
Here, There, Anywhere: Profiling-Driven Services
to Tame the Heterogeneity of Edge Applications

Manish Pandey§

School of Computer Science and Engineering
Kyungpook National University

Daegu, South Korea
manish@knu.ac.kr

Breno Dantas Cruz§

Software Innovations Lab
Virginia Tech

Virginia, USA
bdantasc@cs.vt.edu

Minh Le
Walmart

Bentonville, AR
USA

minhld38@gmail.com

Young-Woo Kwon
School of Computer Science and Engineering

Kyungpook National University
Daegu, South Korea
ywkwon@knu.ac.kr

Eli Tilevich
Software Innovations Lab

Virginia Tech
Virginia, USA

tilevich@cs.vt.edu

Abstract—Edge computing alleviates network bottlenecks by
engaging devices at the edge for data processing tasks. These
devices possess limited computing resources, while edge execution
environments are inherently heterogeneous. It is non-trivial to dy-
namically allocate the limited resources of heterogeneous devices
to balance high performance and low resource utilization. To that
end, this paper presents a profiling-based methodology that effec-
tively matches edge computational tasks with the available devices
to best satisfy programmer-defined non-functional requirements.
Edge tasks are divided into microservices, which are then profiled
for their resource utilization. To execute each task, the runtime
consults the profiling results to determine the optimal device-to-
microservice matching. We realize our methodology as µHTA,
whose service-oriented architecture manages the heterogeneity of
edge environments and optimally executes microservices on the
available mobile devices. We evaluated µHTA by applying it
to two realistic edge mobile applications. Our methodology can
help developers bridge the gap between the statically specified
non-functional requirements and the dynamic nature of edge
environments, while reducing the developer burden of optimally
utilizing edge-based computing resources.

Keywords—Edge Computing, Profiling, Resource Allocation,
Mobile Service Market, Heterogeneity

I. INTRODUCTION

Distributed systems are generating massive amounts of data
produced by co-located mobile and IoT devices. The resulting
data deluge and its associated bandwidth bottlenecks and
privacy concerns often make it infeasible to move all generated
data across the network to cloud-based servers for processing.
To alleviate this problem, designers of distributed systems
are increasingly making use of edge and fog computing [4].
In these distributed architectures, user-generated data and
services operating on it are assigned to nearby edge devices
for efficient localized processing and low-latency user access.

If edge processing is to achieve its performance goals,
it has to manage its scarce heterogeneous resources effec-
tively [31], [29]. That is, it has to engage the available local

§Both authors contributed equally to this work.

computing devices to best match their capabilities with the
execution demands of the computing tasks. Such matching is
commonly achieved with edge devices interacting with each
other directly [11]. Edge environments can differ greatly in
terms of their available devices with dissimilar capabilities, a
property that we refer to as edge heterogeneity. As the Service
Oriented Architecture (SOA) has been successfully applied
to address the resource and access heterogeneity challenges,
computing tasks at the edge are frequently split into services
or microservices [30], [21]. Designing applications that take
advantage of edge computing resources remains a delicate and
complex task [24], [7]. Although the services to perform are
known at design time, the edge devices available at runtime
can differ across environments. If an edge application needs
to perform a fixed set of services, they need to be assigned at
runtime to the available best-suited devices [24]. A device’s
suitability to perform a service is often determined by the
necessity to achieve a performance tradeoff (e.g., taking into
account processing capability, energy consumption, memory
utilization, sensor availability) [7], [31], [42].

To meet the requirements above, developers of edge systems
often end up introducing brittle, error-prone, and hard-to-
maintain code to the codebase. These problems stand on the
way of distributed systems taking full advantage of edge-based
resources. Furthermore, to advance the state of the art in edge
systems, developers need expressive and robust programming
models supported by powerful runtime systems.

Contributions

This paper describes a novel service-oriented methodology
that dynamically allocates edge resources in distributed sys-
tems to meet developer-defined non-functional requirements
(e.g., minimize latency, maximize memory utilization, balance
energy consumption, etc.). To that end, for a given edge
computing task, our methodology first profiles the task’s
microservices to determine their resource utilization. Then



at runtime, the obtained resource utilization information is
consulted to assign the microservices to the available devices,
so the developer-specified requirements are best satisfied. By
automating this non-trivial decision-making process of match-
ing microservices and available devices, our methodology
facilitates the implementation of edge-based applications.

We realize our methodology as Middleware for Here, There,
Anywhere (or µHTA for short), an edge computing infras-
tructure for developing and executing distributed systems.
µHTA’s service-oriented architecture addresses the inherent
heterogeneity of edge environments, while its runtime opti-
mally assigns microservices to the best matching available re-
sources. µHTA’s cloud-based microservice market effectively
deploys code on edge-based devices at runtime. Furthermore,
the market model’s well-known advantages include vetting the
constituent microservices for security and privacy vulnerabili-
ties. We evaluated µHTA by applying it to implement realistic
mobile edge applications with promising results.

This paper’s contributions include:
• A novel methodology for dynamically allocating edge-

based resources; it features a data-driven profiler that
correlates performance characteristics of edge-based mi-
croservices with available devices, so as to best meet
developer-defined non-functional requirements.

• µHTA, an edge computing infrastructure that reifies
the methodology above. µHTA includes a programming
model, a profiler, and a distributed runtime.

• An empirical evaluation of µHTA that includes applying
the infrastructure to implement two realistic mobile edge
applications, with promising performance results.

The rest of this paper is structured as follows. In Section II,
we present motivating use cases for our work and the technical
background required to understand our contributions. Then,
we present the design, architecture, and implementation of
µHTA in Section III and data-driven profiler used by µHTA
in Section IV. In Section V, we benchmark our approach to
evaluate its performance during the deployment of two use
cases. In Section VI, we discuss µHTA’s applicability and
limitations. In Section VII, we compare our approach with
the related state of the art. Finally, in Section VIII, we outline
future work directions and present concluding remarks.

II. MOTIVATION AND BACKGROUND

In this section, we introduce two motivating examples, and
then provide the technical background required to understand
our approach.

