific and practical interest. The following is a sampling of such
questions that our vision will help researchers address.

1. How do we broaden participation of CS and Learning Science Researchers in CS
Education Research? Sub-questions include:
(a) What are current barriers to participation, especially among underrepresented popula-

tions? How do factors like experience, motivation, and pedagogy affect participation?

(b) How can community building and infrastructure tools and services reduce those barriers
and increase participation?

2. Can we better apply techniques for automatic assessment and feedback to more
cognitively demanding, open-ended CS tasks, like programming and proof writ-
ing?

3. How does automated feedback affect the learning process? When do novel
techniques for selected-response activities, such as mixed-up code problems and
learner sourced selections, produce more effective or efficient student learning?

4. What are the quanta of programming and other computer science knowledge ac-
quisition and knowledge transfer (often referred to as concepts, skills, or knowl-
edge components)? How are they best ordered and presented?

5. How do students learn fundamental computational thinking concepts like state,
algorithmic process, representation, and abstraction?

6. How do students develop the management skills needed to successfully complete
medium and large programming assignments?

Community engagement and outreach efforts are a main priority of our work, as we grow the
infrastructure to include a broader range of researchers and integrate instructors into the process,
as they are critical to data generation. To enhance the SPLICE community of practice built around
our planning and design project and to better engage researchers from the fields of AI, Machine
Learning, and data mining, we are joining forces with another multi-year community building
effort – a sequence of workshops on Educational Data Mining in Computer Science Education
(CSEDM) organized at the international conferences on Educational Data Mining and Learning
Analytics and Knowledge. Continuing our outreach and community building efforts through a set
of workshops, working groups, small grants, summer schools, data challenges, and other activities,
we expect to increase our reach, engaging researchers from different communities as pilot users
and co-developers of the proposed infrastructure. We allocate special efforts to engage researchers
from smaller colleges and HBCU currently underrepresented in CER and form a broader and more
inclusive community of practice. Community engagement and outreach will be not just the product
of our project, but a core metric for developing and evaluating the infrastructure.

2 Targeted Research Communities

SPLICE-Portal will support two broad research communities we refer as Computing Education
Research and Advanced Learning Science and Technology.

The Computing Education Research (CER) community focuses on discoveries about
learning within computing disciplines that produce demonstrably effective and efficient pedagogical
approaches and learning tools (e.g., using Peer Instruction halves failure rates [67]). The interests of
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this community are represented by ACM SIGCSE with its conferences (SIGCSE, ITiCSE, ICER).
Through tutorials and workshops at these conferences, SPLICE will benefit veteran researchers in
this community but also work to convert educational practitioners into doing computing education
research. We hypothesize that more would CS educators would do research in conjunction with
their courses if it were easier and SPLICE will make it so. The Advanced Learning Science
and Technology (ALST) research community pursues discoveries that yield novel techniques
and technologies that enhance learning. They might leverage AI, data, and educational theory
to automatically support students (e.g., intelligent tutoring systems [88]) and further our under-
standing of learning processes (e.g., how student self-explanation enhances skill acquisition and
conceptual development [96, 97]). This group includes computer scientists, engineers, cognitive
scientists, psychologists, educators and social scientists. Their interests are represented by soci-
eties and corresponding conferences such as Artificial Intelligence in Education (AIED), Learning
at Scale (LS), Educational Data Mining (EDM) and Learning Analytics and Knowledge (LAK).
SPLICE outreach to these conferences will help convert more ALST researchers into focusing on
Computing as a learning domain. SPLICE will engage new participants in both communities and
empower all to answer more ambitious computing research questions.

A typical computing education research study involves evaluating the impacts on students of
a novel educational technology (e.g., enhanced compiler error messages [6]) or of a novel peda-
gogical intervention (e.g., Pair Programming [34]). Many such interventions have demonstrating
efficacy in enhancing student learning or engagement, including Parson’s problems [99, 23], worked
examples [38], automated programming hints [60, 76], feedback [30, 59], and metacognitive sup-
port [68]. However, this research is limited by two key challenges. First, interventions developed
and evaluated by one researcher rarely make it into other classrooms, especially across institution
– computing education research interventions have 2.38% replication rate [35]. This limits not only
the generalizability and reliability of the research, but also its impact on learners. This is particu-
larly problematic because CS learners vary widely (e.g., K-12 to university students, end users, and
informal learners), and what works in one context may not work in another. Without data from
larger, more diverse populations, it is also difficult to study interventions’ impact on underrepre-
sented students (e.g., women, racial minorities, students with disabilities), which is a core focus
of CER[7]. A second challenge is that much computing education research is done by instructors,
many of whom are new to education research, and may lack experience designing educational stud-
ies, deploying tools, collecting rich data from their classes, and analyzing it. Despite the fact that
these tasks share many commonalities across studies, there are few tools to support new researchers
in conducting experiments, leading many to instead write “experience reports,” focusing on more
anecdotal data. Both of these challenges can be addressed by a well-designed infrastructure that
enables reuse of innovative smart learning content (SLC) across classrooms, supports the use of
SLC collections for classroom studies, and facilitates data collection and evaluation.

Typical studies in the ALST research community use data to answer research questions, such
as how to develop algorithms that automatically generate help for students (e.g., data-driven pro-
gramming hints and feedback [72, 76]), how to model and predict student outcomes (e.g., predicting
student performance on future problems [64]), and how to further learning theories using analytics
(e.g., discovering student misconceptions by clustering and visualizing their code [83]). A core
challenge for this research community is finding high-quality, well-labeled, and sufficiently large
datasets with which to investigate research questions. For example, modern deep learning ap-
proaches such as Code2Vec can automatically label programs with high accuracy, but are typically
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trained on datasets with 2+ million programs [3] and fare worse on small, educational datasets [83]
with less than 1000 students. Additionally, there are few benchmarks or agreed-upon standards
for common modeling tasks in the CER domain (e.g., knowledge tracing), making it difficult to
establish or improve upon the state of the art. It can be especially difficult for newcomers, such as
computing education researchers interested in crossing over into ALST research, to find the right
tools and datasets to get started. Analyzing program code to develop smart learning content often
requires domain-specific tools (e.g., abstract syntax tree and compiler error analysis), but exist-
ing tools for sharing such analytics workflows in the ALST community (e.g., LearnSphere.org’s
web-based workflow authoring tool) lack support for these CS-specific tasks. These challenges can
be addressed by better infrastructure for collecting, aggregating, and analyzing high-quality (i.e.,
labeled, annotated, documented) CS data and wide re-use of analytics approaches.

A final challenge is collaboration and networking across the two communities. Many com-
puting education researchers already use AI and machine learning to develop learning tools and
predictive models (e.g., [28, 63]), but may lack the deep expertise of the ALST community on
applying such techniques to education. Similarly, many ALST researchers study computing educa-
tion (e.g., [61, 51]), but may lack the pedagogical expertise and disciplinary theory of computing
education researchers. Our prior work has begun to bridge this gap by holding 14 workshops at
the intersection of CER and ALST, including SPLICE and CSEDM workshops. This nascent com-
munity now needs research infrastructure to help connect CER and ALST researchers to share and
benefit from each other’s expertise and data.

3 Contributing Research and Practice

For the past decade course materials have increasingly moved online, often organized within LMS
augmented by interactive services such as discussion forums, chats, and wikis. This online revolution
has been further accelerated by the COVID-19 pandemic. At the same time, increased online inter-
actions have produced new data and driven new opportunities for the social sciences, including the
learning sciences. The convergence of online learning opportunities and learning science advances
has produced a revolution in research-based, technologically-advanced online resources. We refer to
these as Smart Learning Content (SLC). SLC is not simply text and lectures online, but interactive
learning experiences that engage students in challenging tasks. Some SLC applies AI technologies
to offer intelligent analysis of student problem solutions, provide feedback adapted to the learner’s
solutions, and select new tasks adapted to the learner’s needs and capabilities. Examples of SLC
include program visualization and simulation tools [85], algorithm animations [81], code analysis
problems [12], Parson’s problems [23], automatic assessment services for programming exercises [22],
intelligent tutoring systems [79], and interactive worked examples [38]. Studies repeatedly show
that use of SLC results in significant improvements in student learning [49, 50, 56, 65, 38]. Beyond
the intrinsic benefits of active learning, SLC collects rich learner interaction log data. This data
enables researchers to create scientific models of learning with much finer-grain precision than is
possible with traditional learning content [46].

Our team’s past efforts have supported the computing education research community to con-
struct online courses by linking together multiple SLC components. To make such linking more
routine, we encouraged the adoption of the Learning Tools Interoperability (LTI) standard [17].
One example was a collaboration with partners at Aalto University, Finland to augment an open
source Acos SLC server [84] with LTI connectivity. To further promote the use of LTI-enabled SLC
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and solicit community feedback we created a live catalog of SLC for computing education [37].
This progress is facilitating online course advancement, but more is needed to leverage data-

driven research opportunities. Current systems typically do a poor job of standardized reporting
of student data to facilitate communication across SLC components, to support data sharing and
interpretation, and to facilitate sharing of analytic methods matched to those data standards.

To address these challenges, SPLICE will build user community consensus and implement tools
that generate and analyze standardized data. We leverage emerging standards for learning inter-
actions including Experience API [52] developed by ADL and Caliper [16] developed by IMS. User
community support is needed as these standards have not achieved community acceptance and
more tool development is needed to not only enhance these standards, but to provide real value in
their use. Such enhancements are critical to enriching a science of learning relevant to computing
education. Caliper, for example, does not yet support the collection of complex data generated by
SLC for computing, such as snapshots of student programs submitted to assessment. SPLICE will
drive such standards enhancements by creating easy-to-use web-based analytic workflows and by
supporting researcher to use to make discoveries from complex learner interaction data.

Our team is well positioned to provide user support and tools to drive a new generation of com-
puting education research. We build on past efforts at creating infrastructure support for learning
data and analytics. Co-PI Koedinger led CMU’s LearnSphere project (supported by NSF CISE-
ACI) to provide analytic workflows that integrate across learning data silos. LearnSphere integrates
across different data types and existing repositories. These include CMU’s DataShop for intelligent
tutoring clickstream data [46], MIT’s MOOCdb [89] and Stanford’s DataStage both for massively
open online course data, and CMU’s DiscourseDB for student writing and discourse data. To sup-
port easier development and reuse of data analytic methods, LearnSphere pioneered a web-based
workflow authoring tool. In it analytic routines encapsulate specific data processing approaches as
workflow components that include data import, processing, and data mining. LearnSphere supports
users in re-configuring its continually growing set of components in data-flow sequences that make
complex data import, transformation, analysis and report easy to replicate, reapply and adapt.
LearnSphere has facilitated discoveries such as multiple replications of the so-called ”doer effect”:
Across multiple online course settings, student learning outcomes are typically about six times more
highly associated with how much they do in the course (e.g., working with interactive SLC) than
with how much online reading or lecture video watching they do [49, 50]. More broadly, this inte-
gration is fueling a wide variety of research on learning science and technology [79, 9, 43, 48, 53, 95].