A. Motivating Examples

1) Social Distancing App for COVID-19: Consider de-
veloping an app that helps enforce social distancing rules.
Assume that an enclosed environment is required to limit the
number of simultaneous inhabitants. Users run the app on their
mobile and wearable devices. Whenever the social distancing
rules are violated, the app warns the user to move to safety,
with the warnings delivered context-specifically. For example,
at-risk users (e.g., above 30 BMI) are warned differently

than other users. Users have to install and configure the app
and its services in advance. For example, a user may opt-
in to protect her privacy, configuring that certain services be
invoked only when a device is within a designated area (e.g.,
a shopping mall). The main issue of such applications is how
to manage the participating devices’ mobility, with devices
continuously leaving and joining in the computation. Such an
application requires that participating devices exchange a lot
of data (device information in a short interval), which is very
resource-intensive [5].

2) Collaborative Earthquake Detection & Response: Con-
sider developing an app for detecting and responding to
earthquakes. Assume that mobile devices in the vicinity col-
laboratively detect earthquakes and issue an alert with detailed
action plans. To monitor ground motion, the app engages a
device’s accelerometer as a seismic sensor when in steady-state
(stationary) [14]. Upon detecting an earthquake-like motion, a
device sends the information to participating nearby devices
through D2D communication to confirm if it is indeed an
earthquake (e.g., increase the model’s confidence score). This
workflow is tremendously hard to implement and fine-tune,
and also very resource-intensive.

B. Technical Background

Next, we introduce the technical background required to be
able to understand our contributions.

Microservices: A microservice is a small cohesive piece
of functionality or process that can be deployed, scaled, and
tested independently [41]. To increase cohesion and reduce
coupling, microservices are typically responsible for a single
functionality, thus promoting changeability, replaceability, and
maintainability [8].

Due to their limited functionalities, microservices typically
take a small amount of code to implement. An example of
a microservice functionality would be the constituent compu-
tations of a numerical model [8]. Microservices can be used
to implement highly complex services while offering a high
degree of modularity. Developers can easily reuse the smaller
parts of their complex services to implement and solve other
requirements in different systems. Since all components in a
microservices architecture are independent, each component
can be tested in isolation. However, integration testing can
become very tricky, especially for large systems under test
with numerous connections between components [8], [41].

As in any distributed system, security comes to the fore-
front due to microservices suffering from the same security
vulnerabilities as Service Oriented Architecture (SOA) [27],
[38]. For example, any time unencrypted microservice data
is transferred across the network, it can be intercepted or
exfiltrated. Also, due to their emphasis on reuse, microservices
commonly integrate third-party functionalities, which may
contain their security vulnerabilities [17], [8].

Mobile Service Market: A MSM is a distributed software
architecture that delivers services from a centralized repository
to connected devices for execution. A variant of SOA, MSM



enables heterogeneous devices to download and execute the
services hosted by the marketplace [37], [6].

As edge environments are fundamentally heterogeneous,
developers may not determine which specific services will
need to execute at runtime. For each service, MSM provides
different versions tailored for major mobile platforms. When
developing mobile microservices, the resource scarcity of
mobile devices must be taken into account. MSM involves
interactions across the following stakeholders:

• Mobile service developers implement mobile services
for all major platforms, so the connected devices can
download and execute the services. MSM imposes format
and development guidelines. Developers need to follow
these guidelines, provide necessary information related
to microservices, and upload them to the MSM. The
information includes the category of microservices, user
manual, sensor requirement, number of device require-
ments for the microservice implementation. Moreover,
it is their responsibility to update and upgrade the new
version of microservices.

• Mobile application developers use MSM’s mobile ser-
vices in their applications. By browsing through a catalog
of MSM services, developers can learn about various
characteristics of the available microservices. This knowl-
edge is required to be able to select the services that best
meet the given requirements. Developers need to define
the prebuilt annotation to select appropriate edge devices
for resource execution. Mobile application developers are
responsible for designing and developing applications.
They need to select the service that resolves the resource
scarcity problem at hand and change the constraints
of the invoked services for the specific needs of their
applications.

• Mobile users can opt-in or out for their devices to
download and execute microservices of a given MSM.
The middleware will manage the service’s lifecycle, such
as obtaining the latest version of the service execution
package for further invocations. Edge application might
require specific permission to execute service smoothly;
Mobile users should provide the appropriate permission
and constraints. Constraints are specific permission of
the device’s sensor or hardware defined by application
developers to maintain user privacy.

An MSM implementation comprises an online repository
for hosting microservices, a distributed runtime for managing
service lifecycle, and a programming model supporting the
development process. Following the application market model
makes it possible for mobile users to rely on the reputation
of a given market to have enough trust to allow the automatic
installation and execution of such mobile services. At the same
time, mobile service developers would have to comply with
the service market requirements, which likely would have to
be more stringent than those of application markets.

III. µHTA OVERVIEW
In this section, we provide an overview of µHTA.

µHTA builds upon the microservice architecture to dy-
namically allocate the available edge-based resources to best
satisfy non-functional requirements. Our design objectives are
twofold: (1) bridging the gap between the statically specified
non-functional execution requirements and the heterogeneous
dynamic nature of edge environments; (2) reducing the devel-
oper burden for optimally utilizing heterogeneous edge-based
computing resources;

To access edge-based resources efficiently, developers often
end up introducing low-level, brittle, and hard-to-maintain
code, which is hard and expensive to fine-tune and maintain.
µHTA handles the low-level details of distributed interaction
by dynamically matching microservices with available com-
puting resources. It also addresses the inherent heterogeneity
of edge environments with its service-oriented architecture.

A. General Design

µHTA’s primary design principle is to enable developers
to integrate ready-made microservices into their applications,
thereby reducing programming effort. Hence, our design ob-
jective is to retain the software engineering benefits of encap-
sulation and code reuse and extend them to support efficient
resource allocation.

Fig. 1: µHTA’s overview.

Figure 1 gives an overview of a µHTA-based system. In it,
developers provide a set of non-functional requirements in the
form of annotations and target microservices. µHTA reads in
the annotations provided by the application developer. µHTA
collects the device’s execution properties and programmer-
defined constraints. µHTA requests performance estimation
from the profiler based on the available devices’ properties.
µHTA selects the appropriate devices to execute the target mi-
croservices while meeting the developer-defined requirements,
thus enabling optimal edge-based resource allocation.

1 @Transmission(Minimize=ENERGY,Maximize=LATENCY,
2 Validity=PERMANENT)
3 public Middleware executeMainTest() {...}

Fig. 2: Example of annotation usage.

Figure 2 shows a code snippet with an annotation. Ap-
plication developers annotate methods to express their non-
functional requirements. The µHTA’s runtime uses this in-
formation to determine which devices would be best suited
to execute a given microservice. In this case, the annotations



define that when executing this service, the device should
aim at minimizing the energy consumption irrespective of
execution time and that the middleware should not deallocate
the microservice after concluding its execution.