These efforts are a strong basis to build from, however, a computing education research commu-
nity is not sufficiently served by these efforts. We need a social-technical infrastructure that provides
existing and new computer education researchers with a one-stop shop where they get both support
(the social part) and research tools and services (the technical part) for achieving open experimen-
tation and data analytics in computing education. We suggest a set of development, research, and
community-building steps that are necessary to implement our vision of SPLICE Standards, Pro-
tocols, and Learning Infrastructure for Computing Education. Our work can significantly advance
research progress in the fields of CER as well as related fields of Machine Learning, Datamining,
and Learning Science.
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4 Infrastructure Description

The target SPLICE infrastructure will support all aspects of the CER cycle: developing a rich
variety of novel educational tools and environments, planning and organizing research studies with
these tools, data collection, data analysis, and data-driven experiments. Through discussions,
experiments, and pilot efforts performed in collaboration with many partners, SPLICE developed
a consistent vision of this infrastructure based on the analysis of stakeholders’ needs, existing
solutions, and best practices. We assembled a diverse community of active collaborators and
prospective users to work with us in implementing and piloting the components of the infrastructure,
and we will incorporate their feedback throughout development. A representative set of letters
from this community is attached to this proposal. We will extend this community through a series
of engagement and outreach efforts. Thus the outcome of our project will be both the target
infrastructure and a diverse community of users who have already started to work with it.

4.1 Fundamental infrastructure The target infrastructure is centered around two types of
resources that were found most critical for the success of CER during our design stage: SLC and
related services, and datasets. SLC enables a wide range of user studies and classroom experiments
that are necessary to implement and evaluate new pedagogies and technologies in courses. Datasets
are critical to analyse the results of these experiments, complement them with data-driven studies,
and create new knowledge about learning. The infrastructure therefore has two main hubs — the
content hub and the data hub. Each supports a structured collection of resources of its target type
and a set of documents, tools, and services that enables users of these resources for their CER
needs. Both types of resources are user-contributable, reusable, and extendable. Dedicated tools
and services to support these functionalities on several levels of resource aggregation. The hubs
are directly connected: all types of resources and services in the SLC hub produce a flow of learner
data when interacting with learners. These data are assembled in the learning record stores and
passed to the data hub for archiving, analysis, and reuse. In turn, data-driven SLC artifacts can
make use of data in the data hub to adapt learning content to users (e.g., by using trained student
models [98]). Access to both hubs is provided through central host several services that support
the infrastructure as a whole with access to information repositories (documentation, case studies,
best practices) and social services (finding like-minded users, recommending collaborators).

4.2 Tools, resources, and data sets The content hub is centered around a repository of
reusable SLC items and services. The re-usability of these components is supported by their
adherence to LTI and Caliper standards ensuring the connection of SLC to learning management
systems and allows centralized collection of learner data in learning record stores (LRS). To adapt
Caliper for the specifics of computing education data, we will develop Caliper profiles for key types
of computing SLC. While we build on existing standards, our new content hub infrastructure is
needed to overcome two fundamental challenges with hosting SLC for CER.

First, while considerable research on building learning content repositories has been done in the
past [74], SLC is different from traditional learning content: an SLC item is essentially an interactive
service that communicates with the learner working with a learning activity (a problem, a worked
example, an animation, etc), collects data, and provides feedback [11]. To support it, each SLC item
has to be hosted on a Web server that is typically separate from the Learning Management System
(LMS). To explore the feasibility of building an SLC repository during project planning stage,
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we collaborated with SPLICE community members to develop a live catalog of computing SLC
presented through Canvas [37]. Our experience is that with adequate support documentation, most
tool developers can easily convert their stand-alone systems into providers of standard-compliant
SLC [84, 57, 36]. Workshop discussions indicated that less experienced SLC developers will need
more assistance. To support these prospective contributors, we will develop additional tools: a
model open-source SLC server built on the basis of the ACOS server [84] and authoring tools to
contribute most popular types of content (programming problems and examples) to be hosted on
several “standard” SLC servers maintained by our project members [21, 39].

Second, as discovered in our prior work, is the challenge of adding SLC to a LMS such as
Canvas. While LTI is designed to integrate a single external item (e.g., a programming exercise)
into a an LMS provider, many SLC consist of collections of items (e.g., 50 problems), making
integration difficult. To support easy re-use of SLC, we will also develop model content integrators
built on our existing open source tools OpenDSA [26] and MasteryGrids [55]. A content integra-
tor is an intermediary between the LMS and SLC, supported by LTI and Caliper standards. It
provides access to a structured set of SLC items that could be connected to the target delivery
platform as a single service, organized for example as an eTextbook. While SLC could be re-used
without integrators, item by item, these tools extend SLC reusability from the level of items to
the level of collections, such as a collection or items pre-designed by an experienced researcher or
educator to support a specific course or a specific textbook. Integrators can also provide additional
functionalities not supported by a given LMS, such as progress dashboards. New content servers
and tools can be contributed by the community, extending the functionality of the infrastructure.
Contributing standard-compliant SLC and tools will be supported by a range of documentation
from specifications to tutorials and services provided by project staff.