B. System Architecture

Fig. 3: System architecture.

Figure 3 shows an high-level architecture of a µHTA-based
system. In this system, Edge Devices refer to the devices that
run the application. Microservice Repository refers to MSM
that contains a set of developer-defined microservices, which
the developer previously profiled. The MSM is responsible for
managing the deployment of the available microservices while
ensuring security and privacy. Finally, the Profiler refers to a
web application that estimates the resource consumption of a
given service or microservice deployment on edge devices.

The profiler is responsible for estimating the resource con-
sumption of any runtime edge devices using the data-driven
approach. The first step in the data-driven approach is to gather
device properties while computing a particular task. These
calculated data are preprocessed, filtered, and grouped into
different clusters. This information is then analyzed to de-
termine correlations between devices’ properties and resource
consumption. These correlations are then statically analyzed
for estimation. We provide more details of the Profiler in
Section IV-A2.

The middleware is located in the edge application and
acts as the core of µHTA. The middleware automatically
downloads and executes microservices. It reads the annotations
and device constraints from app developers and app users,
respectively. It establishes a peer-to-peer network connection
between nearby edge devices. After establishing a network
connection, it collects the device’s information from par-
ticipating devices and stores it in the local storage. Since
edge devices can send their device properties at any point
in time, the middleware only stores the latest information.
Moreover, it sends collected device properties information
to the profiler, which returns an estimation of the resource
utilization. Lastly, it uses the annotations, user constraints, and
resource utilization estimations to select which devices are best
suited to execute the task.

The middleware also manages data marshaling, local data
storage, microservice cache path, resource file storage, and
the latest data required to request performance estimation.
The middleware also collects the device information, which
app developers can extend and integrate with an IDE. The
middleware stores each process’ data with a unique key;
however, it would utilize the latest device information proper-
ties when estimating resource consumption. The middleware
only allocates resources after the profiling phase has been
completed and the application’s execution has been initiated.

C. Device Selection Based on Profiling

A profiler located in an edge server provides APIs for edge
devices to request resource consumption for either single or
multiple edge devices. The primary motivation for separating
the profiler from middleware is that the profiler needs a
continuous update for real-time data collection. Moreover, it
makes the profiler more flexible to include other statistical
analyses. Devices need to request via profiler API their device
information. The profiler returns an HTTP response in JSON
format, which includes the estimated results with devices
ordered by priority. Under the successful API calls, device
store response results in their local storage.

Algorithm 1 : Device Selection Algorithm
1: Input: edge devices with their properties, Annotation
2: Ouput: Filter edge devices Dn
3: function EXECUTETESTFUNCTION(SERVICE_NAME)
4: download and execute SERVICE_NAME
5: record and store device resource properties
6: return save file path
7: end function
8: procedure SELECTDEVICE(Dn)
9: System Initialization

10: Start Network Connection between Edge Server(Ds) and edge device
11: Read Annotation
12: foreach d ∈ Dn do
13: data = EXECUTETESTFUNCTION(SERVICE_NAME)
14: Send data to Ds
15: end foreach
16: Store Dn information to local storage
17: Request API to profiler for estimating energy and performance
18: Filter device based on obtained results and service criteria
19: end procedure

Algorithm 1 shows the steps required for selecting the
appropriate devices executing µHTA. The algorithm receives
as input all the edge devices currently participating in the
mobile edge network and the developer-defined annotations.
The algorithm’s output is a sorted list of devices according to
the given annotation and service usage criteria.

Table I shows the different options methods middleware pro-
vide to filter and select appropriate devices based on applied
annotation. energy_min() and energy_max() order devices
in ascending and descending order, respectively, concern-
ing energy consumption. Similarly, performance_min() and
performance_max() order devices based on performance
estimation. lifetime() determines the duration of the exis-
tence of microservice in the application. Developers can either
annotate their services as TEMPORARY, which would flag



TABLE I: Devices filtering using annotations.

Annotation Minimize Maximize Permanent

Energy energy_min() energy_max() -

Performance performance_min() performance_max() -

Energy /

Performance

avg(energy_min(),

performance_min())

avg(performance_max(),

energy_max())
-

Validity - - lifetime()

the microservice for deletion upon the user closing the app.
Developers can use the PERMANENT annotation, which would
flag the microservice for storage in the cache directory. If the
developer uses multiple annotations, the µHTA calculates the
average order.

D. Service execution

<?xml version="1.0" encoding="utf-8"?>
<middleware>

<microservice id="15479647" name="earthquakeService">
<package_name>com.quake.earthquake</package_name>
<class_name>EarthquakeService</class_name>
<main_method>run</main_method>
<download_attempt_times>3</download_attempt_times>
<load_from_cache>false</load_from_cache>
<auth_key>765A795448AE11B2EF9EAAE55FE84</auth_key>
<method name="run">

<main_method>true</main_method>
<parameter>false</parameter>
<return_data_type>String</return_data_type>

</method>
<method name="addInput">

<parameter>true</parameter>
<return_data_type>String</return_data_type>
<number_of_parameter>1</number_of_parameter>
<first_parameter>String</first_parameter>

</method>
</microservice>

</middleware>

Listing 1: Service configuration file.

Listing 1 shows the XML configuration file that the mid-
dleware uses to download any microservice from the MSM.
Application developers are required to download the XML file
from the MSM and load it into their application. The MSM
automatically generates this file after a developer uploads
a microservice and its information (i.e., microservice name,
package name, class name, primary method name). The id
and name are unique, which separate microservices from
each other, while auth_key validates the authenticity of the
request. To download the latest version of the microservice,
the developer can set the load_from_cache key to false and
restart the application. Moreover, the developer can also define
the number of retry requests that the application performs to
download the microservice. The configuration files contain all
the methods with their parameter and return types used in the
microservices. In this case, there are two method run and
addInput where run is the main method that does not take
any parameter and return string value. The method addInput
takes one string parameter and return string output.

E. Failure Handling

The middleware runs on mobile devices that interact with
MSM. As all distributed systems, µHTA-based applications
are subject to partial failures, such as network disconnec-
tion and execution crashes. Our middleware provides fixed
failure handling. It maintains heartbeat channels between the
connected devices to detect network failures, with a timeout
of 10 seconds. If a microservice utilizes external remote
resources that are unreachable or its device has insufficient
space to run, the middleware retries microservice invocation
three times with a 5 seconds pause in between. If the retries are
unsuccessful, a failure exception is thrown. To ease debugging,
the middleware maintains persistent logs of both failure and
success when executing tasks. As a future work direction, we
plan to investigate how µHTA can be combined with more
flexible and configurable middleware mechanisms for handling
failure [16].