The data hub will be centered around a repository of reusable learning datasets hosted on
LearnSphere’s DataShop [46], currently the world’s largest open repository for educational tech-
nology data, with over 1300 educational technology datasets. The work with LearnSphere will
allow us to leverage its Workflow mechanism, which enables the users to reuse not just datasets,
but also data analytics. Workflows offer an extendable collection of data import, processing, and
data mining components, which could be assembled into structured pipelines. Just like content
integrators, workflows increase the level of reusability from items to item sets.

The reusability of datasets and workflows is supported by data representation standards. Since
DataShop has not been developed to support CER data, we will augment it with a set of standards
to represent typical CER data. This work began under a SPLICE working group that developed and
integrated with DataShop the ProgSnap2 [71] standard for representing program snapshot data.
Over ten datasets in this format were collected, with about one million code snapshots, and they
were used to enable cross-institution CER research on code predictors of student success [71], as
well as two CER analytics competitions [70, 69]. Similarly, existing analytic methods (e.g., learning
curve analytics) require much special purpose processing to be used with CER data, for example,
to transform program solution submissions into incremental graded solution steps (cf. [77]). We
will augment LearnSphere with components than will support CER-specific analytics approaches
and will work with CER-specific data standards.

4.3 User services To facilitate users and contributors, we will build a set of services around the
two hubs of resources and tools. During the first year of the project, we will develop several search
services to help infrastructure users locate relevant SLC items, datasets, and analytic components
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as well as contributed item aggregates such as structured SLC collections and complete workflow.
Search services will support a variety of metadata for filtering results such as domain (i.e., Python
programming), a topic within the domain, type of data produced by content or processed by an
analytic component, etc. We will provide services that support contributors adding new SLC items,
datasets, and methods. Another set of services will support users in building and contributing ag-
gregates of individual items — i.e., designing a collection of SLC items to support learning a specific
topic or whole course or assembling a complete data workflow from analysis components. In the next
two years we will develop more advanced services to better address the needs of our diverse commu-
nity. It will include item recommendation services that will proactively suggest SLC, datasets, and
aggregates matching to users personal interests and needs. Collaborator recommendation services
will suggest users with similar or complementary interests. We will also extend contribution services
with support services for automated extraction of metadata, for example processing SLC code to
extract knowledge components and processing text fragments to extract keyphrases. To implement
these advanced services we will leverage infrastructures for item and content recommendations de-
veloped by PI Brusilovsky in previous NSF-supported projects [14, 86, 73, 15]. The extendable
nature of the infrastructure will also support complex support services as well as more advanced
SLC types, tools, and analytics approaches extending the value of the infrastructure could be added
on the next stage of development with the support of the extension funding.

4.4 Community Engagement Our prior work with SPLICE has engaged a broad segment of
the CER community in discussing, designing, and prototyping SLC. We have broadly convinced
them of the importance of using appropriate integration protocols for smart content such as the
LTI protocol. We have had success promoting specialized data standards such as PEML and
ProgSnap2 [71] through a working group model. Our community of tool builders is already strong,
and the tools they have implemented reach many thousands of students each semester.

Our weaker links to date have been in agreeing on standards for data collection and analysis.
On the data collection side, this was due to the slow progress on the Caliper standard, which
is somewhat out of the control of the CER community. We believe that this standard has now
reached a stage that can benefit from our focused efforts on data channels between smart content
components. This will leave propagating analysis tools and public data sets within the CER
community as our biggest concern going forward. These mechanisms exist for the very small CER
community, where people are slowly buying in to these efforts. However, the bigger issue is getting
broad uptake among the front-line CS educators at all levels. This was not a major focus of SPLICE,
but must be a metric of success for SPLICE-Portal since their students’ use of these systems powers
the virtuous cycle: online technologies → big data analysis → better online technologies.

We use several approaches for outreach and community engagement. “First contact” for reach-
ing target users will be through dedicated annual workshops organized at conferences that bring
together researches in our two key contributing communities: CER and ALST researchers. We
engage the CER community by hosting workshops at the annual ACM SIGCSE meeting. The
SIGCSE annual conference historically has brought together the Computing Education researcher
community with a broad cross-section of the CS instructor community. Thus, this venue allows us
to reach what is admittedly an unusually focused and energized subset of the instructors who are
interested in CS education practice and research. To engage the ALST research community, we
will continue our series of CSEDM workshops, led by PI Price and colleagues. These workshops
(five and counting) rotate among popular conferences for the community (EDM, AIED, LAK, LS;
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see Section 2). Additionally, we will expand the CSEDM Data Challenge [70, 69] to an annual
event. The Data Challenge brings together ALST researchers to compete in a competition to solve
a pressing problem in the field (e.g., predicting student dropout), using multiple public CS datasets
(in future hosted on SPLICE-Portal in a common format). Competitors will submit their solution
as a reusable analytics component (also hosted on SPLICE-Portal via Tigris), which can then be
used by other researchers or instructors (e.g., as an early-warning dashboard).

The next level of engagement and support is through websites and other informational reposi-
tories. These are geared toward supplying immediate support to the instructor who has developed
a casual interest in adopting tools, and needs to be helped over the hump of actually getting
started. Based on our SPLICE work, we have some experience with designing such support sites
(cssplice.org, which was geared toward providing support for the CER community). Many of the
co-PIs on this proposal also have significant experience with supporting a user community for our
own tools like OpenDSA, Code Workout, Mastery Grids, and DataShop.

We will continue our support for working groups for specific topics, such as the successful
ProgSnap and PEML working groups. But we will broaden the definition of these to go beyond
our traditional technical groups organized around a given standard. We will set up working groups
focused on support for the instructor community that wants to adopt our infrastructure. Such
working groups can focus explicitly on outreach and support for this community.

To engage most experienced and authoritative members of our target communities, we will also
create a formal Advisory Board. Our original SPLICE project had many unofficial advisors coming
out of our many workshops, and as leaders of the various working groups that SPLICE relied on
for creating standards like PEML and ProgSnap. As we move to the phase of broader community
engagement, including significant instructor engagement, we will identify 6-10 candidates for an
Advisory Board from outside the PI institutions. This will include senior researchers with experi-
ence in tool building, CER experiment design, data analysis, and machine learning, and learning
sciences. We will also include instructors who are active users of the tools. Besides online meet-
ings as appropriate, the Advisory Board is expected and compensated (see Budget) to meet at the
project meetings in conjunction with the planned workshops.

4.5 Community Outreach Co-PI Barnes serves as Community Outreach Director to ensure
that a broad and diverse community of users is engaged in ongoing outreach. Planned outreach
will expand the number and diversity of people attending each annual (1) SPLICE workshop, (2)
SIGCSE & Tapia workshops, and (3) LearnLab Summer School. Annual SPLICE workshops are co-
located with leading ALST conferences (EDM, AIED, LAK, L@S), where we help EDM researchers
to engage in CER. At the annual SIGCSE and Tapia workshops, we will engage CS faculty and com-
puting education researchers with EDM/analytics. These workshops will be conducted by project
PIs and consultants. PI Barnes who will ensure that content relating to broadening participation
and equity are integrated (i.e. anonymization, demographic disaggregation).

We leverage the long history of the LearnLab Summer Schools to reach out, engage, and educate
both existing and new participants into Computing Education Research. Every year about 80
researchers, postdocs, PhD students, and educators have attended the week-long summer school
for the last 20 years. Besides general lectures on advanced learning science and technology, attendees
participate in a focused research track and execute a research project. The research tracks include
educational data mining, intelligent tutor authoring, online course development, and computational
modeling of learning. While participation has been across educational domains, for this project our
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goal is to have 10-20 computing education research participants each summer. These events not
only help the community learn how to use the tools and services provided by SPLICE, but they also
provide a great networking opportunity to aid broadening participation of young researchers. Each
week-long project team involves a cross-disciplinary pair (e.g., one is a CS educator who brings
data and goals and another is a machine learning PhD student wanting to demonstrate a newly
developed algorithm) that is supervised by two mentors, also typically interdisciplinary. A great
many of these projects lead to research publications.

The budget includes funding to engage 15-25 new participants each year in these planned work-
shops and summer school, with a focus on engaging diverse participants who might otherwise not be
able to participate. PI Barnes will recruit graduate students and computer science faculty for these
spots by leveraging the STARS Computing Corps (STARS), an NSF-funded Broadening Partici-
pation in Computing (BPC) Alliance that builds a community of diverse CS faculty and students
doing BPC work. STARS includes 50 colleges and universities, many of which are minority-serving
institutions, community colleges, and historically black colleges and universities. The majority of
faculty and students in STARS are from groups that are traditionally underrepresented in com-
puting, including women, Black/African Americans, Hispanic/Latinx, and people with disabilities.
Each year, PI Barnes will coordinate two webinars, in spring (April) and fall (October), about
SPLICE opportunities and a third workshop at the Tapia Celebration of Diversity in Computing
to recruit diverse participants. Barnes will also leverage the STARS communication channels of
social media, listserv, and newsletters, and website to share SPLICE opportunities with STARS.
STARS BPC Scholars, a group of 5-6 faculty per year, will also be invited to apply for SPLICE
opportunities, as the learning opportunities for SPLICE will enable them to enrich their ability
to conduct research about the impact of educational interventions on broadening participation.
Selection of travel scholarship recipients will be based on need and criteria including potential to
(1) diversify the community, especially to include women, Black, and Hispanic participants, (2)
contribute new data to the project, and (3) eventually be able to contribute to CER.