IV. DATA-DRIVEN PROFILING

A. Identifying Resource Usage Patterns

1) Overview: Our objective is to find correlations between
the edge-based devices and use them to analyze and compare
runtime edge-based devices’ energy and performances. Each
year tech companies manufacture millions of edge devices
with various hardware ranging from different price labels. All
these devices’ computing capacity might vary from one device
to another, and the same device can take various amounts of
time and energy to execute the identical task. Moreover, end-
user devices setting such as brightness, running background
application, and network connectivity also affect the energy
and performance. In this paper, we decided to focus on mobile
devices as, under the Edge computing umbrella, they constitute
one of its significant pillars [2], [25].

Furthermore, there is a vast gap between the energy con-
sumption of mobile devices and IoT devices because of
different usage patterns or application types. So, it would be
infeasible to compare other types of devices. Also, not all
mobile devices support docker images, and the deployment of
such would incur additional overhead to the device [40], [35],
which we are trying to avoid.

2) Data Collection: For this study, we assigned 25
smartphones to execute the distributed application without
changing their settings. These devices executed the application
without running any background tasks during the experiments.
We collected the following system information that might
directly or indirectly affect the devices’ performance and
energy consumption patterns from the experiments: device
total memory, free memory, available memory,
cache memory, swap memory, app total memory,
app free memory, and app used memory, the
number of processors, maximum frequency,
current CPU time, discharging current and
voltage.

At runtime, any device can join or leave the network,
and new jobs will be assigned to devices. Thus, the runtime



system needs to be self-sustainable to know about runtime
characteristics that are dynamically changed during execution.
Moreover, data collection should be efficient in terms of
execution time and usages of computing resources.

To fulfill these requirements, we selected a microservice
that implements a simple sorting algorithm whose time com-
plexity is O(N2). We stored non-repeatable 20,000 digits in
a CSV file and then ran the experiments in the interval of
30 seconds. In each experiment, a device reads data from
the file and sorts them in an array. The process usually
takes an average of 10 seconds to complete in a device
(e.g., Galaxy S9). In each experiment, a separate thread
calculates the device information every 100 milliseconds.
The memory, CPU frequency, CPU time, current and volt-
age information of both a device can be obtained from
/proc/meminfo, ../cpufreq/scaling_cur_freq,
/proc/processId/stat, and Android’s BatteryManager
class, respectively.

The total number of datasets is(NDatasets) is:

NDatasets =

d∑
i=1

p∑
j=1

(tij × 10) (1)

Where d is the number of experimented devices (i.e., 25),
p is the number of the executed processes (i.e., typically 60),
t is the task execution time (i.e., 6 seconds for Galaxy S9),
and in every second a device stores ten dataset points.

The energy consumption in a particular process(p) using
Ohm’s Law [10] is:

Energyp =

∑N
i=0 Currenti

N
×

∑N
i=0 V oltagei

N
× tp (2)

Where N is the number of datasets in each process(p),
Current is the discharging current, V oltage is the voltage,
and tp is the execution time of the process p in seconds.

Fig. 4: Clustering process.

3) Clustering Collected Data: Figure 4 shows the work-
flow diagram of the clustering process that occurs inside the
profiler. A study conducted by a Dutch non-profit organiza-
tion, Consumentenbond estimates that the average lifespan of
mobile devices is 2.5 years [1], and the high-end devices of
the past few years are today’s low-end devices. Moreover, it
is practically impossible to pre-profile services for all devices.
We also found considerable energy and performance gaps of
the same devices in our collected data, so instead of classifying
devices based on the device name, we cluster them based on

their properties, i.e., the same device data might belong to
different types. Such a cluster’s main advantages are that the
runtime device would belong to the cluster depending on its
resource allocation.

The number of clusters is changeable and might change
in the future depending upon the data collected. After merg-
ing each process and applying data preprocessing to current
datasets, we had a total of 7,003 data points. To estimate
the number of clusters, we use the Elbow method [12] and
the Silhouette method [32]. The Elbow method focus more
on decision rules, while the Silhouette is a metric used for
validation while clustering.

Fig. 5: Elbow method for optimal cluster

Figure 5 shows the elbow method for different clusters; in
the elbow method, the cluster at the "elbow" decreasing in
a linear format is considered an optimal number of clusters.
The elbow is ambiguous for clusters two, three, four, and
five; hence to choose the appropriate cluster, we calculate the
silhouette value that shows the data point’s similarity with its
cluster compared to other clusters.

Fig. 6: Silhouette analysis for 2, 3, 4, and 5 clusters.

Figure 6 shows the silhouette analysis for two, three, four,
and five clusters. The silhouette score for all the clusters is
comparatively similar to each other. The two and three clusters
have more than 80% and 63% data belonging to a single
cluster, so the cluster looks sub-optimal for the given dataset.
The silhouette score of four clusters is more significant than



five clusters. However, the size distribution of five clusters is
comparatively uniform than four clusters. Thus, we analyzed
the regression model’s accuracy of four and five clusters and
found that four clusters are more relevant than five clusters.
As a result, we selected four clusters with 782, 3,547, 1,152,
and 1,522 data points.

4) Threats to Validity: Because all devices’ versions used
in this experiment are greater than Android version 6 (i.e.,
Marshmallow), our method may not cluster low-end devices
with Android API Level less than 23.

B. Data Analysis for Profiler

1) Motivation and Research Question: With the hetero-
geneity and scale of edge-based systems, designers may find
it overwhelming to fulfill all their requirements. One of the
hardest system design issues of the edge is effectively and
efficiently dynamically allocating resources. To make inroads
in tackling this issue, we analyze the collected data for the
presence of correlations between the performance metrics, type
of computing task, and device type, thus seeking answers to
the following question: MQ1 – which performance metrics are
correlated to task-type?