5 Project Outcomes and Evaluation

The overarching goal for this project is to advance the progress of data-driven and AI-enhanced CER
through an infrastructure that empowers our target communities of CER and ALST researchers
(see Section 2). Specifically we expect the infrastructure will enable a novel research agenda that
aligns with existing CER priorities to deliver transformative scientific advancements (see Section 1
for example RQs within that agenda). Three pillars of that research agenda are:

1) Broadening Participation in Computing: Research on understanding and increasing
the participation of underrepresented students in CS (women, students of color, first-generation stu-
dents, students disabilities) has been a cornerstone of the CER community’s efforts for decades [80,
66, 32, 20, 8]. CER interventions can dramatically improve retention and learning outcomes for
students generally [58, 67]. However, researchers rarely have enough data from underrepresented
groups to meaningfully detect how interventions affect them, though existing work suggests under-
represented student groups may experience different outcomes from interventions [87, 54]. SPLICE-
Portal will enable researchers to pool data from across classrooms more easily, and more easily
collect and analyze demographic data, to detect these effects and develop interventions that sup-
port the needs of specific underrepresented populations, informed by data in addition to theory
(e.g., [19]). Researchers from this area including Nell O’Rourke [29] and Barbara Ericson [31, 1]

10



have provided letters of collaboration detailing how they will use our infrastructure, and Co-PI
Barnes has a proven track-record of research in this area [20, 5].

2) Large-scale Data-driven Models for Rich CS Data: Many CER researchers use data-
driven algorithms to automate and adapt support for students (e.g., hints, feedback, examples),
and to model student behavior to predict and describe their learning. In ALST research, the
most effective of these algorithms are data-hungry, such as deep learning models (e.g., SAKT,
a winner of the Riiid student modeling challenge [64]), which require thousands of examples to
learn from. Adapting these models to CER has been met with limited success [83, 82], both
because CER datasets often lack the necessary scale, and because existing algorithms may be
domain-general, and fail to leverage the rich, structured, and time-series data available from CS
datasets (e.g., program snapshots, compiler errors, interaction logs). To develop next generation,
CS-specific models and algorithms, researchers need to a repository of high-quality CS datasets with
comparable attributes, capturing this fine-grained detail. Our SPLICE-Portal will do just that,
leading to novel algorithms, e.g. for detecting what knowledge components are being practiced
in code [98, 77], or which equivalence classes exist within code [78]. These can be captured as
reusable analytics components to enable the next round of advancements. Top researchers in this
area (e.g. Sharon Hsiao [41, 40] and Bita Akram [2]) have provided letters of collaboration, and PIs
Brusilovsky [13, 10], Koedinger [47], and Price [72] and coPI Barnes [42] all have extensive work in
this area.

3) Generalizing What Works for CS Learning: Despite 50 years of CER, there are re-
markably few interventions with robust evidence supporting their efficacy, and less than 2.5% of
CER research constitutes a replication [35]. The next milestone in CER research will involve adapt-
ing interventions that have been successful in one setting (e.g. a lab study, or a single classroom) to
work with diverse learners across many institutions and contexts. Data-driven interventions have
the additional challenge of transfer learning: getting a model trained in once classroom (e.g. to
predict when a student needs help) to work on a new population of learners, who may act differently
– a grand challenge for Educational Data Mining [4]. To do so, researchers will need our proposed
SPLICE-Portal infrastructure, to not only connect instructors and researchers, but also to facili-
tate the large-scale deployment, data collection and experimentation necessary to consistently scale
research across institutions. Over 10 collaborators who develop and evaluate CER interventions
have written letters of collaboration, indicating their intent to use SPLICE-Portal to replicate their
research across contexts, and scale its impact.

Evaluation: To evaluate the infrastructure’s success in promoting the above research agenda,
we will use the following metrics (projected numbers in parentheses are based on our prior work):
1) the number of new SLC items contributed to the content hub (30); 2) the number of additional
instructors using such tools in classrooms (40); 3) the number of new datasets contributed to the
data hub (100); 4) the number of unique researchers downloading these datasets (300); 5) the
number of analytics components contributed (20) and unique researchers using them (200); and 6)
the number of papers published about a dataset, SLC, or analytic workflow hosted on SPLICE-
Portal (50). These metrics can be measured automatically by SPLICE-Portal’s internal analytics
and logging, and tagged papers researchers contribute with SLC/workflows/datasets.

Our engagement and outreach efforts (see Sections 4 and 4) will enable a new generation of
researchers (e.g. PhD students, instructors, researchers from other disciplines) to answer future
research questions at the intersection of CSE and ALST, facilitated by SPLICE-Portal and access
to study populations, data, and analytics workflows. We will measure the success of these efforts
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by tracking: the number of participants – especially new participants – at each of our 3 annual
workshops (30+ each), the LearnLab summer school (10-20), and the CSEDM Data Challenge
(30+). We will also track how many of these participants go on to use the infrastructure in their
research or teaching (as measured above), or apply for our small grants to support this transition.

Ultimate evidence of our impact will be more qualitative: the number and quality of “success
cases” that can be achieved. Key elements to a success case include infrastructure-enabled collab-
orative research, barriers overcome, and novel research insights. Here is a hypothetical example
from collaborator Yetunde Folajimi, who recently took a tenure-track position at a small college,
with research interests in AI, eLearning, the empowerment of youth and women, and more recently
using novel technology-based learning approaches for computing education [24]. She now wants to
investigate how online practice with SLC could help help graduates of urban schools to succeed in
challenging introductory programming courses, and which type of SLC is most beneficial for these
students. If successful, our infrastructure would enable Folajimi to (1) find collaborators who
have developed relevant SLC (e.g., a practice environment like CodeWorkout [21], hints to support
students [72], and Parsons problems to reduce cognitive load [23]) by attending a workshop (e.g.
at SIGCSE, where she may already attend), or by joining a cohort of our STARS BPC Scholars
with other women of color. SPLICE-Portal would help her (2) overcome barriers such as finding
and installing SLC appropriate for her class through the content hub. It helps her collect detailed
study data securely using the data hub and its Learning Record Store. Afterwards, she can use
LearnSphere’s existing workflows to analyze study data, measuring the effect of her intervention,
disaggregated by demographic group. Documentation and use cases provided on SPLICE-Portal
help her on each step of this work, and consultants assist her with uploading pre- and post-test
data required by the workflow. Finally, working with her collaborators, Folajimi publishes her (3)
novel research insights in ACM SIGCSE’s Technical Symposium, demonstrating the value of
online practice and identifying effective types of SLC for her target under-served population.

6 Qualifications of the Project Team

The project brings together an interdisciplinary team, comprised of the University of Pittsburgh,
Virginia Tech, Carnegie Mellon University, and North Carolina State University faculty. The
PIs represent an ideal mix of expertise, including extensive experience creating, evaluating, and
integrating digital education software systems, leveraging learning data, working with the CER
communities, and building communities of practice, as detailed below. All investigators have strong
records of interdisciplinary research and have a proven track record of collaboration.

Peter Brusilovsky is a Professor of Information Science and Intelligent Systems at the University
of Pittsburgh, where he directs the Personalized Adaptive Web Systems (PAWS) lab. He has been
working in the field of adaptive educational systems and user modeling for more than 30 years.
With support from NSF and DoD ADL Lab, PAWS developed several broadly used personalized
learning systems for Java, SQL, and Python programming. Brusilovsky has extensive experience
with learning infrastructures and standards. He developed the KnowledgeTree architecture [10]
and collaborated with DoD ADL Lab on components of the Total Learning Architecture [55].

Kenneth Koedinger is a professor of Human Computer Interaction at CMU. He has contributed
new educational techniques and technologies and has produced basic cognitive science research
results on the nature of STEM thinking and learning. Dr. Koedinger has contributed to and
led many large-scale research infrastructure efforts including LearnLab.org, a Science of Learning
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Figure 1: The timeline of development, community engagement, and outreach milestones.

Center funded by NSF for 10 years and about $50M. He also led the development of DataShop
and LearnSphere, which together are the world’s largest infrastructures for sharing educational
technology data and analytic routines.

Clifford A. Shaffer is Professor of Computer Science and Associate Department Head for Grad-
uate Studies at Virginia Tech. He leads the OpenDSA project that provides infrastructure and
materials for teaching a variety of CS courses related to Data Structures and Algorithms, formal
languages, and concepts for compilers and translators. The current proposal will benefit from
OpenDSA solutions to several challenges, including how to integrate educational software compo-
nents, how to collect and process student analytics data, and how to build a community of practice
around developing and using the software.

Thomas Price is an Assistant Professor of Computer Science at NC State University, where
his research focuses on developing and evaluating novel, data-driven support for students learning
to program. He is a lead organizer of the CSEDM Workshop (2018-2021), and founder of the
CSEDM Data Challenge (2019-2021), which both bring together researchers in the CER and ALST
communities. He is an organizer of the ProgSnap2 standard for logging programming process data.

Tiffany Barnes is a Distinguished Professor of Computer Science at NC State University and
Distinguished Member of the Association of Computing Machinery (ACM). Barnes has researched
artificial intelligence in education, educational data mining, computer science education, and broad-
ening participation for more than 20 years. She is a pioneer in data-driven intelligence for learning
environments, including logic and programming. Dr. Barnes has established and grown many
communities, as Founding Co-Director of the NSF-funded STARS Computing Corps Broadening
Participation in Computing Alliance, and founding member and current President of the Inter-
national Educational Data Mining Society, and a representative on the International Alliance to
Advance Learning in the Digital Era.

7 Work Organization and Project Schedule

Our project will be organized around two hubs: the content hub and the data hub. We will release an
initial version of the infrastructure in the first year of the project using the SLC and data collections
developed under SPLICE, and will be incrementally adding the components of the infrastructure
(Section 4) over the duration of the project. Implementation efforts will be tightly integrated with
our community engagement efforts. The extendable, open, and standard-based architecture of the
infrastructure and its core standards are designed to support community contribution. Following
our successful community building experience during SPLICE, we will engage active members of
our research communities to contribute new types of SLC, content-support tools, datasets, reusable
analytics, workflows, and services specific to questions of their interest. The distributed component-
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based nature of the infrastructure along with commitment of project members and collaborators
to maintain various components of the infrastructure such as the DataShop and SLC servers will
ensure sustainability of the infrastructure. The use of LTI and Caliper standards alsi turns LMS and
other sustainable services maintained by participating universities into infrastructure components.

Development efforts will be informed by continuous pilot use and evaluation efforts (see Sec-
tion 5). We will recruit pilot users of the infrastructure through the community engagement work-
shops focused on the SIGCSE and ALST communities and other means as as specified in Section 4.
The results of the pilots will be discussed with our key contributors from both communities at the
working meetings, included in the schedule of key community workshops. The workshops will also
be used to solicit feedback from key contributors and the Advisory Board.

Pilot results and group discussions will serve as an input for the next design cycle to refine
existing components and design new components. We expect to run three iterations of the design-
pilot cycle, with each Fall focused on design, Spring and early Summer focused on community
engagement and pilot use, and late Summer focused on reflecting on lessons learned from the
previous stages. A final summary meeting to examine lessons learned during the entire project
will be held in Summer 2025. The schedule of major development, evaluation, and community
engagement activities is shown in Figure 1.