2) Methodology: To answer MQ1, we clustered the data
collected in Section IV into four groups. We then applied
polynomial regression models to identify whether the collected
performance metrics are correlated to energy consumption.
We used coefficient determination (R_2), F-test, and root
mean squared error (RMSE) to determine the accuracy of the
regression model. R_2 is a statistical measure of how close the
data are to the regression line. F-test checks if the variances
of two populations are the same by comparing the ratio of
the variances. An F-test of 1 indicates that two populations
are the same. The RMSE represents the differences between
estimated and observed values. Additionally, it measures the
model’s accuracy. We used the measurements gathered from
the prior section for the regression model.

In total, we used 7, 003 data points from the empirical
study. For the regression model, we divided the data sets
into two parts, 80%(5, 602) of the data set was used for the
training model and the remaining 20% (1,401) for testing.
We adhere to a higher model accuracy than prior research
on modeling performance in distributed applications [22]. A
regression model is considered successful only if its accuracy
exceeds 60%.

3) MQ1: On Task Type and Energy Consumption: We
followed the methodology described above and applied poly-
nomial regression to collected metrics. By doing so, we
observed that the energy consumption of type 0 and type
1 tasks are correlated to cpu time, current, voltage,
execution time, and device type. We observed the
following indicators for the multilinear regression models
for type 0 tasks: R2 0.99606 MSE 126, 162, 539.47;
type 1 tasks: R2 0.998057 & MSE 137, 792.296. Also,
we observed that the energy consumption of type 2 tasks
are correlated to cpu time, current, voltage, and
execution time. We observed the following indicators for

the multilinear regression models for type 2 tasks: R2

0.873107 MSE 547, 033, 728.69271; type 1 tasks: R2

0.998057 & MSE 137, 792.296.
We observed that the energy consumption of type 3 tasks

are correlated to current, voltage, execution time,
and device type. We observed the following indicators for
the multilinear regression models for type 3 tasks: R2

0.715 MSE 141, 361, 947.28.
4) Summary of the Results: We developed three regression

models by leveraging the t-statistic data obtained from regres-
sion analysis, it was determined if the dependent variables
are influential in describing the variation of the dependent
variable. The accuracy of the regression models was deter-
mined using coefficient determination (R2), F-test, and root
mean squared error (RMSE). The developed regression models
for energy consumption are available here: https://github.com/
uhta524/uhta.

V. EVALUATION

For the evaluation, we had two benchmarks and two case
studies with realistic scenarios.

A. Micro Benchmark

For the evaluation, we deployed µHTA on Samsung S9,
LG710, Galaxy S7, Galaxy S10, and LG300 with the target OS
Android 10. For power measurements, we used the device’s
internal function to gather the energy consumption informa-
tion. Our evaluation objectives are to evaluate the differences
while implementing µHTA with random device selection in
terms of their respective software engineering metrics runtime
performance (i.e., time and energy consumption).

Fig. 7: Microservice download time in ms.

Figure 7 shows the time middleware takes to download a
microservice for our case study of earthquake detection and
social distancing, each of size 8.2Kb and 9.94 Kb, respectively.
We used the high-frequency network of 5GHz (High), low-
frequency network of 2.4GHz (Low), and 4G LTE network
(LTE) to download service on four experimental devices.
To measure Internet speed, we use fast.com§ before each
experiment. The average speed of the network was 130—150
Mbps, 21—26 Mbps, and 10—18 Mbps for High, LTE, and
Low networks, respectively. The devices take an average of

§Fast.com helps to check the internet speed people are getting from their
internet service provider.

https://github.com/uhta524/uhta
https://github.com/uhta524/uhta


300 to 500 milliseconds and 200 to 700 milliseconds to down-
load and load earthquake and social distancing microservices,
respectively. Once the devices download the microservice, they
can load it from the cache directory, usually taking around 4
to 10 milliseconds.

Fig. 8: Network connection time in ms.

Figure 8 shows the time to discover and connect to the edge
devices. The average time to discover any device is between
120 to 240 milliseconds and to connect with the device is
between 2,500 to 3,900 milliseconds. We also found that the
most high-end device takes less time to discover and connect
than other devices.

B. Case Study

Figure 9 shows the architecture diagram implementing
microservice using µHTA. D1, D2, D3, and D4 are the edge
devices participating in the network. Each device executes
the test function and shares the device resource information
with the edge server that selects appropriate service execution
devices.

Fig. 9: Use case architecture.

1) Earthquake Detection: In collaborative earthquake de-
tection, the earthquake microservice includes a sensor reader, a
trigger estimator, a feature extractor, an earthquake prediction
model, and an alert notification algorithm. This microservice
monitors the vibrations using an accelerometer. When a given
threshold is exceeded, the microservice analyzes two seconds
of prior data to extract features required to predict whether an
earthquake is in progress. If the earthquake probability exceeds
90%, the participating devices forward it to the edge server
and then await its response. In the meantime, the edge server
collects the probability reported by each participating device
and then calculates the majority by voting. If the calculated

final result indicates that an earthquake is indeed in progress,
then the service notifies the participating devices by sending
them individualized response plans.

TABLE II: Earthquake service resource consumption.

Device Avg(Execution Time (ms)) Avg(Energy Consumption (J))

S10 5,729 7,488

S9 5,788 7,582

S7 6,574 8,954

LG300 5,294 8,263

LG710 5,603 6,077

Table II shows the average resource consumption while
executing the earthquake microservice in µHTA. To estimate
the average execution time (ms) in milliseconds and energy
in Joules, we executed the application in five different smart-
phones 100 times. In each process, we measured the execution
time from when a smartphone detects a trigger to when an
alert notification is displayed on the smartphone. We calcu-
lated each execution’s energy consumption by multiplying the
average discharging current, average voltage, and execution
time in seconds.

2) Social distancing detection: The microservice that de-
tects social distancing first retrieves the current location, then
collects the users’ health information, and finally alerts the
appropriate users, as guided by the notification algorithm.
The edge devices share the device properties, its location,
and the user-health information every 10 seconds. The edge
server calculates the active number of devices and creates an
alert notification once the device exceeds a certain threshold.
The developer provides an interface to collect users’ health
information.

C. Evaluation Comparison

To evaluate µHTA, we compare the result with Device
Resource Level (DRL), representing the execution capability
of a mobile device proposed in [18], [19] papers. DRL
considers the CPU information and estimates the available
computing resource capacity of edge devices. It compares
the CPU resource utilization of edge devices based on a
mathematical model and tries to select optimal devices.

TABLE III: Resource consumption of the test service.

Devices Avg(DRL) Avg(Time) Avg(Predicted Energy (J))

S10 6,932,013 6,163 31,979

S9 3,456,934 6,107 23,283

S7 3,517,083 10,681 41,222

LG300 3,528,067 23,288 32,146

LG710 3,485,300 5,380 14,899

Table III shows the average value of DRL, Average Execu-
tion Time, and average Predicted Energy consumption using



µHTA in 50 experiments. The test service is the same; bubble
sort service used while collecting data.

TABLE IV: Estimation of device rankings.

Devices Avg(MER) Avg(MPR) Avg(MEMPR) Avg(MDRLR)

S10 4 2 3 1

S9 2 3 2 5

S7 5 4 5 3

LG300 3 5 4 2

LG710 1 1 1 4

Table IV shows the average ranking of devices based on the
estimated energy, performance, and DRL in 50 experiments.
MER, MPR, MEMPR, MRLR represents Minimum Energy
Ranking, Minimum Performance Ranking, Minimum Energy
and Maximum Ranking, and Maximum Device Resource
Level Ranking, respectively. The ranking is the order of
devices from 1 to 5 based on the calculated value.

In most of our experiments, we found that DRL was
selecting the same devices; however, device selection was
different using our middleware. DRL uses the same equations
and depends upon few properties of devices for device selec-
tion. µHTA runtime balances the developer’s non-functional
requirements with the changing device’s properties to select
based on the best-suited execution environment. Our middle-
ware provides more flexible options for the developer to select
devices running in the edge environment in terms of Maximize,
Minimize resource utilization compared to DRL.

VI. APPLICABILITY & LIMITATIONS

In this section, we present guidelines for edge application
developers, with the purpose of helping them successfully
apply µHTA in their development practices. We also discuss
the limitations of our approach.

A. Usage Guidelines

µHTA efficiently and effectively allocates edge resources
to execute services while following developer-defined non-
functional requirements. µHTA maintains a list of the most
recent resource-utilization profiles of the edge-services and
the participating devices. Furthermore, µHTA reads in the
developer-defined annotations, which specify the desired non-
functional requirements for the runtime (e.g., low-energy
consumption, low-latency, or a balance in terms of resource-
utilization). By collecting and managing all the available
information about both the microservices and the available de-
vices, µHTA effectively manage the complexity of optimally
allocating distributed edge resources.

For example, in the collaborative earthquake prediction
use-case, developers are relieved from having to profile and
manage the execution of the earthquake detection service.
Also, developers are not required to optimize the resource
allocation to execute the services, all handled by the µHTA’s
runtime.

B. Limitations

µHTA makes decisions by following a data-driven ap-
proach that has some inherent drawbacks. To minimize these
drawbacks, µHTA collects consistent data from different
devices, accurately pre-processes the data, clusters it, and
applies a high accuracy prediction model. However, µHTA’s
model needs continuous updates on newly released devices
for high accuracy. The performance of edge applications is
directly dependant on the available network’s capacities and
participating devices. The issues of privacy are left as out of
scope. However, edge-based applications already offer privacy
superior to those of cloud applications, with the raw sensor
data never leaving the user devices.

VII. RELATED WORK

The work presented here is related to other complementary
efforts that improve the reliability and efficiency of mobile
distributed execution, including frameworks, peer-to-peer net-
working, code migration, and computation offloading.

In mobile resource scheduling and allocation, Nawrocki [26]
introduces an adaptive task scheduling system that optimizes
mobile devices’ energy consumption using machine learning
mechanisms to learn how to allocate resources appropriately
by scheduling services/tasks optimally between the device and
the cloud. Similarly, MALMOS [9], a framework for mobile
offloading scheduling based on online machine learning, pro-
vides an online training method for the runtime scheduler, so it
supports a flexible policy that dynamically adapts scheduling
decisions based on the observation of previous offloading
decisions and their correctness. To avoid trunk of data being
transferred during the pre-optimization process, Z. Ali et al.
[3] develop an energy-efficient deep learning-based offload-
ing scheme (EEDOS), with the core smart decision-making
algorithm based on deep learning to optimize the offloading
components based on a number of inputs such as remaining en-
ergy of user devices, energy consumption by app components,
network latency, and failures, computational load and amount
of data. They developed the cost function based on these inputs
and selected the optimal policies over an exhaustive dataset
to train a deep learning network instead of examining actual
executions. Yunzhao Li et al. [20] develop a deep reinforce-
ment learning algorithm to handle the offloading tasks for
the heterogeneous Edge Computing Server(ECS) collaborative
computing. This approach is based on the real-time state of
the network and the task properties, using Actor Critic and
Policy Gradient’s Deep Deterministic Policy Gradient (DDPG)
to optimize computation decisions offloading. F. Sufyan et al.
[39] propose an efficient computation offloading scheme for
a distributed load sharing edge computing network in coop-
eration with cloud computing to enhance the capabilities of
the mobile devices. They formulate a nonlinear multiobjective
optimization problem by using queuing theory to model the
execution delay, energy consumption, and payment cost for
using edge and cloud services. They propose a stochastic
gradient descent (SGD) algorithm-based solution approach to
optimize the offloading probability and transmission power of



the mobile devices to find an optimal trade-off between energy
consumption, execution delay, and cost of the devices.

Weisong et al. [36] summarized the visions and challenges
of edge computing with multiple case studies, ranging from
cloud offloading to smart home and city, collaborative edge
to materialize the concept of edge computing. In the world
of IoT devices, Edge Mesh [34] considers low-level devices
by distributing the decision-making tasks among edge devices
within the network instead of sending all the data to a central-
ized server. All the computation tasks and data are shared using
a mesh network of edge devices and routers. Yuvraj et al. [33]
study data-aware task allocation problem to jointly schedule
task and network flows in collaborative edge computing and
mathematically model the joint problem to minimize the
overall completion time of the application. They proposed a
multistage greedy adjustment (MSGA) algorithm where the
task scheduling is done by considering both placement of
tasks and adjustment of network flows. Through simulation,
the MSGA algorithm improved at least 27% compare with the
other bench-marked solutions. To support IoT collaboration
in cooperative vehicle-infrastructure system (CVIS), J. Zhou
et al. [43] develop an analytical framework of reliability-
oriented cooperative computation optimization, considering
the dynamics of vehicular communication and computation.
In particularly, they applied stochastic modeling of V2V and
V2I communications, take into account the effects of the
vehicle mobility, channel contentions, fading, and theoretically
derive the probability of successful data transmission. These
approaches lack an efficient programming model and a run-
time infrastructure for developers/experts to embed the mid-
dleware and components into their applications in the easiest
way without changing its architecture.