The design and development of the data hub components will be lead by Koedinger, the architect
of DataShop, who has extensive experience in data analytics. The design and development of the
content hub will be lead by Shaffer, one of the leading CER tool developers. Price and Brusilovsky
will focus on the connections between the data and the content side of the infrastructure. They will
work on the central SPLICE-Portal while also supporting design and development of content and
data components correspondingly. All PIs will participate in community engagement and outreach
efforts according to their community involvement and past engagement experience. Shaffer will
focus on organizing SIGCSE workshops and connection with SIGCSE community, Price will focus
on organization of CSEDM workshops and connections with ALST community. Koedinger will lead
the organization of Summer Schools which will be hosted annually at CMU. Brusilovsky will lead
the the engagement of collaborators through small grants and subcontracts. Community outreach
efforts will be coordinated by Barnes, the Community Outreach Director, who will also organize
several annual events. The overall project coordination will be provided bythe lead PI Brusilovsky.
The PIs will also participate in the CCRI Virtual Organization (CCRI-VO) and will select rep-
resentatives for CCRI community PI meetings. Information about developed resources, tools and
other infrastructure components, as well as community outreach meetings, will be regularly shared
with both the contributing project communities and with CCRI-VO.

8 Intellectual Merit

SPLICE will facilitate scientific advances in Computing Education Research including: 1) under-
standing and breaking barriers to scale in instructor adoption of applications of research-based best
practices and innovative learning technologies, 2) using high volume/quality learner data to unlock
mysteries of human learning in the complex context of computing education and to produce inno-
vations that optimize student learning effectiveness, efficiency, and engagement, and 3) developing
new algorithms that produce better learning analytics or better automated learning support. These
scientific advances cross disciplinary boundaries, come from technical and social scientists, and will
be disseminated through the SPLICE infrastructure and community as well as usual publication.
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9 Broader Impacts

SPLICE will have direct and immediate impact on hundreds of researchers during the proposal
phase and beyond. It will reduce barriers to educational innovation and support scientific discoveries
in the many scientific communities that contribute to computing education research but where
many researchers are currently isolated into separate silos. The discoveries/innovations enabled by
SPLICE will in turn help tens of thousands of students in the strategically important field of CS.

10 Results from Prior NSF Support

Brusilovsky is PI for Collaborative Research: CSEdPad: Investigating and Scaffolding Students’
Mental Models during Computer Programming Tasks to Improve Learning, Engagement, and Re-
tention (Collaborating PIs: V. Rus (U. Memphis) (IIS-1822752, 2018-2022, $250,519). The prelim-
inary results are presented in [38, 75]. Intellectual Merit The project is one of the first attempts
to systematically study and model student comprehension of worked code examples. Broader
Impacts Over the course of the project we will impact several hundred students in introductory
programming classes by providing advanced learning support for example comprehension.

Shaffer has been PI for a series of NSF grants that supported creation and development of
the OpenDSA eTextbook system (DUE-1139861, IIS-1258571, DUE-1432008). Collaborative Re-
search: Assessing and Expanding the Impact of OpenDSA, an Open Source, Interactive eTextbook
for Data Structures and Algorithms. PIs: C.A. Shaffer, J.V. Ernst, T.L. Naps (U Wisconsin-
Oshkosh), S.H. Rodger (Duke U), $998,402, 01/01/2015–12/31/2017. Intellectual Merit The
project contributes to the OpenDSA eTextbook and its assessment with partners including Vir-
ginia Tech, Aalto University, Duke University, and UWisconsin, among others. Publications include
[18, 27, 26, 25, 33, 44, 45]. Broader Impacts include dissemination of algorithm visualizations,
interactive problems, and eTextbooks to tens of thousands of CS students.

Koedinger’s prior NSF support includes LearnSphere (CISE-ACI-1443068, 2015-2020,
$5M). Intellectual Merit LearnSphere provides data infrastructure building blocks to integrate
the sharing and use of educational data and learning analytic methods. It has facilitated discov-
eries such as the six times bigger relationship to learning outcomes from online active doing with
feedback than from reading online text or watching online videos [49, 50]. Other publications in-
clude [9, 43, 48, 53, 95, 77, 79]. Broader Impact LearnSphere’s DataShop stands as the world’s
largest open repository for educational technology data. DataShop contains over 3000 educational
technology datasets and has supported over 250 data mining or secondary data analysis studies. Di-
rectly relevant to this project, LearnSphere’s DataShop already contains over 50 computer science
education datasets including over 20 million data points contributed by some 75,000 students.

PI Price andCo-PI Barnes are PI and Co-PI for NSF Award #1917885: Data-driven Support
for Creative, Open-ended Programming (08/14/2019 - 08/13/2022, $749,999). Intellectual Merit :
This project develops novel, data-driven help features (e.g., hints and subgoals) to support students
working on creative programming tasks (e.g., making apps and games), where there is no instructor
solution. Broader Impacts: The developed technologies will augment programming environments
already used in hundreds of AP Computer Science Principles classrooms that focus on open-ended,
creative projects. Publications: Publications include results on example-based feedback [93, 91],
automated assessment of open-ended projects [92, 94, 90] and planning open-ended projects [62].
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