Regarding profiling in edge computing, Woo-Joong et al.
[15] introduce an online profiling-based configuration adapta-
tion for video analytics systems by analyzing frame rate and
resolution to optimize resource accuracy tradeoffs of multiple
video streams on edge servers. Xinchen et al. [23] design a
new selective offloading mechanism that employs a program
profiler and decision engine at the client side to make an
offloading decision, which is to reduce workload for edge
servers; this approach claims to optimize the performance of
the Green IoT. Similarly, DeepDecision [28] is a framework to
optimize the execution of deep learning on cloud/edge servers
to support mobile devices. They consider model accuracy,
video quality, battery constraints, network data usage, and
network conditions to determine an optimal offloading strategy
and bring deep learning to mobile devices in an effective way.
Hermes [13] utilizes the NP-hard problem to minimize the
latency of application and meet device resource constraints; it
uses a fully polynomial-time approximation scheme to ensure
theoretical performance. This approach adapts to the unknown
dynamic environment and guarantees the performance gap
compared to the optimal strategy by a logarithmic function
with time.

VIII. CONCLUSIONS AND FUTURE WORK

For future research, we have the following research di-
rections. First, we will increase the data size by including
IoT devices or more smartphones. Currently, our model used
for the profiler is based on a straightforward multi-regression
technique, so we will explore advanced machine learning
approaches using deep neural networks. Moreover, we will
provide a plug-in that can integrate with modern IDEs for soft-
ware developers who are not familiar with edge computing. We
will extend our microservice-based architecture to a Docker-
based service architecture. Finally, we will adopt energy-
efficient technologies like low Bluetooth energy and Neighbor
Awareness Networking (NAN) for network connectivity.

In this paper, we presented µHTA, a profiling-based ser-
vice platform for dynamically allocating edge resources to
maximize energy consumption, execution latency, and memory
utilization objectives. µHTA divides a computation task into
a set of services and profiles their resource usage patterns.
At runtime, µHTA assigns the corresponding services to
appropriate devices that meet a developer’s non-functional
requirements. Because µHTA is based on a service-oriented
architecture, all the deployed services through our MSM can
be profiled by µHTA. For the evaluation, we measured
the network performance of our runtime system and then
implemented two use cases using our µHTA— collabora-
tive earthquake detection and social distancing. We found
that µHTA provides more flexible alternatives to software
developers.

ACKNOWLEDGEMENTS

The authors would like thank the anonymous reviewers,
whose insightful comments helped improve this paper. This
research is supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIT)
(No.2021R1A5A1021944) and by Basic Science Research
Program through the NRF funded by the Ministry of Education
(NRF-2021R1I1A3043889). This research is also supported by
US NSF through the grant #1717065. Y. Kwon and E. Tilevich
are co-corresponding authors.

REFERENCES

[1] JESPER, What is the lifespan of a smartphone . https://www.coolblue.nl/
en/advice/lifespan-smartphone.html, 2021. Last accessed 20 July 2021.

[2] What are Edge Computing Devices? https://www.exorint.com/en/blog/
what-are-edge-computing-devices, 2021. Last accessed 20 July 2021.

[3] Z. Ali, L. Jiao, T. Baker, G. Abbas, Z. H. Abbas, and S. Khaf. A
deep learning approach for energy efficient computational offloading in
mobile edge computing. IEEE Access, 7:149623–149633, 2019.

[4] F. Bonomi. Connected vehicles, the internet of things, and fog com-
puting. In The Eighth ACM International Workshop on Vehicular Inter-
Networking (VANET), Las Vegas, USA, pages 13–15, 2011.

[5] S. Brienza, S. E. Cebeci, S. S. Masoumzadeh, H. Hlavacs, Ö. Özkasap,
and G. Anastasi. A survey on energy efficiency in p2p systems: File
distribution, content streaming, and epidemics. ACM Computing Surveys
(CSUR), 48(3):1–37, 2015.

[6] B. D. Cruz, J. Cheng, Z. Song, and E. Tilevich. Understanding the
potential of edge-based participatory sensing: an experimental study. In
2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring),
pages 1–5. IEEE, 2020.

https://www.coolblue.nl/en/advice/lifespan-smartphone.html
https://www.coolblue.nl/en/advice/lifespan-smartphone.html
https://www.exorint.com/en/blog/what-are-edge-computing-devices
https://www.exorint.com/en/blog/what-are-edge-computing-devices


[7] B. D. Cruz, A. K. Paul, Z. Song, and E. Tilevich. Stargazer: A
deep learning approach for estimating the performance of edge-based
clustering applications. In 2020 IEEE International Conference on Smart
Data Services (SMDS), pages 9–17. IEEE, 2020.

[8] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina. Microservices: yesterday, today, and
tomorrow. In Present and ulterior software engineering, pages 195–
216. Springer, 2017.

[9] H. Eom, R. Figueiredo, H. Cai, Y. Zhang, and G. Huang. Malmos: Ma-
chine learning-based mobile offloading scheduler with online training. In
2015 3rd IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering, pages 51–60, 2015.

[10] M. S. Gupta. Georg simon ohm and ohm’s law. IEEE Transactions on
Education, 23(3):156–162, 1980.

[11] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young. Mobile edge
computing—a key technology towards 5g. ETSI White Paper, 11(11):1–
16, 2015.

[12] K. D. Joshi and P. Nalwade. Modified k-means for better initial
cluster centres. International Journal of Computer Science and Mobile
Computing, 2(7):219–223, 2013.

[13] Y. Kao, B. Krishnamachari, M. Ra, and F. Bai. Hermes: Latency
optimal task assignment for resource-constrained mobile computing.
IEEE Transactions on Mobile Computing, 16(11):3056–3069, 2017.

[14] I. Khan, M. Pandey, and Y.-W. Kwon. An earthquake alert system based
on a collaborative approach using smart devices. In 2021 IEEE/ACM 8th
International Conference on Mobile Software Engineering and Systems
(MobileSoft), pages 61–64, 2021.

[15] W. Kim and C. Youn. Lightweight online profiling-based configuration
adaptation for video analytics system in edge computing. IEEE Access,
8:116881–116899, 2020.

[16] Y.-W. Kwon, E. Tilevich, and T. Apiwattanapong. DR-OSGi: Hardening
distributed components with network volatility resiliency. In ACM/I-
FIP/USENIX Middleware 2009.

[17] X. Larrucea, I. Santamaria, R. Colomo-Palacios, and C. Ebert. Microser-
vices. IEEE Software, 35(3):96–100, 2018.

[18] M. Le and Y.-W. Kwon. Efficiently sharing remote computing resources
for mobile devices. IEIE Transactions on Smart Processing & Comput-
ing, 9(4):336–343, 2020.

[19] M. Le, M. Song, and Y. Kwon. Enabling flexible and efficient remote
execution in opportunistic networks through message-oriented middle-
ware. In 2017 IEEE 41st Annual Computer Software and Applications
Conference (COMPSAC), volume 1, pages 979–984, 2017.

[20] Y. Li, F. Qi, Z. Wang, X. Yu, and S. Shao. Distributed edge computing
offloading algorithm based on deep reinforcement learning. IEEE
Access, 8:85204–85215, 2020.

[21] C.-F. Liu, M. Bennis, M. Debbah, and H. V. Poor. Dynamic task
offloading and resource allocation for ultra-reliable low-latency edge
computing. IEEE Transactions on Communications, 67(6):4132–4150,
2019.

[22] W. Lloyd, S. Pallickara, O. David, J. Lyon, M. Arabi, and K. Rojas.
Performance modeling to support multi-tier application deployment to
infrastructure-as-a-service clouds. In 2012 IEEE Fifth International
Conference on Utility and Cloud Computing, pages 73–80. IEEE, 2012.

[23] X. Lyu, H. Tian, L. Jiang, A. Vinel, S. Maharjan, S. Gjessing, and
Y. Zhang. Selective offloading in mobile edge computing for the green
internet of things. IEEE Network, 32(1):54–60, 2018.

[24] P. Mach and Z. Becvar. Mobile edge computing: A survey on archi-
tecture and computation offloading. IEEE Communications Surveys &
Tutorials, 19(3):1628–1656, 2017.

[25] C. Mahmoudi, F. Mourlin, and A. Battou. Formal definition of edge
computing: An emphasis on mobile cloud and iot composition. In
2018 Third international conference on fog and mobile edge computing
(FMEC), pages 34–42. IEEE, 2018.

[26] P. Nawrocki and B. Sniezynski. Adaptive context-aware energy opti-
mization for services on mobile devices with use of machine learning.
In Wireless Personal Communications 2020. IEEE, 2020.

[27] R. Perrey and M. Lycett. Service-oriented architecture. In 2003 Sympo-
sium on Applications and the Internet Workshops, 2003. Proceedings.,
pages 116–119. IEEE, 2003.

[28] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen. Deepdecision: A mobile
deep learning framework for edge video analytics. In IEEE INFOCOM
2018 - IEEE Conference on Computer Communications, pages 1421–
1429, 2018.

[29] J. Ren, G. Yu, Y. He, and G. Y. Li. Collaborative cloud and edge
computing for latency minimization. IEEE Transactions on Vehicular
Technology, 68(5):5031–5044, 2019.

[30] Y. Ren, Z. Weng, Y. Li, Z. Xie, K. Song, and X. Sun. Distributed
task splitting and offloading in mobile edge computing. In International
Conference on Communications and Networking in China, pages 33–42.
Springer, 2019.

[31] J. M. Rodriguez, C. Mateos, and A. Zunino. Energy-efficient job stealing
for cpu-intensive processing in mobile devices. Computing, 96(2):87–
117, 2014.

[32] P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of computational and applied
mathematics, 20:53–65, 1987.

[33] Y. Sahni, J. Cao, and L. Yang. Data-aware task allocation for achieving
low latency in collaborative edge computing. IEEE Internet of Things
Journal, 6(2):3512–3524, 2019.

[34] Y. Sahni, J. Cao, S. Zhang, and L. Yang. Edge mesh: A new paradigm
to enable distributed intelligence in internet of things. IEEE Access,
5:16441–16458, 2017.

[35] E. A. Santos, C. McLean, C. Solinas, and A. Hindle. How does docker
affect energy consumption? evaluating workloads in and out of docker
containers. Journal of Systems and Software, 146:14–25, 2018.

[36] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision
and challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016.

[37] Z. Song, M. Le, Y.-W. Kwon, and E. Tilevich. Extemporaneous micro-
mobile service execution without code sharing. In 2017 IEEE 37th
International Conference on Distributed Computing Systems Workshops
(ICDCSW), pages 181–186. IEEE, 2017.

[38] D. Sprott and L. Wilkes. Understanding service-oriented architecture.
The Architecture Journal, 1(1):10–17, 2004.

[39] F. Sufyan and A. Banerjee. Computation offloading for distributed
mobile edge computing network: A multiobjective approach. IEEE
Access, 8:149915–149930, 2020.

[40] S. S. Tadesse, F. Malandrino, and C.-F. Chiasserini. Energy consumption
measurements in docker. In 2017 IEEE 41st Annual Computer Software
and Applications Conference (COMPSAC), volume 2, pages 272–273.
IEEE, 2017.

[41] J. Thönes. Microservices. IEEE software, 32(1):116–116, 2015.
[42] A. Toor, S. ul Islam, G. Ahmed, S. Jabbar, S. Khalid, and A. M.

Sharif. Energy efficient edge-of-things. EURASIP Journal on Wireless
Communications and Networking, 2019(1):1–11, 2019.

[43] J. Zhou, D. Tian, Y. Wang, Z. Sheng, X. Duan, and V. C. M. Le-
ung. Reliability-optimal cooperative communication and computing in
connected vehicle systems. IEEE Transactions on Mobile Computing,
19(5):1216–1232, 2020.


	Introduction
	Motivation and Background
	Motivating Examples
	Social Distancing App for COVID-19
	Collaborative Earthquake Detection & Response

	Technical Background

	HTA OVERVIEW
	General Design
	System Architecture
	Device Selection Based on Profiling
	Service execution
	Failure Handling

	Data-Driven Profiling
	Identifying Resource Usage Patterns
	Overview
	Data Collection
	Clustering Collected Data
	Threats to Validity

	Data Analysis for Profiler
	Motivation and Research Question
	Methodology
	MQ1: On Task Type and Energy Consumption
	Summary of the Results


	Evaluation
	Micro Benchmark
	Case Study
	Earthquake Detection
	Social distancing detection

	Evaluation Comparison 

	Applicability & Limitations
	Usage Guidelines
	Limitations

	Related Work
	CONCLUSIONS AND FUTURE WORK
	References

